

10/23/90 JSD

CONTRACTOR REPORT

SAND90-7026
Unlimited Release
UC-274

High-Efficiency Silicon Solar Cells for a 22-Sun Line-Focus Module

J. R. Silver, B. Patel
Solarex Aerospace Division
1335 Piccard Drive
Rockville, MD 20850

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185
and Livermore, California 94550 for the United States Department of Energy
under Contract DE-AC04-76DP00789

Printed February 1990

DO NOT MICROFILM
COVER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A02
Microfiche copy: A01

**HIGH-EFFICIENCY SILICON SOLAR CELLS
FOR A 22-SUN LINE-FOCUS MODULE**

**J. R. Silver, B. Patel
Solarex Aerospace Division
1335 Piccard Drive
Rockville, MD 20850**

Sandia Contract 05-2557

ABSTRACT

The purpose of this program was for Solarex, a commercial silicon solar cell supplier, to demonstrate the capability of fabricating high efficiency 38.4 cm^2 concentrator cells in a production environment. These cells were designed for use in 22-sun line-focus concentrator module that could generate 20kW for the PVUSA EMT-1 project. The cells were fabricated using p-type, .8 ohm-cm silicon, randomly textured fronts, dual-layer anti-reflective coatings, passivated emitters, restricted emitter/metallization contact areas, and silver gridlines with large cross-sectional areas. Prismatic covers were used to eliminate losses from gridline shadowing. Cell efficiencies as high as 20.34% were demonstrated on covered cells at 20 suns air mass 1.5 illumination. The process sequence includes a single diffusion step, a thin thermal oxide growth, and two mechanically registered photolithography steps.

MASTER

Table of Contents

	LIST OF FIGURES AND TABLES	vi
1	INTRODUCTION	1
2	CELL DESCRIPTION	2
2.1	BASELINE (ENTECH/AUSTIN)	2
2.2	DESIGN PARAMETERS	3
2.3	CELL STRUCTURE	8
2.4	PROCESS SEQUENCE	11
3	RESULTS	13
4	POTENTIAL FOR FURTHER OPTIMIZATION	16

List of Figures and Tables

<u>Figure</u>	<u>Page</u>
1 2 Cells on 5 Inch Silicon Wafer	2
2 External Quantum Efficiency vs. Wavelength-No Thin Oxide Grown	4
3 External Quantum Efficiency vs. Wavelength-Thin Oxide Grown at 870°C	4
4 External Quantum Efficiency vs. Wavelength-Thin Oxide Grown at 980°C	5
5 External Quantum Efficiency vs. Wavelength-Thin Oxide Grown at 980°C and Then Removed	5
6 PC-1D: Isc at 1x vs. Bulk Resistivity	7
7 PC-1D: VOC at 22x vs. Bulk Resistivity	7
8 PC-1D: Fill Factor at 22x vs. Bulk Resistivity	7
9 PC-1D: Efficiency at 22x vs. Bulk Resistivity	8
10 Predicted and Actual Isc vs. Thickness	8
11 Solar Cell Cross Section	9
12 Detail of Contract Between Gridline and Diffused Area	10
13 Efficiency vs. Concentration	14

Table

I Process Sequence for 22x Concentrator Cells	12
II Cell Efficiencies at 20 Suns AM1.5 Direct with Covers and Interconnects Attached	14
III Summary of Covered Cell Results at 22 Suns	15

1 INTRODUCTION

For this contract, Solarex developed a 38.4 cm^2 silicon solar cell to be used with a prismatic cover in a 20kW 22-sun linear-focus concentrator module produced by the Entech Corporation for the PVUSA EMT-1 project. The program goal was to fabricate 20 cells of this type having an average active area efficiency of at least 21.5% at 20 suns illumination. This was intended to insure an illuminated area efficiency of over 20.4% after application of prismatic covers and interconnects. Evaluation of final device performance based on active area measurement, however, was not straight-forward. As a result, prismatic covers and copper interconnects were attached to the cells to permit a more accurate final cell efficiency measurement.

The highest illuminated area efficiency on a cell fabricated during this program was 20.34% measured at Sandia National Laboratories on a cell after attachment of cover and interconnects. To our knowledge, this is the highest efficiency concentrator cell of this size produced anywhere as of this writing. This also represents a significant improvement over our efficiency baseline established using a similar, but less optimized solar cell supplied to Entech for the 300-kW Austin project for which the average covered cell efficiency was 18.9%.

The cells for this program were fabricated using p-type .8 ohm-cm silicon, randomly textured fronts, dual-layer anti-reflective coatings, passivated emitters, restricted emitter/metallization contact areas, and silver gridlines with large cross-sectional areas. Prismatic covers diverted light that would have otherwise hit the gridlines onto the active current-collecting area of the cell. The fabrication sequence included two photolithography steps and one diffusion step.

Section 2 of this report describes the baseline design established prior to this program, our strategy for improving its performance, the improved cell structure, and its fabrication sequence. Results at concentration are discussed in Section 3. In Section 4, several options for further development are presented.

2 CELL DESCRIPTION

2.1 BASELINE (ENTECH/AUSTIN)

Our approach for this program was to improve the performance of the solar cells produced for the 300-kW linear focus concentrator system being installed in Austin by Entech. The average covered cell efficiency for the 25,300 cells supplied for that program was 18.9%. Those cells had identical physical dimensions as the cells developed for this program but were fabricated using a simpler and less optimized process sequence.

Figure 1 shows a pair of these cells oriented on a 5-inch round silicon wafer from which they are fabricated. The cells have two parallel 0.12 inch wide busbars along the cell edges. 190 Gridlines on 0.020-inch centers cover close to 20% of the illuminated area of the cell. The corner of each cell is truncated, reflecting a compromise between efficient utilization of the available "real estate" of the silicon wafer and optimal solar cell packing density in the receiver.

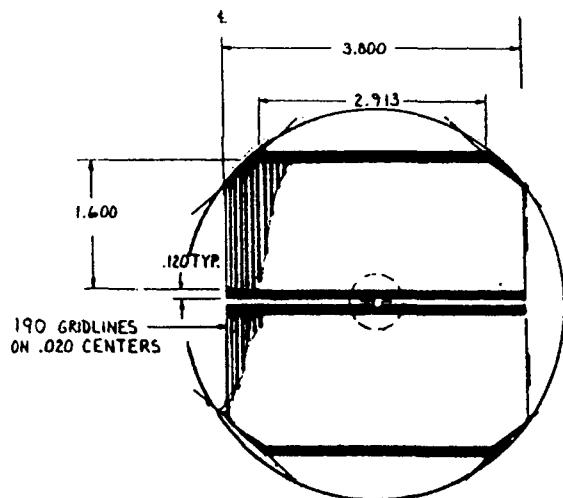


Figure 1
2 Cells on 5-Inch Silicon Wafer

The Austin cells had a random pyramidal textured surface, which resulted in an increase of approximately 4% in short-circuit current and brought the cell efficiency from the 18.25% to the 19% efficiency range.

2.2 DESIGN PARAMETERS

We identified the following key modifications to improve the performance of the baseline cells to the program target:

- o Emitter passivation. A thin oxide layer, thermally grown across the entire diffused layer, was added to the Austin structure. This required a modification to the baseline diffused layer so that the desired sheet resistivity would be obtained after the oxide growth. Oxidation parameters had to be controlled to avoid increasing the reflectance or absorptance of the anti-reflective coating.

- o Contact area reduction. The same thin oxide used to passivate the emitter was also used to limit the contact area between the grid metallization and the emitter. The busbar metallization was completely isolated from the diffused layer underneath by this oxide. Separate photolithography steps were used to form openings in the thin oxide for contacting and to form the metallization pattern. An alignment technique based on mechanical registration rather than the use of a mask aligner was developed.

- o Grid metallization cross-section. This cross-section was increased to minimize possible contributions to series resistance from conduction losses in the gridlines or from contact resistance.

To verify that the procedures we used to form the passivating oxide layer were effective, we prepared several cell samples for external quantum efficiency measurement. These results are shown in Figures 2-5, which are quantum efficiency vs. wavelength curves

for cells produced under the following conditions:

Fig. 2: Baseline structure (Austin cell) with no emitter passivation.

Fig. 3: Thin oxide grown at 870°C.

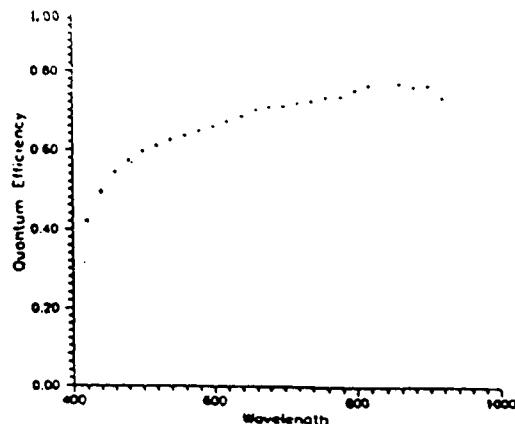
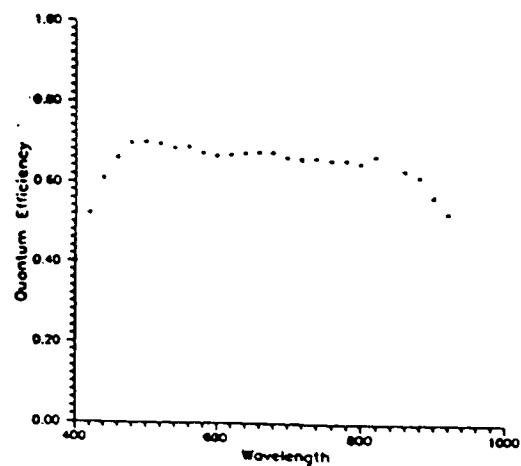

Fig. 4: Thin oxide grown at 980°C.

Fig. 5: Thin oxide grown at 980°C and then removed.

Each of the samples had untextured surfaces, dual layer anti-reflective coatings, and approximately 20% gridline coverage.


Figure 2

External Quantum Efficiency vs. Wavelength
- No Thin Oxide Grown

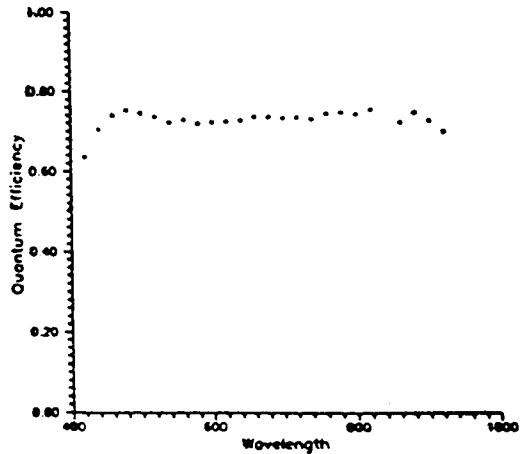


Figure 3

External Quantum Efficiency vs. Wavelength
- Thin Oxide Grown at 870°C

Figure 4
External Quantum Efficiency vs. Wavelength
- Thin Oxide Grown at 980°C

Figure 5
External Quantum Efficiency vs. Wavelength
- Thin Oxide Grown at 980°C
And Then Removed

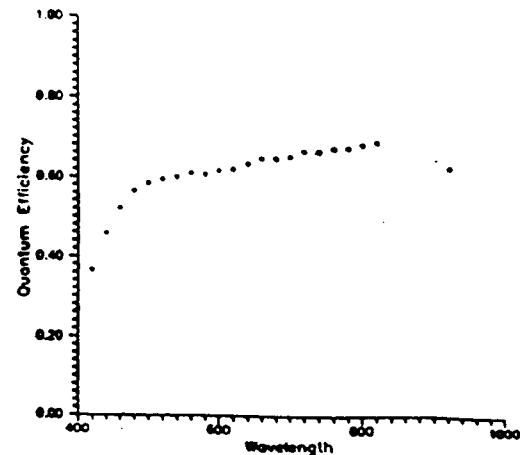


Figure 2 shows a decrease in quantum efficiency for the unpassivated sample at short wavelengths. This is improved by the thermal oxide present on the front surface of the sample shown in Figure 3 and further improved by the higher temperature thermal oxide present on the sample shown in Figure 4. To determine whether the surface improvements were the result of the actual presence of the passivating oxide or some other related effect such as modification of the diffused layer by the heat treatment, the oxide layer was grown and then removed from the sample of Figure 5. The quantum

efficiency curve for this sample indicates a return to the poorer blue response of the unpassivated sample of Figure 2.

Based on this result, emitter passivation as applied to these test samples was included in the cell design. Although slightly better blue response was achieved using the higher temperature oxidation (980°C), we selected the lower temperature (870°C) to avoid lowering the surface concentration of the diffused layer to the point that contact resistance could become a problem.

The improvement in performance expected by passivating the emitter was estimated using the computer model PC-1D, (developed by D. T. Rover, P. A. Basore and G. M. Thorson). Although actual values of front surface recombination velocity are not precisely known, assuming an improvement from a composite value (for both active area and metallized area) of 1×10^6 to 1×10^4 cm, a gain in short-circuit current density of 5.3% and a gain in open circuit voltage of 3.5% could be expected.

We used PC-1D to optimize the cell design in terms of thickness and bulk resistivity. Figures 6-9 show PC-1D simulations of active area short circuit current density, open-circuit voltage, fill factor, and active area efficiency at 22 suns as a function of bulk resistivity for different thicknesses. The model's default relationship between bulk minority carrier lifetime and impurity concentration was used.

We conducted an experiment to evaluate the relationships modelled in Figures 6-9 and found that, despite an offset of about 1.5% (possibly based on imprecision in reflection estimates entered into the model) the dependence of short-circuit current on thickness was reasonably close to that predicted by PC-1D. The comparison between PC-1D predictions and actual measurements are shown in Figure 18. The experimental results for fill factor and open-circuit voltage were apparently dominated by processing differences and did not show the behavior predicted by the model over the limited thickness range evaluated.

The model predicts the highest efficiency for lower bulk resistivity silicon. As bulk resistivities approach 2.0 ohm-cm, better overall performance is expected for thicker

FIGURE 6

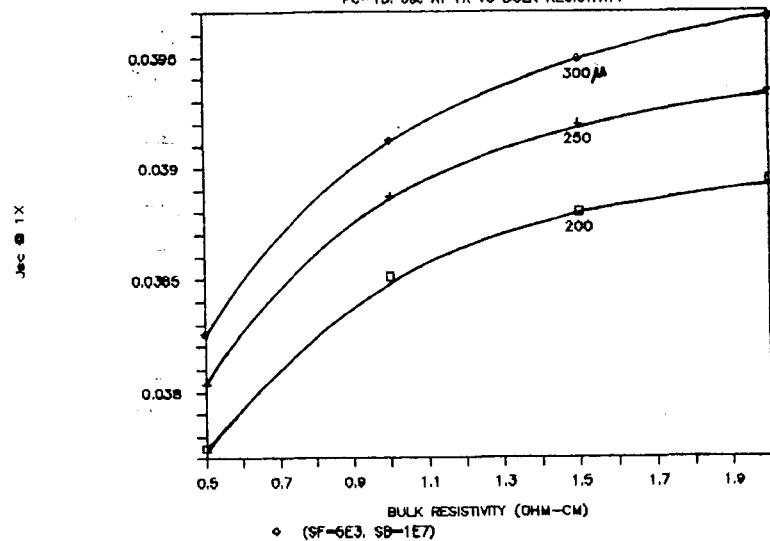

PC-1D: J_{SC} AT 1X VS BULK RESISTIVITY

FIGURE 7

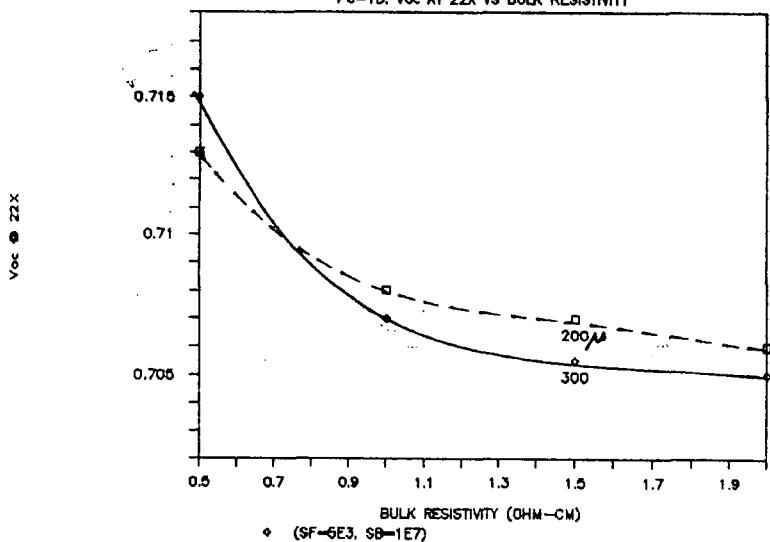
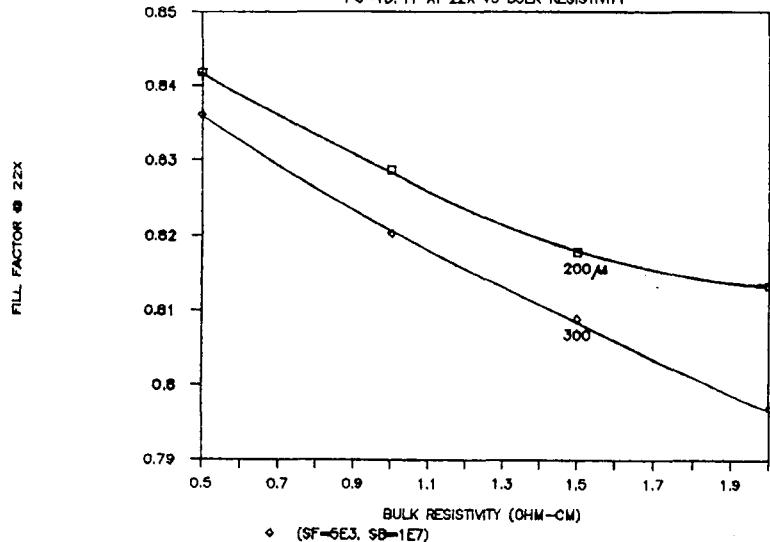
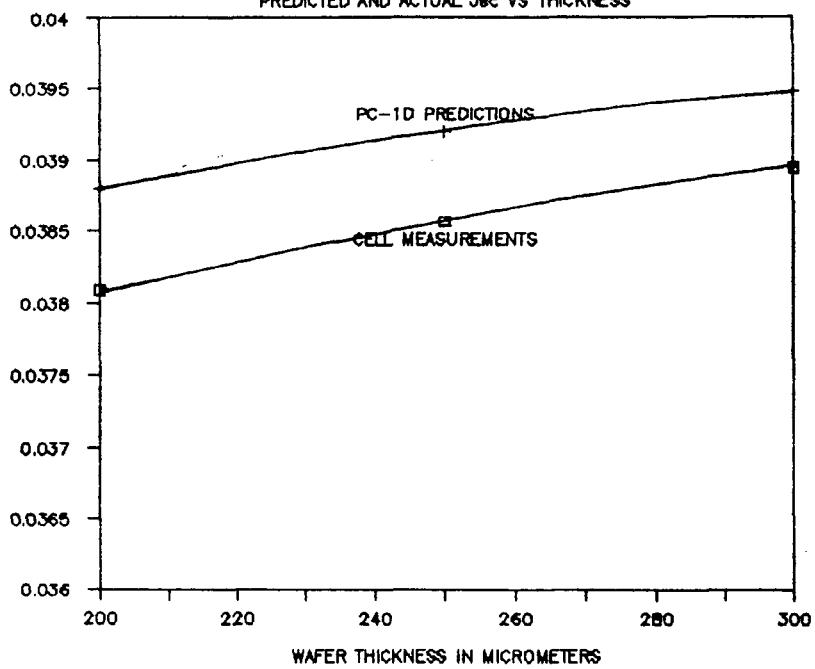


PC-1D: V_{OC} AT 22X VS BULK RESISTIVITY

FIGURE 8


PC-1D: FF AT 22X VS BULK RESISTIVITY

EFFICIENCY • 22X (27.5X w/20% COVERAGE)

FIGURE 9

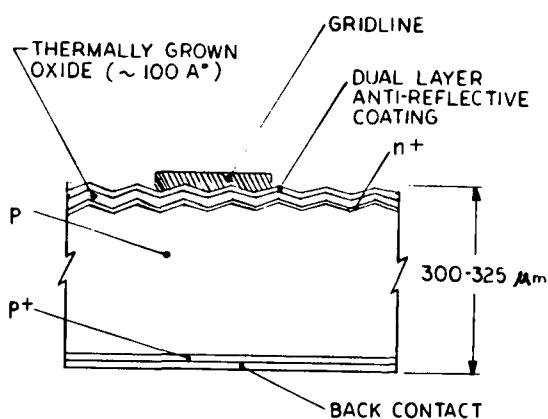

PC-1D: EFF AT 22X VS BULK RESISTIVITY

ACTIVE AREA J_{sc} AT 1X

FIGURE 10

PREDICTED AND ACTUAL J_{sc} VS THICKNESS

substrates. Above that resistivity range, losses from resistance in the bulk, overpower the gain in short-circuit current predicted for thicker substrates.


We chose 300 micrometer substrates, which with the added metallization thickness that resulted after plating, were about as thick a wafer as we felt could be reasonably handled in production. We used .8 ohm-cm silicon because we were able to obtain a sufficient quantity of 5-inch diameter silicon to work with within the limited time frame of the program. We used both silicon grown by the standard Czochralski technique (CZ) and a batch of silicon grown using an experimental magnetic stabilization technique (MCZ).

Based on the expected improvement predicted for the lower resistivity substrates, we also evaluated more heavily doped, .18 ohm-cm, float zone 4-inch diameter silicon. These, along with other 4-inch diameter 1 ohm-cm float zone silicon samples, resulted in cells that were shorter than the cell size required for this program, but provided additional information.

2.3 CELL STRUCTURE

Figure 10 shows a cross-sectional view of the cell developed for this program. As in the Austin cells, the front surface has a random pyramidal texture covered by a dual-layer anti-reflective coating. However, underneath the anti-reflective coating is a passivating oxide that restricts the area of contact to a fraction of the total metallized area, as shown in Figure 11.

Figure 11
Solar Cell Cross Section

A single diffused layer covers the entire front surface, including the area under the cell busbars. Contact is made to the diffused region by a series of rectangular openings in the thin oxide at regular intervals along the length of the gridline.

A back surface field, formed by alloying aluminum paste, covers the entire back of the cell. Contacts are made by evaporating layers of titanium and palladium and then electroplating 13 micrometers of silver to both front and back.

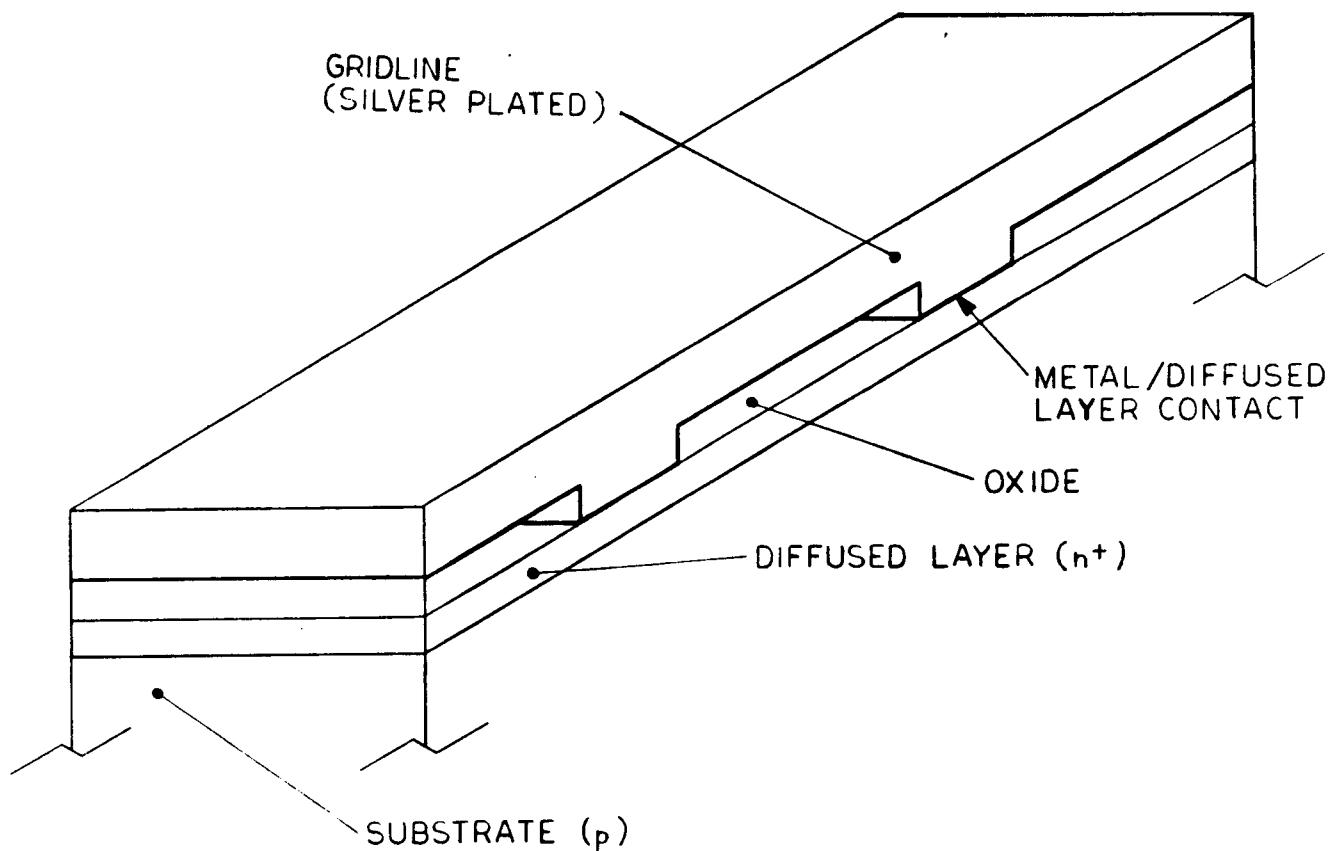


Figure 12
Detail of Contact Between Gridline and Diffused Layer

2.4

PROCESS SEQUENCE

Table I outlines the steps used to fabricate the cells developed for this program. The diffusion temperature was reduced from the temperature used for the Austin program, resulting in an increase in sheet resistivity from 75 ohm per square to 100 ohm per square. Following the growth of the thin oxide at 870°C, the sheet resistivity decreased to 75 ohm per square providing adequate diffused layer conductivity without excessively compromising short wavelength response.

Two photolithography steps were used: one to pattern the thin passivating oxide, the other to form a mechanically aligned metallization pattern. Preliminary trials were run to attempt to include possible further optimization of the cell design, such as deep diffusion under the gridlines or elimination of diffused layers under the bus bars. However, we settled on the sequence of Table I, which we thought would have the best chance of meeting the program goals within the allotted time period.

TABLE I

PROCESS SEQUENCE FOR 22X CONCENTRATOR CELLS

<u>STEP</u>	<u>COMMENT</u>
NaOH ETCH	300-325 MICROMETERS
KOH ETCH	4% SOLUTION WITH IPA, 100° C, 12 MIN, RANDOM PYRAMIDS 10 MICROMETERS HIGH.
ROUNDING ETCH	HNO ₃ :HF, 20:1, 90 SEC
RCA CLEAN	
DIFFUSION	PHOSPHINE SOURCE, 100 OHM/SQ (BEFORE OXIDE GROWTH)
HF DIP	
RCA CLEAN	
GROW THIN OXIDE	870° C, O ₂ FLOW FOR 45 SECONDS
ALLOY/HCL ETCH	ALUMINUM PASTE
PHOTO 1	THIN OXIDE PATTERN
HF/RESIST REMOVAL	
PHOTO 2	FRONT METAL CONTACT PATTERN ALIGN BY MECHANICAL REGISTRATION
FRONT TiPd EVAP	
LIFTOFF	
BACK TiPd/Ag EVAP	
AG PLATE	13 MICRONS HIGH
AR	1/4 WAVELENGTH: TiO _x , Al ₂ O ₃
SINTER	
CUT	DICING SAW
SINTER	EDGE PASSIVATION
TEST	AM1.5 DIRECT

3 RESULTS

After several preliminary runs to optimize process parameters, we ran an experiment using several different types of silicon based on the cell structure and process sequence described above.

As originally planned, we sent cells to Sandia for measurement at concentration without attachment of covers or interconnects. However, this interim measurement of active area efficiency did not turn out to be a reliable predictor of final results because of large series resistance losses. This is most likely because the probe spacing did not sufficiently simulate the interconnects designed for this concentration level. To circumvent this problem, we selected several cells from each group and sent them to Entech Corporation where copper interconnects were attached to the cells.

Prismatic covers were also attached to the cells. The presence of the covers eliminated uncertainties inherent in estimating active areas on uncovered cells often leading to overly optimistic predictions of covered cell performance. The cells were then sent to Sandia for measurement at concentration.

Results for the best 20 cells measured in this manner are shown in Table II. The best cell had an efficiency of 20.34% with three-quarters of the group having an average efficiency exceeding 20% at 20 suns. The average for the 20 cells was 19.8% using a small spectral mismatch factor calculated at Sandia to account for differences between the test cells and the calibration cell. These same cells were also measured at Entech Corporation where a somewhat higher, 20.3% average efficiency was measured for the group. The efficiencies are based on the illuminated area which excludes the wide bus bars on the edges of the cells.

The cells peak in efficiency roughly between 20 and 30 suns as shown in Figure 13. The difference between the best and worst cells of Table II can be attributed to a large extent to differences in fill factor, although the specific cause of that difference has not been determined. On each wafer processed were two cell patterns. The metal/diffused

layer contact area for one was 3.1% and for the other 6.2%. No significant difference between the two were detected in the data taken at concentration.

FIGURE 13
EFFICIENCY VS CONCENTRATION

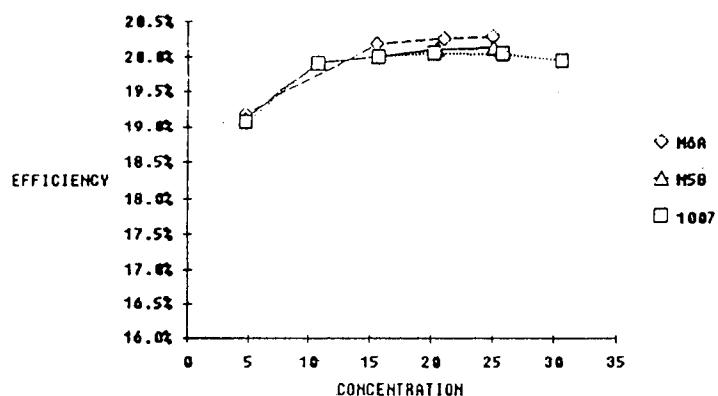


TABLE II

CELL EFFICIENCIES AT 20 SUNS AM1.5 DIRECT
WITH COVERS AND INTERCONNECTS ATTACHED

CELL I.D.	EFF @20X	CUMULATIVE EFF
M6A	20.34%	20.34%
M5B	20.29%	20.32%
C37A	20.25%	20.30%
M4A	20.25%	20.28%
C39B	20.18%	20.26%
1007	20.18%	20.25%
C19A	20.13%	20.23%
M2A	20.02%	20.21%
M9B	19.97%	20.18%
M4B	19.92%	20.15%
C39A	19.88%	20.13%
M3B	19.71%	20.09%
M7B	19.68%	20.06%
M6B	19.61%	20.03%
M1A	19.59%	20.00%
M12A	19.43%	19.96%
M5A	19.41%	19.93%
M7A	19.34%	19.90%
M12B	19.32%	19.87%
C17A	19.19%	19.83%

Table III shows results from each of the four groups of silicon used to process these cells. The .2 ohm-cm float zone silicon resulted in lower short-circuit current densities, which were not compensated for by the small improvements in open-circuit voltage and fill factor. The standard Czockralski (CZ) and the magnetically purified (MCZ) .8 ohm-cm silicon produced cells with no detectable difference in short-circuit current density. The 1 ohm-cm float zone silicon surprisingly had lower short-circuit current densities than either of the Czockralski groups with nearly the same doping level.

TABLE III

SUMMARY OF COVERED CELL RESULTS AT 20 SUNS

SILICON	J _{SC} @1X	V _{OC} @20X	FF @20X	EFF @20X	SAMPLE SIZE
1 OHM-CM CZ MEAN:	0.0364	0.683	0.794	19.8%	6
MAX:	0.0367	0.686	0.810	20.25%	
MIN:	0.0359	0.681	0.776	19.1%	
S.D.:	0.0002	0.002	0.012	0.5%	
1 OHM-CM MCZ MEAN:	0.0364	0.681	0.797	19.8%	14
MAX:	0.0368	0.686	0.816	20.34%	
MIN:	0.0358	0.677	0.781	19.3%	
S.D.:	0.0003	0.003	0.010	0.3%	
1 OHM-CM FZ MEAN:	0.0357	0.681	0.810	19.7%	5
MAX:	0.0363	0.686	0.817	20.18%	
MIN:	0.0349	0.679	0.806	19.3%	
S.D.:	0.0005	0.003	0.004	0.3%	
.2 OHM-CM FZ MEAN:	0.0347	0.685	0.817	19.4%	4
MAX:	0.0350	0.686	0.822	19.55%	
MIN:	0.0343	0.683	0.813	19.3%	
S.D.:	0.0003	0.001	0.003	0.1%	

4

POTENTIAL FOR FURTHER OPTIMIZATION

The following approaches were considered during the course of this work but fell outside the scope of the program:

- 1) Eliminate one photolithography step by etching the thin oxide mask immediately before metal deposition. This would passivate the emitter only, however, and would place the entire metallized area in contact with the diffused layer.
- 2) Use a very deep diffused layer across the entire front surface to reduce recombination. This could be used in conjunction with the first approach to eliminate a photolithography step.
- 3) In contrast, addition of a photolithography step, mask alignment, and a diffusion step would permit further potential performance improvements of the device by allowing separate optimization of the diffused layers for the emitter and the contact areas.

CELL RESEARCH DISTRIBUTION LIST

Acrian, Inc. (2)

Attn: Mary Bernstein
Bill Ruehle
490 Race St.
San Jose, CA 95126

AESI, Inc.

Attn: William J. Todorof
1001 West 17th Street, Suite V.
Costa Mesa, CA 92627

Alpha Solarco, Inc.

Attn: Edward Schmidt
11534 Gondola Drive
Cincinnati, OH 45241

Amonix, Inc.

Attn: Vahan Garboushian
Sewang Yoon
3545 W. Lomita Blvd.
Unit A
Torrance, CA 90505

Applied Solar Energy Corp. (3)

Attn: Ken Ling
Frank Ho
Peter Iles
15251 E. Don Julian Rd.
City of Industry, CA 91749

ARCO Solar, Inc. (3)

Attn: Charles Gay
Ray Kosanke
Kim Mitchell
4650 Adohr Lane
P. O. Box 6032
Camarillo, CA 93010

Arizona State University (3)

College of Engineering
Attn: D. K. Schroder
Charles E. Backus
G. H. Schwuttke
Tempe, AZ 85287

AstroPower, Inc. (3)

Attn: Allen Barnett
Bob Hall
Jerry Culik
30 Lovett Ave.
Newark, DE 19711

Black & Veatch (2)

Attn: Sheldon Levy
Larry Stoddard
11401 Lamar
P. O. Box 8405
Overland Park, KS 66211

Boeing Electronics Company

Attn: Lewis Fraas
P. O. Box 24969, MS 9Z-80
Seattle, WA 98124-6269

Boeing Engineering & Const.

Attn: Roger Gillette
P. O. Box 3707
Seattle, WA 98124

Brookhaven National Lab (2)

Attn: Leonard Hamilton
Paul Moskowitz
Upton, NY 11973

Brown University

Div. of Engineering
Attn: J. J. Loferski
Providence, RI 02912

California Institute of Tech.
Electrical Engineering Dept.

Attn: Marc A. Nicolet MS 116-81
Pasadena, CA 91125

Carnegie Mellon University

Attn: A. G. Milnes
Pittsburgh, PA 15213

Cornell University

Professor D. Ast
Department of Materials Science
and Engineering
Bard Hall
Ithaca, NY 14853-1501

Dionics, Inc.

Attn: Bill Sheng
65 Rushmore St.
Wetbury, NY 11590

DO NOT MICROFILM
THIS PAGE

Electric Power Research Inst. (2)
Attn: Frank Goodman
Ed DeMeo
P. O. Box 10412
Palo Alto, CA 94303

ENTECH, Inc. (2)
Attn: Mark O'Neill
A. J. McDanal
P. O. Box 612246
DFW Airport, TX 75261

General Electric
Corporate Research & Dev.
Attn: S. C. Conrad
P. O. Box 8
Schenectady, NY 12301

Georgia Institute of Technology
School of Electrical Engineering
Attn: Ajeet Rohatgi
Atlanta, GA 30332

High Intensity Photovoltaics
Attn: Bernard L. Sater
9007 Westlawn Blvd.
Olmsted Falls, OH 44138

Hughes Research Co. (2)
Attn: Robert Loo
S. Kamath
3011 Malibu Canyon Rd.
Malibu, CA 90265

Intersol Power Corp.
Attn: John Sanders
11901 West Cedar
Lakewood, CO 80228

Jet Propulsion Laboratory
Attn: John Scott-Monck
4800 Oak Grove Drive
Pasadena, CA 91109

Kopin Corporation (3)
Attn: J.C.C. Fan
Mark Spitzer
Ronald P. Gale
695 Myles Standish Blvd.
Taunton, MA 02780

L. W. James & Associates
Attn: L. W. James
1525 E. County Road 58
Fort Collins, CO 80524

Martin Marietta (2)
Attn: H. C. Wroton
D. Hughes
P. O. Box 179
Denver, CO 80201

M/A-COM Silicon Products (2)
Attn: Joe White
Joel Goodrich
South Ave.
Burlington, MA 01803

McDonnell Douglas (2)
Attn: David Carey
Ken Stone
5301 Bolsa Ave.
Huntington Beach, CA 92647

Midway Labs, Inc.
Attn: Paul Collard
188 West Randolph Street
Suite 1100
Chicago, IL 60601

MIT
Attn: R. A. Brown
77 Massachusetts Ave.
Cambridge, MA 02137

Mobil Solar Energy Corp. (4)
Attn: Fritz V. Wald
Dick Bell
Juris Kalejs
Dorothy Bergin
4 Suburban Park Drive
Billerica, MA 01821

Motorola Inc.
Attn: I. A. Lesk
5005 E. McDowell
Mail Stop A102
Phoenix, AZ 85008

NASA/Lewis Research Center (4)
Attn: Vic Weizer
M. F. Piszczor, Jr.
Henry Curtis
Dennis Flood
21000 Brookpark Rd.
Cleveland, OH 44135

**DO NOT MICROFILM
THIS PAGE**

National Bureau of Standards
Attn: Jon C. Geist
Gaithersburg, MD 20899

North Carolina State Univ.
Materials Engineering Dept.
Attn: George A. Rozgonyi
Raleigh, NC 27650

Oak Ridge National Lab (2)
Attn: R. F. Wood
R. D. Westbrook
P. O. Box Y
Oak Ridge, TN 37830

Pacific Gas & Electric (3)
Attn: Carl Weinberg
Steve Hester
Kay Firor
3400 Crow Canyon Road
San Ramon, CA 94583

Penn State University
Attn: S. J. Fonash
127 Hammond Building
University Park, PA 16802

Photowatt, Inc.
Attn: William Taylor
2414 W. 14th Street
Tempe, AZ 85281

Purdue University (3)
Electrical Engineering Dept.
Attn: R. J. Schwartz
Jeff Gray
Mark Lundstrom
West Lafayette, IN 47907

Research Triangle Institute (3)
Attn: Mike LaMorte
James Hutchby
Michael Timmons
P. O. Box 12194
Research Triangle Park, NC 27709

Rensselaer Polytechnic Inst. (2)
Attn: S. H. Ghandi
J. M. Borrego
Troy, NY 12181

SAIC, Inc.
Attn: Kelly Beninga
10401 Roselle Street
San Diego, CA

Sci-Tech International
Attn: Ugur Ortabasi
5673 W. Las Positas Blvd.
Suite 205, P.O. Box 5246
Pleasanton, CA 94566

S.E.A. Corp.
Attn: Don Curchod
2030 Fortune Drive
San Jose, CA 95131

SERA Solar Corp. (2)
Attn: Gary Miner
Jim Gibbons
3151 Jay Street
Santa Clara, CA 95054

SERI Library (2)
1536 Cole Blvd. Bldg. #4
Golden, CO 80401

SOLEC International, Inc.
Attn: Ishaq Shahryar
12533 Chadron Ave.
Hawthorne, CA 90250

Solar Energy Research Inst. (6)
Attn: John Benner
Jack Stone
Cecile Leboeuf
Ted Ciszek
Tom Surek
Bushan Sopori
1617 Cole Boulevard
Golden, CO 80401

Solarex Corporation (4)
Attn: John Wohlgemuth
Mohan Narayanan
Steve Shea
Robert Brennman
630 Solarex Court
Frederick, MD 21701

DO NOT MICROFILM
THIS PAGE

Solarex Corp./Aerospace Div. (3)

Attn: Ramon Dominguez
Don Warfield
Jerry Silver
1335 Piccard Drive
P. O. Box 6008
Rockville, MD 20850

Southern Cal Edison (2)
Attn: Spencer Carlisle
Nick Patapoff
2244 Walnut Grove Ave.
Rosemead, CA 91770

SPECO, Inc.
Attn: Walt Hart
P. O. Box 91
Morrison, CO 80465

Spectracom
Attn: Chad Miller
P. O. Box 3178
Simi Valley, CA 93063

Spectrolab, Inc. (2)
Attn: David Lillington
Gerald Crotty
12500 Gladstone Ave.
Sylmar, CA 91342

Spire Corporation (3)
Attn: Chris Kearney
Roger Little
Steve Tobin
Patriots Park
Bedford, MA 01730

Stanford University (2)
Attn: R. M. Swanson
R. A. Sinton
McCullough 206
Stanford, CA 94305

State Univ. of New York
Dept. of Electrical Engr.
Attn: Wayne A. Anderson
Amherst, NY 14226

SUNY-Albany
Attn: J. W. Corbett
P. O. Box 9
Albany, NY 12201

Tactical Fabs, Inc.
Attn: R. L. Bechtel
270 East Brokaw Road
San Jose, CA 95112

Texas Instruments
Attn: Eric S. Graf
13500 Central Exp.
Dallas, TX 75265

3M Company
Attn: Paul Jaster
Sanford Cobb
3M Center
St. Paul, MN 55144

University of Arkansas
Dept. of Electrical Engr.
S. E. Bldg. #232
Attn: Hameed Naseem
Fayetteville, AR 72701

University of Delaware
College of Engineering
Attn: Karl W. Boer
Newark, DE 19711

University of Florida (2)
Dept. of Electrical Engineering
Attn: A. Neugroschel
F. A. Lindholm
Gainesville, FL 32611

University of Florida
Dept. of Materials Science
and Engineering
Attn: P. H. Holloway
Gainesville, FL 32611

University of Illinois - Chicago
Attn: S. Danyluk
P. O. Box 4348
Chicago, IL 60680

University of Kentucky
Attn: O. W. Dillon
Lexington, KY 40506

University of New South Wales (3
Department of Electrical Engr.
Attn: Martin A. Green
P. O. Box 1
Kensington, New South Wales
Australia 2033

**DO NOT MICROFILM
THIS PAGE**

University of Pennsylvania Department of Electrical Engr. Attn: Martin Wolf Philadelphia, PA 19104	1130 1140 1141 1142 1143 1150 1810 1820 1830 1834 1840 2120 2140 2531 6200 6220 6220 6221 6223 6224 6224 6224 6224 3141 3141-1 3151 8524	G. Samara P. S. Peercy H. T. Weaver C. H. Seager D. S. Ginley J. E. Schirber R. G. Kepler R. E. Whan M. J. Davis G. E. Pike R. Eagan W. Dawes C. Gibbon B. H. Rose V. L. Dugan D. G. Schueler A. V. Poore E. C. Boes G. J. Jones D. E. Hasti P. A. Basore J. M. Gee D. L. King J. D. McBrayer D. S. Ruby (5) S. A. Landenberger (5) C. L. Ward (8) For DOE/OSTI (Unlimited Release) W. I. Klein (3) J. A. Wackerly
University of Washington Joint Center for Graduate Study Attn: Larry C. Olsen Richland, WA 99352		
UNM/NMERI Attn: G. Leigh Campus Box 25 Albuquerque, NM 87131		
U. S. Department of Energy (9) Attn: Robert H. Annan Morton B. Prince Andrew D. Krantz Lloyd Herwig (5) Richard King Independence Avenue, SW Washington, DC 20585		
U. S. Department of Energy Attn: D. L. Krenz John Hanson P. O. Box 5400 Albuquerque, NM 87115		
Varian Associates (3) Attn: Jan Werthen Gary Virshup Larry Partain 611 Hansen Way Palo Alto, CA 94303		
Wattsun Corp. Attn: J. E. Doherty P. O. Box 751 Albuquerque, NM 87103		
Westinghouse Electric Corp. (3) P. O. Box 10864 Attn: Charles M. Rose D. L. Meier Dick Hopkins Pittsburgh, PA 15236		
Wright Patterson AFB AFWAL/POOC Attn: Jack Geis Joe Wise Wright Patterson AFB, OH		

DO NOT MICROFILM
THIS PAGE