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ABSTRACT

The purpose of this program was for Solarex, a commercial silicon solar cell
supplier, to demonstrate the capability of fabricating high efficiency 38.4 cm? concentrator
cells in a production environment. These cells were designed for use in 22-sun line-focus
concentrator module that could generate 20kW for the PVUSA EMT-1 project. The cells
were fabricated using p-type, .8 ohm-cm silicon, randomly textured fronts, dual-layer anti-
reflective coatings, passivated emitters, restricted emitter/metallization contact areas, and
silver gridlines with large cross-sectional areas. Prismatic covers were used to eliminate
losses from gridline shadowing. Cell efficiencies as high as 20.34% were demonstrated on
covered cells at 20 suns air mass 1.5 illumination. The process sequence includes a single

diffusion step, a thin thermal oxide growth, and two mechanically registered
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photolithography steps.
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1 INTRODUCTION

For this contract, Solarex developed a 38.4 cm? silicon solar cell to be used with
a prismatic cover in a 20kW 22-sun linear-focus concentrator module produced by the
Entech Corporation for the PVUSA EMT-1 project. The program goal was to fabricate
20 cells of this type having an average active area efficiency of at least 21.5% at 20 suns
illumination. This was intended to insure an illuminated area efficiency of over 20.4%
after application of prismatic covers and interconnects. Evaluation of final device
performance based on active area measurement, however, was not straight-forward. As
a result, prismatic covers and copper interconnects were attached to the cells to permit
a more accurate final cell efficiency measurement.

The highest illuminated area efficiency on a cell fabricated during this program was
20.34% measured at Sandia National Laboratories on a cell after attachment of cover and
interconnects. To our knowledge, this is the highest efficiency concentrator cell of this size
produced anywhere as of this writing. This also represents a significant improvement over
our efficiency baseline established using a similar, but less optimized solar cell supplied to
Entech for the 300-kW Austin project for which the average covered cell efficiency was
18.9%.

The cells for this program were fabricated using p-type .8 ohm-cm silicon, randomly
textured fronts, dual-layer anti-reflective coatings, passivated emitters, restricted
emitter/metallization contact areas, and silver gridlines with large cross-sectional areas.
Prismatic covers diverted light that would have otherwise hit the gridlines onto the active
current-collecting area of the cell. ~ The fabrication sequence included two
photolithography steps and one diffusion step.

Section 2 of this report describes the baseline design established prior to this
program, our strategy for improving its performance, the improved cell structure, and its
fabrication sequence. Results at concentration are discussed in Section 3. In Section 4,

several options for further development are presented.



2 CELL DESCRIPTION

2.1 BASELINE (ENTECH/AUSTIN)

Our approach for this program was to improve the performance of the solar cells
produced for the 300-kW linear focus concentrator system being installed in Austin by
Entech. The average covered cell efficiency for the 25,300 cells supplied for that program
was 18.9%. Those cells had identical physical dimensions as the cells developed for this
program but were fabricated using a simpler and less optimized process sequence.

Figure 1 shows a pair of these cells oriented on a 5-inch round silicon wafer from
which they are fabricated. The cells have two parallel 0.12 inch wide busbars along the
cell edges. 190 Gridlines on 0.020-inch centers cover close to 20% of the illuminated
area of the cell. The corner of each cell is truncated, reflecting a compromise between
efficient utilization of the available "real estate" of the silicon wafer and optimal solar cell

packing density in the receiver.

190 GRIDLINES
ON .020 CENTERS

Figure 1
2 Cells on 5-Inch Silicon Wafer



The Austin cells had a random pyramidal textured surface, which resulted in an
increase of approximately 4% in short-circuit current and brought the cell efficiency from

the 18.25% to the 19% efficiency range.
2.2 DESIGN PARAMETERS
We identified the following key modifications to improve the performance of the

baseline cells to the program target:

o Emitter passivation. A thin oxide layer, thermally grown across the entire

diffused layer, was added to the Austin structure. This required a modification to the
baseline diffused layer so that the desired sheet resistivity would be obtained after the
oxide growth. Oxidation parameters had to be controlled to avoid increasing the
reflectance or absorptance of the anti-reflective coating.

o Contact area reduction. The same thin oxide used to passivate the

emitter was also used to limit the contact area between the grid metallization and the
emitter. The busbar metallization was completely isolated from the diffused layer
underneath by this oxide. Separate photolithography steps were used to form openings
in the thin oxide for contacting and to form the metallization pattern. An alignment
technique based on mechanical registration rather than the use of a mask aligner was
developed.

o Grid metallization cross-section. This cross-section was increased to

minimize possible contributions to series resistance from conduction losses in the gridlines

or from contact resistance.

To verify that the procedures we used to form the passivating oxide layer were
effective, we prepared several cell samples for external quantum efficiency measurement.

These results are shown in Figures 2-5, which are quantum efficiency vs. wavelength curves



for cells produced under the following conditions:

Fig. 2: Baseline structure (Austin cell) with no
emitter passivation.

Fig. 3: Thin oxide grown at 870°C.

Fig. 4: Thin oxide grown at 980°C.

Fig. 5: Thin oxide grown at 980°C and then removed.

Each of the samples had untextured surfaces, dual layer anti-reflective coatings, and

approximately 20% gridline coverage.
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Figure 2 shows a decrease in quantum efficiency for the unpassivated sample at
short wavelengths. This is improved by the thermal oxide present on the front surface of
the sample shown in Figure 3 and further improved by the higher temperature thermal
oxide present on the sample shown in Figure 4. To determine whether the surface
improvements were the result of the actual presence of the passivating oxide or some
other related effect such as modification of the diffused layer by the heat treatment, the

oxide layer was grown and then removed from the sample of Figure 5. The quantum



efficiency curve for this sample indicates a return to the poorer blue response of the
unpassivated sample of Figure 2.

Based on this result, emitter passivation as applied to these test samples was
included in the cell design. Although slightly better blue response was achieved using the
higher temperature oxidation (980°C), we selected the lower temperature (870°C) to avoid
lowering the surface concentration of the diffused layer to the point that contact resistance
could become a problem.

The improvement in performance expected by passivating the emitter was estimated
using the computer model PC-1D, (developed by D. T. Rover, P. A. Basore and G. M.
Thorson). Although actual values of front surface recombination velocity are not precisely
known, assuming an improvement from a composite value (for both active area and
metallized area) of 1 x 10° to 1 x 10* cm, a gain in short-circuit current density of 5.3%
and a gain in open circuit voltage of 3.5% could be expected.

We used PC-1D to optimize the cell design in terms of thickness and bulk
resistivity. Figures 6-9 show PC-1D simulations of active area short circuit current density,
open-circuit voltage, fill factor, and active area efficiency at 22 suns as a function of bulk
resistivity for different thicknesses. The model’s defauit relationship between bulk minority
carrier lifetime and impurity concentration was used.

We conducted an experiment to evaluate the relationships modelled in Figures 6-
9 and found that, despite an offset of about 1.5% (possibly based on imprecision in
reflection estimates entered into the model) the dependence of short-circuit current on
thickness was reasonably close to that predicted by PC-1D. The comparison between PC-
1D predictions and actual measurements are shown in Figure 18. The experimental results
for fill factor and open-circuit voltage were apparently dominated by processing differences
and did not show the behavior predicted by the model over the limited thickness range
evaluated.

The model predicts the highest efficiency for lower bulk resistivity silicon. As bulk

resistivities approach 2.0 ohm-cm, better overall performance is expected for thicker
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substrates. Above that resistivity range, losses from resistance in the bulk, overpower the
gain in short-circuit current predicted for thicker substrates.

We chose 300 micrometer substrates, which with the added metallization thickness
that resulted after plating, were about as thick a wafer as we felt could be reasonably
handled in production. We used .8 ohm-cm silicon because we were able to obtain a
sufficient quantity of 5-inch diameter silicon to work with within the limited time frame
of the program. We used both silicon grown by the standard Czochralski technique (CZ)
and a batch of silicon grown using an experimental magnetic stabilization technique
(MC2Z).

Based on the expected improvement predicted for the lower resistivity substrates, we
also evaluated more heavily doped, .18 ohm-cm, float zone 4-inch diameter silicon. These,
along with other 4-inch diameter 1 ohm-cm float zone silicon samples, resulted in cells that
were shorter than the cell size required for this program, but provided additional

information.
2.3 CELL STRUCTURE

Figure 10 shows a cross-sectional view of the cell developed for this program. As
in the Austin cells, the front surface has a random pyramidal texture covered by a dual-
layer anti-reflective coating. However, underneath the anti-reflective coating is a
passivating oxide that restricts the area of contact to a fraction of the total metallized
area, as shown in Figure 11.

GRIDLINE
THERMALLY GROWN
OXIDE (~ 100 A®) DUAL LAYER

y ANTI-REFLECTIVE
/ COATING

n+

Figure 11 b j
Solar Cell Cross Section ~
/ 300-325 pm
Pt— 1

BACK CONTACT



A single diffused layer covers the entire front surface, including the area under the
cell busbars. Contact is made to the diffused region by a series of rectangular openings
in the thin oxide at regular intervals along the length of the gridline.

A back surface field, formed by alloying aluminum paste, covers the entire back of
the cell. Contacts are made by evaporating layers of titanium and palladium and then

electroplating 13 micrometers of silver to both front and back.

GRIDLINE
(SILVER PLATED)

A

METAL /DIFFUSED
LAYER CONTACT

OXIDE

DIFFUSED LAYER (nt)

NSUBSTRATE (p)

Figure 12
Detail of Contact Between Gridline and Diffused Layer
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2.4 PROCESS SEQUENCE

Table I outlines the steps used to fabricate the cells developed for this program.
The diffusion temperature was reduced from the temperature used for the Austin program,
resulting in an increase in sheet resistivity from 75 ohm per square to 100 chm per square.
Following the growth of the thin oxide at 870°C, the sheet resistivity decreased to 75 ohm
per square providing adequate diffused layer conductivity without excessively compromising
short wavelength response.

Two photolithography steps were used: one to pattern the thin passivating oxide,
the other to form a mechanically aligned metallization pattern. Preliminary trials were run
to attempt to include possible further optimization of the cell design, such as deep
diffusion under the gridlines or elimination of diffused layers under the bus bars.
However, we settled on the sequence of Table I, which we thought would have the best

chance of meeting the program goals within the allotted time period.

11



TABLE |

PROCESS SEQUENCE FOR 22X CONCENTRATOR CELLS

STEP COMMENT

NaOH ETCH 300-325 MICROMETERS

KOH ETCH 4% SOLUTION WITH IPA, 1000 C, 12 MIN, RANDOM PYRAMIDS 10
: MICROMETERS HIGH.

ROUNDING ETCH HN03:HF, 20:1, 90 SEC

RCA CLEAN

DIFFUSION PHOSPHINE SOURCE, 100 OHM/SQ@ (BEFORE OXIDE GROWTH)

KF DIP

RCA CLEAN

GROW THIN OXIDE 870° C,’OZ FLOW FOR 45 SECONDS

ALLOY/HCL ETCH ALUMINUM PASTE

PHOTO 1 THIN OXIDE PATTERN

HF/RESIST REMOVAL

PHOTO 2 FRONT METAL CONTACT PATTERN
ALIGN BY MECHANICAL REGISTRATION

FRONT TiPd EVAP

LIFTOFF

BACK TiPd/Ag EVAP

AG PLATE 13 MICRONS HIGH

AR 1/74 WAVELENGTH: TiOx, Al203
SINTER

curT DICING SAW

SINTER EDGE PASSIVATION

TEST AM1.5 DIRECT

12



3 RESULTS

After several preliminary runs to optimize process parameters, we ran an experiment
using several different types of silicon based on the cell structure and process sequence
described above.

As originally planned, we sent cells to Sandia for measurement at concentration
without attachment of covers or interconnects. However, this interim measurement of
active area efficiency did not turn out to be a reliable predictor of final results because
of large series resistance losses. This is most likely because the probe spacing did not
sufficiently simulate the interconnects designed for this concentration level. To circumvent
this problem, we selected several cells from each group and sent them to Entech
Corporation where copper interconnects were attached to the cells.

Prismatic covers were also attached to the cells. The presence of the covers
eliminated uncertainties inherent in estimating active areas on uncovered cells often
leading to overly optimistic predictions of covered cell performance. The cells were then
sent to Sandia for measurement at concentration.

Results for the best 20 cells measured in this manner are shown in Table II. The
best cell had an efficiency of 20.34% with three-quarters of the group having an average
efficiency exceeding 20% at 20 suns. The average for the 20 cells was 19.8% using a small
spectral mismatch factor calculated at Sandia to account for differences between the test
cells and the calibration cell. These same cells were also measured at Entech Corporation
where a somewhat higher, 20.3% average efficiency was measured for the group. The
efficiencies are based on the illuminated area which excludes the wide bus bars on the
edges of the cells.

The cells peak in efficiency roughly between 20 and 30 suns as shown in Figure 13.
The difference between the best and worst cells of Table II can be attributed to a large
extent to differences in fill factor, although the specific cause of that difference has not

been determined. On each wafer processed were two cell patterns. The metal/diffused

13



layer contact area for one was 3.1% and for the other 6.2%. No significant difference

between the two were detected in the data taken at concentration.

FIGURE 13
EFFICIENCY. US CONCENTRATION

==
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0 1007

16.0% + + + + —+ + 1
[ S 1¢ 15 29 25 30 35

CONCENTRATION

TABLE I

CELL EFFICIENCIES AT 20 SUNS AM1.5 DIRECT
WITH COVERS AND INTERCONNECTS ATTACHED

CELL EFF CUMULATIVE
I.D. 220X EFF
M6A 20.34% 20.347%
M5B 20.29% 20.32%
C37A 20.25% 20.30%
M4A 20.25% 20.28%
€398 20.18% 20.26%
1007 20.18% 20.25%
C19A 20.13% 20.23%
M2A 20.02% 20.21%
M9B 19.97% 20.18%
M4B 19.92% 20.15%
C39A 19.88% 20.13%
M3B 19.71% 20.09%
M78 19.68% 20.06%
M6B 19.61% 20.03%
M1A 19.59% 20.00%
M12A 19.43% 19.96%
M5A 19.417% 19.93%
M7A 19.34% 19.90%
M128B 19.32% 19.87%
C17A 19.19% 19.83%

14



Table III shows results from each of the four groups of silicon used to process these
cells. The .2 ohm-cm float zone silicon resulted in lower short-circuit current densities,
which were not compensated for by the small improvements in open-circuit voltage and
fill factor. The standard Czockralski (CZ) and the magnetically purified (MCZ) .8 ohm-
cm silicon produced cells with no detectable difference in short-circuit current density. The
1 ohm-cm float zone silicon suprisingly had lower short-circuit current densities than either

of the Czockralski groups with nearly the same doping level.

TABLE 1l

SUMMARY OF COVERED CELL RESULTS AT 20 SUNS

SILICON dsc Voc FF EFF SAMPLE
alx 220X @20X @20X SIZE
1 OHM-CM CZ MEAN: 0.0364 0.683 0.794 19.8% 6
MAX: 0.0367 0.686 0.810 20.25%
MIN: 0.0359 0.681 0.776 19.1%
s.D.: 0.0002 0.002 0.012 0.5%
1T OHM-CM MC2Z MEAN: 0.0364 0.681 0.797 19.8% 14
MAX: 0.0368 0.686 0.816 20.34%
MIN: 0.0358 0.677 0.781 19.3%
$.D.: 0.0003 0.003 0.010 0.3%
1 OHM-CM FZ MEAN: 0.0357 0.681 0.810 19.7% 5
MAX: 0.0363 0.686 0.817 20.18%
MIN: 0.0349 0.679 0.806 19.3%
S.D.: 0.0005 0.003 0.004 0.3%
.2 OHM-CM FZ MEAN: 0.0347 0.685 0.817 19.46% 4
MAX: 0.0350 0.686 0.822 19.55%
MIN: 0.0343 0.683 0.813 19.3%
S.D.: 0.0003 0.001 0.003 0.1%

15



4 POTENTIAL FOR FURTHER OPTIMIZATION

The following approaches were considered during the course of this work but fell
outside the scope of the program:

1) Eliminate one photolithography step by etching the thin oxide mask
immediately before metal deposition. This would passivate the emitter only, however, and
would place the entire metallized area in contact with the diffused layer.

2) Use a very deep diffused layer across the entire front surface to reduce
recombination. This could be used in conjunction with the first approach to eliminate a
photolithography step.

3) In contrast, addition of a photolithography step, mask alignment, and a
diffusion step would permit further potential performance improvements of the device by

allowing separate optimization of the diffused layers for the emitter and the contact areas.

16
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