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ABSTRACT

This paper presents a diagnostic model developed at Oak
Ridge National Laboratory (ORNL) for off-normal nuclear
power plant events. The diagnostic model is intended to serve
as an embedded module of a cognitive model of the human
operator, one application of which could be to assist control
room operators in correctly responding to off-normal events by
providing a rapid and accurate assessment of alarm patterns
and parameter trends. The sequential filiter model is comprised
of two distinct subsystems - an alarm analysis followed by an
analysis of interpreted plant signals. During the alarm analysis
phase, the alarm pattern is evaluated to generate hypotheses
of possible initiating events in order of likelihood of
occurrence. Each hypothesis is further evaluated through
analysis of the current trends of state variables in order to
validate/reject (in the form of increased/decreased certainty
factor) the given hypothe-is.

1. INTRODUCTION

In a highly complex person-machine system such as a
nuclear power plant, the operator’s capabilities become a
critical issue in maintaining the plant in a normal operating
condition. The operator receives numerous stimuli and is
expected to respond both expediently and in a correct manner
to diffuse off-normal events. This expectation is based on the
assumption that the operator is capable of efficienly
performing the tasks illustrated in Fig. 1: (a) perceive
information, (b) process information, and (c) perform the
appropriate action in response to the processed information.

The stress resulting from rapid presentation of stimuli
within a short period of time will test the human capabilities
1o perform effectively. For example, one limiting characteristic
is the operator’s ability to retrieve information from long-term
memory. Deficiencies in knowledge retrieval can result in
human error. A model that filters plant-based signals to aid
the operator in the information processing and decision-
making phase of Fig. 1 is the first step in developing a
comprehensive decision support system.
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FIGURE 1. Person-machine system

2. BACKGROUND

This research was performed to support the development
of the Integrated Reactor Operator/System (INTEROPS)
model’ under the auspices of the Advanced Controls Program
at ORNL. INTEROPS is a model of cognitive functions and
discrete control actions required to operate 7 commercial
reactor module of the Power Reactor Inherently Safe Module-
Advanced Liquid Metal Reactor (PRISM-ALMRY)? design. The
model is coupled with a PRISM-ALMR thermal-hydraulics
plant simulation. The INTEROPS model includes two types
of components: a SAINT simulation module {a task orienied
network simulation model of the human operator)’, and
knowledge-based simulation modules which include a plant
filtering model that generates and verifies initiating event
hypotheses.



Many alarm filtering models have been described in the
literature. Examples are DuPont’s event tree-based diagnosis
of multiple alarms* and ORNL's alarm filtering system which
is based on emphasis and deemphasis of alarms.! However,
the rvle-based diagnostic model - illustrated in Fig. 2 - is
unique because it decomposes the analysis into two subsystems:
an alarm analysis model to generate the initiating event
hyvpothesis and a parameter analysis model to verify the
hypotheses. Critical initiating events are identified through an
alarm-initiating event netwcrk. The ranking of initiating events
is determined by the certainty factor associated with each
initiating event. Tke alarm analysis model modifies these
certainty factors based on information from both annunciated
(active) and unannunciated (latent) alarms while the parameter
analysis modifies the certainiy factors based on information
from interpreted plant signals. Input data are also associated
with certainty factors. For example, alarm annunciation causes
the maximum certainty value to be affixed to the alarm label.
Certainty factors associated with unannunciated alarms grow
exponentially with time toward "negative certainty.” Plant
signals are interpreted by associating a verbal tag with a time
serics. For example, the tag "DIA" describes a time history
which began by decreasing, then increasing, and finally
asymptoting to a constant value. Plant parameter trend
certainty factors decay exponentially between updates.
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FIGURE 2. Overview of a rule-based diagnostic model

The method of confirmation and disconfirmation for
inexact reasoning used in the medical expert system, MYCIN,
was used to represent the effects of uncertain knowledge in

advantages of ease of implementation, and, according to Lee.
Grize, and Dechnad® strong intuitive appeal. The latter
characteristic supports confirmation/disconfirmation as 2
plausible model >f human diagnostic reasoning. Instead of
working with probatility density functions, the underlying
metric is the "certainty factor,” which expresses the degree of
confidence in a hvpothesis.

The manner in which the model reasons with uncertain
knowledge is a central issue in both the alarm and parameier
analysis subsystems. The process of combining two certainty
factors obtained from incrementally acquired evidence is used
to modify an initiating event certainty factor in order to
confirm or reject the initiating event as the plant transient
source. The combining function for certairty factors (when
both are positive) is given by the following equation:

CF [he&e,] = CF [he) + CF [he)] - (1-CFlhe)]) (1)

where A is the hypothesis or candidate initiating event, and e,
and e, are the old and new evidence, respectively. The CF
value ranges between -1 and +1. There are three other
variations of this equation to account for other cases which
arise depending on whether the old and new evidence is
confirming or disconfirming.

3.1 Alarm Analysis

Alarm analysis is performed by a rule-based system which
can be represented graphically as a tri-level network. The
bottom layer shows the alarm input. The intermediate layer
reveals the extent to which major functional subsystems are
implicated in the fauli sequence. The top layer is the output
of the rule-based systein and contains causes or initiating
events. A reduced sample alarm-initiating event network is
illustrated in Fig. 3.

initiating
Event Level

FIGURE 3. Hypothetical alarm-eveni rule-based network

The implication of this diagram is that alarm patterns are
domain-specific; each alarm pattern implies a specific initiating
event within the limits of certainty. For example, alarms Al
and AS, respectively, imply that the initiating event is rod
failure and loss of power to primary pump 2. With less
certainty both alarms also implicate the loss of power to
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is in the core and primary heat transport subsystems which lead
to rod failure, and loss of. power to primary pumps. The
arrows in Figure 3 illustrate the following relation types which

are the basis for "rules” in the alarm analysis:

1. The functional subsysiem domain (core, primary heat
transport system, secondary heat transport system,
balance-of-plant) for a given alarm.

2. The initiating event domain (rod failure, loss of power
to pump) for an alarm.

3. The initiating event domain for a functional subsystem.

4. The alarm-to-alarmn mappings.

The rule-based model would function as efficiently without
the intermediate subsystem level of processing. However, its
implementation as an additional filter aliows the model to use
fewer rules with little loss of accuracy, and perhaps some gain
in flexibility. The concept of hierarchical filters does seem to
have some plausibility for human diagnostic reasoning.

The alarm analysis accomplishes its objectives by providing
mappings, along with associated certainty factors, among the
three functional levels. The alarm analysis modifies initiating
event certainty factors in five major steps to identify hypotheses
for parameter analysis:

1. Establish zlarm input values.

2 Modify alarm certainty factors with the alarm-alarm
mapping.

3. Calculate subsystem certainty factors with the alarm-

subsystem mapping.

4. Establish initiating event certainty factors with the
alarm-event mapping.

5. Mcdify initiating event ceriainty factors with the
subsystem-event mapping.

The certainty factors of annunciated alarms remain at
maximum value. The amount of information content in
unannunciated alarms is initially zero and increases
exponentially with time. That is, the model is fairly certain
that a quiescent alarm will not suddenly annunciate if
considerable time has elapsed since failure detection. This
informativn is important for "boundary definition” in pattern
recognition during alarm processing.  The alarm-alarm
mappings show the expectancies generated by the model as
part-patterns are recognized, and the part-whole inferences are
completed. The model may notice that the alarms are
concentrated in one or two regions of the system while
processing the alarm-subsystem mapping. Initiating event
certainty factors are calculated by analyzing two classes of
antecedents: alarm certainty factors and subsystem certainty

factors.
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hyvpotheses based on more highly processed information. It
incorporates information not utilized by other models in
diagnosing initiating events for off-normal scenarios. In
particular, there are two types of information which hold the
opportunity to improve the prioritization of hypotheses. First.
the model has the ability to use alarm-alarm mapping to modify
alarm confidence factors based on expectations derived from
the annunciated alarm patterns. Second, the model performs
an unannunciated alarm analysis to verify and modify the
results of the annunciated alarm analysis.

The information in the alarm-alarm mapping was
developed by comparing the responses of the plant model to
a complete transient set with respect to each alarm pair. The
output of this exercise was used to construct an alarm
correlation matrix. Positive correlations indicate a tendency for
an alarm to annunciate in the presence of another
annunciation.  Negative correlations indicate a reduced
tendency for an alarm to annunciate, given another alarm has
already annunciated. Only extreme-value correlations were
represented in the alarm-alarm mapping in the rule-based
network; nevertheless, they provided very rich data sources for
the purposes of alarm analysis.

Alarm-alarm domain interactions modify alarm certainty
factors based on "expectations” derived from the annunciated
alarm patterns, For example, if there is a positive correlation
between A4 and A6, and A4 has annunciated but A6 has not,
confidence in the pending annunciation of A6 will be
increased. A set of annunciated alarms is utilized to modify
the certainty factor associated with each alarm according to the

following steps:

1. For each member of the annunciated alarm list;

create:
(a) Pos-List - a list of all alarms that should be
annunciated.
(b) Neg-List - a list of all alarms that should not be
annunciated.

2. For each match between the annunciated alarm list
and Pos-List, the certainty factor for the alarm is
increased.

3. For each match between the annunciated alarm list
and Neg-List, the certainty factor for the alarm is
decreased.

Information contained in unannunciated alarms may also
be utilized to improve the accuracy of the hypotheses. The
assumnption is that there is valuable information content in
unannunciated alarms that may be useful in generating more
accurate hypotheses. Information from alarms that have not
annunciated is used in the following manrner. Hypotheses are
generated from alarms that have not annunciated exactly in the
manner in which hypothesis were developed based on
annunciated alarms. If the hypothesis matches the hypothesis
generated from annunciated alarms, the certainty factor of that
hypothesis is increased. If the information is disparate, the
certainty factor is reduced.



The outpiu from the alarm analysis model (a list of
initiating events given in descending order of the certainty
factors) is utilized as input ‘to the parameter analysis model
which analyzes observed parameter trends to generate a new
set of certainty factors for those initiating events selected as
hypotheses by the alarm analysis subsystem.

3.2 Parameter Analysis

The objective of the parameter analysis is 10 confirm
hypotheses using plant-based state variables (e.g._. reactor
thermal power, core outlet temperature). The critical input
data for this analysis are a list of parameter trends. Note that
only the trends of a given parameter are evaluated rather than
numeric values, because the interpreted data contamns lh.e
essential information which is processed in human di.agnostxc
reasoning. The trend descriptions can be represented in a tree

diagram as in Fig. 4.

N - No change A - Asymptotic

I - Increasing S - Oscillating
D - Decreasing

FIGURE 4. Parameter trend evolution tree

The parameter analysis model performs an evaluation of
31 plant parameters. The modification of certainty factors for
the hypothesis list is conceptually simpler than the ?larm
analysis. The rule-based system can be represented by a simple
two-layer network diagram. There is only one type of rule, the
mapping between parameter trends and initiating events.

The process of confirmation employed by the parameter
analysis is more like "backward chaining” than the "forward
chaining” which characterizes the alarm analysis network. 'l"hc
latter analysis technique is data-driven - all alarm information
is used. However, the use of information contained in state
variables is selective. Only information which may be used to

support an active hypothesis will be integrated into the chain
of inference. The kind of narrowing of the data stream that
results from this confirmation bias can be an efficient and
powerful analytic technique. However, it is also a potential
€eITor source.

The following example is given to illustrate how
information theory is invoked 1o determine the certainty factors
associated with the mapping between parameter trends and
candidate diagnoses. Suppose we want 10 estimate :he
certainty factor associated with the inference linking the
hypothesis (h) of a recirculation pump trip and the evidence
(e) that the turbine/bypass flow rate is equal to "DA"
Referring to the trend evolution tree in Fig. 4, we notice that
the fauh set (F,) as we enter the tree at top-level, or "N,”
contains all hypotheses. A series of discrimination operations
are performed on F, as a trend description evolves. The first
discrimination produces "D," leaving the first-order fault set F,.
The first-order fault set contains all initiating events which
initially cause turbine/bypass flow rate to decrease. The second
discrimination at "DA" produces F.. Notice that in general, it
must be the case that F, 2 F, 2 ... 2 F.. Now let the
correctness of the i* discrimination be denoted by:

-1ifhé F
+1ifheF.

In the present example all discriminations are correct, 50 2, =
1 and z; = 1. However, if the turbine/bypass flow rate began
by increasing, then z would equal -1 for all i. Eq. (2) gives the
method for calcvlating the certainty factor of k& for the n®
discrimination:

CFihe|F,F,..F] = 3 z(InF,, - InF)InF. )
j=1

zi=

Eq. (2) juarantees thai the contribution of each discrimination
to the certainty factor i; proportional to the amount of
informa:ion contained in the discrimination. The correctness
of the cliscrimination determines whether the certainty factor
is increniented or decremented.

The output of the parameter analysis is a list of all
hypotheses which are confirmed when the associated certainty
factor exceeds a threshold value.

4. IMPLEMENTATION

The rule-based diagnostic model described in this paper is
being implemented as a common LISP program on a VMS-
based Vax superminicomputer. The main steps in the model
are performed by function calls which reference the DEFUN
macro. This macro allows any new function to be defined.
Connecting a sequential series of DEFUN macros allows for
the development of the rule-based system. The plant-based
knowledge is structured utilizing the DEFSTRUCT macro.
There are two primary advantages to this approach. First,
there is simplicity of implementation. Second, the model has
great flexibility with respect to addition or deletion of alarms,
subsystems, parameters, initiating events, and rules.



The alarm analysis subsystem has been implemented and
uidergone some testing with PRISM-ALMR transients. The
implementation of the parameter analysis has been defined and
is currently being coded for testing.

5. CONCLUSION

Preliminary results of the alarm analysis bascd on plant
model output from len tranmsients indicate that hypothesis
generation performance is quite satisfactory.” The alarm
analysis has not been tested under conditions of multiple
failure, which would provide a stronger test of its pattern
classification capability. The parameter analysis is expected to
provide very good classification under single failure conditions
prior to intervention of the control and protection systems. Or
compensatory control actions of the human operator. These
compensatory events tend to disturb parameter time histories
or trends, altering theii trajectories relative 10 the trajectories
expected through propagation of the effects of the original
fault. Future model development efforts are expected to focus
on theory expansion of the analysis of parameter trends.
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