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1. INTRODUCTION

For several years we have been embarked on a program to understand the
response of cemented granular materials to large deformations at high strain
rates. A typical problem of interest is the formation of a crater in alluvium by a
nuclear explosion (Margolin, et. al., 1988). Our goal is to construct a constitutive
model that represents the complex behavior of such materials and yet is simple
enough to use in large scale calculations based on computer programs that
model solid continuum dynamics.

Our research is based on two premises. First we believe that the elastic
properties -- i.e., the moduli -- of a cemented granular material depend mostly
on the elastic properties of the bonding material and on the topology of the
bonding, and are relatively independent of the elastic properties of the grains.
Of course other properties of the material, such as bulk density, may depend
mostly on the grains. Second we believe that macroscopic inelasticity in the
response of a cemented granular material to loading is due mostly to one
microscopic process, the fracture of the preexisting bonds.

Our research program has proceeded in several phases. The first phase
was the construction of a numerical sample of a cemented granular material
(Trent, 1987; Trent, 1988). The numerical sample is based on the discrete
element method. In particular, we modified the TRUBAL code (Cundall, 1987)
by adding elastic bonds between pairs of particles whose centers are closer
than a specified distance. Although forces may still be produced by direct
particle-particle contacts, the behavior of the material actually is dominated by
the forces and moments produced by the shearing or stretching of the bonds as
the particles rotate and get closer or further apart.

The second phase has been to verify that our numerical model accurately
reproduces the inelastic behavior of real granular materials. The numerical
model represents a considerable simplification of a real granular material. In
particular, the only mechanism for inelasticity that we provide in our model is the
fracture of bonds. It is encouraging that we can qualitatively reproduce such
macroscopic behavior as plasticity in the compaction of hollow spheres as well
as brittle crack growth in a flat plate (Trent and Margolin, 1989). By qualitative
agreement, we mean that we preserve mathematical relationships between the
physical variables, rather than achieving numerical agreement between a
particular experiment and a calculation.

Although the modified TRUBAL code is well-suited to verifying the qualitative
behavior of granular materials, it is unsuited for real problems with length scales
of tens and hundreds of meters. We use several hundred patrticles in our
numerical calculations, with a typical sample dimension on the order of
centimeters. This number is chosen large enough to guarantee a small surface
to volume ratio so that material behavior is dominated by material properties



rather than the details of the loading. Even a geometrically simple problem like
cratering would require at least six orders of magnitude more particles. A
calculation of this size on today's computers is not practical. Even if it were,
most of the detailed output of such a calculation would be useless.

In the third phase of our research, we are attempting further simpilifications by
constructing an analytic model of the modified TRUBAL code. In this analytic
model we will preserve our two premises, that the particles interact only through
elastic bonds, and that the main source of inelasticity is fracture of the bonds.
The major simplification occurs when we replace our detailed knowledge of the
granular assembly, which is contained in the computer code, with a statistical
model for the average grain.

The purpose of this paper is to describe the process of creating the analytic
model. We will derive an expression for the effective elastic moduli expressed
as integrals over the configurations of the average grain. These integrals
depend on probability distributions for the number of bonds, their lengths, and
their relative orientations. The form of these probability distributions will vary for
different materials and depends on the process by which the material was
formed. We do not discuss this point in this paper. Instead, we will make some
reasonable assumptions for the probability distributions and go on to evaluate
the qualitative dependencies of the effective moduli. Our final results show that
the Youngs' modulus of the granular assembly should vary linearly with the
area of the bond, the number of bonds per grain (i.e., the coordination number),
the expected length of the bond, and the Youngs' modulus of the bonding
material. Also, Poisson's ratio should be 0.25. We verify these dependencies
numerically with calculations in our modified TRUBAL code.

2. ELASTIC BONDS IN THE MODIFIED TRUBAL CODE

We have modified the two-dimensional TRUBAL code by adding elastic bonds
between particles whose centers are closer than some specified distance. The
geometry of the bonding is specified by three parameters, a, B, and 8. These
represent the width of the bond, the size of a preexisting Griffith crack within the
bond, and the length of the bond. Each is made dimensionless by dividing by
the particle radius, R. These parameters are illustrated graphically in Figure 1.

28R

Figure 1. The dimensionless parameters a, 3, and & define the geometry of two
bonded particles. In the middle of the bond is a vertical crack of width 2BR.



To evaluate the restoring forces and moments between particles, we divide
the bond into a set of infinitesimal strips , each of which acts as a simple spring.
The effective spring constant (K) for a strip of width dA is simply given by
Youngs' modulus (Ep) times the infinitesimal area and divided by the length of
the strip. The distance between the particles may change, producing a set of
restoring forces and moments. In addition, the particles may rotate, which
produces additional forces. The net force on the particles is found by summing
up the individual contributions of the strips. The presence of the crack (which is
vertical in figure 1) decreases the number of strips that connect the particles and
so decreases the net force between the particles. In general, the crack may
grow -- i.e., B can increase -- whenever the stresses within the bond are large
enough. However, crack growth plays no role in the results of this paper.

3. MACROSCOPIC STRESS

The average stress tensor enclosed by a volume V is

6” = c/—j cijdVv = J/—[f GijdV +f O’ijdV] (1)
v Vp Vb

where Vp is the volume of the particles and Vb is the volume of the bonds. We
idealize the bonds by letting the total area A go to zero while the product (E A)
remains finite. Our only purpose here is to simplify the mathematics by ignoring
the change in length of the individual strips within the bond due to the curvature
of the particle. We also assume that the surfaces of both the bonds and the
particles are stress-free except at the contacts. In this case, the volume
integrals in equation 1 can be transformed into surface integrals using the
divergence theorem. After some manipulation, we can rewrite equation 1

Gij =§/2— > Y F@Le 2)
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The inner sum is over the contacts of a particular particle. By contact, we mean

the connection between a particle and a bond. The superscript (a) identifies the
contact. F is the force within the bond. L is the vector pointing from the contact
along the bond, and with magnitude equal to half of the length of the bond (e.g.,
|8R|; see figure 3). The forces within the particle have been eliminated in favor

of the forces within the bond.

So far, our results apply exactly to the numerical model within the code.
However they require a detailed knowledge of the configuration of particles and
bonds within the material. We can simplify our equations if we replace the inner
sum over the contacts about a particular particle by a sum over the contacts
about an "average" particle. The outer sum over all the particles is then just the
total number of particles, N, times the inner sum over the average patrticle.

To be more precise about what we mean by an "average" particle, let us
assume that we can write down a probability distribution for the number of
neighbors to which a central particle is bonded, for the lengths and orientations
of the individual bonds. We denote this distribution
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where Nj is the number of neighbors. Thus the distribution P represents the
probability of any possible configuration of neighbors and bonds around a
particle. In these terms, equation 2 becomes

Na
Sij = 2N< 2, FPLP> (3)
a=1

The brackets mean the distribution P is used to average over all configurations.

In principle, we can derive the probability distribution P from the code itself.
In fact we have done this for the distribution of bond lengths, as well as the
probability of the different coordination numbers. We assume that the bond
lengths of separate bonds are uncorrelated.

The material in the modified TRUBAL code is formed by letting 270 identical
particles fall under gravity and settle. Then all particles closer than a specified
distance are bonded together. Figure 2 shows the cumulative number of bonds
as the search distance is varied.
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Figure 2. The cumulative number of bonds as a function of §, which is the ratio
of half the maximum separation distance to the particle radius R.

The case for the angular distributions -- i.e., for the orientations -- is more
difficult, since the various orientations of the neighbors of a particle are clearly
correlated in the sense that two neighbors cannot overlap. We attempted to
bracket these angular distributions by evaluating two limit cases. In the first, we
assume that the bonds are isotropic and uncorrelated. In the second, we
assume that the bonds are evenly distributed about the central particle and so
once one is known, the others are all determined. Remarkably, both
assumptions lead to exactly the same result. Further, the results of comparing
our theory to the numerical calculations bear out the conclusion that it is
sufficient to treat the bond orientations as isotropically distributed and
uncorrelated. Thus, we write

Na
P(Na,.L™, ... LMYy = pyNa) [ [ Pa(JL®) L (4)
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Both the functions P4 and P2 can be constructed from the graph in Figure 2.

4. THE MICROSCOPIC FORCE

We will calculate the effective moduli of the granular assembly by imposing a
particular displacement of the boundaries and calculating the macroscopic
stress in terms of those displacements. Suppose that we are given a specific
configuration such as is shown in figure 3. We find the microscopic forces for
such a configuration in terms of the bond vectors, and then average this force
over all the possible configurations of the bond vectors.

Figure 3. A specific configuration of a central particle bonded to three
neighbors.

The displacement of the boundaries defines an average or macroscopic
strain tensor. We shall assume that the neighboring particles are each
displaced by the average strain tensor and so the magnitude of the
displacement of neighbor 1 with respect to the original position of the central
particle is
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We find, to first order in the strain tensor,
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where K is the effective spring constant and Ax j, the displacement of the central

particle, can be found from the equations of static equilibrium
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Once we have solved for the displacement, Ax j , we can insert the expression
for the force, equation 6, into equation 3 and so evaluate the effective moduli.

5. A COMPARISON OF ANALYTIC AND NUMERICAL RESULTS

Using the approximations for the probability distributions discussed above, we
have derived the following expressions for the effective Youngs' modulus and
the effective Poisson's ratio of the granular assembly (see Table 1 for notation).
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The equation shows that the effective Youngs' modulus scales directly with
Youngs' modulus of the bonding material, a result we derived previously based
on dimensional analysis (Trent and Margolin, 1989), and is independent of
Poisson's ratio of the bonding material. The effective Youngs' modulus also
scales directly with the expected value of coordination number, and with the
expected value of L, which is half the bond length. The final factor 2 (¢ — )
essentially represents the cross-sectional area of the bond possibly reduced by
the presence of a crack.

The effective Youngs' modulus also depends on the ratio of macroscopic
density p to the density of the grains py, (within the TRUBAL code, the bonds are
assumed to be massless). This ratio may be eliminated in favor of the material
porosity ¢

E = 2(1-0) <E> <Ne> 2(a-B)Ey (9)

In deriving equations 8, we made one addition simplification -- we set the
displacement of the central grain Ax j = 0 in equation 6. Heuristically, we argue
that this term should be of order of the deviations of bond lengths from their
average value. On the basis of figure 2, we know that most of the bonds are the
same size, roughly one tenth of the particle radius, until we allow very large
search distances. Thus, we expect equation 8 will be valid until the maximum
search distance becomes large -- i.e., comparable to the particle radius.

Table 1. Baseline values of the input to TRUBAL for the parameter studies

Symbol Description Value (units)
N Total Number of Particles 270

Eu Youngs' Modulus of Bonds 10000 MPa

P Bulk density 1670 kg/m3
Pu Grain density 2650 kg/m3

R Particle radius .001 m




We have performed a parameter study on the modified TRUBAL code to
verify the dependencies of equation 8. The baseline values of the input are
shown in Table 1. In the calculations, we calculate the effective moduli by
sending both a longitudinal and a shear wave through the sample and
measuring the wave speeds, from which the moduli can be calculated (see
Trent and Margolin, 1989).

In this parameter study we varied 28R, the maximum separation distance for
bonding. This causes both the expected value of bond length < L > and of
coordination < N¢ > to vary. These expected values can be found from figure 2.
In these calculations, we chose a = 0.5 and = 0.025. In figure 4 we plot the
modulus versus the product < Ng> <L >. Equation 8 predicts this will be a
straight line, which is verified by TRUBAL. Note that the agreement is best for
small values of 8. We attribute this to our neglect of the displacement of the
central particle in the force analysis, as explained in Section 4.

We have performed similar parameter studies to verify the dependence on
cross-sectional area of the bonds, and also the prediction that Poisson's ratio
should be 0.25. Poisson's ratio is remarkably constant at this value for smaller
choices of the separation §, but also shows a systematic deviation for larger
values as the bond lengths approach the size of the particle radius. Lack of
space precludes showing the details of these calculations here.
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Figure 4. The variation of macroscopic Youngs' modulus as the maximum
bonding distance is increased. The theory predicts that the modulus will vary
linearly with the expected values of bond length and coordination number.



6. CONCLUSIONS AND FUTURE DIRECTIONS

We have derived an analytic model relating the effective moduli of a cemented
granular material to the elastic properties and the topology of the bonds. The
analysis is based on the idea of replacing the details of a granular assembly by
a model of the average grain. We show that predictions of the analytic model
compare well with the results of numerical simulation in our modified TRUBAL
computer program.

Our analysis makes specific assumptions about the distribution that
describes the probability of finding a bond at a given orientation or of a given
length about a grain. These assumptions are reasonable for an undamaged
isotropic material. However, when some bonds are damaged or broken as the
result of loading, the assumption of isotropy must be discarded. We have
begun work to generalize our results to predict effective moduli for materials
with prescribed anisotropic damage. The generalized results, combined with a
method for calculating the breaking of bonds, will provide the basis for a
constitutive model for cemented granular materials suitable for large scale
computing.

7. REFERENCES

Cundall, P.A. ,1987, "Distinct element models of rock and soil structures," in
Analytic and Computational Methods in Engineering Rock Mechanics,

E.T. Brown, Ed., A. Unwine Publishers, London, pp129-163.

Margolin, L.G., D.E. Burton, W.P. Crowley and B.C. Trent, 1988 "Computer
simulation of nuclear weapons effects," Proc. 2nd Conf. on Military
Computing Conference, Annaheim, CA., published by The Military
Computing Institute, Los Altos, CA.

Trent, B.C. 1987, "The effect of micro-structure on the macroscopic behavior of
cemented granular material," Ph.D. Thesis, University of Minnesota.

Trent, B.C. 1988, "Microstructural effects in static and dynamic numerical
experiments,” Proc. 29th U.S. Symposium on Rock Mechanics, Minneapolis,
MN, pp 395-402.

Trent, B.C. and Margolin, L.G. 1989, "A numerical laboratory for granular solids,"
1st U.S. Conference on Discrete Element Methods, Golden, CO.

8. ACKNOWLEDGEMENT

This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract #W-7405-Eng-48.



