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Towards a constitutive model for cemented granular materials 

L.G. Margolin 
Lawrence Livermore National Laboratory, Livermore, California, USA 

B.C. Trent 
Los Alamos National Laboratory, Los Alamos, New Mexico, USA 

1. INTRODUCTION 

For several years we have been embarked on a program to understand the 
response of cemented granular materials to large deformations at high strain 
rates. A typical problem of interest is the formation of a crater in alluvium by a 
nuclear explosion (Margolin, et. al., 1988). Our goal is to construct a constitutive 
model that represents the complex behavior of such materials and yet is simple 
enough to use in large scale calculations based on computer programs that 
model solid continuum dynamics. 

Our research is based on two premises. First we believe that the elastic 
properties -- i.e., the moduli -- of a cemented granular material depend mostly 
on the elastic properties of the bonding material and on the topology of the 
bonding, and are relatively independent of the elastic properties of the grains. 
Of course other properties of the material, such as bulk density, may depend 
mostly on the grains. Second we believe that macroscopic inelasticity in the 
response of a cemented granular material to loading is due mostly to one 
microscopic process, the fracture of the preexisting bonds. 

Our research program has proceeded in several phases. The first phase 
was the construction of a numerical sample of a cemented granular material 
(Trent, 1987; Trent, 1988). The numerical sample is based on the discrete 
element method. In particular, we modified the TRUBAL code (Cundall, 1987) 
by adding elastic bonds between pairs of particles whose centers are closer 
than a specified distance. Although forces may still be produced by direct 
particle-particle contacts, the behavior of the material actually is dominated by 
the forces and moments produced by the shearing or stretching of the bonds as 
the particles rotate and get closer or further apart. 

The second phase has been to verify that our numerical model accurately 
reproduces the inelastic behavior of real granular materials. The numerical 
model represents a considerable simplification of a real granular material. In 
particular, the only mechanism for inelasticity that we provide in our model is the 
fracture of bonds. It is encouraging that we can qualitatively reproduce such 
macroscopic behavior as plasticity in the compaction of hollow spheres as well 
as brittle crack growth in a flat plate (Trent and Margolin, 1989). By qualitative 
agreement, we mean that we preserve mathematical relationships between the 
physical variables, rather than achieving numerical agreement between a 
particular experiment and a calculation. 

Although the modified TRUBAL code is well-suited to verifying the qualitative 
behavior of granular materials, it is unsuited for real problems with length scales 
of tens and hundreds of meters. We use several hundred particles in our 
numerical calculations, with a typical sample dimension on the order of 
centimeters. This number is chosen large enough to guarantee a small surface 
to volume ratio so that material behavior is dominated by material properties 
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rather than the details of the loading. Even a geometrically simple problem like 
cratering would require at least six orders of magnitude more particles. A 
calculation of this size on today's computers is not practical. Even if it were, 
most of the detailed output of such a calculation would be useless. 

In the third phase of our research, we are attempting further simplifications by 
constructing an analytic model of the modified TRUBAL code. In this analytic 
model we will preserve our two premises, that the particles interact only through 
elastic bonds, and that the main source of inelasticity is fracture of the bonds. 
The major simplification occurs when we replace our detailed knowledge of the 
granular assembly, which is contained in the computer code, with a statistical 
model for the average grain. 

The purpose of this paper is to describe the process of creating the analytic 
model. We will derive an expression for the effective elastic moduli expressed 
as integrals over the configurations of the average grain. These integrals 
depend on probability distributions for the number of bonds, their lengths, and 
their relative orientations. The form of these probability distributions will vary for 
different materials and depends on the process by which the material was 
formed. We do not discuss this point in this paper. Instead, we will make some 
reasonable assumptions for the probability distributions and go on to evaluate 
the qualitative dependencies of the effective moduli. Our final results show that 
the Youngs' modulus of the granular assembly should vary linearly with the 
area of the bond, the number of bonds per grain (i.e., the coordination number), 
the expected length of the bond, and the Youngs' modulus of the bonding 
material. Also, Poisson's ratio should be 0.25. We verify these dependencies 
numerically with calculations in our modified TRUBAL code. 

2. ELASTIC BONDS IN THE MODIFIED TRUBAL CODE 

We have modified the two-dimensional TRUBAL code by adding elastic bonds 
between particles whose centers are closer than some specified distance. The 
geometry of the bonding is specified by three parameters, a, ~. and 8. These 
represent the width of the bond, the size of a preexisting Griffith crack within the 
bond, and the length of the bond. Each is made dimensionless by dividing by 
the particle radius, R. These parameters are illustrated graphically in Figure 1. 

l 

2oR 

Figure 1. The dimensionless parameters a,~. and 8 define the geometry of two 
bonded particles. In the middle of the bond is a vertical crack of width 2~R. 
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To evaluate the restoring forces and moments between particles, we divide 
the bond into a set of infinitesimal strips , each of which acts as a simple spring. 
The effective spring constant (K) for a strip of width dA is simply given by 
Youngs' modulus (Eµ) times the infinitesimal area and divided by the length of 
the strip. The distance between the particles may change, producing a set of 
restoring forces and moments. In addition, the particles may rotate, which 
produces additional forces. The net force on the particles is found by summing 
up the individual contributions of the strips. The presence of the crack (which is 
vertical in figure 1) decreases the number of strips that connect the particles and 
so decreases the net force between the particles. In general , the crack may 
grow -- i.e. , ~ can increase -- whenever the stresses within the bond are large 
enough. However, crack growth plays no role in the results of this paper. 

3. MACROSCOPIC STRESS 

The average stress tensor enclosed by a volume V is 

( 1 ) 

where Vp is the volume of the particles and Vb is the volume of the bonds. We 
idealize the bonds by letting the total area A go to zero while the product (EA) 
remains finite. Our only purpose here is to simplify the mathematics by ignoring 
the change in length of the individual strips within the bond due to the curvature 
of the particle. We also assume that the surfaces of both the bonds and the 
particles are stress-free except at the contacts. In this case, the volume 
integrals in equation 1 can be transformed into surface integrals using the 
divergence theorem. After some manipulation, we can rewrite equation 1 

(2) 

The inner sum is over the contacts of a particular particle. By contact, we mean 
the connection between a particle and a bond. The superscript (a) identifies the 
contact. Fis the force within the bond. Lis the vector pointing from the contact 
along the bond, and with magnitude equal to half of the length of the bond (e.g. , 
loRI; see figure 3). The forces within the particle have been eliminated in favor 
of the forces within the bond. 

So far, our results apply exactly to the numerical model within the code. 
However they require a detailed knowledge of the configuration of particles and 
bonds within the material. We can simplify our equations if we replace the inner 
sum over the contacts about a particular particle by a sum over the contacts 
about an "average" particle. The outer sum over all the particles is then just the 
total number of particles, N, times the inner sum over the average particle . 

. To be more precise about what we mean by an "average" particle, let us 
assume that we can write down a probability distribution for the number of 
neighbors to which a central particle is bonded, for the lengths and orientations 
of the individual bonds. We denote this distribution 
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where Na is the number of neighbors. Thus the distribution P represents the 
probability of any possible configuration of neighbors and bonds around a 
particle. In these terms, equation 2 becomes 

Na 

a·· - 2- N < " F ~a) L(a) > 
IJ - V LJ I J 

a=1 
(3) 

The brackets mean the distribution P is used to average over all configurations. 
In principle, we can derive the probability distribution P from the code itself. 

In fact we have done this for the distribution of bond lengths, as well as the 
probability of the different coordination numbers. We assume that the bond 
lengths of separate bonds are uncorrelated. 

The material in the modified TRUBAL code is formed by letting 270 identical 
particles fall under gravity and settle. Then all particles closer than a specified 
distance are bonded together. Figure 2 shows the cumulative number of bonds 
as the search distance is varied. 
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Figure 2. The cumulative number of bonds as a function of 8, which is the ratio 
of half the maximum separation distance to the particle rad ius R. 

The case for the angular distributions -- i.e. , for the orientations -- is more 
difficult, since the various orientations of the neighbors of a particle are clearly 
correlated in the sense that two neighbors cannot overlap. We attempted to 
bracket these angular distributions by evaluating two limit cases. In the first, we 
assume that the bonds are isotropic and uncorrelated. In the second, we 
assume that the bonds are evenly distributed about the central particle and so 
once one is known, the others are all determined. Remarkably, both 
assumptions lead to exactly the same result. Further, the results of comparing 
our theory to the numerical calculations bear out the conclusion that it is 
sufficient to treat the bond orientations as isotropically distributed and 
uncorrelated. Thus, we write 

Na 

P(Na ,L(1), ... L (Na ))""' P1 (Na ) IJP2( IL (a~ )- 1-
a=1 2 1t 

(4) 
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Both the functions P1 and P2 can be constructed from the graph in Figure 2. 

4. THE MICROSCOPIC FORCE 

We will calculate the effective moduli of the granular assembly by imposing a 
particular displacement of the boundaries and calculating the macroscopic 
stress in terms of those displacements. Suppose that we are given a specific 
configuration such as is shown in figure 3. We find the microscopic forces for 
such a configuration in terms of the bond vectors, and then average this force 
over all the possible configurations of the bond vectors. 

Figure 3. A specific configuration of a central particle bonded to three 
neighbors. 

The displacement of the boundaries defines an average or macroscopic 
strain tensor. We shall assume that the neighboring particles are each 
displaced by the average strain tensor and so the magnitude of the 
displacement of neighbor 1 with respect to the original position of the central 
particle is 

ll),, x (1)1 = ~ l),, x (1ll),, x (1) = 
I I I 

We find , to first order in the strain tensor, 

(5) 

(6) 

where K is the effective spring constant and l),,x i, the displacement of the central 
particle, can be found from the equations of static equilibrium 

Na 

LFfa) = 0 (7) 
a=1 
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Once we have solved for the displacement, ti.xi , we can insert the expression 
for the force, equation 6, into equation 3 and so evaluate the effective moduli . 

5. A COMPARISON OF ANALYTIC AND NUMERICAL RESULTS 

Using the approximations for the probability distributions discussed above, we 
have derived the following expressions for the effective Youngs' modulus and 
the effective Poisson's ratio of the granular assembly (see Table 1 for notation). 

E = .5. _E.._ < L > < Ne> 2 ( a - ~ ) Eµ 
8 Pµ R 

(8) 
V = 0.25 

The equation shows that the effective Youngs' modulus scales directly with 
Youngs' modulus of the bonding material, a result we derived previously based 
on dimensional analysis (Trent and Margolin, 1989), and is independent of 
Poisson's ratio of the bonding material. The effective Youngs' modulus also 
scales directly with the expected value of coordination number, and with the 
expected value of L, which is half the bond length. The final factor 2 (a - ~) 
essentially represents the cross-sectional area of the bond possibly reduced by 
the presence of a crack. 

The effective Youngs' modulus also depends on the ratio of macroscopic 
density p to the density of the grains Pµ (with in the TRUBAL code, the bonds are 
assumed to be massless). This ratio may be eliminated in favor of the material 
porosity <I> 

E = 5 ( 1 - <I> ) < L > < Ne > 2 ( a - ~ ) Eµ 
8 R 

(9) 

In deriving equations 8, we made one addition simplification -- we set the 
displacement of the central grain ti.xi = 0 in equation 6. Heuristically, we argue 
that this term should be of order of the deviations of bond lengths from their 
average value. On the basis of figure 2, we know that most of the bonds are the 
same size, roughly one tenth of the particle radius, until we allow very large 
search distances. Thus, we expect equation 8 will be valid until the maximum 
search distance becomes large -- i.e., comparable to the particle radius. 

Table 1. Baseline values of the input to TRUBAL for the parameter studies 

Symbol 

N 
Eµ 
p 
Pµ 
R 

Description 

Total Number of Particles 
Youngs' Modulus of Bonds 
Bulk density 
Grain density 
Particle radius 

Value (units) 

270 
10000 MPa 

1670 kg/ m3 

2650 kg/ m3 

.001 m 
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We have performed a parameter study on the modified TRUBAL code to 
verify the dependencies of equation 8. The baseline values of the input are 
shown in Table 1. In the calculations, we calculate the effective moduli by 
sending both a longitudinal and a shear wave through the sample and 
measuring the wave speeds, from which the moduli can be calculated (see 
Trent and Margolin, 1989). 

In this parameter study we varied 28R, the maximum separation distance for 
bonding. This causes both the expected value of bond length < L > and of 
coordination < Ne> to vary. These expected values can be found from figure 2. 
In these calculations, we chose a= 0.5 and ~ = 0.025. In figure 4 we plot the 
modulus versus the product < Ne>< L > . Equation 8 predicts this will be a 
straight line, which is verified by TRUBAL. Note that the agreement is best for 
small values of 8. We attribute this to our neglect of the displacement of the 
central particle in the force analysis, as explained in Section 4. 

We have performed similar parameter studies to verify the dependence on 
cross-sectional area of the bonds, and also the prediction that Poisson's ratio 
should be 0.25. Poisson's ratio is remarkably constant at this value for smaller 
choices of the separation 8, but also shows a systematic deviation for larger 
values as the bond lengths approach the size of the particle radius. Lack of 
space precludes showing the details of these calculations here. 

COMPARING THEORY AND NUMERICAL SIMULATION 
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Figure 4. The variation of macroscopic Youngs' modulus as the maximum 
bonding distance is increased. The theory predicts that the modulus will vary 
linearly with the expected values of bond length and coordination number. 
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6. CONCLUSIONS AND FUTURE DIRECTIONS 

We have derived an analytic model relating the effective moduli of a cemented 
granular material to the elastic properties and the topology of the bonds. The 
analysis is based on the idea of replacing the details of a granular assembly by 
a model of the average grain . We show that predictions o1 the analytic model 
compare well with the results of numerical simulation in our modified TRUBAL 
computer program. 

Our analysis makes specific assumptions about the distribution that 
describes the probability of finding a bond at a given orientation or of a given 
length about a grain. These assumptions are reasonable for an undamaged 
isotropic material. However, when some bonds are damaged or broken as the 
result of loading, the assumption of isotropy must be discarded. We have 
begun work to generalize our results to predict effective moduli for materials 
with prescribed anisotropic damage. The generalized results, combined with a 
method for calculating the breaking of bonds, will provide the basis for a 
constitutive model for cemented granular materials suitable for large scale 
computing. 
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