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Abstract

I put forward a two-Higgs-doublet model in which CP violation is mediated
only by the neutral Higgs bosons, via the mechanism of scalar-pseudoscalar mix-
ing. In this model there is no CP violation in the exchange of either W bosons
or of charged Higgs bosons. The model is therefore an approximate realization
of the superweak theory of CP violation. It has only two basic CP-violating
quantities. I point out that other models of this kind, but with more than two
Higgs doublets, may also be huilt.

1 Introduction

The simplest explanation of the CP violation observed in the neutral-kaon system is
given by the superweak theory, which was suggested by Wolfenstein in 1964 [1]. From
the modern point of view, that theory is purely phenomenological. It states that
the only CP-odd terms in the Lagrangian are terms which change the quark flavor
(for instance, the strangeness) by two units, having as a consequence that CP violation
occurs only in the mixing in the neutral-meson systems, and does not occur in the decay
amplitudes. This theory explains perfectly the observed CP violation, because all of it
can be attributed to one CP-violating parameter, ¢, in the mixing of the neutral kaons.
The superweak theory would have to be discarded if a nonzero value for the parameter
¢’ were measured; it would also have to be discarded if different CP asymmetries in
different decay modes of the neutral- B-meson system were observed [2]; there is also
the possibility of observing direct CP violation in CP-conjugated decays of charged B
mesons. Even if the superweak theory would finally have to be discarded, the possible
existence of a contribution to CP violation from an interaction of the superweak type
would lead to interesting consequences, like CP asymmetries in the neutral- B-meson
decays at wild variance with the predictions of the standard model (3].

Though the superweak theory has been very resistant to the experimental test, it
is difficult to integrate that phenomenological theory into the modern gauge models
of the fundamental interactions. It is known that the standard model may, for a
top-quark mass of about 200 GeV, simulate a superweak theory, in that it predicts



a very small value for € [4]; but that simulation occurs only in what concerns that
particular parameter, and it is moreover in no way fundamental, being only the result
of the accidental cancellation of various contributions to €. Also, interactions in which
CP is violated via the exchange of neutral Higgs particles with flavor-changing Yukawa
couplings, are of superweak nature; but it is not correct to assert that a model in which
such interactions arise realizes the superweak theory, because usually those models also
include CP violation mediated by charged Higgs particles and/or by the W boson [5]
(Kobayashi-Maskawa CP violation [6]). Extra assumptions, like supposing that the
charged Higgs bosons are very heavy, or that the phase in the CKM matrix (6] is very
small. are then needed; else, the extra sources of CP violation will both induce direct
CP violation, and tend to destroy the predictive power of the model in what concerns
CP violation.

The purpose of the present work is to study ways of building models in which CP
violation occurs only via the flavor-changing exchange of neutral Higgs bosons, while
there is no Kobayashi-Maskawa CP violation, and also no CP violation mediated by
charged Higgs bosons. Such models will be realizations of the superweak theory, if one
makes the reasonable assumption that the exchange of the neutral Higgs particles does
not contribute significantly to the various decay amplitudes, which means that these
are still dominated by the exchange of the W boson, and are therefore real. I emphasize
however that this assumption may not hold in these models. Furthermore, these models
have contributions to quark dipole moments at the one-loop level, in contrast to what
occurs in a genuine superweak theory. Anyway, I will rather loosely say models with
the features above to be superweak-like. The models that I will present, in particular
the one of section 3, have the advantage of having the CP violation restricted to a few
basic interactions, and parametrized by a relatively small number of quantities.

In section 2 I discuss some general features of a two-Higgs-doublet model with a
softly-broken Z, symmetry. Most of the material in that section is known, and I write
it down mainly in order to fix the notation. In section 3 I show that, if the Z, symmetry
applies to the fermion sector of the theory in a particular way, one obtains a model with
CP violation only in the scalar-pseudoscalar mixing. In section 4 I show that similar
models may be constructed with more than two Higgs doublets, with the help of larger
discrete-symmetry groups. As an example of this, I give in section 5 a model with four
Higgs doublets, which has the bonus of some predictive power in what concerns the
form of the CKM matrix. The main conclusions are summarised in section 6.

2 The two-Higgs-doublet model

I work in the context of a three-family SU(2)x U(1) model. In a weak basis, the three
quark doublets are denoted by ¢, = (p;, n.)’, and the right-handed up-type and
down-type quarks are denoted by pp and np, respectively. With two Higgs doublets
H, and H;, the Yukawa couplings are of the form

Ly = —-gH\['inp — qrH ) ang
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Because I want to avoid the presence of Kobayashi-Maskawa CP violation, I will con-
sider models in which CP invariance holds at the Lagrangian level, but is spontaneously
broken {7]. I therefore take the 3 x 3 matrices of Yukawa couplings I', I',, A, and A,
to be real.
The Higgs doublets are written as
+ +
1 Y2
H = . ; H"J =e'" . y 2
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where v/v/2 and e“v,/+/2 are the vacuum expectation values (vevs) of H and HY,
respectively. There is no loss of generality in taking the vev of H{ to be real and

positive. | re-define both the charged and the neutral components of these fields by
means of the orthogonal matrix .

_f w/v vy /v )
0= ( vy /v -v./v} ’ (3)

in which v := v} + v = (v2Gr)"'/%, in the following way:
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G* and G" are the charged and neutral Goldstone bosons, respectively, which become
the longitudinal components of the W+ and the ZY, in the U-gauge.

The mass matrices of the quarks are bi-diagonalised, as usual, by 3 x 3 unitary
matrices Uy, Unr, Uy and Upn:

Ut (Zir, + ZeorU,e = Dy,
nl(\/i '+\/§e 2 Unnt d

v V2 i .
U;L(‘\7l'§A| + \—/—'2'8 A))Upr = Dy, (5)
where D4 and D, are the diagonal matrices of the masses of the down-type and up-type
quarks. respectively. I define the two non-hermitian matrices Ny and N, as
Ny = UL (2T, - Lo T\ ,

Ut (22, = Zeme AU, 6
pl(\/ﬁ ! \/ie 2) ph ( )

Then, the Yukawa interactions of H*, H', R and I are given by
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Here, V" := Urt,‘U,.,, is the CKM matrix, and yp; := (1£75)/2. u and d are the column
matrices of the physical up- and down-type quark fields, respectively. H" couples as
the standard-model Higgs field, but in the two-Higgs-doublet model it mixes with R
and I, the couplings of which are not flavor-diagonal. The couplings of the Goldstone
bosons G* and G" are of course the same as in the standard model.

Notice that, from Eqgs. 5 and 6, one has

(%] vy VU2 V)

Ni==Dy=—=(=+ =)} e Tl . (8)
Uy v2 v V2
[ will use this result later.
The most general Higgs potential for the two-1liggs-doublet model was written by
T. D. Lee in his pioneering work on spontaneous CP violation {7]. It has since become

customary to consider a version of the model in which a discrete symmetry S
S: Hl“*HhHg—"—HQ (9)

(I do not write yet the transformation properties of the quark fields) is introduced,
usually with the purpose of avoiding the presence of flavor-changing neutral interactions
(FCNI). In my model FCNI are wanted, because they will constitute the superweak
interaction. However,in order to obtain real miss matrices, I will still need the discrete
symmetry S, though implemented in a different way in the quark sector. On the other
hand, there may be various motivations (8] for introducing a term in the Higgs potential
which breaks S softly; in the present case I need that term in order to obtain the
possibility of CP being spontaneously broken. The Higgs potential is

Ly = pwHH + wH Hy + py(H Hy + hee) +a(H H)? + ay( H H,)?
+O(HIH\)(HYH,) + c(H Hy))(HIH\) + d[(H Hy)? + h.c.] . (10)

The coefficient of the term which breaks S softly, w3, is assumed to he much smaller
than the other two dimensional coefficients in the potential, 4, and px,. This assumption
is natural, because the Lagrangian acquires an extra symmetry, S, when 3 vanishes.
The stationarity conditions are

2[14 = —2(141)',3 - k'()':,. y
2uy = —2ayvi — kv, (11)
3y = —2dvyvycosa,

where k := b + ¢ — 2d. They fix vy, v, and a as functions of u,, g, and u,. If all the
dimensionless parameters in the Higgs potential are of the same order of magnitude,
then the fact that p4 is much smaller than p, and u, implies cos a < 1, and therefore
the phase a is very close to +7/2, which means that the CP violation via scalar-
pseudoscalar mixing is very small. This way of naturally suppressing CP violation was
first suggested by Branco and Rebelo [9].



We readily obtain, from the potential in Eq. 10, and after using the stationarity
conditions in Eqgs. 11, the mass terms for the Higgs bosons:

HU
d - L 9
E,.,:...+2‘)rv'H‘H++(H“ RI)M|R |, (12)
“ 1
where the real and symmetric matrix M has
1 9 9 9
M, = > [a1v| + ayvy + vivi(k + 4d cos® a)] , (13)
1 . oy 2 2 2
My, = = [d(v} — v}) cos® a + vivila; +ay — k)], (14)
M,'m = dvz sin"’a y (15)
. 4 ) 2y )
MI'Z = 21‘;2 [anvgz - ayv, + = 2 = (k + 4d cos” O‘)] ) (16)
M3 = dvyvysin(2a) , (17)
d bl " .
Myy = 3 (v; — vi)sin(2a) . (18)

There are two non-trivial equations among the matrix elements of M:

13 1 V2
2 2
-M—-%}ZAA——Z—“-' = cot’a . (20)
33

These relations are not very useful in practice, because in practical calculations the
matrix elements of interest are the ones of M~', and Eqs. 19 and 20 are more compli-
cated when written in terms of these. But these equations tell us that there are only
four independent mixed Higgs-boson propagators or, equivalently, matrix elements of
M-

The mass matrix M is diagonalized by an orthogonal matrix T

2 2 2
my m; mj

_'2_‘> 2 3 —é—) ’ (21)

T MT = diag(

where the three m, are the masses of the three real neutral Higgs fields H,. It follows
that

Z’: 2T, Ty, - (M )y = 2cot a kv® — 2a v} — 2ayv3 (22)
— m 9 2, da,ay — k? ’
32T, Ty, dcota av! — ayv,

2

1=

=(M )y = . (23)
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These matrix elements govern the mixing of the scalars H° and R, respectively, with
the pseudoscalar I. In the model of the next section, all the CP-violating quantities
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are (in the point-interaction approximation for the neutral-Higgs-exchange diagrams)
linear combinations of (M~'),y and (M~'),;. They are therefore all proportional to
cot a << 1, which fact gives a natural suppression of CP violation [9]. Notice that M,
and M7, are independent of each other; from the four independent mixed Higgs-boson
propagators, two are CP violating.

3 Superweak-like model with two Higgs doublets

Usually, the symmetry S i1s applied to the quark sector in the following way: the left-
handed-quark doublets g, are invariant under S and, either both the p,, and the n; are
invariant under S, or the pp are invariant but the np transform to ~np under S. In
both cases the symmetry S leads to the absence of FCNI, which is precisely what one
usually wants from it. In the paper of Branco and Rebelo [9], the role of the symmetry
S was different: it was meant there to provide a rationale for the smallness of the CP-
violating FCNI as compared to the CP-conserving FCNI; those authors applied the
symmetry S to the quark sector in a more-or-less arbitrary way, allowing for the FCNI,
because they needed these in order to explain the observed CP noninvariance. In the
model that I will now present, the symmetry S has, besides this useful role of allowing
for a natural suppression of CP violation, still another one, and more fundamental
role: I use it to avoid that, though CP is spontaneously broken — a relative phase o
between the vevs appears —, the mass matrices become complex. On the other hand,
as there is no need for CP-violating FCNI in the up-quark sector, I will also use S
to eliminate the FCNI in that sector (though this latter feature of the model is not
essential). I assume that the doublets q,, the right-handed quarks pj;;, and two of the
three right-handed quarks nj, npy and nj,, are invariant under S; but

St npy— —npy . (24)

As a consequence of these assignments, the matrix A, vanishes, and therefore N, =
(va/vi)D,, which means that there are no FCNI in the up-quark sector. On the other
hand. the matrices I'; and I', have the form

x x 0 0 0 x
Iy~ x x 0, Ty~]100 x|, (25)
~ x 0 0 0 x

where the crosses denote non-zero matrix elements. The mass matrix of the down-type
quarks. [v,[', + vaexp(ia)l'2]/v/2, has its first two columns real, while the whole third
column has a common phase a. But that phase may be eliminated by a rephasing
of nys, npy — exp(—ia)npy, after which rephasing the mass matrix becomes real.
As a consequence, the diagonalising matrices U, , Uk, U,. and U, are all real and
orthogonal, and the CKM matrix V is real. The matrices'NV,, and Ny are also real after
the rephasing of nj;, and therefore there is CP violation neither via W?* exchange nor
via H* exchange. The couplings of H" and of R are real and the ones of I are purely



imaginary, and all the CP violation originates in the mixing of I with H" and R. The
model is superweak-like.
I now derive the form of the matrix Ny. [ start from Eq. 8. I define
Ki=2242 o 59, (26)
vy V) MYy
[ also define I'} , := U', T\, We therefore have, after the phase a has been removed
by the rephasing of nyy,

Tv/—l—z—[‘,l + %F{} = DlevtR ’ (27)
N,=2p k22U *
Y R o

The important point is that the matrices I') and I', have exactly the same form than
the matrices I') and I',, respectively (see Eq. 25). Therefore, if the third column of the
orthogonal matrix U,tR is denoted by (z,y,z)’, with

w2+y2+52=1) (29)

Eq. 27 tells us that the third column of Iy is (v/2/v,)(maz, m,y,myz)", the other two
columns being of course zero. Eq. 28 then gives

mq(2 — Kz?) -mqKzy —mqKzz
N, = -m.Kzy m,(ﬁf - Kyz) -m,Kyz . (30)
-myKzz ~myKyz  my(* - K2?)

Thus, the strength of the flavor-changing couplings in this model is parametrized by
three real numbers of modulus not greater than 1/2,

B =2y, PBg,i=zz, P, i1=vyz, (31)

which satisfy
BkBs,Pe. = (BrBs,) + (BxPs )’ + (Bs,B8,)" . (32)

An important question concerning superweak models is: how does the strength
of the superweak interaction scale from the kaon system to the other neutral-meson
systems? Some tentative answers to this question have been suggested in the past {10},
like a scaling with either the square-root of the masses, or with the masses themselves. of
the intervenient quarks; but these suggestions were never based on complete superweak
or superweak-like models, and they were only educated guesses. In my model, we
observe in Eq. 30 that there is certainly a scaling of the FCNI with the quark masses,
but that this scaling may be irrelevant, because the three 4 parameters may be quite
different. For instance, if we assume that two of the three § parameters vanish, the
third one then remains completely arbitrary (see Eq. 32). Thus, the fact that Ox has a
certain value does not allow us to predict the value of Bg,, and with it the strength of
the superweak interaction in the B, system. But, if two of the 3 parameters happened
to be known, we could, from Eq. 32, predict the value of the third one.
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A further interesting point is that the overall str ‘~eth of the superweak interactions,

which is given by K, is inversely preportional to t:  -oduct (v v;), and thus increases
if one of the vevs decreases. The off-diagonal nts of Ny express a mismatch
between the bi-diagonalization of the mass matr d the one of either I'; or of I',.
They therefore increase when one of the Yukawa ices has a greater weight in the
mass matrix, and therefore determines more stro: ‘he bi-diagonalization procedure

to be followed. If for instance vy >> v,, then the 1 :i1x I’y gives a contribution to the
mass matrix much greater than the one of I'», anc  erefore I'| essentially determines
the diagonalization matrices U,;, and U, .

Let us calculate the contribution to the neutr: :aon mixing-matrix element M,
from the neutral-Higgs-exchange diagram in Figure =~ The interaction of the three real
neutral Higgs fields with the strange and down qua ks is given by the following terms
in the Lagrangian:

(KBi/2v) Tioi Hy {3[Tyj(m. + my) 4+ iTyj(m, — my) 53)
+Toi(m. — my)vs + tTaj(m, + ma)ysld + h.c},

where the matrix T was introduced in Eq. 21. Therefcre, the diagram of Fig. 1 gives
‘H,‘” = - (Kﬁ,\-/‘lv)’
<AGa)*[(my + ma) (M )2z = (e = ma) (M a3 + 2i(m] — mg)(M ™))

+(37:d)*[(m — ma) (M7 )ay = (M + ma) (M~ )y + 2i(m] — m3)(M™')2al}
(34)
Using the fact that m, >» my, and the vacuum-insertion value for the matrix element

[11]

— , L 5 fimd
(BT (3d)* + (3msd)” &) = 2 TETK (35)
one obtains
5 2.3
MR »g% K205 f":.n" (M7 )ay = (M7 )gg + 20 M7 H)y] (36)

From the phenomenology of the neutral kaons, we know that |ReM ;| ~ Amy /2 and
TmAd\,f &~ v2 |e] Amy. Assuming the product (KBx) to be of order 1, one therefore
obtains

M )] ~ 0.002TeV— (37)
I(J\A—])QQ—( ');'}! OGSTEV— (38)

Eq. 38 is only an approximate upper bound, because there are other contributions to
the real part of A/, as the box-diagram contributions and a long-distance contribution;
but Eq. 37 is an equality, because the diagram of Fig. 1 reallv gives, in our model, the
dominant contribution to Ima{,.

Naively, Eq. 37 would give a lower bound for the masses of the Higgs bosons of the
order of 10 TeV, stronger than the bound from Eq. 38. But as M3, is proportional to
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cot a, and this parameter may naturally be set to be very small, say ~ 10~", this is not
really a problem. On the other hand, it is obviously difficult to conciliate Eq. 38 with
the non-existence of Higgs bosons with masses of the order of the TeV. One possibility
consists in assuming a rather strong cancellation between (M~!),, and (M)3y, which
of course requires a certain amount of fine-tuning. Also note that H" may always be
an approximate eigenstate of the propagation, and may then have an arbitrarily small
mass. Only R and [ are required to be heavy, or else to have very similar masses,
so that their contributions cancel. There is of course also the possibility of obtaining
smaller masses for the Higgs bosons, by assuming M|.*** to be suppressed by a very
small By instead. But this is dangerous: while M!Y* is proportional to 8%, because
of the existence in the diagram of Fig. 1 of two flavor-changing vertices, the Higgs-
exchange diagrams giving an imaginary part to the kaon decay amplitudes (Figure
2) have only one flavor-changing vertex, and are therefore proportional only to 8.
Therefore, a low By enhances €//¢, and the superweak character of the model may thus
be lost. ‘

Still concerning the superweak character of this model, it must be remarked that,
while the imaginary part of M, is proportional to Mj;, the imaginary parts of the
decay amplitudes also involve M7, because the field HY, instead of the field R, may
be present in the flavor-diagonal vertex in Fig. 2. Therefore, another possibility for
enhancing €'/e is considering M7, to be some two orders of magnitude [5] larger than
M3, . This possibility is realized, in particular, if we require H" to be an approximate
eigenstate of the mass matrix, with a mass much smaller than the ones of the other
two eigenstates. For these reasons, it cannot be claimed that the present model is
automatically and in all cases superweak in nature.

A remarkable fact about Eq. 36 is the proportionality of M;** to [(M~')y —
(M™')y3 + 2¢(M~1),3]. This proportionality holds because mq4 < m,, and is of course
also valid if the external quarks in the diagram were, instead of s and d, say, b and d.
This means that the neutral-Higgs-exchange contributions to M, x, M, g, and M, 5,
have all the same phase. Of course, the three M,, themselves do not need to have the
same phase, because they also receive other contributions, for instance, from W#* and
H* box diagrams. Those further contributions are, however, all real. In a certain
sense, we thus have here the situation exactly opposite to the one which was studied
by Soares and Wolfenstein [3): the superweak contribution to M;, has a common and
non-zero phase, while the standard-model and all other coniributions are real.

4 More than two Higgs doublets

When one tries to extend the ideas of the last section to models with n > 2 Higgs
doublets, one meets the following problem: how to avoid a complex mixing among the
charged Higgs bosons, leading to CP violation in the exchange of these? Let us first
understand the origin of this problem. Suppose that, by using a symmetry as in the
last section, we are able to enforce mass matrices for the quarks which may be made
real by an adequate rephasing of the quark fields. Then, after that rephasing, the



Yukawa couplings of the n fields ¢}, j from 1 to n, will also be real. Now, from gauge
invariance we know that the field T7_, v;¢; is the charged Goldstone boson G*. The
n — 1 charged Higgs fields orthogonal to G* are free to mix. If n = 2, there is only
one charged Higgs field orthogonal to G*, and no mixing among charged Higgs fields is
therefore possible. But if n > 3 mixing occurs, and in principle, because of the relative
phases of the vevs, that mixing is complex. This is indeed the main mechanism of
CP violation in the Weinberg model [12]. The complex mixing of the charged Higgs
fields leads to complex Yukawa couplings of the physical bosons. I want to avoid this
mechanism of CP violation.

In order to achieve this, the idea is to have a spontaneous CP violation which, in
some way, ouly involves effectively two of the n Higgs doublets, such that the mixing of
the Higgs fields is complex only in a two-doublet sector. As an instance of the general
method by which this idea can be realized, suppose that there are four Higgs doublets,
and that the Higgs potential is

Ly = ﬁj lwiHIH, + A (H H,)?)
+ Y Doe(H) Hy)(H{ Hi) + 6;c(H! He)(HII))
i<k
e|(H'H,)? + (H{H\)*) + v(HH, + H H))
+y((H! Hy)(H Hy) + (HYH\)(HiH,)]
+2|(H | Hy)(Hy Hy) + (Hy H\)(H} Hs)) - (39)

All the coefficients are real because of CP invariance. There are four terms in this
potential which can “see” the three relative phases of the four vevs, and therefore
spontaneous CP violation is possible. We notice however that there is only one relative
phase between vevs, the one between the vevs of H{ and of H{, which is “seen” by
more than one term in the potential, the terms with coefficients z and v." Once the
clash between these two terms leads to a non-trivial phase between the vevs of HY
and of HY, the terms with coefficients y and z lead to phases for the vevs of HY and
of Hy, respectively, which simply cancel the non-trivial phase difference generated in
the H\'-H\ sector. As the spontaneous CP breaking is generated by only two Higgs
doublets. the complexities in the mixing of the Higgs fields also remain limited to
the mixing of those two doublets, and no complex mixing of charged Higgs fields
can arise. Notice however that the terms with coefficients y and z, though they are
neutral in what concerns the CP breaking, are needed, because without them one
would have undesirable Goldstone bosons in the neutral sector, due to the possibility
of independent rephasings of the doublets H; and H,.

A question arises: is the potential in Eq. 39 stable under radiative corrections? It
is. That potential possesses a symmetry S’ of the type Zx, under which, with w® =1
but w = 1, :

H] — H[ ) H2 — LUHQ y H3 d wzH:j y H4 - (-U‘H.| . (40)
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This symmetry Zg is softly broken by the term with coefficient v to the symmetry
Z, obtained by identifying w' with 1. The symmetry Z. forbids the appearance of
divergent contributions to other quartic termms in the potential, and the symmetry Z,
forbids the appearance of any further soft-breaking terms, so that the whole potential
1s stable.

If we write the Higgs doublets as

.¢+
H. = ' 1 , , 41

’ (y';(v.i+pj+w;)) (41)
then we find the following stability equations which determine the relative phases of
the vevs:

—2$U|v| COS(O:| - C!|) = Vv, (42)
ycos(2ay — a; —ay) = —ly|, (43)
zcos(2ay —a) —ay) = —|z|. (44)

The last two of these equations embody what was said above, that a; and «, adjust in
order to offset the effects of the spontaneous CP breaking, which occurs in the sector
H{-HY. After a bit of work one obtains the mass matrices of both the charged and the
neutral Higgs fields. The one of the charged Higgs fields is the most general real mass
matrix compatible with the requirement that it has an eigenvector 3_1_, v;p] with zero
eigenvalue, and therefore it is essentially uninteresting. In the neutral sector, we have
the following. First, a mass matrix for the four fields p;, which has no constraints on
it, and therefore is not worth writing down explicitly. For the four fields 7; one has the
mass terms

T sin’(ay — a4)vazu(% - %f)z

+(|y|U1U§v4/4)(11{—: 4+ gm)2 (45)

N Uy

+(lzlviviva /4) (8 + 2 —282)7 .
Notice the way in which the coefficients y and z kill two menacing Goldstone bosons.
Unfortunately, the three fields in Eq. 45 can not be interpreted as mass eigenstates,
because they are not mutually orthogonal. Finally, there is only one term which mixes

the p; components with the ; components, and which is the source of CP violation:

zsin(2(ay — ay)|(viny — vam )(vips + vap1) . (46)

As expected, this term only involves the neutral components of H, and of Hj.

It is clear that the mechanism worked out in this section for the case of four Higgs
doublets may be epplied in general for any number n of Higgs doublets. One then uses
a discrete symmetry S’ of the type Z,..:, softly broken to a symmetry Z,.-z by one
term in the Higgs potential. CP is spontaneously broken only in a two-Higgs-doublets
sector, in which one of the doublets is invariant under S’ and the other one transforms
with a minus sign under S’. The other Higgs doublets transform under S’ in such a
way as to allow, for each of them, one and only one term in the potential which “sees”
its phase, in order to kill the corresponding Goldstone boson. The whole mechanism
is clearly a generalization of the two-doublet case worked out in section 2.
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5 Superweak-like model with four Higgs doublets

I now use the insights of the previous section to construct, as a practical example, a
superweak-like model with four Higgs doublets.

The way in which the symmetry S’ acts on the four Higgs doublets was given in
Eq. 40. I take the quark multiplets to transform under S’ as

gL —qLy gLy " wWqi2,  qi3 w*qrs ,
PrRi — WIPRI y PR2 w3pn2 y PR3 w®pr3 , : (47)
npy — w’np, MRy = w'nre, Ry — w’npg .
Then, the Yukawa Lagrangian is
-Ly = aqHmp +0qzHinp
+cqrzHanps + d gizHanp: + e gralynps

+f qri(io HY)pri + 9 Grz(to2 HY )pr2
+h Gra(ioa HY Ypra + hec. . (48)

The coupling constants are real. When the Biggs doublets acquire vevs, one obtains a
diagonal mass matrix {or the up-type quarks,

vy
= |fl—, =, h 49
L T8 (49)
and a mass matrix for the down-type quarks of the form
0 x 0
x 0 x| . (50)
0 x x

The arbitrary phases in a quark mass matrix of this form may be rotated away by
means of rephasings of the quark fields, so that one may take, for the purpose of the
analysis of the Yukawa couplings, all the vevs to be real. The advantage of having a
down-quark mass matrix of the form in Eq. 50, when the mass matrix of the up-type
quarks is diagonal, is that one immediately obtains a constraint on the quark masses
and the parameters of the CKM matrix which works particularly well [13]:

(MyM})i2 = miViVy, + m2Vi by, + mEVia Vi = 0, (51)

in which V' is the CKM matrix, which is in this case real and orthogonal. This leads to
a prediction for |V,/Vip| as a function of |V,,], of |V;4] and of § := (m? —m3)/(mi —m3):

ub - (1/2U1b) (Ur'b - 26UusUr‘b + 62Uus

(52)
~ U2 — 48U, U2 — 262U,,,U(1 = 2U,,, — 2Uy) — 46°U2, Uy + 6'U2, )
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where [, := |V;;|°. This prediction agrees very well with experiment, at least if we use
for m. the central value 175 MeV [14]. It should be pointed out that mass matrices
of the type in Eq. 50 may be obtained in a simpler way by means of a Z¢ symmetry
in a model with only three Higgs doublets [13]; but that simpler implementation is
not good for our purposes, because in that case one would obtain CP violation via the
exchange of charged Higgs fields.

The model suggested in this section has, over the one of section 3, the advantage
that it has, except for the ratios of the four vevs, v, +vy+v,+v,, no unknown parameters
in the matrices of Yukawa couplings of the Higgs fields. There are here no annoying
parameters like the 3 parameters of section 3. However, the more Higgs doublets there
are, the more unknown independent parameters arise in the mixed propagators of the
Higgs fields (the matrix elements of M~'). Indeed, it can be shown that models with
a Higgs potential of the type studied in section 4, have (n? + 3n — 2)/2 independent
neutral-Higgs mixed propagators, out of which n propagators are CP-violating (n > 2
is the number of Higgs doublets). Therefore, the present four- Higgs-doublet model has
really no more predictive power in what concerns CP violation than the two-Higgs-
doublet model given in section 3.

6 Conclusions

The main conclusions of this work are the following.

It is possible to construct extensions of the standard model, with n > 2 Higgs
doublets. in which CP violation occurs only in the propagators of the neutral Higgs
fields, via scalar-pseudoscalar mixing, and there is neither Kobayashi-Maskawa CP
violation. nor CP violation via the exchange of charged Higgs bosons. The neutral
Higgs bosons have flavor-changing Yukawa couplings, and their exchange in a tree-
level diagram explains the observed CP violation. The essential ingredients of these
models are:

1) CP invariance at the Lagrangian level, enforcing real Yukawa coupling matrices;

2) a discrete symmetry Z,n-i, which constrains the Yukawa coupling matrices in
such a way, that the phases which the vevs feed into the quark mass matrices may be
absorbed in the quark fields, the mass matrices thus becoming real;

3) the discrete symmetry also constrains the Higgs potential in such a way that it
has exactly as many terms which see the relative phases of the doublets, as there are
relative phases, which fact avoids the appearance of Goldstone bosons;

4) one term in the Higgs potential which breaks the discrete symmetry softly to
Z)n-2, allowing for spontaneous CP violation to occur.

The discrete symmetry may be chosen to transform the fields in such a way that
there are no neutral flavor-changing Yukawa interactions in the up-type-quark sector.
This feature of the models that I have presented may however be altered, if experiment
should dictate it.

There are three types of unknown parameters which affect our ability to make
predictions from such models:
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1) the ratios of the vevs;

2) the values of the mixed propagators of the neutral Higgs fields:

3) unknown real parameters in the Yukawa couplings.

The unknown parameters of the first two types increase in number with the number
n of Higgs doublets. Therefore, a model with two Higgs doublets has advantages. I have
worked out one such model in particular detail. Even in that very simple case, there
are no clear predictions for the way in which the superweak interaction responsible for
the observed CP violation should scale to the neutral- B-meson systems.

I thank L. Wolfenstein for illuminating discussions. Both he and L.-F. Li have
read and criticised the manuscript. This work was supported by the United States
Department of Energy, under the contract DE-FG02-91ER-40682.
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FIGURE CAPTIONS

Figure 1: Higgs-exchange diagram giving an imaginary part to the neutral-kaon
mixing matrix element A;,, and therefore leading to a non-zero €.

Figure 2: Higgs-exchange diagrams giving imaginary parts to the K" — 27 decay
matrix elements A, and A, and therefore leading to a non-zero ¢'.
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