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ABSTRACT 

A method for calculating the stresses in a notched, unidirectional 

monolayer is briefly described. This numerical formulation, based upon the 

familiar shear-lag assumptions, permits the modeling of a finite-dimensioned 

monolayer which co~tains a centered notch transverse to the fibers. Elastic-

work hardening constitutive relationships may be specified for the fibers 

and/or matrix. Notch growth under increasing load can be analyzed. 

Illustrative calculations are presented to demonstrate the utility of this 

analysis in determining how constituent properties affect notch-tip fiber 

stress concentrations. Calculations for unidirectional boron/aluminum 

indicate that stress concentrations are reduced by a matrix with (1) suf-

ficiently high yield strength to prevent large-scale yielding (uniform 

traction loading can cause large fiber stress concentrations when global 

yielding occurs), and (2) a low rate of work-hardening (to reduce stress 

concentrations). The analysis has also been applied to Kevlar 49 plain 

weave fabric/epoxy monolayers. Predicted matrix and fiber stress con-

centrations are quite localized in this material with nonlinear material 

response limited to the notch-tip region. This is quite different from the 

widespread yielding predicted and observed in as-fabiicated, unidirectional 

boron/ aluminum. 
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INTRODUCTION 

Composite fracture can be studied from several different perspectives. 

For example, the primary interest may be in methods aimed at insuring the 

integrity of a specific composite structure under a prescribed load history. 

Alternatively, the aim may be to gain a fundamental understanding of the 

material parameters which affect flaw resistance. The analyses used in 

such diverse studies will often differ. When analyzing structures, it is 

often convenient to model a laminate, or sometimes each lamina, as a homo­

geneous, orthotropic material. The analysis is done on a scale on which 

only average composite stresses, not individual fiber and matrix stresses, 

are considered. When studying the details of the fracture process it is 

at times necessary to perform analyses in which the heterogeneous nature 

of the composite is treated. The analysis described in this paper falls 

into this latter category. While such analyses are too detailed to use for 

complex structures, they can provide insights into processing or material 

modifications that will improve the flaw resistance of a composite. 

A monolayer, a planar array of aligned, continuous fibers, may be 

considered the fundamental building block from which laminates are con­

structed. Notched monolayers can be analyzed within the context of a shear­

lag theory. This approximate analysis, in which fibers are assumed to 

carry only axial loads while the matrix carries only shear, is particularly 

convenient when analyzing monolayers with a large number of fibers. Unless 

fiber breaks occur in a regular manner and a repeat cell can be identified, 

a more detailed finite element solution would be prohibitive. Hedgepeth (1961) 
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was the first to apply a shear-lag analysis to monolayers. In his analysis, 

(1) the fibers were of infinite length, (2) the monolayer was of infinite 

width, (3) tensile loads were uniformly applied parallel to the fibers at 

infinity, (4) both fibers and matrix were linear elastic, and (5) both 

constituents were fully bonded. Hedgepeth's original analysis has undergone 

several direct extensions as reviewed by Reedy (1980). These extensions 

are rather limited in scope. In general, an infinite monolayer is analyzed 

in which any matrix damage or nonlinear material response must occur between 

the last broken fiber and the first intact fiber. 

Reported below is a numerical formulation of the center-notched 

monolayer analysis which permits arbitrary monolayer dimensions, either 

traction or displacement boundary loads, notches composed of multiple fiber 

breaks, flaws of arbitrary geometry, nonuniform fiber spacing, monolayers 

containing more than one type of fiber, and constituents which can work­

harden. The analysis is formulated to model slow notch growth and/or the 

growth of mat~5.x shear cracks. A number of illustrative examples are 

presented to demonstrate the utility of the analysis and comparison is made 

between experimentally determined behavior and theoretical predictions. 

ANALYSIS 

Method 

A previously developed method for analyzing center-notched monolayers 

is employed. This method allows one to calculate fiber and matrix stresses 

in a finite-dimensioned monol.ayer whose matrix hardens kinematically. A 
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detailed description of the monolayer model and the method of solution is 

given by Reedy (1980). In essence, the monolayer (Fig. 1) is discretized 

axially into fiber and matrix elements (axial boundaries indicated by dashed 

lines) and an analog of the three-dimensional Principle of Stationary Comp­

lementary Energy for a deformation theory of plasticity is applied to the 

structure. The principle is suitably modified to allow unloading during 

notch growth. The analysis is performed within the context of a shear-lag 

theory. Fibers are considered to carry only axial loads while the matrix 

carries only shear loads. Matrix shear stress is assumed constant within 

a matrix element while the stresses in a fiber element vary linearly along 

its length. Equilibrium is enforced with Lagrangian multipliers. The 

resulting set of nonlinear, simultaneous equations is solved numerically 

by a multi-dimensional Newton-Raphson method. Slow notch growth is modeled 

in the following manner. When the notch-tip fiber stress reaches a prescribed 

fracture stress, applied boundary loads are held fixed and the fiber is 

"broken'' by unloadine jt in several steps. If after this process the 

fiber stress at the extended notch is below the fracture stress, the notch 

is said to have grown stably. In this case the applied boundary loads are then 

increased until the notch-tip fiber breaks. This process is continued as long 

as stable notch growth is possible. Stable notch growth under increasing 

load is a consequence of the residual matrix shear strains left behind the 

advancing notch. 

Illustrative Calculations 

To date, most of the calculations have been for unidirectional, 5.6 

mil diameter boron/6061 aluminum. This material, with its large diameter 
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fibers, ductile matrix, and strong· fiber-matrix bond can be considered 

something of a model system. In the analysis, the boron fibers were treated 

as linear elastic to failure with a 58 msi modulus and a 520 k~i strength. 

These are typical values for boron fibers and are consistent with four­

point bend data for the two 14-ply thick plates from which the notched 

specimens used in this study were taken. Rail shear test data for these 

plates were us.ed to infer a plate's in-situ matrix shear stress-strain 

relation, Reedy (1982a). Both plates were nominally identical (fabricated 

by DWA Composite Specialties, Inc.) and were tested in the as-fabricated 

condition. Shear data for each plate was fit to a modified Ramberg-Osgood 

relationship: 

(1) 

where " is shear stress, y is shear strain, "y and Yy are their values at 

yield and N is the hardening exponent. Unidirectional boron/aluminum has 

a shear modulus of approximately 7 Msi so Yy was assumed to equal "y/7 Msi. 

The shear data for the one plate (hereafter called Plate 1) were best fit 

with "y = 8.5 ksi and N = 4.88. The shear data of the other plates (Plate 2) 

were fit with "y = 5.0 ksi and N = 5.38. These results indicate, for the 

plates tested, that the as-fabricated state of boron/6061 aluminum can 

vary significantly. 
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Predicted and measured Plate ~ load vs notch opening displacement 

relations for center-notched tensile specimens with three different initial 

notch lengths (0.1, 0.25, 0.50 in) are displayed in Fig. 2. The specimens 

were all 1.0 in wide with a 3.0 in gage length. Both uniform traction and 

uniform edge displacement boundary conditions were considered. Prior to 

first fiber breakage, the predicted relations (solid curves) for both 

types of boundary conditions are identical. The saw-toothed portion of 

the curves is a consequence of the manner in which stable notch growth is 

modeled. Both types of boundary conditions predict similar response during 

the initial phase of stable notch growth. However, for the two longer 

notches, a traction condition causes failure at maximum load while the 

rigid-grip condition allows notch growth under decreasing load until a 

limiting displacement is reached. The experimental records are in excellent 

agreement with prediction. These results demonstrate the ability of the 

monolayer analysis to predict the response of the 14 ply, unidirectional 

composite. The composite appears to behave much like an assemblage of 

independent monolayers. It should be emphasized that the predicted response 

is based entirely upon independently measured constituent properties. 

The predicted response of a Plate 2 specimen with a 0.5 in notch differs 

from that of a similar Plate 1 specimen in one important aspect. Predicted 

Plate 2 response is strongly influenced by the type of boundary condition 

(Fig. 3). The predicted curves are initially coincident, but diverge as 

load increases. This is a result of extensjve matrix yield~ng. The magni­

tude of the yielding is dependent on the method of loading. When the 

specimen yields over the entire gage length, a uniform traction condition 
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will pull the broken fibers away ftom the intact ligament and the loaded 

boundaries do not remain straight. This results in a much greater notch-tip 

fiber stress concentration than if the boundary is uniformly displaced. 

The experimental data for the Plate 2 specimens (solid curves) are bounded 

by the predicted curves. 

Figure 4 provides further information on how matrix shear yield strength 

and hardening exponent affect fiber stress concentrations and also indicates 

when the type of boundary load influences results. These calculations are 

all for a 1.0 in wide monolayer containing a 0.5 in notch. The specimen 

has a 3.0 in gage length and both uniform traction and displacement loads 

are considered. The notch-tip stress concentration is defined as the 

ratio of notch-tip fiber stress to the average applied fiber stress. Note 

that with this definition and for the specimen geometry considered, the 

notch-tip stress concentration equals 2 when the specimen is completely 

notch insensitive (i.e., when the broken fibers carry no load and the intact 

fibers all carry the same load). The value of the notch-tip fiber stress 

concentration just prior to first fiber failure is plotted as a function 

of shear yield strength for a range of hardening exponents. Figure 4 

indicates that for sufficiently high values of yield strength there is no 

dependence on the method of loading. In this regime (e.g., ~y > 12 ksi, 

N < 9 in Fig. 4) fiber stress concentration always decreases as the hardening 

exponent increases. Therefore, for a given yield strength, the stress 

concentration is reduced as the matrix becomes more like an elastic perfectly­

pl{:lstic matP.r.i.al. The strens concentration can be roughly cut in half by 

increasing the hardeni.ng exponent from 1 to 9 when ~y = 15 ksi. Stress 
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concentration is not very sensitiv~ to yield strength as long as the yielding 

is sufficiently localized. However, once large-scale yielding commences, 

the fiber stress concentration is strongly dependent on yield strength, 

and a uniform traction loading can cause extremely high stress concentrations 

as yield strength decreases. In contrast, fiber stress concentration 

always monotonically decreases with decreasing yield strength when a uniform 

displacement condition is applied. 

A similar parametric study was carried out for a specimen with a single 

broken fiber. In this case a notch insensitive material has a fiber stress 

concentration of approximately 1. These calculations indicate that the 

fiber stress concentration for this case is independent of the type of bound­

ary load for shear yield strengths in the range of interest (2.5 < "y < 20 ksi). 

However, the same sort of boundary condition dependence will show up if 

the shear yield strength is very low. For example, for N = 9 and a shear 

yield strength of only 200 psi, the stress concentration for a uniform 

traction loading is 1.16 while that for a uniform displacement loading is 

1.08. The results for a single broken fiber are qualitatively similar to 

the 0.5 in notch (69 breaks). For a given hardening expohent, provided 

that the shear yield strength is high enough to prevent large-scale yielding, 

fiber stress concentration increases with yield strength and decreases as 

the hardening exponent increases. At sufficiently high yield strengths, 

no yielding will occur and the fiber stress concentration is equal to the 

linear elastic (N = 1) value. As expected, the stress concentration for 

a single broken fiber in the 1.0 inch wide strip (141 fibers) equals that 

calculated by Hedgepeth (1961) for an infinite monolayer--1.33. The rate 
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of reduction in fiber stress concentration with hardening exponent decreases 

as the hardening exponent increases. For example, when ~y = 20 ksi, the 

fiber stress concentration equals 1.2414 for a hardening exponent of 9. 

This is reduced to 1.2205 when the hardening exponent is 100. It appears 

that the limit corresponding to an elastic-perfectly plastic matrix is 

quickly approached as N increases. 

Although not presented in detail here, other calculations for unidir­

ectional boron/aluminum (Reedy (1980c)) have shown that 1) the details of 

flaw geometry (holes vs notches) do not greatly influence flaw sensitivity, 

and 2) fiber spacing has little effect on fiber stresses, although it can 

increase matrix stresses significantly. 

In addition to the calculations for boron/aluminum, some preliminary 

modeling of notched Kevlar 49 plain weave fabric/epoxy monolayers has been 

completed, Reedy (1982b). Fabric monolayers stiffen in tension and yield 

in shear. The fabric examined (style 328) has 17 yarns per inch. In the 

analysis each yarn was treated as a single unit. The fabric monolayer was 

abstracted as a unidirectional composite with yarn and matrix stress-strain 

relations chosen in such a way that when there are no broken yarns the 

calculated response to tension or shear is identical to that actually 

measured for the monolayer. Predicted strength of a 1.0 in wide monolayer 

with a 3.0 in gage length for varying notch lengths is displayed in Fig. 6. 

The experimental results (as indicated by the various symbols) are in 

reasonable agreement with prediction. Matrix shear yielding was quite 

localized in these calculations and a fully elastic analysis predicts 

similar fiber stress concentrations. 
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CO.NCLUSIONS 

The utility of a shear-lag monolayer analysis which permits the analysis 

of finite-dimensioned monolayers with work-hardening constituents has been 

demonstrated. Calculations for unidirectional boron/aluminum have shown 

thaL for this ductile matrix composite 

1. Matrix yield strength and rate of work-hardening sub­
stantially affect the mechanical response of notched 
specimens. 

2. Fiber stress concentrations are effectively controlled 
by a matrix with (a) sufficiently high-shear yield 
strength to prevent large-scale yielding (uniform 
traction loading can cause large fiber stress con­
centrations when global yielding occurs), and 
(b) a low rate of work-hardening (to reduce stress 
concentrations). 

Initi~l calculations for Kevlar 49 plain weave (style 328) fabric epoxy 

monolayers indicate that shear yielding is quite localized and a fully 

elastic analysis is adequate. 

\ 
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