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ANALYSIS OF CENTER-NOTCHED, UNIDIRECTIONAL COMPOSITES*

E. David Reedy, Jr.
Sandia National Laboratories
Albuquerque, New Mexico 87185
ABSTRACT
A method for calculating the stresses in a notched, unidirectional
monolayer is bfiefly described. This numerical formulation, based upon the
familiar shear—-lag assumptions, permits the modeling of a finite-dimensioned
monolayer which contains a centered notch transverse to the fibers. Elastic-
work hardening constitutive relationships may be specified for the fibers
and/or matrix. Notch growth under increasing load can be analyzed.
Illustrative calculations are presented to demonstrate the utility of this
analysis in detefmining how constituent properties affect notch-tip fiber
stress concentrations. Calculations for unidirectional boron/aluminum
indicate that stress concentrations are reduced by a matrix with (1) suf-
ficiently high yield strength to prevent large-scale yielding (uniform
traction loading can cause large fiber stress concentrations when global
yielding occurs), and (2) a low rate of work-hardening (to reduce stress
concentrations). The analysis has also been applied to Kevlar 49 plain
weave fabric/epoxy monolayers. Predicted matrix and fiber stress con-
centrations are quite localized in this material with nonlinear material
response limited to the notch-tip region. This is quite different from the
widespread yielding predicted and observed in as—fabricated, unidirectional

boron/ aluminum.

*This work performed at Sandia National Laboratories -under the Department of
Energy Contract No. DE-AC04-76-DP00789.
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INTRODUCTION

Composite fracture can be studied from several different perspectives.
For example, the primary interest may be in methods aimed at insuring the
integrity of a specific composite structure under a prescribed load history.
Alternatively, the aim may be to gain a fundamental understanding of the
material parameters which affect flaw resistan;e. The analyses used in
such diverse studies will often differ. When analyzing structures, it is
often convenient to model a laminate, or sometimes each lamina, as a homo-
geneous, orthotropic material. The analysis is done on a scale on which
only average composite stresses, not individual fiber and matrix stresses,
are considered. When studying the details of the fracture process it is
at times necessary to perform analyses in which the heterogeneous nature
of the composite is treated. The analysis described in this paper falls
into this latter category. While such analyses are too detailed to use for
complex structures, they can provide insights into processing or material
modifications that will improve the flaw resistance of‘a composite.

A monolayer, a planar array of aligned, continuous fibers, may be
considered the fundamental building block from which laminates are con-
structed. Notched monolayers can be analyzed within the context of a shear-
lag theory. This-approximate analysis, in which fibers are assumed to
carry only axial loads while the matrix carries only shear, is particularly
convenient when analyzing monolayers with a large number of fibers. Unles;
fiﬁer breaks occur in a regular manner and a repeat cell can be identified,

a more detaliled finite element solution would be prohibitive. Hedgepeth (1961)
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was the first to apply a shear-lag analysis to monolayers. In his analysis,
(1) the fibers were of infinite length, (2) the monolayef was of infinite
width, (3) tensile loads were uniformly applied parallel to the fibers at
infinity, (4) both fibers and matrix were linear elastic, and (5) both
constituents were fully bonded. Hedgepeth's original analysis has undergone
several direct extensions as revieyed by Reedy (1980). These extensions

are rather limited in scope. In general, an infinite monolayer is analyzed
in which any matrix damage or nonlinear material response must occur between
the last broken fiber and the first intact fiber.

Reported below i§ a numerical formulation of the center-notched
monolayer analysis which permits arbitrary monolayer dimensions, either
traction or displacement boundary loads, notches composed of multiple fiber
breaks, flaws of arbitrary geometry, nonuniform fiber spacing, monolayers
containing more than one type of fiber, and constituents which can work-
harden. The analysis is formulated to moéel slow notch growth and/or the
growth of matrix shear cracks. A number of illustrative examples are
presented to demonstrate the utility of the analysis and comparison is made

between experimentally determined behavior and theoretical predictions.

ANALYSIS
Method
A ﬁrevi0usly developed method for analyzing center—notched monqlayers
is employed. This method allows one to calcuiate fiber and matrix stresses

in a finite-dimensioned monolayer whose matrix hardens kinematically. A
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detajiled description of the monola&e; model and the method of solution is
given by Reedy (1980). 1In essence, the monolayer (Fig. 1) is discretized

axially into fiber and matrix elements (axial boundaries indicated by dashed
lines) and an analog of the three—dimensional Principle of Stationary Comp-
lementary Energy for a deformation theory of plasticity is applied to the
structure. The principle is suitably modified to allow unloading during
notch growth. The analysis is performed within the context of a shear-lag
theory. Fibers are considered to carry only axial loads while the matrix
carries only shear loads. Matrix shear stress is assumed constant within
a matrix element while the stresses in a fiber element vary linearly along
its length. Equilibrium is enforced with Lagrangian multipliers. The
resulting set of nonlinear, simultaneous equations is solved numerically
by a multi-dimensional Newton-Raphson method. Slow notch growth is modeled
in the following manner. When the notch-tip fiber stress reaches a prescribed
fracture stress, applied boundary loads are held fixed and the fiber is
"broken” by unloading it in several steps. If after this process the
fiber stress at the extended notch is below the fracture stress, the notch
is said to have grown stably. 1In this case the applied boundary loads are then
increased until the notch-tip fiber breaks. This process is continued as long
as stable notch growth is possible. Stable notch growth under increasing
load is a consequence of the residual matrix shear strains left behind the

advancing notch.

Illustrative Calculations

To date, most of the calculations have been for unidirectional, 5.6

mil diameter boron/6061 aluminum. This material, with its large diameter
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fibers, ductile matrix, and strong:fiber-matrix bond can be considered
| something §f a model system. In the analysis, the boron fibers were treated

as linear elastic to failure with a 58 msi modulus and a 520 ksi sfrength.
These are typical values for boron fibers and are consistent with four-
point bend data for the two l4-ply thick plates from which the notched
specimens used in this study were taken. Rail shear test data for these
plates were used to Iinfer a plate's in-situ matrix shear stress-strain
relation, Reedy (1982a). Both plates were nominally identical (fabricated
by DWA Composite Specialties, Inc.) and were tested in the as—fabricated
condition. Shear data for each plate was fit to a modified Ramberg-Osgood

relationship:

/1y /1y <1
Y/vy = (1

(T/Ty)N T/Ty > 1
where t is shear stress, y is shear strain, 1y and yy, are their values at
yield and N i; the hardening exponent. Unidirectional boron/aluminum has
a shear modulus of approximately 7 Msi so Yy was assumed to equal Ty/7 Msi.
The shear data for the one plate (hereafter called Plate 1) were best fit
with Ty = 8.5 ksi and N = 4.88. The shear data of the other plates (Plate 2)
were fit with <y = 5.0 ksi and N = 5.38. These results indicate, for the
plates tested, that the as-fabricated state of boron/6061 aluminum can

vary significantly.
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Predicted and measured Plate i load vs notch opening displacement
relations for center-notched tensile specimens with three different initial
notch lengths (0.1, 0.25, 0.50 in) are displayed in Fig. 2. The specimens
were all 1.0 in wide wifh a 3.0 in gage length. Both uniform traction and
uniform edge displacement boundary conditions were considered. Prior to
first fiber breakage, the predicted relations (solid curves) for both
types of boundary conditions are identical. The saw-toothed portion of
the curves is a consequence of the manner in which stable notch growth is
modeled. Both types of boundary conditions predict similar response during
the initial phase of stable notch growth. However, for the two longer
notches, a traction condition causes failure at maximum load while the
rigid-grip condition allows notch growth under decreasing load until a
limiting displacement is reached. The experimental records are in excellent
agreement with prediction. These results demonstrate the ability of the
monolayer analysis to predict the response of the 14 ply, unidirectional
composite. The composite appears to behave much like an assemblage of
independent monolayers. It should be emphasized that the predicted response
is based entirely upon independently measured constituent properties.

The predicted response of a Plate 2 specimen with a 0.5 in notch differs
from that of a similar Plate 1 specimen in one important aspect. Predicted
Plate 2 response is strongly influenced by the type of boundary condition
(Fig. 3). The predicted curves are initially ceincident, but diverge as
load increases. This is a reesult of extensive matrix yielding. The magni-
tude of the yielding is dependent.nn the method of loading. When the

specimen yields over the entire gage length, a uniform traction condition
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will pull the broken fibers away ffom the intact ligament and the loaded
boundaries do not remain straight. This results in a much greater notch-tip
fiber stress concentration than if the boundary is uniformly displaced.

The experimental data for the Plate 2 specimens (solid curves) are bounded
by the predicted curves.

Figure 4 provides further information on how matrix shear yield strength
and hardening exponent affect fiber stress concentrations and also indicates
when the type éf boundary load influences results. These calculations are
all for a 1.0 in wide monolayer containing a 0.5 in notch. The specimen
has a 3.0 in gage length and both uniform traction and displacement loads
are considered. The notch-tip stress concentration is defined as the
ratio of notch-tip fiber stress to the average applied fiber stress. Note
that with this definition and for the specimen geometry considered, the
notch-tip stress concentration equals 2 when the specimen is completely
notch insensitive (i.e., when the broken fibers cafry no load and the intact
fibers all carry the same load). The value of the notch-tip fiber stress
concentration just prior to first fiber failure is plotted as a function
of shear yield strength for a range of hardening egponents. Figure 4
indicates that for sufficiently high values of yield.strength there is no
dependenée on the method of loading. In this regime (e.g., Ty > 12 ksi,

N < 9 in Fig. 4) fiber stress concentration always decreases as the hardening
exponent increases. Therefore, for a given yield strength, the stress
concentration is reduccd as the matrix becomes more like an elastic perfectly-
plastic material. The stress concentration can be roﬁghly cut in half by

increasing the hardening exponent from 1 to 9 when Ty = 15 ksi. Stress
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concentration is not very sensitivé to ﬁield strength as long as the yielding
1s sufficiently localized. Howeve;, once large-scale yielding commences,

the fiber stress concentration is'sfrongly dependent on yileld 'strength,

and a uniform traction loading can cause extremely high stress concentrations
as yield strength decreases. In contrast, fiber stress concentration

always monotonically decreases with decreasing yield strength when a uniform
displacement éondition is applied.

A similar parametric study was carried out for a specimen with a single
broken fiber. In this éase a notch insensitive material has a fiber stress
concentration of approximately 1. These calculations indicate that the
fiber stress concentration for this case is independent of the type of bound-
ary load for shear yield strengths in the range of interest (2.5 < Ty < 20 ksi).
However, the same sort of boundary condition dependence will show up if
the shear yield strength is very low. For example, for N = 9 and a shear
yield strength of only 200 psi, the stress concentration for a uniform
traction loading is 1.16 while that for a uniform displacement loading is
1.08. The results for a single broken fiber are qualitatively similar to
the 0.5 in notch (69 breaks). TFor a given hardening exponent, provided
Athat the shear yield strength is high enough to prevent large-scale yielding,
fiBer stress concentration increases with yield strength and decreases as
the hardening exponent increases. At sufficiently high yield strengths,
no yielding will occur and the fiber stress concentration is equal to the
linear elastic (N = 1) value. As expected, the stress concentration for
a single broken fiber in the 1.0 inch wide strip (141 fibers) equals that

calculated by Hedgepeth (1961) for an infinite monolayer--1.33. The rate
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of reduction in fiber stress conceﬁtration with hardening exponent decreases
as the hardening exponent increases. For example, when Ty = 20 ksi, the
fiber stress concentration equals 1.2414 for a hardeniﬁg exponent of 9.
This is reduced to 1.2205 when the hardening exponent is 100. It appears
that the limit corresponding to an elastic-perfectly plastic matrix is
quickly approached as N increases.

Although not presented in detail here, other calculations for unidir-
ectional boron/aluminum (Reedy (1980c)) have shown that 1) the details of
flaw geometry (holes vs notches) do not greatly influence flaw sensitivity,
and 2) fiber spacing has little effect on fiber stresses, although it can
increase matrix streéses significantly.

In addition to the calculations for boron/aluminum, some preliminary
modeling of notched Kevlar 49 plain weave fabric/epoxy monolayers has been
completed, Reedy (1982b). Fabric monolayers stiffen in tension and yield
in shear. The fabric examined (style 328) has 17 yarns per inch. 1In the
analysis each yarn was treated as a single unit. The fabric monolayer was
abstracted as a unidirectional composite with yarn and matrix stress—strain
relations chosen in such a way that when there are no broken yarns the
calculated response to tension or shear is identical to that actually
measured for the monolayer. Predicted strength of a 1.0 in wide monolayer
with a 3.0 in gage length for varying notch lengths is displayed in Fig. 6.
The experimental results (as indicated by the various symbols) are in
reasonable agreement with prediction. Matrix shear yielding was quite
localized in these calcﬁlations and a fully elastic analysis predicts

similar fiber stress concentrations.
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CQﬁCLUSIONS
The utility of a shear-lag moﬁolayer analysis which permits the analysis
of finite-dimensioned monolayers with work—hardening constituents has been
demonstrated. Calculations for unidirectional boron/aluminum have shown

that for this ductile matrix composite

1. Matrix yield strength and rate of work—hardening sub-

stantially affect the mechanical response of notched
specimens.

2. Fiber stress concentrations are effectively controlled
by a matrix with (a) sufficiently high-shear yield
strength to prevent large-scale yielding (uniform
traction loading can cause large fiber stress con-
centrations when global yielding occurs), and
(b) a low rate of work-hardening (to reduce stress

concentrations).
Initial calculations for Kevlar 49 plain weave (style 328) fabric epoxy

monolayers indicate that shear yielding is quite localized and a fully

elastic analysis is adequate.
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LIST OF FIGURES \
A notched monolayer.

B/6061 (Plate 1) predicted and measured notch opening displacement
relations for various initial notch lengths.

B/6061 (Plate 2) predicted and measured notch opening displacement
relations.

Predicted fiber stress concentrations in a 1.0 in wide specimen
with a 0.5 in center notch and a 3.0 in gage length. (Curve ends
marked with same letter.)

Predicted fiber stress concentrations caused by a single broken
fiber in the center of a 1.0 in wide specimen with a 3.0 in gage
length.

Measured and predicted strength of a 1 in wide monolayer with
varying numbers of cut yarns.
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