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ABSTRACT 
NOVA is the latest in a series of powerful laser systems designed to 

study the feasibility of initiating a controlled fusion reaction by 
* concentrating several laser beams on a small fuel target. The laser -

components, turning mirrors and target chamber are all mounted on 
large steel frame structures. These structures were first analyzed 
via finite element models to access their seismic integrity as well as 
their overall vibrational stability. When construction was completed, 
a modal analysis was performed on the structures to verify and improve 
the finite element models. This report discusses the finking of the 
analytical and experimental studies for the NOVA switchyard tower 
structure. 
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INTRODUCTION 
The NOVA laser system is currently being constucted at Lawrence 

Livermore National Laboratory to perform laser fusion feasibility 
research. Physics requirements call for ten large diameter (74 cm) 
laser beams to be focused on a small diameter (200 /̂ m) fusion pellet 
in a symmetrical (4?T) manner. The physical realization of such a 
laser system requires that the laser components (amplifiers, spatial 
filters, optical rotators, lenses, etc.) be mounted on large 
spaceframe steel structures. In the NOVA system there are three main 
types of structures; the laser spaceframe, the switchyard towers, and 
the target chamber tower. The laser spaceframe is used to mount the 
laser amplifiers, spatial filte-s and optical isolation equipment. 
The switchyard towers are used to mount large optical turning mirrors 
and laser beam diagnostic equipment. Finally, the largest structure 
is the target chamber tower which is used to mount the target chamber 
as well as additional steering mirrors. 

As the structures were designed a finite element model of each was 
constructed. These models were then used to examine both the static 
and dynamic expected loads on the structures. Upon completion of 
construction of the structures a dynamic (modal) test was performed to 
determine the accuracy of the finite element models. This report 
discusses the testing of one of the switchyard tower structures and a 
comparison of these results to those predicted by the finite element 
cedes. 
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SWITCHYARD TOWER TEST PLAN 

The NOVA switchyard room contains several large steel frame towers. 
Two of the towers are used to mount laser beam diagnostic equipment 
while the others are used to mount large, turning mirrors. In this 
section we describe the modal analysis that was performed on one of 

Figure 1. Mirror tower to be dynamically tested. 
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the mirror towers (see Fig. 1). A transfer function model (see 
Appendix A) of this tower was constructed by locating nodes at the 
intersection of the main (outside) vertical and horizontal beam 

iv 

Figure 2. Transfer function model of mirror tower. 

members of the structure. This modet is shown in Fig. 2. The input 
excitation was accomplished via an electromagnetic shaker which was 
suspened from an overhead crane and attached to the structure at the 
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4th levelt. Since the shaker was mounted to a horrizontal beam which 
subtended a partial diagonal across the structure, the excitation was 
in a non-orthogbhal (to x or z) direction. The details of the shaker 
mounting are shown in Figs. 3 and 4. As can be seen in these figures, 
a loaJ cell was mounted between the end of the shaker pushrod and a 
rectangular aluminum plate. The aluminum plate in turn was fastened 
to the structure using C-clamps. The shaker was driven by a random 
noise Gaussian signal with a bandwidth of 50 Hz. At each designated 
node oi the structure the resulting motion in the x and z directions 
(see Fig. 2) was measured using p:^zo—resistive accelerometers which 
are shown in Figure 5. The signals from both the acceierometers and 
the load cell were fed into a dual channel spectrum analyzer which 
automatically calculated the resulting transfer function between the 
input excitation and the resulting output motion (see Appendix A 
equation A-g). These transfer functions were obtained over a 
frequency domain which ranged from 1 to 42 Hz. To increase the 
frequency resolution to 0.025 Hz. we used a recursive zoom technique. 
That is to say, we divided the overall frequency domain into four 
subdomains and then captured the full 400 spectral lines of data for 
each subdomain. 

To improve the signal to noise level we used the standard averaging 
techniques. In the switchyard tower room the environment was 
reasonably benign and consequent,'y we required only 3-4 averages to 
obtain clean transfer functions. The calculated transfer functions 
were first displayed on the spectrum analyzer and once we were 
satisfied with their quality, they were transferred to a floppy disk 
by way of an IBM personal computer (PC). At the completion of the 
test all the transfer function data were uploaded to the Livermore 
Time Sharing computer System (LTSS) for subsequent data processing (on 
the CRAY machines 1. 

[ f ] Tor reference, the top level Is denoted u level 5 
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Figure 3. Shaker mounting scheme. 
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Figure 4. Expanded view of shaker mounting system. 
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Figure 5. Accelerometers used to measure response motions. 
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SWITCHYARD TOWER TEST RESULTS 
In Pig. 6 wu show the four (zoomed) subdomains for a typical 

transfer function .node 18X). Each peak in the transfer function 
corresponds to a natural, or resonant, frequency of the structure. To 
obtain an accurate estimate of these frequencies, as wel! as the 
associated damping values, we use the modal parameter extraction code 
TRANSF (developed by the Modal Analysis Group). This code was used on 
each of the 72 transfer functions and the resuJcs averaged to obtain 
the data presented in Table I. Note that in this table we have also 
characterized the type of spatiai behavior that the modes exhibit. 

Table I. Switchyard mirror tower modes from 1 to 40 Hz. 

Mode F'requency Damping Characterization 

SY1 5.6 Hz 0.65% Cant ilever (1st) 
SY2 6.3 H-. 0.47% CanL ilever (1st) 
SY3 8.6 Hz 0.32% Twisting (1st) 
SY4 19.0 Hz 0.13% Cant tlever (2nd) 
SY5 21.4 Hz 0.1655 Cant ilever (2nd) 
SY6 28.5 Hz 0.16% Twisting 
SY7 29.9 Hz 0.09% "Folding" 
SY8 34.5 Hz 0.31% Cant ilever (3rd) 
SY9 35.0 Hz 0.47% Cant ilever (3rd) 
SY10 36. 1 Hz 0.51% Cant ilever (3rd) 
SY11 38.4 Hz 0.08% Twi st ing (2nd) 

To fully appreciate the significance of these modes we must examine 
their spatial characteristics. In other words, we must consider their 
mode shapes. This can best be accomplished by viewing the 16 mm 
computer movies that were generated (by MODAL^) and show the tower 
vibrating in each of its determined modes. Figures 7 through 17 show 

[t1 MODAL is a family of codes (developed by the Modal Analysis Group) 
t h a t a r e u s e d t o a n a l y s e t h e m o d a l p a r a m e t e r s o b t a i n e d f r o m a d y n a m i c 

t e a t , 
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Figure 6. Typical transfer function for switchyard tower. 

selected frames from this movie. In all of these figures the 
structure is viewed along each of its coordinate axes. In addition, 
the linear perspective view appears at the top left. The thin line in 
these figures represents the static or undisplaced state of the tower. 
The thick line shows the displaced! state of the tower for that 
part icular mode. 
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Fig. 7. Mode shape SYl (5.6 Hz and 0.65 percent damping) 

10 



If 

Fig. 8. Mode shape SY2 (6.3 Hz aiL 0.47 percent damping). 
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Fig. 9. Mode shape SY3 (3.6 Hz and 0.32 percent damping). 
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Fig. 10. Mode shape SY4 (19.0 Hz and 0.13 percent damping), 
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Fig. 11. Mode shape SYS (21.4.Hz and 0.16 percent damping). 
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Fig. 12. Mode shape SY6 (28.5 Hz and 0.16 percent damping). 
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Fig. 13. Mode shape SY7 (29.9 H2 and 0.09 percent damping). 
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Fig. 14. Mode shape SY8 (34.5 Hz and 0.31 percent damping), 
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Fig. 15. Mode shape SY9 (35.0 Hz and 0.47 percent damping). 
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Fig. 16. Mode shape SYIO (36.1 Hz and 0.51 percent damping). 
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fig. 17. Mode shape SYtl (38.4 Hz and 0.08 percent damping) 
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COMPARISON TO FINITE ELEMENT MODEL 
The existing SAP IV finite element model (generated by the 

Y-Division Engineers) of the selected tower was modified and the 
mirror masses removed. It was then run on the new finite element code 
GEMINI which calculated the first five natural frequencies and mode 
shapes. In ascending order these frequencies were found to be 6.5, 
7.1, 9.2, 21.0, and 23.2 Hz. Before we Compare these to those 
obtained via the dynamic testing (Table I) it is instructuve to 
examine their associated spatial characteristics or mode shapes. 
These are shown in Figs. Id lo 22. As can be appreciated by comparing 
these figures to Figs. 7 - 11, the second finite element model mode 
corresponds to the first mode obtained by testing. Conversely, the 
first finite element model mode corresponds to the second tested mode. 
With this information noted we can now compare the finite element and 
m-dal test results. This is accomplished in Table Ji. 

Table II. Comparison of finite element ind modal test results. 

Mode Modal Fin El %-Differencet 
Test Modsl 

7.1 23,6 
6.5 3.2 
9.2 6.8 

21.0 10.0 
SYS 21.4 23.2 8.0 

SY1 5 6 
SY2 6 3 
SY3 6 6 
SY4 19 0 

[ T J T h e p e r c e n t d i f f e r e n c e b e U e e n two n u m b e r s A and B is d e f i n e d aa 
2 | A - B | / ( A + B ) times 1 0 0 . 
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Fig. lb. GEMINI Code mode shape A (7.1 Hz). 
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Fig. 19. GEMINI Code mode shape B (6.3 Hz). 
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Fig. 20. GEMINI Code mode shape C (9.2 Hz), 
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Fig. 21. GEMINI Code mode shape D (21.0 Hz). 
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Pig. 22. GEMINI Code mode shape E (23.2 Hz). 
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SUMMARY AND CONCLUSIONS 

With the exception of mode SY1, the agreement between the finite 
element model and modal analysis results Is quite good This 
disagreement has been attributed to the fact that the original finite 
element model did not take into account the effect of the mirror 
mounts. These mounts are rectangular in shape and welded into the 
corners of the structure in a plane parallel to the z (short) 
direction. [n addition to serving as a means of attaching the large 
turning mirrors, they also act as guss.ets and greatly contribute to 
the stiffness in this direction. 

The damping values determined by the modal analysis add new 
information that is not avaijable in the finite element mode) 
analysis. These damping values are certainly withing the range that 
would he expected for welded steel structures. Since these values are 
low, any excitation of the structure will cause vibrational motions 
that will be in evidence for • several seconds after the source of 
excitation has been removed. 
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MATHEMATICAL DESCRIPTION OF 
DYNAMIC TESTING METHOD 

To accomplish the dynamic testing of any structural system we must 
first construct a mathematical transfer function model of the 
structure. That is lo say, we divide the structure into a series of 
nodes. Physically, these nodes- are defined as any location where the 
structure is either excited or where the resulting response motion is 
measured. These transfer function nodes are analogous to the nodes of 
a finite element model, constructed for a structural analysis code 
(such as GEMINI). 

The input excitation at any node will cause resulting response 
motions at all of the other nodes. Mathetnatically, the response at 
node i (xj(t)) due to an excitation force applied at node j (f,(t)) is 
described by the following expression 

(A-a) x,(l) = Aj.tfjtt)]. 

This expression tells us that the structure acts as a system which 
maps, or converts, the input function f=(t) at node j to a resulting 
output motion x,(t) at node i. When the input function f=(t) is an 
impulse (or delta) function i5(t), then we call the output motion at 
node i the impulse response motion and denote it as h.,(t). In terms 
of Eq. A—a we have 

h u ( t ) = A l j[fi }(tj]. 

Using the convolution, or Duhamel, integral [1,6], we oan use this 
impulse response function to describe the motion at node i due to a 
general input function fj(t) at node j, i.e., 

(AHs) Xj(t) = f h u(l-f)f j<Odf. 

Equation A-b is usually written in the notationaHy simpler form 
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(A-c) x,(t) = h,,(t)*f.(t). 

In the time domain the evaluation of this convolution equation is 
rather tedius. On the other hand, in the frequency domain it can be 
written in a very straightforward and convenient manner [1]. This 
fact can be appreciated if we make use of the convolution theorem 
which briefly paraphrased states, "// H(w) and F[w) are the Fourier 
transforms of the functions h(t) and f i t ) , respectively, then the 
Fourier transform of the convolution product x{t)=h{t)*f{t) is simply 
the product of the individual transforms, i . e . , X{W)=H{VJ)F{UI) ." Using 
this theorem we can rewrite Eq. A-b or A-c as 

(A-d) X,( w) = H | J.(w)Fj(w). 

where Xt(w) and F•(w) are the Fourier transforms of x ;(t) and f,(t), 
respectively. H ;.(w) is called the transfer function between nodes i 
and j and is also the Fourier transform of the impulse response 
function h t,(t). 

If we assume that the structure in question behaves (reasonably) 
linearly, then the impulse response motions h, At) and, consequently, 
the transfer functions H j . ( w ) , can be described by the following 
simple equations 

•j 
(A-e) h f j ( t ) = ^ i jA J ce~ ai. lcos(2nw f ct+^ j c), and 

iA^" 
k-1 * X ' 

w>0 
i ,j = J N. 

In Eqs . A-e and A-f, N is 3 times the number of nodes* used to 

(*] The n u m b e r of m o d e s h a p e s lhal can be .obtained is l i m i t e d by the 
n u m b e r of n o d e s used to model the s t r u c t u r e . H o w e v e r , the n u m b e r of 
modal damping and fr e q u e n c i e s that can be obtained is not limited by 
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\ 
describe, or model, the structure in the x,y and z directions, Note 
that, as we have already mentioned, Eqs. A-e and A-f are Fourier 
transform pairs. That is to say, Hj,(w) is the Fourier transform of 
hLj(t) or, equivalently, h;-(t) is the inverse Fourier transform of 
Hjj(w). For the sake of illustration, we show a single term of the 

(A) TIME DOMAIN - EQUATION 5 

i + n * 
FREQUENCY 

(B) FREQ DOMAIN - EQUATION 6 
Figure 23. Damped sinusoid and its corresponding transform. 

summation of Eq, A-e and its transform Eq. A-f in Fig. 23. 

In our work we will deal mainly with the transfer function, Eq. A-f. 
In this equation there are 3 main sets of constants or parameters. 

the number of nodes but i n s t e a d o n l y by the a c c u r a c y of the a c q u i r e d 
m e a s u r e m e n t d a t a . 
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Two of them are real valued (ak and w f c), and the other is complex 
(5;Akexp[i^k]) with a real and imaginary portion. For mechanical 
systems these parameters have physical significance. Namely, w k is 
the kth modai frequency; ov is the kth modal damping; and f ,S k = 
jjAkexp[\ifiy] is a measure of the relative strength of the kth mode 
between nodes i and j. When combined for all values of i,j =1,...,N, 
these .;S k parameters provide a spatial description of the kth mode 
(mode shape). 

V»4ien we test a structure, the first task is to obtain the transfer 
functions between the nodes. To accomplish this we excite the 
structure at node j with a forcing function *j(t) that is typically a 
short pulse or hammer blow. We then place accelerometers at node i to 
measure the resulting response Xj(t). Both fi(t) and Xj(t) are 
recorded, fed into a digital computer, and Fourier transformed to 
obtain F.(w) and X ;(w). The transfer function Hjj(w) is then 
(digitally) obtained by dividing F.(w) into Xj(w) (see Eq. A-d), i.e., 

X,(w> 

Since we are assuming that the structure behaves linearly, we expect 
this transfer function to be described by some form of Eq. A-f, That 
is, there exist parameters ,.S k, wfc and a k that when used in Eq. A-f 
will match the measured transfer function H=;(w). To find these 
parameters we use a computer code called TRANSF which is available on 
the hivermore Time Sharing System (LTS5) [4]. This code uses a least-
squares-fit technique to find the set of parameters that best matches 
the measured data. 

At first glance it would appear that we require N s measurements to 
obtain all the transfer functions H,,(w) (i,j =1 N). However, due 
to certain symmetries [3], this is not the case and, in fact, we only 
require N measurements. There are several ways in which these N 
measurements can be made. Typically, for large structures, we apply 
the excitation at a single node (call it M) and then measure the 
response at the other nodes (including node W). This technique gives 
us the N transfer functions H ] M(w), H 2 M(w), .... H N H(w). The 
remaining N 3 - N transfer functions can then be generated from this 
limited set as per the rules described in Ref. 2. 

In summary, to dynamically test a structure we proceed as fellows: 

(1) Determine nodal locations of the structure (see following sections 
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for a description of NOVA nodal locations). 

(2) Excite the structure at a convenient node and measure the response 
motions at all the other nodes. 

(3) Using Fourier transform techniques. determine the transfer 
functions between the nodes. 

(4) From these transfer functions, extract the modal parameters of the 
structure using the TRANSF computer code. 
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