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ABSTRACT

NOVA is the latest in a series of powerful laser systems designed to
study the feasibility of initiating a controlled fusion reaction by
concentrating several laser beams on a small fuel target. The laser
components, turning mirrors and target chamber are all mounted on
large steel frame structures. These structures were first analyzed
via finite element models to access their seismiec integrity as well as
their overall vibrational stability. When construction was completed,
a modal analysis was performed on the structures to verify and improve
the finite element models. This report discusses the linking of the
analytical and experimental studies for the NOVA switchyard tower
structure.
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INTRODUCTION

The NOVA laser system is currently beiné constucted at Lawrence
Livermore National Laboratory to perform laser fusion feasibility
research. Physics requirements call for ten large diameter {74 cm)
laser beams to be focused on a small diameter (200 pm) fusion peliet

in a symmetrical (4n) manner. The physical realization of such a
laser system requires that the laser components (amplifiers, spatial
filters, optical rotators, lenses, etec.) be mounted on large

spaceframe steel structures. In the NOVA system there are three main
types of structures; the laser spacefreme, the swilchyard towers, and
the target chamber tower. The laser spaceframe is used to mount the
laser amplifiers, spatial filte-s and optical isolation equipment.
The switchyard towers are used to mount large optical turning mirrors
and laser beam diagnestic equipment. Finally, the largest structure
is the target chamber tower which is used to mount the target chamber
as well as additional steering mirrors.

As the structures were designed a finite element model aof each was
constructed. These models were then used Lo examine both the static
and dynamic expected loads on the structures. Upon completion of
construction of the structures a dynamic (modal) test was performed to
determine the accuracy of the finite element models. This report
discusses the testing of one of the switehyard tower structures and =
comparison of these results to those predicted by the finite element

ccdes.
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SWITCHYARD TOWER TEST PLAN

The NOVA switchyard room contains several large steel frame towers.
Two of the towers are used to mount laser beam diagnostic equipment
while the others are wused to mount large turning mirrors. In this
section we describe the modal analysis that was performed on one of

Figure 1. Mirror tower io be dynamically tested.
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the mirror towers (see Fig. 1). A transfer function model (see
Appendix A) of this tower was constructed by locating nmodes at the
intersection of the main (oulside) wvertical and horizontal beam
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Figure 2. Transfer function model of mirror tower.

members of the structure. This model is shown in Fig. 2. The input
excitation was accomplished via an electromagnetic shaker which was
suspened from an overhead crane and attached to the structure at the
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4th levelTl. Since the shaker was mounted to a horrizontal beam which

subtended a partial diagonal across the élruclure, the excitation was
in & non-orthagonal {(to x or z} direction. The details of the shaker
mount ing are shown in Figs. 3 and 4. As can be seen in these figures,
a loal cell was mounted belween the end of the shaker pushrod and a
rectangular aluminum plate. The aluminum plate in turn was fastened
to the structure using C-clamps. The shaker was driven by & random
noise Gaussian signal with a bandwidth of 50 Hz. Al each designated
node of the structure the resunlting motion in the x and 2z directions
(see Fig. 2) was measured using piezo-resistive accelerometers which
are shown in Figure 5. The signals from bath the accelierometers and
the locaq cell were fed into a dual channel! spectrum analyzer which
automatically calculated the resulting trensfer function between the
input excitation and the resulting output motion (see Appendix A
equation A-g). These iransfer functions were obtained over a
frequency domain which ranged from 1 to 42 Hz. To increase the
frequency resclution to 0.025 Hz. we used a recursive zcom technique.
That is to say, we divided the overall frequency domain into four
subdomains and then captured the full 400 spectral lines of data for
each subdomain.

To improve the signal to noise level we used the standard averaging

techniques. I[n the switchyard tower room the environment was
reasonably benign and consequent.y we required only 3-4 averages to
obtain clean transfer functions. The ecalculated transfer functions

were first displayed on the spectrum analyzer and conce we were
satisfied with their quality, they were transferred to a floppy disk
by way of an IBM personal computer {PC}. At  the completion of the
test all the transfer function data were uploaded to the Livermore
Time Sharing computer System (LTSS) for subsequent data processing {on
the CRAY machines}.

{$%] For reference, the tep leve: is denaoted ns level §



Figure 3. Shaker mounting scheme.




Figure 4. Expanded view of shaker mounling system.



Figure

5. Accelerometers used to measure response motions.
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SWITCHYARD TOWER TEST RESULTS

In Fig. 6 wr show the four {zoomed) subdomains for a typical
transfer function aode 18X). Each peak in the transfer function
corresponds to a natural, or resonant, frequency of the structure. To
sbtain an accurate estimate of these frequencies, &as wel! as the
associated damping values, we use the modal parameter extraction code
TRANSF (developed by the Modal Analysis Group). This code was used on
each of the 72 transfer funciions and the resulis averaged to obtain
the data presented in Table I. Note that in this table we have alzo
characterized the type of spatial behavior that the modes exhibit.

Table 1. Swiichyard mirror tower modes from 1 to 40 Hz.

Mode Frequency Damping Cheracterization
8Y1 5.6 Hz 0.565% Cantilever (1st)
SY2 3.3 H= 0.47% Cantilever (1st)
SY3 8.6 Hz 0.32% Twisting (1st)
SY4 19.0 Hz 0.13% Cantilever (2nd)
8Y5 Z21.4 Hz 0.16% Cantilever (2nd)
SYé 28.5 Hz D.167 Twisting
SY?7 29.9 Hz .09% "Folding"

SY8 34.5 Hz 0.21% Canttlever (3rd)
sY9 35.0 Hz 0.47% Cantilever (3rd)
3Y10 3€.1 Hz 0.51% Cantilever (3rd)
SY11 38.4 Hz 0.08% Twisting (2nd)

To fully appreciate the siguificance of these modes we must examine
their spatial characteristics., In other words, we must consider their
mode shapes. This can best be accomplished by viewing the I8 mm
computer movies that were generated (by MODALT) and show the tower
vibrating in each of its determined modes. Figures 7 through 17 show

[t) MODAL is a family of codes (developed by the Modal Anmlysis Group)

Lthat are used lo analyze the moda) paramelers obtmined from a dynaemic

e
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Figure 6. Typical transfer function for switichyard tower.

selected frames from this movie. in all of these f[igures the
structure is viewed along each of its coordinate axes. In addition,
the linear perspective view appears at the top left. The thin line in
these figures represents the static or undisplaced state of the tower.
The thick line shows the displacedy state of the tower for that
particular mode.




Fig. 7. Mode shape SY1

(5.6 Hz and 0.65 percent dampinug}.
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Fig. 8. Mode shape SY2 (6.3 Hz ar‘d 0.47 percent damping).
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- Mode shape SY3 (8.6 Hz and 0.32 percent damping).
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Fig.
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10. Mode shape SY4

(19.0 Hz and 0.13 percenl damping}.
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Fig. 11. Mode shape SY5 (21.4 Hz and 0.18 percent damping}.

14



Fig.

12. Mode shape SY6

P 4

(28.5 Hz and 0.16 percent damping}-.
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Fig.

13. Mode shape SY7

{(29.9 Hz and 0.09 percent damping).
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Fig. 14. Mode shape SYB8 (34.5 Hz and 0.31 percent damping).
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Fig. 15. Mode shape SY3 (35.0 Hz and 0.47 percent damping) .
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Fig. 16. Mode shape SY10 (38.1 Hz and 0.51 percent damping).
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Fig.

17. Mode shape SY11

-

(38.4 Hz and 0.08 percent damping}

20



COMPARISON 70 FINITE ELEMENT MODEL

The exisling  SAP |V finite element model (generated by Lhe
Y~Divisien Engineers) of the selected tower was modified and ‘the
mirror masses removed. It was Lhen run on the new finite element code
GEMINT which calculated the [First {ive natural frequencies and mode
shapes. In ascending order these frequencies were found Lo be 6.3,
7.1, 9.2, 21.0, and 23.2 Hz. Before we compare these to these
obtained via the dynamic testing (Table I) it is instructuve to
examine lheir associated spatiaml characteristies or mode shapes.
These are shown in Figs., 18 to 22. As can be appreciated by compering
these figures to Figs. ¥ -~ 11, the second finite element model mnde
corresponds to the first mode cbtained by testing. Conversely, the
first finite element model mode corresponds io the second tested mode.
Wiith this information noted we can now compare the finite element and
m~dal test results. This is accomplished in Table [i.

Table 11. Comparison of finile element and modal test recsults,

Mode Modal Fia El %-Differencel
Test Modz1
SY1 5.8 7.1 23.6
SY?2 6.3 6.5 3.2
5Y3 8.6 9.2 6.8
3Y4 19.0 21.0 10.0
SY5 21.4 23.2 8.0
[1t] The percent ditference belween two numbers A and B js defined as=

2|A-B|/{A+B) Limes 100,

i
i
i
A
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Fig. 156. GEMINI Code mode shape A (7.1 Hz).

22



/]

L7X

Fig.

19, GEMINI Code mode shape B (6.3 Hz).



Fig. 20. GEMINI Code mode shape C (9.2 Hz).
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Fig. 21. GEMINI Code mode shape D (21.0 Hz).
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Fig. 22. GEMIN] Code mode shape E (23.2 Hz).
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SUMMARY AND CONCLUSIONS

With the excepiion of mode SY1, the agreemenlt between the [inite
element model and modal analysis resulis 1Is guite good This
disagreement has been attiributed to the fact that the original finite
element model did not take intoc account the effect of the mirror
mounts. These mounts are vrectangular in shape and welded into the
corners of the structure in a plane parallel te the 2z (short)
direction. I[n addition to serving as a means of attaching the large
turning mirrors, they also act as pgussets and greatly contributc to
the stiffness in this direction.

The damping values determined by the modal analysis add new
information that js not available in the finile element model
analysis. These damping values are certainly withing ihe range that
would he expected for welded steel structures. Since these vajues are
low, any excitation of the structure will cause vibrational motions
that will be in evidence for - several seconds afler the source of
excitation has been removed.

27
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MATHEMATICAL DESCRIPTION OF
DYNAMIC TESTING METHOD

To accomplish the dynamic testing of any structural sysiem we must
first construct a malhematical transfer function model of the
structure. That 1is Llo say, we divide Lhe structure into a series of
nodes. Physically, these nodes . are defined as any location where the
structure is either excited or where the resulting response motion js
measured. These transfer function nodes are analogous to the nodes of
a finite element model, constructed for a structural analysis code

{(such as GEMINI).

The input excitalion at any node will cause resulting response
motiens at all of the other nodes. Mathematically, the response at
node i (x;(t)) due to an excitation force applied at node j (fj(t)) is
described by the following expression

(a-2)  x,(t) =&, [F,(1)].

This expression tells us that the struclure acts as a system which
maps, or eonverts, the input function rj(t) at node j to a resulting
output motion x,(t) at mnode i. When the imput function fj(t) is an
impulse {or delta} function 6(t), then we call the output motion at
node i Lhe impulse response motion and denote il as hij(L), In terms

of FEg. A-a we have
hij(t) = bij[dj(L)]'

Using the convolution, or Duhamel, integral ([I1,6], we can use this
impulse response Junction to describe the motion at node 1 due to a

general input funclion rj(t) at node j, i.e.,

(a-b)  x (1) = f b, (=0t e,

Equation A-b is usually written in the notationally simpler form

29
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(A=} % (1) = hy (L)1, (t).

In the time domain the evalualion of this convolution equation is
rather tedius. On the other hand, in the frequency domain it can be
written in a very straightforward and convenient manner {1]. This
fact can be appreciated if we make uge of the convolution theorem
which briefly paraphrased states, "/f H(w) and F(w} are the Fourier
ireansforms of the Jfunctions h(t) and f(L), respectively, then the
Fourier transform of the convolution product z(t)=h(t)*f(t) is simply
the product of the individual transforms, i.e., X{w)=H(w)F(w)." Using
this theocrem we can rewrite Eq. A-b or A-c¢c as

(a-4d) Xi(w) = Hir(w)Fj(W),

where X;(w) and Fj(w) are tihe Fourier transforms of x,(t) and fj(t),
respeclively. Hij(w) is called the transfer function belween nodes i
and j and is alse the Fourier transform of the impulse response

function hii(t).

If we assume that the structure in question behaves (reasonably)
linearly, then the impulse response motions hij(t) and, consequently,
the transfer Jfunctions Hij(w). can be described by the following

simple equations

1
M=

(A—e)  h; (1)

i Age ®xleos(2nw tep, ), and

ij
k=1

N ijAkein
(a=f)  Hylw) = L o5 omigemw)
k=1 k

w>0

In Eqs. A-e and A~f, N is 3 times the number of nodes' used to

[*] The number of mode shapes that can be obtained is limited by Lhe
number of nodes used to model Lhe slructure. However, the unumber of

medal damping and frequencies Lhat can be obteined is not limited by

30



‘!dﬁscribe, or model, the structure in the x,y and z directions. Note
that, as we have already mentioned, Eqs. A-e and A~f are Fourier
transform pairs. That is to say, Hjj{w) is the Fourier transform of
hij(t) or, equivalently, hij(t) is Lthe inverse Fourier transform of
Hij(w). For the sake of illustration, we show a single term of the

0.5
ol
_5+
@ pE X o 2 2 TiMe
(A) TIME DOMAIN = EQUATION 5
[X]
0. -1
Y} ////”’___S -1 g
-|). / - J
-d . J

~ L] o (] - L] n + n L] [ [ ] L]
FREGQUENCY FREQUENCY

(B) FREQ DOMAIN — EQUATION 6

Figure 23. Damped sinusoid and its corresponding transform.

o] - L3 L] 4 L <

summation of Eq. A-e and its transform Egq. A-f in Fig. 23.

In our work we will deal mainly with the transfer function, Eq. A~f.
In this equation there are 3 main sets ol constants or parameters,

the number of nodes bul instead only by the accuracy o!f the acquired

measurement data.
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Two of them are real valued (o, and w_}, and the other is complex
(ijﬁkexp[j¢k]) with a real and imeginary portion. For mechanical
systems these parameters have physical significance. Namely, w_ is
the kth modal frequency; o, is the kth modal damping; and ijsk =
ijAkexp[iwk] is a measure of the relative strergth of the kth mode
between nodes i and j. When combined for all values of i,j =1,...,N,
these .S, parameters provide a spatial description of the kth mode

i3
(mode shape).

Wwaen we test a structure, the first task is to obtain the transfer
functions between the nodes. To accomplish this we excite the
structure at node j with a forcing function fj(t) that is typically a
short pulse or hammer blow. We then place accelerometers at node i to

measure the resulting response x;(t). Both fj(t) and x;(t} are
recorded, fed into a digital computer, and Fourier transformed to
obtain Fj(w) and X;(w). The transfer function Hij(w) is then

(digitally) obtained by dividing Fj(w) into X,{w) (see Eq. A-d), i.e.,

X (w)
(A-g) H;j(w) =F_j'_(T)

Since we are assuming that the structure behaves linearly, we expect
this transfer function to be described by some form of Eq. A~f. That
is. there exist parameters ijSk. w, and o, that when used in Eq. A-f
will match the measured transfer function Hij(w). To find these
parameters we use a computer code called TRANSF which is available on
the Livermore Time Sharing System (LTSS) [4). This code uses a least-—
squares—{it technique to find the set of parameters that best matches
the measured data.

At first glance it would appear that we require N% measurements to

obtain all the transfer functions Hij(w) (i.j =1,...,N). However, due
to certain symmetries [2], this is not the case and, in fact, we only
require N measurements. There are several ways in which these N

measurements can be made. Typically, for large structures, we apply
the excitation at a single node (call it M) and then measure the
response at the other nodes (including node M). This technique gives
us the N transfer functions H,,(w)., Hyy(w), ..., Hyy(w). The
remaining N> — N transfer functions c¢an then be generated from this
limited set as per the rules deseribed in Ref. 2.

In summary, to dynamically test a siructure we proceed as follows:
(i)} Determine nodal locations of the siructure (see following seclions

32
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for a deseription of NOVA nodal lecations).

{2) Excite the structure at a convenient node and measure the response
motions at all the other nodes.

(3) Using Fourier 1iransform techniques, determine the transfer
functions between the nodes.

(4) From these transfer functions, extract the modal perameters of the
structure using the TRANSF computer code.

33
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