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ABSTRACT: Recent experiments have extended the mechanical properties data base of 20 
percent cold worked 316 stainless steel to a fluence of 1.3 x 1023 n/cm2 (E >0.1 MeV), 
the goal exposure of the Fast Flux Test Facility. Both uniaxial and biaxial tests were 
conducted on specimens of developmental cladding which were irradiated in the Experimental 
Breeder Reactor-!! at temperatures ranging from 370°C to 650°C, Uniaxial tensile tests 
were conducted at strain rates ranging from 10- 5 /s to 10- 3 /s. Controlled Biaxial Strain 
Rate (CBSR) tests, recently developed at the Hanford Engineering Development Laboratory, 
were conducted only at a strain rate of 10- 5 /~. CBSR specimens are gas-loaded to produce 
a constant diametral strain rate. These tests are otherwise analogous to uniaxial tensile 
tests. The tensile strength and ductility of the cladding were generally in good agree­
ment with the predicted values. These predictions were based on data obtained at lower 
fluences and at test temperatures ranging from 232°C to a maximum of ll0°C above each of 
the irradiation temperatures. The temperature'and fluence dependence of the yield strength 
was found to be consistent with the predictions of microstructurally~based models of irra­
diation effects at irradiation temperatures above approximately 500°C. The strengths 
obtained from CBSR testing were in good agreement with the correlations developed from 
uniaxial data only, although the ductility of the biaxial tests was generally somewhat 
lower. Both types of test's have shown that the cladding possesses the requisite strength 
and ductility for FFTF operation to goal exposure. 

KEY WORDS: mechanical properties, 316 stainless steel, high fluence, irradiation effects, 
ductility, microstructure 

Liquid Metal Fast Breeder Reactors (LMFBRs) will use stainless steels in numerous 

core component applications. In particular, the initial core loadings in the Fast Flux 

Te&t Facility {FFTF) contain 20 percent col4 worked AISI 316 cladding and ducts. Reliable 

operation of fast reactors requires a complete characterization of the effects of the . 
LMFBR environment on the mechanical properties of this material. 
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Until recently, tensile data on irradiated 20 percent cold worked 316 stainless steel 

was available only up to a fluence of 8.4 x 1022 n/cm2 (E >0.1 MeV) [1]. The present work 

describes the effects of fast reactor irradiation to fluences as high as 1.3 x 10 23 n/cm2 

(E >0.1 MeV) at irradiation temperatures ranging from 370°C to 650°C. Uniaxial tensile 

tests were conducted at temperatures ranging from room temperature to 110°C above the 

irradiation temperature and at initial strain rates ranging from approximately 10-s to 

10- 3 s-1 • 

Anticipated and hypothetical reactor transients will produce circumferential cladding 

loads due to the differential in the rates of thermal expansion between the mixed oxide 

fuel and the stainless steel cladding. Since a biaxial stress state is more represen­

tative of the imposed transient loading conditions than is the uniaxial stress state 

of a standard tensile test, a biaxial test was developed which tested cladding specimens 

at a constant temperature and a constant diametral strain rate, but which was otherwise 

analogous to a tensile test [2]. Controlled Biaxial Strain Rate (CBSR) tests-were per­

formed at test temperatures at or above the irradiation temperature and at a constant 

strain rate of 10-s s-1 • 

EXPERIMENTAL TECHNIQUE 

Specimens 44.5 mm long were sectioned from 5.8 mm outside diameter by 0.38 mm wall 

tubing. The tubing material was 20 percent cold worked AISI 316 (Heat Number 87210, 

Lot T). Specimens to be irradiated at high temperatures were placed in subcapsules 

filled with sodium to minimize temperature gradients during irradiation in the Experi­

mental Breeder Reactor-II. The subcapsules were positioned in larger capsules to provide 

a predetermined helium gas gap. The temperature gradient across the helium due to gamma 

heating provided the desired irradiation temperatures. Low irradiation temperatures 

were obtained in a "weeper" pin which allowed free ingress of ambient reactor sodium 

coolant. Nominal irradiation temperatures ranged from 370°C to 650°C. Peak neutron 

fluence levels of 1.3 x 1023 n/cm2 (E >0.1 MeV) were attained. 

The tensile tests were performed on a hard-beam testing machine with an In~t~on 

load-extension recorder and with compression fittings gripping the specimens. Tests 

were performed at room temperature and the irradiation temperature as well as at temp­

eratures which simulated refueling and controlled transients. A vacuum furnace was used 

to obtain the desired test temperatures with about 15 t9 20 minutes for. Rper.imPn he~t•.1p 
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and thermal stabilization. Initial strain rates ranged from approximately 4 x 10-5 to 

The CBSR tests were performed by argon gas-loading the specimens in an induction 

coil to produce a constant diametral strain rate, which was maintained through continuous 

measurement of the specimen diameter during the test. The specimen pressure and tempera-

ture were controlled by the computer through digital-to-analog converters. Specimens 

were heated to the t.est temperature in two to three minutes, with one minute for 

stabilization, followed by pressurization to failure. 

RESULTS 

Figures 1 through 6 show the 0.2 percent offset yield strengths obtained in the 

tensile tests for specimens irradiated at six temperatures and tested at a strain rate 

of 4 x 10- 5 s-1 • Figure 7 shows the total elongations obtained in these tests. The 

correlations shown in each of these figures will be discussed in the next section. 

A CBSR·test generates pressure-strain traces, like those in Figures Ba and Bb, 

which are comparable to the load-extension records produced in tensile tests. The types 

of traces obtained in tests performed at different temperatures are shown in Figure Ba, 

while Figure 8b shows the effect of strain rate at a high test temperature. While 
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Fig •. 1-Yield strength of type 316 stainless steel (T-lot) irradiated at 466°C. 
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Fig. 2-Yield strength of type 316 stainless steel (T-lot) irradiated at 488°C. 
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Fig. 3-Yield strength of type 316 stainless steel (T-lot) irradiated at 560°C. 
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Fig. 4-Yield strength of_type 316 stainless steel (T-lot) irradiated at 574°C. 
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Fig. 5-Yield strength of type 316 stainless steel (T-lot) irradiated at 632°C. 
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Fig. 6-Yield strength of type 316 stainless steel (T-lot) irradiated at approximately 400°C. 
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Fig. 7-Total elongation of irradiated 20 percent cold worked 316 stainless steel. 
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significant strain-hardening is shown to occur at low test temperatures, this is prevented 

at higher test temperatures by the recovery of the microstructure. At high temperatures 

and high strain rates, however, both strain-hardening and recovery are precluded due to 

the short duration of the test. 

From the CBSR traces can be obtained pressures analogous to the proportional elastic 

limit (PEL), yield and ultimate strengths, as well as ductilities corresponding to the 

uniform elongation. The PEL was determined graphically as the pressure at which the 

initial portion of the pressure-strain trace first deviates from linearity. The yield 

pressures were determined using a 0.17 percent offset hoop strain at the specimen outer 

diameter. This strain value was calculated us_ing the thin wall approximation to corre­

spond to a 0.2 percent effective strain at the specimen midwall [2]. The relationships 

between uniaxial and bi~~ial strengths and ductilities will be discussed in the follow­

ing section. 

DISCUSSION 

Strength 

Correlations based on an equation of s~ate approach were developed previously by 

Fish, et. al. [1] describing the effects of irradiation on the tensile properties of 

20 percent cold worked 316 stainless steel. The basic premise of these correlations 

was that the deformation state of the material can be characterized by a structure 

parameter describing the material's hardness. The data on which these correlations 

were based were obtained from specimens irradiated to a maximum fluence of 8.4 x 1022 

n/cm2 (E >0.1 MeV). These data established that the increase in strength observed after 

irradiation at low temperatures saturated by a fluence of about 5 x 1022 n/cm2 , whereas 

the decrease in strength with irradiation at high temperatures was equivalent to that 

exhibited by thermally aged material. As shown in Figures 1 through 5, the strengths 

obtained verify the correlation predictions at high fluences for irradiation temperatures 

abovQ ~pproltimatcly 460°C. AL t~mpera~ures above approximateiy 500°C, the data are also 

in good agreement with microstructural,lv-based predi.r.tinns [3,4] which correlate the 

yield strength with radiation-induced changes in both the number densities and sizes of 

various microstructural components, e.g., precipitates, Frank loops, voids and disloca­

tions (Figure 9). 
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Fig. 9-Comparison of high fluence tensile strengths with microstructural correlation 
predictions. 

High fluence exposure below 500°C. however. induces a concurrent softening and 

increase in ductility for which no microstructural explanation is yet available. The 

decrease in strength observed for an irradiation temperature of approximately 400°C is 

shown in Figur,e. 6. Investigation into the nature of this softening effect are ongoing. 

Comparison factors developed by Cannon. [2) relating the biaxial PEL, yield and 

ultimate strengths to equivalent tensile quantities. have been found to be relatively 

independent of specimen test and irradiation histories. The comparison factors are 

defined as the ratio of the relevant tensile stress to the appropriate CBSR pressure. 

and tests on unirradiated material show that they are equal to 7.14. 5.74 and 6.91 for 

the PEL. yield and ultimate strengths. respectively. A more detailed description of 

the comparison factors may be found in Reference 2. 

When coupled with the existing tensile correlations. the comparison factors 

provide an excellent prediction of the strengths obtained in CBSR tests on irradiated 

material having a wide range of exposure. This is shown in Figure 10 for both the yield 

and ultimate strengths at high fluences. Similar results are observed for the PEL. 

although the scatter is slightly larger due to the subj~Gtive nature nf th~ ~EL 

measurements. 

Ductility 

Simple correlations were developed from the tensile data base to describe the 

uniform and total elongations, The total elnng8tion wai fit to 
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ET = 2 + 28 exp[-4.17 x 10- 3 (T- Ti + 600)] + 3.5[1 - tanh($t- 1.5)] 

while the uniform elongation was fit to 

log EU = 0.524 + 0.32 exp(-.0577 $t) - 1.315 x 10- 3 (T- Ti) 

where E is in percent, $t is in 10 22 n/cm2 (E ?0.1 MeV), and T and Ti are the test and 

irradiation temperatures in •c, respectively. The high fluence tensile ductilities were 

generally in good agreement with these predictions, as is shown in Figure 7. 

While biaxial cladding strength can be predicted relatively accurately from exist-

ing tensile correlations, biaxial ductility cannot. Biaxial ductilities are consistently 

lower than corresponding uniaxial strains, which results from the inherent differences 

in the instability and failure configurations of the two stress states. Instability 

and failure occur at smaller strains under this biaxial loading condition than under 

uniaxial tension .since li through-wall crack represents failure in a gas-loaded tube 

while complete decohesion is required for uniaxial failure. It has been shown by Lankford 

and Saibel [5] that, for the case of power law strain-hardening, the hoop strain at the 

maximum pressure in a gas-loaded tube should be equal to one-half of the uniform strain 

of a iimilar ~niaxial teEt. Figure 11 chowo that, for cladding irradiated at low 
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Fig. 11-Comparison between CBSa ductility and ductility predicted by tensile correlations 
for cladding irradiated at low temperatures. 

temperatures, the failure strains obtained in the CBSR tests are consistently below the 

elongations which were predicted Oil the basis of the existing tensile correlations and 

the analysis described above. 

CONCLUSION 

The mechanical properties have been determined for AISI 316 stainless steel cladding 

irradiated to high fluences. Tensile strength and ductility are in good agreement with 

both equation of state and microstructral correlations above irradiation temperatures 

of 5oo·c. While biaxial strength can be predicted from tensile correlations, biaxial 

ductility is somewhat lower than corresponding tensile ductility. Both types of data 

indicate that 20 percent cold worked AISI 316 possesses adequate strength and ductility 

for FFTF operation to goal exposure. 
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