

Westinghouse
Electric Corporation

MASTER

Research and Development Center

1310 Beulah Road
Pittsburgh Pennsylvania 15235
(412) 256 7000

January 13, 1981

Department of Energy
Office of Industrial Programs
Mail Stop 2H-086 Forrestal
Washington, DC 20585

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Attention: Dr. John R. Rossmeissl

Gentlemen:

Subject: UV Radiation Curable Paints, Contract DE AC01-79CS40210
Topical Report on Material Identification

The Westinghouse approach to the problem of finding alternatives to natural gas in product finishing is to develop ultraviolet radiation curable paints for application on preformed structures. The starting point of this program was the matching of resins, photoinitiators and pigments which will result in coatings that can be cured by ultraviolet radiation. The end point will be the application of these coatings to prefabricated metal structures to demonstrate the viability of this technique in producing commercially acceptable painted products. These UV curable paints should produce films that are hard, adherent and opaque at a nominal thickness of one mil (0.001 inch).

The desired physical characteristics are: pencil hardness of at least 2H, 100% adhesion as tested by the crosshatch method, complete hiding power and a low viscosity (60 centipoises) for ease of spray application.

In a normal paint development, the resin binder is chosen first, then suitable pigments are added followed by various modifiers such as extenders and flow control agents.

DOE/CS/40210--T1

DE81 011194

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

In the development of UV curable paints, the procedure is reversed owing to the inter-relationship of those components, the absorption spectra of the photoinitiators and the UV radiation source output spectra. During the course of this program experimental data confirmed that these photo-active components, unlike most traditional paint materials, exhibit a high degree of interaction with other components in the coating system and thus require testing in combination. Furthermore, since the program is on the leading edge of this technology, new photoreactive materials which may be useful are constantly being developed. Consequently, Task I of this program, The Identification of Materials, will not be concluded until complete final paint formulations are achieved.

The initial work in this program was the identification of reactive diluents and base resins that are sensitive to the UV curing process. The reactive monomeric diluents tested included multifunctional acrylates, monofunctional acrylates and non-acrylic unsaturated esters. The multifunctional acrylates which showed high reactivity when photoinitiated using isopropyl benzoin ether (Stauffer Chemical Co., Vicure V-10) are listed below:

pentaerythritol tetraacrylate (PETA)
pentaerythritol triacrylate (PETriA)
trimethylolpropane triacrylate (TMPTA)
tetraethyleneglycol diacrylate (TEGDA)
diethyleneglycol diacrylate (DEGDA)
hexanediol diacrylate (HDDA)
triethylene glycol dimethacrylate (TEGDMA)
1,3-butylene dimethacrylate (BDMA)

Because of its high reactivity, HDDA was chosen as a diluent to reduce viscosity when added to base resins. The simple acrylates, methoxyethyl acrylate (MEA), 2-ethoxyethyl acrylate (EEA), butoxyethyl acrylate (BEA) showed only a moderate degree of reactivity when photoinitiated using Vicure V-10. However, when EEA was added to the base resin and photoinitiated using V-10, it gave films with increased flexibility. On the other hand, the non-acrylic ester monomers were generally unreactive when photoinitiated using V-10, although acrylic acid and methacrylic acid formed polymeric gels which precipitated.

The viscosity and cure time of several systems, which combined various resins and reactive diluents, were determined, and the properties of their films were evaluated by conical mandrel bend, impact, abrasion and hardness tests. In a system photoinitiated using V-10 accelerated with n-methyldiethanol amine (MDEA) and di-tertiarybutyl perbenzoate (DTBP), the most promising resin was the Hughson Chemical Co. acrylated urethane TS-3577-11, diluted with HDDA and EEA.

At this point in the program, it became increasingly clear that the photochemical effects were complicated by the ability of certain photosensitive systems to also act as thermal initiators, as for example, systems containing benzoyl peroxide or DTBP. This led to further study of UV lamp output spectra which should coincide with the absorption spectra of pigmented coating systems.

An important criterion in the choice of pigments in their effect on UV light penetration of films. It is well known that titanium dioxide (TiO_2) is used universally by the paint industry because it provides superior hiding power at lower pigment volume concentration and film thickness. Due to screening and competition with other UV absorbers in a system, TiO_2 can hinder cure. On the other hand, the light scattering ability of TiO_2 can also enhance cure.

The most promising photoinitiators, 2-chlorothioxanthone (CTX), benzil, 2-ethylanthraquinone (EAQ) and 2-methylanthraquinone (MEAQ), all absorb in the UV spectral range which is not screened by TiO_2 . Coinitiators such as tertiary amines, aryl chloromethyl and chlorosulfonyl compounds and other photoinitiators were investigated in formulations also containing CTX, benzil, EAQ and MEAQ. The following compounds exhibited coreactivity:

n-methyldiethanolamine (MDEOA)
diethylenetriamine (DETA)
monethanolamine (MEOA)
diethanolamine (DEOA)
triethanolamine (TEOA)
n-n-dimethylaminoethylmethacrylate (DMAEMA)
phenethylamine (PEA)
triethylamine (TEA)
dimethylethanolamine (DMEOA)
morpholine (MORPH)
ethyl para-dimethylaminobenzoate (EPDMAB)
quinoline sulfonyl chloride (QSC)
Virginia Chemical Co. Uvecryl P101
Virginia Chemical Co. Uvecryl P102
Virginia Chemical Co. Uvecryl P104
Stauffer Chemical Co. Vicure 30
(benzoin isobutylether, V-30)
Michler's Ketone (4,4 bis(n,n-dimethyl amino) benzophenone)

Combinations of CTX with MDEOA and of benzil with morpholine were among the candidate coinitiators chosen for further modification.

Dr. John R. Rossmeissl

Page 4

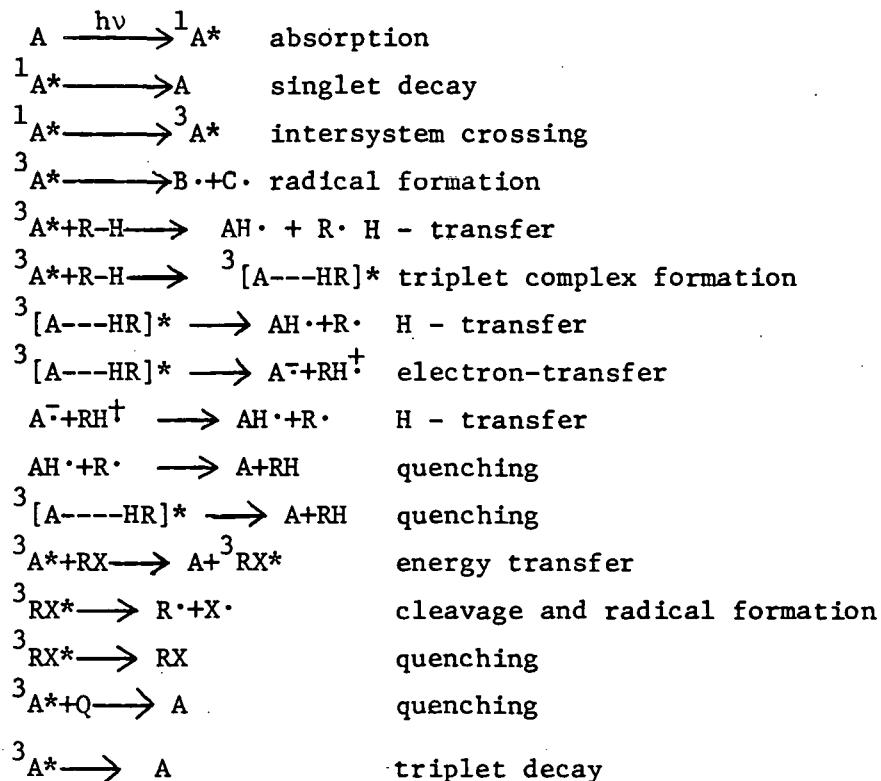
January 13, 1981

Paints containing all of the aforementioned photoreactive agents cured by free radical polymerization (Appendix I). A cationic mechanism may also be used for curing paints by ultraviolet radiation (Appendix II). A system polymerizable by cationic initiation usually consists of: a base resin, reactive diluents, pigments, photoinitiators and photosensitizers. Union Carbide ERL 4221 was chosen as the base resin owing to its ability to form hard adherent films. The use of butyl glycidyl ether, n-butanol, and limonene dioxide as reactive diluents did not improve film flexibility. The most common cationic photoinitiators are the so-called "onium" salts. The 3M Co. FC-509 was most suited for pigmented coatings because of its absorption spectrum. Since the sulfonium and iodonium salts cannot be activated directly by UV radiation in a pigmented coating, a photosensitizer for energy transfer must be used. Photosensitizers which are suitable for use in pigmented coatings are 3M Co. FC-510, CTX and TX.

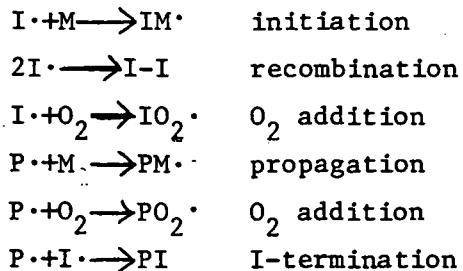
Further work to optimize these coating systems will continue as will the continuing evaluation of new materials until the final formulation is completed.

Very truly yours,

Carl P. Izzo


Program Manager

dbr


Att.

APPENDIX I

FREE RADICAL POLYMERIZATION PHOTINITIATION MECHANISMS INITIATOR RADICAL FORMATION

INITIATION & PROPAGATION

A = Photoinitiator or photosensitizer in ground state.

${}^1A^*$ = Photoinitiator or photosensitizer in singlet excited state.

${}^3A^*$ = Photoinitiator or photosensitizer in triplet excited state.

${}^3[A---HR]^*$ = Activated complex in triplet excited state ("exciplex").

R = Accelerator or coinitiator.

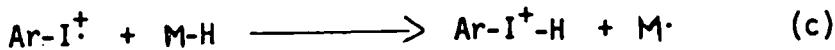
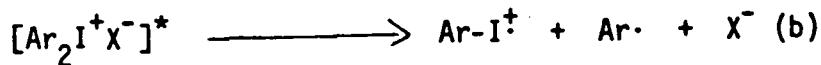
RX^* = Halogenated accelerator or coinitiator.

$I\cdot$ = Initiator radical, e.g., $B\cdot$, $C\cdot$, $AH\cdot$, $R\cdot$, $X\cdot$.

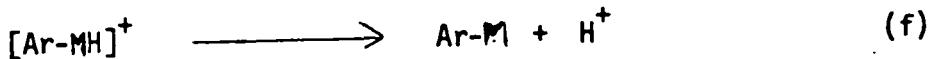
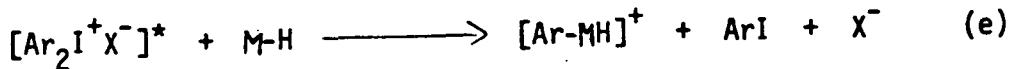
$X\cdot$ = Halogen radical, e.g., $Cl\cdot$.

M = Monomer

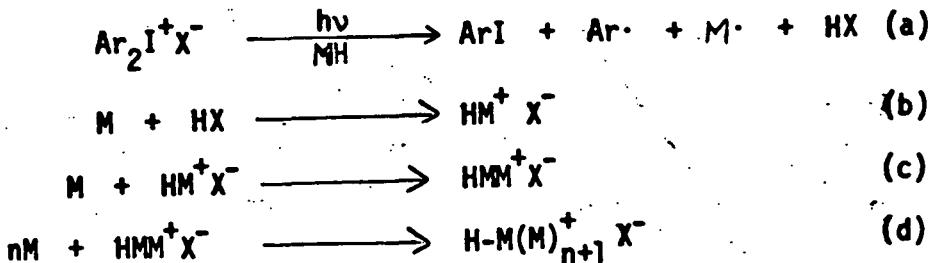
P = Oligomer

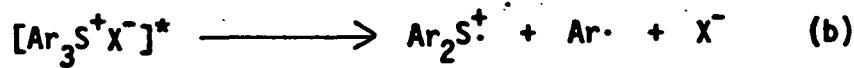



Q = Quenching agent, e.g., O_2 .

APPENDIX 2



CATIONIC POLYMERIZATION PHOTINITIATION MECHANISMS

Photolysis of Diaryliodonium Salts


Major


Minor

Initiation by Diaryliodonium Salts & Propagation

Photolysis of Triarylsulfonium Salts

Ar = Aryl moiety, e.g. phenyl, 4-methylphenyl, etc.

$[\text{Ar}_2\text{I}^+ \text{X}^-]^*$ = Diaryliodonium salt in excited state.

$[\text{Ar}_3\text{S}^+ \text{X}^-]^*$ = Triarylsulfonium salt in excited state.

X = Anion, e.g., SbF_6^- , AsF_6^- , PF_6^- , BF_4^- , etc.

M = Monomer