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RARE EVENTS - A STATE OF THE ART 

V. R. R. Uppuluri 

ABSTRACT 

The study of rare events has become increasingly important in the 
context of nuclear safety. In section 1 of this paper, some 
philosophical considerations, such as, (1) the framework for the 
definition of a rare event, (2) rare events and science, (3) rare 
events and trans-science, and (4) rare events and public perception 
are discussed. In section 3, the technical work of the Task Force 
on Problems of Rare Events in the Reliability Analysis of Nuclear 
Plants (1976-1978), sponsored by OECD is reviewed. Some recent technical 
considerations are discussed in section 4, and Conclusions are 
presented in section 5. The appendix contains an essay written by 
Anne E. Beachey, under the title: A Study of Rare Events - Problems 
and Promises. 
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1. Introduction 

There are several questions that come to mind when one thinks 
about rare events. (1) What is a rare event? (2) If one wishes to 
define a rare event as an event with low probability, then the 
question is, what is the associated probability space? (3) Can 
experiments be performed in laboratories, to study rare events? (4) 
Are questions concerning rare events, trans-scientific questions? 
(5) Does the public perception of rare events change, after a rare 
events is observed? He will discuss these questions in section 2. 

In section 3, we review some of the work of the Task Force on 
Rare Events, appointed by the Committee on Safety of Nuclear 
Installations (CSNI), Office of the Economic Cooperation and Develop­
ment (OECO), and performed during 1976-1978. Only highlights of 
some of the technical contributions are reviewed. 

In section 4, we review some of the recent technical work 
performed in the area of rare events. In section 4.1, we discuss the 
axiomatic approaches useful in the study of rare events. In section 
4.2, we discuss a basic theorem about the superposition of a large 
number of rare processes. In the remaining section, we discuss about 
inference problems, use of Bayesian methods, and the current research 
in the area of risn assessment and rare events. Section 5, presents 
the conclusions reached in this paper. 
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2. Philosophical Considerations 

2.1 Events of Low Probabilities 

Events whose probabilities are very small are generally considered 
to be rare events. A student of probability normally thinks of a 
probability space defined by the triplet (ft, F, P), where ft is an 
arbitrary set, F an algebra of subsets of ft which may be considered tc 
be the set of all possible events that could be observed, and P a 
probability measure associated with every event that belongs to F. 
Thus given an experiment with an associated probability space, one can 
compute the probability of any desired event; though at times this 
may turn out to be a difficult computational problem. One may call 
event; whose associated probabilities are less than a given number e 
(such as 10 ) as rare events. After imbedding the problem in an 
acceptable probability space, one can decide whether an event is a 
rare event or not. The association of a probability space with the 
experiment under consideration may not be an easy problem. 

Suppose a pack of 52 playing cards is snufflet well, and a 
bridge hand of 13 cards is dealt. There are exactly h - 635,013,559,600 
different hands that can appear; therefore the probability of any 
specified set of 13 cards appears in a hand is equal to 1/H, which is 
a wry very small number, and the event may be considered as an 
improbable event. But everytime a r.*nd is dealt, one of the h 

possibllties is absolutely certain to occur. Warren Weaver [21] 
discusses this example and suggests that soilness of probabilities 
1s not enough to characterize rare events. 
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2.2 Rare Events and Science 

It is not clear whether one can perform experiments in a 
laboratory, on rare events. In the Presidential Lecture at the AAAS 
annual meeting in 1980, Boulding [3] says that a field of knowledge 
is likely to be insecure if the available data only covers a small 
part of the field and if the actual structures and relationships in 
it are extremely complex. Two examples of insecure fields are, 
(i^ knowledge of human behavior and (ii) cosmology. Further, 
Boulding says that any field of knowledge which also deals with rare 
events is also likely to be insecure. Improbable events in a small 
field cannot be studied in laboratories; only repeatabie events can be 
studied in laboratories, and that is why, the field of experimental 
sciences is secure. But as in the case of evolutionary processes, 
rare events in the unfamiliar part of the field are of import in 
explaining the overall pattern of time, and where the usual 
scientific studies are not of help. In such cases one has to 
resort to theoretical approaches. At times, rare and sudden changes, 
such as "mutations" are of great interest to scientists; see 
Muller [ 9 ] . 

2.3 Rare Events and Trans-Science 

Weinberg [22], goes a little further and says that several problems 
involving rare events are trans-scientific issues. A question which 
transcends the proficiency of science is called a trans-scientific 
question. He cites the following two examples, which involve rare 
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events, that fall In the category of trans-scientific questions. 
These are, (1) the effect of extremely low levels of Insult on the 
biosphere, and (11) the probability of catastrophic events that have 
never occured In reactor accidents. Weinberg also refers to the 
behavior of an Individual In a specific situation to be "rare", in the 
sense that each individual's action is unique, and it is usual1.? 
influenced by seemingly chance mechanises. He also points out that in 
some cases the prediction of rare events transcends the proficiency 
of science not in principle but as a practical matter, because of the 
prohibitive cost to get an answer or because of the lack of advances 
in scientific progress. Thus to get statistics on catastrophic 
reactor accidents one has to build more reactors or wait for a long 
time; to observe a genetic effect at extremely low doses, one would 
require billions of mice. In the light of this trans-scientific 
arena, how can rare events be tackled? 

2.4 Rare Events and Public Perceptions 

While studying the safety of fussion reactors, Lewis [7] says 
that the very business of quantitative risk assessment Is to calculate 
the probability of an accident. He says, "No one will calculate a 
probability if he believes it Is zero. What is at stake here is the 
widespreaJ misunderstanding of the probability of infrequent events, a 
misunderstanding that is by no means confined to the nonsclentlflc 
community.n He also says, " People have a tendency to think that 
anything that actually occurs cannot have had a small probability of 
occurrence, because their view of the world is inevitably influenced 

4 

4 
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by those things that do occur." Thus the public perceptions of rare 

events, if ever they happen, complicates further the study of rare 
events. 

3. CSNI Task Force on Rare Events 

3.1 Scope of the Task Force 

The Organization for Economic Cooperation and Development (OECD) 
has £ Nuclear Safety Division, which has a Committee on the Safety of 
Nuclear Installations (C3NI). This committee appointed a Task Force 
on problems of rare events in the reliability analysis of nuclear 
plants (1976-1978). The task force addressed the following questions: 
(1) What are rare events? (2) What events should be treated like rare 
events? (3) What are the correct methods for analyzing rare events 
from a statistical viewpoint, and (4) Hethods for handling problems in 
reliability analysis which involve rare events? 

The Task Force reported its findings [11] in the following 
areas: 

(i) rare event data collection and analysis, 
(11) common bode failure analysis, 
(iii) human factor analysis and quantification, 
(iv) decision theories and statistics applicable 

to rare events, and 
(v) interdisciplinary communications and 

tutorial programmes. 
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3.2 Statistically Rare Events 

In this section, we briefly summarize the Ideas of Vesely [20] 
In the context of the reactor safety study, and the Ideas of 
Bastl [10] In the context of systems analysis. 

According to Vesely [20], In the reactor safety study (or 

HASH-1400, 1975), two types of rare events were specifically 
handled, the probabilistically rare events and statistically rare 
events. A probabilistically rare event Is an event which has a 
frequency of occurrence per Interval of time which Is smaller than 
some criterion, eg., smaller than 10* per reactor year. A statistically 
rare event Is an event which has a small frequency of occurrence, 
not with regard to time, but with regard to the total possible data 
sample which could be collected for that problem. 

In the reactor safety study, four techniques were used to handle 
statistically rare events: 

(1) aggregating data samples 
(2) dlscretlzlng continuous events 
(3) extrapolating from minor to catastrophic 

severetles, and 
(4) decomposing events using event trees 

and fault trees. 
The details of these techniques and problems for further work may be 
found In the paper by Vesely [20]. 
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Bastl [10] suggests that in the context of system analysis one has 
to take into account two key events: (i) the initiating event (failure 
of the operational system) and, (ii) the failure event (failure of the 
protective system to operate on demand). He suggests that probabilities 
of source events and initiating events are needed to compute the 
probability of the failure of a system. 

3.3 Extreme Value Theory and Stochastic Processes 

The distributions of the maximum and minimum of independent 
identically distributed random variables were suggested as possible 
tools in the context of reallability problems by Tiago de Oliveira 
[10]. It is also well known that the maximum of independent identically 
distributed random variables, properly normalized converges either to 
the Gumbel distribution or to the Frechet distribution or to the 
Weibull distribution, as the sample size goes to infinity. This 
asymptotic result helps one to study only few distributions from the 
view point of applications. 

More generally, the maximum value of a stochastic process in a 
given time has obvious relevance to the study of catastrophes. The 
distribution of the maximum can be directly related to failure 
probability. The problem is to evaluate or approximate this 
distribution under realistic assumptions. A quantity closely related 
to the maximum is the number of times the stochastic process crosses a 
given level x, during time t. The statistical properties of maxima 
and the level crossings are discussed by Leadbettev* [10]. 
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The theory of Point Processes is an useful approach to study the 
power plant operation in many situations. A point process is simply a 
series of events occurring in time according to some statistical law. 
If a point process has intensity X, the quantity \t may be interpi-eted 
as the probability of an event in time t, if t is small. When it is 

-4 said that the failure rate is equal to, X = 10 /year, the implication 
is that either the times between failures are exponential with this 
parameter, or more generally these rates represent the expected number 

s of events per unit time in a point process, i.e., its intensity. 

3.4 Decision Theory Applied to Rare Events 

Morlat [ 8 ] proposes the following characteristics for a rare 
event: 

(1) A rare event has to be an event. 
(2) An event is a fact or a set of facts 

whose probability can be modified by 
observations or new knowledge, but not 
by the choice of a decision. 

(3) The quality of an event depends on the 
decision one has to take. 

(4) One is only concerned with rare events 
which have catastrophic consequences. 

(5) The degree of scarcity of an event is 
Important. 

Further, Morlat [ 8 ] gives the following suggestions about the 
appropriateness of an applicable theory, for a given size of 
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observations: 
Size of observations Adequate Theory 

None Decisions under uncertainly 
Rare Bayesian Methods 
Moderate Inductive Statistics 
Many Data Analysis 

In conclusion, if one has a rare amount of deta, Morlat [ 8 ] 
suggests to use Bayesian Methods. This seems to be one of the 
conclusions that is accepted by the Task Torce. 

3.5 Miscellaneous Observations 

According to Freudenthal [10] there are three basic types of 
rare events: 

(1) Those arising from combinations of simple, 
not necessarily rare, events of reliably 
observable recurrence periods. 

(2) These that are themselves simple events, 
presumably of recurrence periods far beyond 
any practical range of observation, and 
therefor* predictable only by circumstantial 
evidence or by combined physical-probabilistic 
modeling. 

(3) Those simple events the prediction of which 
can be based on extrapolation from extensive, 
systematic records of their past occurrences. 



11 

Freudsnthal, says that the interaction between the quality of the 
knowledge of the performance parameters and the modelling of their 
distributions represents a serious problem in reliability analysis 
to which insufficient attention has so far been paid. 

To demonstrate communication techniques and their application, 
the Task Force prepared an audiovisual package of slides in order to 
highlight various aspects of the rare events problem (see Carnino, 
Royen and Stephens [4]). 

4. Some Recent Technical Considerations 

4.1 Axiomatic Approaches 

One v/ay to develop the mathematical foundations of rare events is 
through the axiomatic approach. At times, the Poisson process is 
referred to as the phenomenon associated with rare events. The Poisson 
process can be shown to be the only process which is stationary with 
independent increments, and where the occurrence of more than one 
event in a small interval of time is impossible. In 1950, Jansossy, 
Renyi and Aczel [5], introduced an axiom of rarity and showed how the 
Poisson process can be obtained as the solution of a functional 
equation. 

Let N(t) denote the number of events observed during the interval 
[O.t], and let P k(t) = P[N(t) = k]. According to Janossy, Renyi and 
Aczel, the events said to be rare, whenever 

P,(t) 
line ! = 1. 
t - 0 1 - p (t) 
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t""o E t N ( t > 

This condition can be generalized in several ways. If E[N(t)] denotes 
the average number of events in the interval [0, t], one may define 
a condition of rarity by defining 

N(t) > 1] = 1, 

where E [ N(t) | N(t) >_ 1] denote? the conditional expectation of N(t) 
given N(t) >_ 1. One may say thct the process has "unprecedented 
events", whenever the interval between the occtrrence of two events 
has an infinite first moment. The characterization of processes with 
unprecedented events, and generalized definitions of rarity, seems to 
be an open problem. Sane of these problems, and the contributions of 
Kotlarski and Leipnik are given in the paper by Uppuluri [18]. A report 
by Uppuluri and Chernick [19], giving a review of different axiomatic 
approaches leading to compound Poisson processes is in preparation. 

4.2 Theorem of Grigelionis 

The Central limit theorem is one of the basic results in the 
theory of probability. In essence this theorem says that the sum of 
a large number of independent random variables, properly normalized, 
behaves like a normal variable. This is an extremely useful result 
for statistical applications. 

Similarly there is a corresponding result for the superposition 
of rarely occurring discrete phenomena. This result is due to 
Grigelionis. In essence this theorem says that the superposition of a 
large number of rare processes, leads to a Poisson process. Details of 
this result may be found in the report by Thompson [16]: The 
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corresponding generalization to a compound Poisson process is an 
open problem. 

4.3 Inferences about Rare Events 

Amongst stochastic processes, the so called Bernoulli process is 
a simple process. In a discrete time situation, at any instant of 
time, in a Bernoulli process, the system is either on or off. Suppose 
that p is the probability that the system is on, and 1-p is the 
probability that the system is off. In the case of a rare event 
process, the system will be observed to be working most of the time. 
Given that we observed that the system did not fail in n consecutive 
units of time, the problem is to give confidence limits on p. This 
problem can be solved if we consider the conjugate problem of the 
inter arrival time between events, and use the properties of this 
conjugate variable. Details of the solution of this problem may be 
found in the report by Uppuluri and Patil [17]. The idea of using 
the properties of the conjugate random variable, characterizing the 
distribution of t!ie inter arrival time between events, is helpful in 
the context of rare event phenomena, 

4.4 Use of Bayesian Methods 

In 1978, Apostolakis and Mosleh [ 1 ] , studied risk assessment 
problems, in the presence of rare events, and the lack of available 
data. They use the subjectivistic interpretation of probabilities, 
axioms of coherence, Bayesian methods, and expert opinions to 
evaluate the probabilities of rare events. 
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4.5 Risk Assessment and Rare Events 

In a July 1980 report, Sampson and Smith [13] consider the problem 
in risk assessment of evaluating the probability of occurrence of 
rare but potentially catastrophic events. In order to find the 
likelihood of one or more such catastrophic svents to occur, the authors 
provide an information theoretic model for merging a decision maker's 
opinion with expert judgment. There is also a methodology provided 
for the reconciliation of conflicting expert judgments. It was shown 
that this merging approach is invariant to the decisions maker's 
viewpoint in the limiting case of exceptionally rare events. These 
methods were applied to case studies in likelihood assessment of 
Liquid Natural Gas Tanker Spills and seismic induced light water 
nuclear reactor meltdowns. 
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5. Conclusions 

There are several difficulties associated with problems involving 
rare events, if one wants to study rare e/ents in the context of 
probability theory, it is not too easy to find the appropriate 
probability space. Any field of endeavor, which involves rare events, 
and where experiments cannot be performed in laboratories is bound to 
be insecure. Some of the questions involving rare events are trans-
scientific questions. The public perception of rare events, such as 
the eruption of Mount St. Helens or the accident at Three Mile Island, 
seems to be at odds with principles of logic. 

There is a need for a better understanding of various aspects of 
rare events. This may be accomplished by using audio-visual techniques, 
where rare event phenomena are discussed. The use of Bayesian methods 
seems to be a viable approach in some situations of systems analysis. 

In the areas of research, axiomatic approaches leading to 
functions appropriate to the study of rare events should be explored. 
This will lead to a better understanding of the mechanisms which 
cause rare events. At present, the tools of Point Processes seem to 
lead to the best available methods to study rare events. There is 
some good work going on in bringing together subjective theory of 

probability and expert opinion, in risk assessment of technological 
systems where the rare events are the main source for catastrophies. 
New methods involving information theory and the merging of opinions, 
are also under consideration for the problem of rare events in risk 
assessment. 
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Ue hope that this report will contribute to a little more 
understanding of rare events, which in turn may help avoid catastrophies. 

i 



17 

REFERENCES 

1. Apostolakis, G., and Mosleh, A. (1978), "On the Use of Expert 
Opinion in the Evaluation of Probabilities cf Rare Events", 
UCLA - School of Engineering and Applied Science Report # UCLA-
34P252-01. 

2. Boulding, K. E. (1976), "The Importance of Improbable Events", 
Technology Review, (MIT), 79_, Number 4, 5-6. 

3. Boulding, K. E. (1980), "Science: Our Common Heritage", Science, 
Vol. 207, 831-836. 

4. Carnino, A., Royen, J. and Stephens, M. (1978), "The Problems of 
Rare Events in wie Reliability Analysis of Nuclear Power Plants", 
Proc. of the Topical Meeting on Probabilistic Analysis of Nuclear 
Reactor Safety (May 8-10, 1978 New Port Beach, Calif.), Am. Nuclear 
Society ISBN: 0-89448-101-0, pp VOL 5.1 to 6.24. 

5. Janossy, L., Renyi, A. and Aczel, J. (1950), "On Composed Poisson 
Distribution I", Acta Mathematica Academia Scientiarum Hungaricae 
2, 83-98. 

6. Keilson, J. (1979), "Markov Chain Models - Rarity and Exponentiality", 
Springer - Verlag New York (Vol. 28 Applied Mathematics Series). 

7. Lewis, H. W. (1980), "The Safety of Fission Reactors", Scientific 
American, Vol. 242, Number 3, pp. 53-65. 

8. Morlat, G. (1976), "On Decision Theory Applied to Rare Events", 
Proc. Meeting of a Task Force on Probleirs of Rare Events„ JRC 
Ispra Meeting, 0ECD Nuclear Energy Agency, Paris, France 158/1 to 6. 



18 

9. Muller, H. J. (1958), "Evolution by Mutation". Bull. Am. Hath. 
Soc. 64, 137-160. 

10. OECD Nuclear Energy Agency (1976). Proceedings of a Meeting of a 
Task Force on Problems of Rare Events In the Reliability Analysis 
of Nuclear Power Plants, June 8-10, 1976. CSNI Report No. 10, 
OECD, Paris. 

11. OECD Nuclear Energy Agency (1978), "Final Report of the CSNI 
Group of Experts on Statistics and Decision Theories Applicable 
to Rare Events. SINDOC (78) 85, OECD, Paris. 

12. Okrent, D. (1975), "A Survey of Expert Opinion on Low Probability 
Earthquakes". Annals of Nuclear Energy, 2^ 601-614. 

13. Sampson, A. R. and Smith, R. L. J980), "Assessing Risks Through 
the Determination of Rare Event Probabilities". University of 
Pittsburgh, Department of Mathematics and Statistics, Technical 
Report # 80-9. 

14. Starr, C. and Whipple, C. (1980), "Risks of Risk Decisions". 
Science, Vol. 208, 1114-1119. 

15. Starr, C , Rudman, R. and Whipple, C. (1976), "Philosophical Basis 
for Risk Analysis", Annual Review of Energy, 1, 629-662. 

16. Thompson, Jr. W. A. (1979), "Observations on Risk Analysis", Oak 
Ridge National Laboratory Report No. 0RNL/CS0-45 (Nov. 1979). 

17. Uppuluri, V. R. R. and Patll, S. A. (1976), "Inferences About 
Rare Events", Oak Ridge National Laboratory Report Number ORNL/CSD 
12 (June 1976). 



19 

18. Uppuluri, V. R. R. (1979), "Risk Analysis and Reliability". 
Proceedings 1979 DOE Statistical Symposium, held at Gatlinburg, 
Tenn., (October 24-26, 1979). pp. 187-191, CONF-791016, 
published September 1980. 

19. Uppuluri, V. R. R. and Chemick, M. (1980), "Axiomatic Approaches 
to Poisson Processes - A Review". ORNL/CSD report (in preparation). 

20. Veseley, U. E. (1976), "Rare Fvent Techniques Applied in the 
Rasnussen Study". Proc. Second ERDA Statistical Symposium, held 
at Oak Ridge (Oct. 25-27, 1976), LA-6758 C. pp. 17-36. 

21. Weaver, Uarren (1963), "Lady Luck", Anchor Books, Doubleday ft Co., 
New York, NY. 

22. Weinberg, A. M. (1S76), "Trans-Science and the Limits of Science' . 
Lecture Presented at the Lustrum Symposium of the Twente University 
of Technology, Enchede, The Netherlands (Nov. 29, 1976). 



21 

APPENDIX 

A Study of Rare Events: Problems and Promises* 

Anne E. Beachey 
1980 ORAU Student Trainee 

Oberlin College, Oberlin, Ohio 

*Work perforated under the direction of Dr. V. R. R. Uppuluri, 
Mathematics and Statistics Research Department, Computer 
Sciences Division, Oak Ridge, Tennessee. 



23 

I. Introduction 

In recent years, the study of rare events has become Increasingly 
Important In the context of nuclear safety. Why should rare events be 
considered so significant? Why be so concerned about events which 
may never even occur within our lifetime? These are only two of the 
many questions that have been raised In trying to understand and 
analyze rare events. This discussion will attempt to clarify what 
rare events are, why there is a need to study them, some of the 
problems Involved In their sutdy, some of the methods used thus far to 
analyze them, and what direction the study of rare events is currently 
taking in the context of nuclear risk and safety. 

II. Definition and Examples of Rare Events 

First, what exactly is_ a rare event? Nearly everyone has an idea 
of what the word "rare" means—unique or distinctive in one sense, 
infrequently occurring in another. It is the second of these senses 
with which we will be concerned for most of this discussion. Thus, 
a rare event can be logically defined as one which seldom or never 
occurs; or, in more mathematical terms, one with an extremely low 

~5 -8 probability of occurrence, usually on the order of 10 to 10 or 
smaller [9]. 

Using this rather simplistic definition, we can find examples 
of rare events in many areas. One example, which many can easily 
understand, involves the probability of one player obtaining all 
thirteen spades on the deal of a bridge hand. Using the methods of 
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combinatorial analysis, this probability can be calculated as being 
-12 on the order of 10 , which is generally agreed to be extremely low. 

Another example from the same area involves the tossing of a coin and 
stopping rules. Here, the coin is tossed until a certain number of 
heads (previously agreed upon) is obtained as a run; at this point, 
tossing stops. The probability of stopping after a certain number of 
tosses can also be calculated using methods in probability theory, 
although calculations become much more difficult than those in the 
above example. It is found that as the number of tosses increases, the 
probability of stopping becomes increasingly smaller, on the order of 
10" , and once again we are in the realm of rare events. 

Rare events can be observed in other areas as well. For example, 
in the field of genetics, the birth of identical twins or of a child 
with a very rare deformity would be considered rare events. The 
occurrence of certain karyotypes, namely XYY and XXY (superman 
phenomenon), has also been found to be a rare event [5]. H. J. Muller 
has further pointed out that, in an evolutionary sense, we and our 
fellow creatures can all be considered improbable occurrences; since 
Me could have come about only as the result of a particular sequence 
of mutations over a long period of time. However, Muller goes on to 
show that because of external factors, our existence may not be as 
rare as it might at first appear [lo]. 

Going sunewhat beyond the definition given earlier, we might 
also consider a rare event as one which cannot be easily predicted 
because we have so little Information concerning it--one for which 
the complexity of the system defies examination. For Instance, in 
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the are? of psychology, the reaction of an individual in a given 
situation would fit into this category. The human brain is a complex 
organism, and human actions are often unique and unpredictable. 
Another example which falls into this category is a natural diaster. 
The recent eruption of Mount St. Helens was not thought to be a very 
likely event at the time it occurred. Scientists were not able to 
agree on a prediction of when it would happen because they were unable 
to obtain enough information about it. Nevertheless, it did occur 
and resulted in both loss of life and property damage. 

III. Why study rare events? 

The definition of a rare event given earlier is not really a 
satisfying one, because although the previous examples are interesting, 
there seems to be no real reason to be concerned with calculating 
their associated probabilities. However, the last example "iven 
above, concerning natural disasters, provides a clue to the category of 
events with which the remainder of this discussion will be concerned. 
This category includes on 1y those low-probability events which, if and 
when they do occur, have potentially serious, even catastrophic, 
consequences. Such events are the focus of what Talbot Page has aptly 
termed "zero-infinity dilemmas", where zero refers to the extremely 
low probabilities involved, and infinity refers to the extremely great 
consequences [12]. This narrower meaning of a rare event differs from 
the sense in which one might normally think of many rare things. A 
rare bird or flower, for example, is something one might have a desire 
to observe; on the other hand, a rare event, in the above sense, like 
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a rare, deadly disease, is something one would hopr never to come in 
contact with during the course of his life. George Morlat made an 
interesting observation when he wrote that the fact that an event has 
catastrophic consequences necessarily implies that it is rare 
because "otherwise we should not even have conceived to come into a 
situation which makes it possible to happen [7]. For instance, in the 
nuclear field, a serious core meltdown would have to be rare or nuclear 
power plants would not even be allowed to exist. One of the primary 
reasons for the study of rare events now becomes clear. Perhaps if 
we could understand and analyze them, we could take preventive 
measures which might cause such events to be even more rare than we 
a! *eady believe them to be—maybe even to the point of nonexistence, 
whatever we may decide that to be. 

Returning now the eruption of Mount St. Helens, it is obvious 
that this falls into the above category, even thought the 
consequences cannot be necessarily considered catastrophic. However, 
this is not the area where concarn lies at present. An event which 
is presently considered much core serious by the general public is 
that which was briefly mentioned above—nuclear reactor failure, such 
as the well-publicized accident at Three-Mile Island. This being the 
case, from tills point on in the discussion, we will consider rare 
event to be synonymous with nuclear accident. At this point, a 
question comes to mind. Why do people tend to have different 
attitudes toward the risk concerned with natural disaster and the 
risk involved in nuclear reactor failure? The potential harm is 
great in each case, yet society tends to view nuclear reactor failure 
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as the more serious situation of the two. Starr and Whipple contend 
that the difference in people's reactions or attitudes is primarily 
due to the fact that one of the situations above is a risk to which 
they expose themselves voluntarily, while the other falls into the 
category of risks to which they discover themselves exposed whether 
they want to be or not [10]. for instance, many people choose to live 
on or near the San Andreas fault in California, where the chance of a 
devastating earthquake within the next ten years has been estimated to 
be quite high. Certainly, these people must realize the danger they 
are in, yet they refuse to move because they believe that the risk has 
been overestimated. Many of these, are people, who have already 
suffered large losses from previous earthquakes. On the other hand, 
people have exactly the opposite attitude where nuclear reactor failure 
is involved. As soon as even one accident occurs, everyone is up in 
arms about the risks involved if one lives in the vicinity of a nuclear 
power plant. Another difference can be seen between these two cases. 
People understand what an earthquake is and what its consequences are 
because it is already within their experience; since reactor accidents 
are much more rare, people have very little knowledge about them, and 
for that reason, fear them. In looking at how the public views nuclear 
power, it becomes quite obvious that people's attitudes are strongly 
dependent on how uney individually perceive the probability or risk 
assoicated with the occurrence of an accident. This is not only true 
in the case of rare events where virtually no data exists, but also in 
common, everyday situations. For example, more people have a fear of 
flying than of driving, even though the latter has a much greater 
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accident probability associated with it. What are the reasons for 
what seems to be somewhat irrational behavior? Starr and Whipple 
attempt to explain such behavior in several ways, the most important 
of which involve: (1) The control an individual has over his 
situation, (2) the conditional probability of survival given that the 
accident does occur, and (3) the catastrophic nature of the accident [10]. 

From the above discussion, other important reasons for studying 
rare events come out. Society demands to know the risk involved; 
people would like to be reassured about their fears of the unknown. 
Those involved with the implementation of nuclear energy also want the 
public to be reassured. A single isolated event such as Three-Mile 
Island can do a great deal to sway public opinion to the extent that 
there may be no future whatsoever for nuclear energy. People may 
accept natural disaster because it is inevitable; there is little that 
can be done to prevent nature from taking its course. In the case of 
man-made disaster, however, most people believe that if man can create 
a disaster, then man can also prevent that disaster. 

IV. Problems Encountered in the Study of Rare Events 

Now that what rare events are and why they are being studied have 
been clarified to a certain degree, the discussion will turn to some of 
the many problems encountered In their study. 

One of the first problems that arises involves the treatment of 
the extremely low probabilities under consideration. Can the frequency 
of an event that has never or only very seldom occurred be meaningfully 
defined? When probability 1s so low and data 1s nonexistent, the 
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concept of frequency, especially in a statistical context, becomes 
meaningless. It has often been observed that as probabilities, and 
hence frequencies, become very low, most people tend to rely almost 
completely on intuition in an attempt to understand them. This, of 
course, usually leads to incorrect estimation of the probabilities 

-12 involved. Many people see the probability 10 (as in the bridge 
hand example mentioned earlier) and immediately assume that this is 
close enough to zero to essentially be zero. This, however, is an 
incorrect assumption to make. Any event with some probability of 
occurrence, no matter how small, can occur at any time. It must el so 
bb remembered that when we begin to consider time periods far beyond 
the scope of our lifetime, events which are considered rare at present 
assume a greater probabilistic significance [3]. An event may be 

-5 estimated to have a 10 chance per year of occurring; for any given 
year this is indeed a rare event. However, considered over a period 
of 100,00 years, the probability that it will occur at least once has 
risen to 63%; over a period of 1,000,000 years, the improbable has, 
as far as we're concerned, become a virtual certainty. The same thing 
happens as the number of systems, or, to be specific, nuclear power 
plants, increases. The estimate of the probability of a nuclear 
accident is made relative to reactor years; when 100 reactors are 
operating in any one year, this is equivalent to one reactor operating 
for 100 years, or 100 reactor years. Thus, the probability of any one 
reactor falling in a given year may be extremely small; but, as in the 
previous example, as the number of plants increases, so also does the 
probability of an accident. This important principle has applications 
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in the field concerning the history of this planet, \n which a million 
years corresponds to perhaps a second of the time we are familiar with. 
In such a time context, iv seems that low-probability events are bound 
to happen [6]. Herein lies the previously stated reason for trying to 
understand and study rare events. The tendency is to focus too 
heavily on the very short run, simply because it is of immediate concern 
and we are apt to be directly affected by any catastrophic event 
occurring during the short run. In doing this, we tend to ignore whatever 
consequences there may be for future generations. An event which may 
be considered rare now may, as we have seen above, no longer be rare 
in the future, especially considering that different conditions may 
exist. Certainly our hope is that by studying rare events that do 
occur, we can learn enough about them to cause them to be virtually 
nonexistent in the future. 

Another problem that has arisen in the study of rare events has 
to do with the statistical methods used to analyze them. Statistics 
and rare events? Isn t that a contradiction in terms? Statistics, in 
its classical sense, tends to imply a large data base; this is no 
wonder when we look at its dictionary definition: "The mathematics of 
the collection, organization, and interpretation of numerical data." 
The problem is that rare events have virtually no deta to offer. Also, 
ther is no past experience upon which to base our estimates of 
present or future probabilities. Where, then, do we turn? Fortunately, 
there exists an area of statistical methods, namely Bayesian, in which 
very little information is needed to analyze the event. Bayesian 
methods have only recently begun gaining general acceptance, however, 
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because of their non-objective, almost non-mathematical character. 
What they involve and how they have proved useful in the study of 
rare events will be discussed in a later section. 

Now we turn to the final and possibly most important problem to 
be considered in this discussion. That is, how should the structure 
of a rare event be approached? And, once the event has occurred, 
how do we go about determining and analyzing the mechanism which led 
to it? This mechanism is what is really at the heart of the whole 
issue of rare events. It is a mechanism which could lead to 
catastrophe under the proper conditions, yet which is extremely difficult 
to prevent because of our lack of knowledge about it. Such ignorance 
might even cause us to unknowingly create the circumstances under which 
the mechansim might be activated and the occurence of the one rare 
event would no longer be rare at all. This idea was vividly illustrated 
in the true account of a train accident that occurred in 1927 p i ] . 
Upon examination, this accident can be seen to fit into the category 
of rare events with which we are concerned, namely low-probability, 
serious-consequence events, since the accident resulted in death and 
injury. 

First, why was this accident labelled a rare event? This con­
clusion was reached from the observation that never before had anyone 
seen anything like it—not necessarily the accident Itself, but 
rather the particular sequence of events leading to its occurrence. 
It was literally months before the mechanism behind 1t was fully 
discovered, and when it was discovered, it was generally agreed that 
the accident could have been prevented by a simple modification of the 
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system. Was it negligence on the safety system designer's part that 
such a small detail was overlooked? If the particular mechanism 
leading to the event never even occurred to the designer, the answer 
to this question would have to be no. In such a case, since no such 
accident had previously occurred in his experience, he would have had 
no idea that such a thing might occur; thus, he would have had no 
reason to take steps to prevent it. In fact, in his design of the 
system, he may have unwittingly created conditions which made the 
occurrence of the accident not quite so rare as we might have 
originally supposed. 

Another factor which could not have been accounted for before­
hand was human error, which played a significant part in this accident. 
At the precise moment when it was crucial to pull the right lever to 
switch a train from one track to another, the signal operator 
unknowingly pulled the one beside it instead. This event at any other 
time may have been trivial; however, in this case it happened in the 
split-second in which it mattered a great deal, and perpetuated the 
sequence of subevents leading to the accident. 

It can be seen from this example how difficult it can be to 
delineate the particular sequence of subevents leading to a rare event. 
The task becomes many more times difficult as the complexity of the 
system increases, as in the case of a nuclear reactor. And, even if 
we do finally discover mechanisms which might lead to the occurrence 
of a rare event, how are we to know if all possibilities have been 
exhausted? Based on the mechanism(s) we have discovered, we will be 
able to make some estimate of the probability. However, there may be 
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several mechanisms which we might have absolutely no conception of 
until the accident occurs (as the result of some mechansim we have not 
taken into consideration). Because of this factor, the probability of 
occurence of such an accident could be grossly underestimated. 

V. Methods Used Thus Far in the Study of Rare Events 

How has the structure of the mechanism leading to the occurence of 
a rare event been previously approached? There are several models 
which have been used in their analysis; the experts still remain 
undecided as to which is the best approach concerning the evaluation 
of nuclear risk. 

The first model is that which treats a rare event as the con­
duction of more frequent subevents. What does this mean? Consider the 
following example. We wish to evaluate the probability of obtaining 
ten sixes on ten throws of one die. The rare event, obtaining ten 
sixes in a row, could be considered as the conjunction of the ten more 
frequent subevents, namely obtaining one six on a single throw of the 
die. Hence, the probability of the rare event occurring would be the 
product of the individual probabilitie- of each of the subevents. 
Assuming an unbiased die, this would give the result (1/6) - 1.65 x 10 
It can be seen at a glance that the probability of the rare event is 
much, much smaller than the probability of any one of the subevents. 

The conjunctive model was used extensively 1n the well-known 
Reactor Safety Study done under the direction of Professor Norman 
Rasmussen of the Massachusetts Institute of Technology. In this study 
extensive use was made of fault or event trees 1n an attempt to find 
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as many sequences of less rare subevents that could ultimately lead to 
catastrophes. Since In a complex system this becomes extremely pain­
staking because of the many variables to be taken into consideration, 
many possibilities were naturally left out—possibilities which were 
discovered a few years later when t • accident at Three-Mile Island 
occurred. These will be discussed in a later section. 

Another model which has been used is that which treats rare events 
as the disjunction of less frequent subevents. In this situation, 
probabilities are added rather than multiplied. This might be represented 
in a system in which all of the individual components are connected to 
one another in series; each of the components is considered essential 
to the system in the sense that if any of them fails, the entire system 
fails. In this case, the probability of failure of any one component 
might be extremely low, yet the probability of system failure could be 
much higher, although still small enough to be considered a rare event. 
According to Tversky and Kahneman (15), whereas the probability 
associated with a conjunctive event tends to be overestimated, that of 
a disjunctive event tends to be underestimated. The reason for this is 
that a certain type of bias exists, namely anchoring, in which people 
tend to estimate the final probability as being too close to the 
original probability. Since the probabilities of conjunctive subevents 
are usually quite high, the probability of the rare event is also 
judged to be quite high when, in reality, it is quite low. By the 
same token, probabilities of disjunctive subevents tend to be low; 
thus, the final probability is also judged to be low when, in reality, 
1t is much higher. In the case of conjunctive events, this bias may 
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tend to be evened out sonewhat by the fact Mentioned earlier that 
becomes the final probability of the rare event nay be underestimated. 

The third model which has been used in trying to understand rare 
events is that for which the event is considered as the extrapolation 
of more frequent events. Extrapolation refers to the process of 
estimating an unknown quantity of extending or projecting information 
from quantities which are already known. In this situation the 
theory of extreme values begins to enter the picture. This theory 
deals with events which are extremely intense realizations of events 
that may occur quite often, but which may not usually be considered as 
very significant. For instance, a tornado or hurricane might be 
thought of as an extreme case of a windy or breezy day. This theory 
is extremely important for the study of rare events, since classical 
statistics tends to dismiss extreme cases as deviations from some pre-
established standard. Kenneth Boulding [4] has observed that the 
field concerning rare events is an insecure one since little available 
data exists. Repeatable experiments dealing with rare events cannot be 
performed in a laboratory setting; thus, close attention must be paid 
to a rare event if and when it does occur in order to gain as much 
knowledge as possible about that small part of the total field. The 
goal of this theory is to study the distribution of the maximum (or 
minimum) value of a set of random variables [13]. It can be applied 
to the study of nuclear safety where either the event of nuclear 
reactor failure is treated as the rare event, or extreme case, or 
external "aggressions", such as earthquakes and floods, which threaten 
the safety of the nuclear power plant are treated as such [2]. The 
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application of this theory is discussed in greater detail by both 
Bemier [2] and Saporta [13]. 

Now, returning to an important Method Mentioned earlier, we will 
consider Bayesian statistical Methods in the analysis of rare events. 
What do these methods involve? Although Bayesian statistics often Means 
different things to different people, it almost always implies the use 
of subjective, or personal, probabilities, as opposed to the objective 
probabilities of classical statistics. What is the distinction here? 
Objective probabilities are those we calculate according to specific 
laws of combinatorial analysis and probability theory. The same final 
answer is obtained regardless of who does the calculation. On the 
other hand, subjective probability is a measure of an individual's 
degree of belief about the occurrence of an event. As may be 
obvious, the final answer will depend on the biases of whoever is doing 
the evaluation, and. as a result, will differ from individual to 
individual. The study of rare events almost necessarily implies the 
use of subjective probabilities, since so little is known about such 
events to begin with. Perhaps the best we can hope for at present is 
an estimate of probability that experts feel best reflects the actual 
situation. 

Subjective probabilities are the starting point for the application 
of Bayesian methods, in which prior probability distributions are taken 
into account in the calculation of posterior probability distributions. 
In other words, additional knowledge about an event can change the 
probability distribution of the occurrence of that event. This is 
accomplished by using Bayes' theorem, which says that if we formulate 
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an hypothesis H that a rare event will occur, where P(H) Is our prior 
degree of belief in H, and D represents new information in the f o m of 
an actual occurrence of the event, then the posterior probability is 
given by: 

P(H|D) = P M P ( P I H 1 
P(H)P(D|K) • P(H)P(D|H) 

where: 
P(H|0) = posterior probability that H is true given D 
P(D|H) = probability of 0 given H is true 
P(D|H) = probability of D given H is false 
P(H) = 1 - P(H). 

One Might tend to question the validity of the final result obtained in 
such an evaluation, since its basis is prone to bias and uncertainty. 
However, since so little is known about rare events, this seems so far 
to be one of the best methods available for analyzing those for which 
some prior probability distribution can be formulated. To see how 
this might work, an example will be considered. 

Let a rare event be produced in accordance with a Poisson process 
of intensity X, where, in the case of a reactor accident, X is on the -6 -9 order of 10 to 10 per reactor year. Such a value Is arrived at 
based on factors such as the analysis included in the Rasmussen Report, 
and from the fact that we have observed several reactor-years without 
the occurrence of a serious accident. Supposing a certain prior 
distribution of X, we can use Bayes' formula to find how the original 
distribution well be changed when, after N reactor-years, there Is only 
one major accident. It 1s found that if one accident is observed, even 
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for very large N, the estimated posterior risk is several times greater 
than the prior risk. The main implication of such a result is that 
the way in which the risk or probability was evaluated before the 
occurrence of the accident must be reconsidered [7]. 

In the case for which there exist no observations of the event 
upon which to base a prior evaluation of the probability involved, 
analysis becomes even more difficult. Bayes' theorem can be used in 
such a case, but it may not provide much information. The theory 
which is usually applied under these circumstances is the theory of 
decision under uncertainty. One of the basic hypotheses of this theory 
is that the decisionmaker's choice cannot affect the occurrence of the 
event being studied. Thus, in order to use this theory, the decision 
to employ must be chosen carefully to avoid confusion and comply with 
the above hypothesis. When the decision is such that it exerts no 
influence upon the occurrence of the accident, then the probability can 
be evaluated in some subjective manner, using expert judgment, previous 
analytical studies, and analogies with observations in related fields. 
A more detailed treatment of all the applications of this theory can 
be found in a report by Moriat [7]. 

VI. Where does the study of rare events go from here? 

Certainly the methods discussed above do not exhaust all 
of the approaches that have been taken up to the present. However, 
they are some of the most significant. The problem is that 
none of them seem to be conclusive concerning how rare event 
probabilities should be evaluated. Mori at has observed 
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f * that Bayesian methods or decision theory under uncertainty would be 
I best suited to the study of rare events because of the peculiarities 
I of such events. However, the majority of the studies that have been 
| done concerning rare events have concentrated instead on methods which 
i 
\ stem from classical statistics. Extreme values theory falls into this 
i 
I category, along with reliability methodology and the use of random 
I processes, two methods which have not been discussed here. Why has 
i 

I the concentration been in these areas rather than those where the study 
I 

of rare events seems to fit more c'osely? The first reason is that 
Bayesian statistics and subjective probabilities have yet to be widely 
accepted. Most of the present working statisticians learned and are 
more familiar with classical statistics; they use these methods because 
they feel comfortable with them. Another reason is that when it is 
possible to treat rare events as either the conjunction or extrapolation 
of more frequent events, this is much easier to deal with using methods 
of classical statistics, since we have moved from a situation with few 
observations to one with numerous observations. This is appropriate, 
however, only provided that the assumptions made in going from one 
situation to the other are valid. In the case that such assumptions 
cannot be made, there is really nowhere to turn, except in the direction 
of Bayesian methodology. This indicates that perhaps more effort should 
be put toward trying to understand and justify the use of such 
methods, especially since they seem much more applicable [9]. 

Nevertheless, it may be the case that none of the approaches used 
thus far is appropriate. We may have yet to develop the proper tools. 
We cannot even be completely sure that we are looking in the right 
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area of mathematics; we may be in the wrong field altogether! Perhars, 
as Alvin Weinberg has observed, the rare event question cannot be 
answered within the realm of science; it falls into the category of 
what he terms "trans-science." His proposal for a solution to the 
problem concerning the risks of nuclear power plants is a realistic 
one—to refine and improve technology so as to minimize possible 
effluents of nuclear power plants as best we can. If this is still 
insufficient, then we must begin looking at ways to cure any diseases 
or problems caused by radiation residuals [14]. 

None of all this is to say that no advances have been made in the 
analysis of rare events in the context of nuclear risk. The occurrence 
of the accident at Three-Mile Island, although unfortunate, has been 
quite beneficial as far as the study of nuclear accidents is concerned. 
Much has been learned from this accident about factors that had not 
been taken into account before. One such factor is that concerning 
human error. Although studies of the incident are not complete, 
improvements have already begun in the area of operations. Previous to 
the accident, safety concerns had been primarily focused on system 
performance rather than the performance of those responsible for proper 
operation of the system. Improvements that have been made are in the 
areas of personnel selection and qualification, training, licensing, 
operating environment, man-machine interface, and preparation for the 
unusual, especially in panic situations. Also, as a result of the 
accident, the scope of possible future accidents has been greatly 
increased. Prior to the TMI incident, too much emphasis was being 
placed on design-based loss-of-coolant accidents, and not enough on 
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other types of possible accidents, such as those involving severe core 
damage. Among the goals that have been formulated are: significant 
reduction of the probability of a core-damaginq accident, overall risk 

-1 -2 improvement on the order of 10 to 10 , improvement in systems 
reliability, and reduction of catastrophic accident consequences [19]. 

The occurrence of the accident at Three-Mile Island is by no 
means conclusive as far as the issue of rare events is concerned. In 
fact, additional questions have arisen. Most people had quite a bit 
of faith in Rasmussen's estimates of the risk of a nuclear accident 
until the Three-Mile Island incident. Now there is a great deal of 
doubt about the methods of risk assessment used in that evaluation, as 
well as doubt about any type of risk assessment that might be carried 
out in the future. Will we ever be able to completely understand rare 
events and discover solutions to the many problems associated with them? 
Possibly not, but it is an issue that cannot be ignored, because of 
the possible consequences involved. This was perhaps best summed up 
in the following statement made by experts in the field: Even if we 
have not found the complete solution to the problem, it is perhaps worth 
remembering that an event is "rare" when thinking of its estimated low 
probability in an extended space and time scale. When dealing with 
the safety of nuclear power plants, events of big importance in terms 
of consequences are rare precisely due to the fact that our knowledge 
in design, fabrication, and operation has resulted in good overall 
technical reliability. But, in terms of risks, in the nuclear field we 
are always asked to do "better" with respect to probabilities which are 
already low [18]. 
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