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Abstract—The design and analysis of plasma spectroscopy experiments can
be significantly complicated by relatively routine computatio'n-al tasks arising
from the massive amount of data encountered in the experimental design
and analysis stages of the work. Difficulties in obtailni‘ng, computing,
manipulating, and visualizing the information represent not simply an issue
of convenience — they have a very real limiting effect on the final quality of
the data and on the potential for arriving at meaningful conclusions »
regarding an experiment. We describe ongoing work in developing a
portable UNIX environment shell with the goal of simplifying and enabling
these activities for the plasma-modeling community. Applications to the
construction of atomic kinetics models and to the analysis of x-ray

transmission spectroscopy will be shown.
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1. INTRODUCTION

Historically, the role of computers in physics research has been viewed as
a fast and sophisticated calculator. More recently it has been recognized
that computers can be of more general utility in all phases of work
including experimental design, data preparation, solution of equations,
data reduction, model comparisons, and even the filing and
communication of results. Even within the traditional role of numerical
calculations, we find an increasing dependence on computers due to the
vast quantities of data which enter into the work, both as input and as
output. A consideration of recent work in plasma spectroscopy modeling
shows this dependence’ throughout the field, including modeling of
ionization balance,! transmission spectrum temperature diagnostics,?
Stark-profile density diagnostics,® and other more general spectral
modeling activities.45/6 In additional to the "number intensive" aspect of
this work, difficulties in computational modeling arise from several less-
obvious sources:

* First, plasma modeling is a highly multi-disciplinary field.
Analyzing a single experiment may require significant contributions
in the varied areas of hydrodynamics, population kinetics, atomic
physics, collision physics, spectral line broadening, etc. Typically,
these processes are computed by separate computer codes, each with
different data requirements and formats. Transferring results from
one code to another can, in itself, pose problems.

* Also, we find an increasing trend toward computations in
heterogeneous environments composed of distributed workstations.
Both the differences in the workstations, and their distribution over a
network bring new problems to the sharing of data and codes.

¢ The highly-collaborative nature of the work can present challenges.
Increasingly, we find that data and codes need to be shared, and thus
need to be understandable by people other than the code authors.



Aside from outright misunderstandings and code misuse, this can
lead to "author bottleneck" where obtaining a result, or a calculation
with special requirements, is dependent on the availability of the
code author.”

* Necessary reference data is generally limited, difficult to obtain and
unstandardized in format. Data centers are, by and large,
unprepared for general, unregistered user access.

¢ Theoretical datasets can be massive, difficult to obtain, and of mixed
format and quality. Certain databases are available through direct
network (i.e. anonymous ftp or World Wide Web) connections®-10 but
the location of the archive, the specialized content, and uncertain
assumptions inherent in the data can impede effective use.

These factors combine to adversely affect the quality of scientific work.
The cumbersome nature of working with massive datasets tends to limit
the number of studies and inhibits critical analysis of the work. As a
consequence, results from such studies can be inconclusive with questions
of completeness and procedure not uncommon.

At present, the plasma modeling community depends heavily on the
limited and often overwhelmed resources of specialists to obtain datasets
of atomic, opacity, or ionization kinetics information. Such limited access
to the data has several harmful effects on the field: overall activity is
restricted; access to the field by entry-level scientists becomes. difficult
(small academic institutions are particularly affected); peer’review is
restrained, as the overlap of skill in the field is limited; and studies
employing obsolete methods and data sources are still accepted as
representative work. Therefore we see that the size of the computational
problem and the current expert-based approach inhibits broad
understanding.

To improve this situation, we have undertaken the development of a
‘highly-interactive, distributed computing environment dedicated to the
design and modeling of plasma spectroscopy experiments. The work will,




in particular, focus on making available and useful the datasets required
for research in plasma spectroscopy. The utility of this project is in
resolving the difficulties presented above. The timing of this work is
opportune: in recent years, we have seen the wide availability of low-cost,
highly-capable scientific workstations so that former "supercomputer”
capability is now available to individual researchers throughout the
world. Also, the increasing access to large computing networks (e.g. the
Internet) is providing a great stimulus to collaborative activities. We feel
that, technically, it is appropriate to undertake this work at this time, and
that, to minimize barriers to understanding, it is necessary that we do so.

The principia for the project follow from the goal of providing a
comprehensive capability in a user-oriented setting. The concept is to
provide a complete set of portable, computational tools that work within
the framework of a modest workstation environment. The tools must
provide a range of capability as required to work in the field, as for
example a capability for assembling and manipulating atomic kinetics
models. The individual tools — obtained from the working community —
and the environment itself, must represent the state of the art in their
particular areas. As with other software, to be acceptable, a high degree of
intuitiveness and simplicity is essential. In addition, the capability we
provide must not artificially dictate a user's solutions. That is, we must
provide a general and flexible capability.

These objectives impose a set of technical specifications for the
environment. In brief, this environment will consist of an interactive C
programming language interpreter; an integrated interface to local and
remote databases; a graphical user interface, and access to portable,
structured binary data files. The environment will support distributed,
cooperating computing processes and provides for linkage with private
user-developed physics codes and function libraries. Each of these aspects
will be described in some detail in the sections which follow. For now, we
point out the overall requirements that, to ensure acceptance and utility,
the system must be intuitive, portable, standards-based, readily available,
and designed in a manner consistent with its intended use in plasma
spectroscopy modeling.



The design principles adopted here have, in part, been based on
observations of the degree of success obtained by related developments in
such diverse areas as image processing,!! astrophysics,12 and plasma
simulation.13,14 The inherent capabilities of each of these efforts are
significant. Nonetheless their acceptance has, in some cases, suffered,
which we believe is correlated to the extent that they deviate from the
above principles. We will comment briefly on these points. .

Typical usage patterns of scientific computer systems show periods of
intense use alternating with relatively quiet periods. Thus it is
unreasonable to expect anyone to remember unusual or highly-specific
aspects of use. This leads to the requirements of intuitiveness and
standards-based design. As regards the interpreter, a non-standard
language or one which is partially standard, can lead to a limited
acceptance by the intended users. The requirement for portability follows
from the fact that every computing platform has its idiosyncrasies. The
best hope for wide-spread use is to depend on supported, generally-
accepted, portable “middleware" for the graphics and windowing systems,
the binary file systems, and for process communications. We find that, no
matter the size of the institution, the cost and licensing aspects of software
are significant issues. We thus are avoiding dependence on commercial
and restricted-use products. Finally, it is important to keep the needs of
the plasma modeling community foremost. Deviating from the needs of
the community will inevitably lead to a loss of acceptance.

It is appropriate to note that this paper describes a work in progress. This
endeavor represents a significant effort, and is not fully complete at this
time. Some example applications will be presented in the final sections
which indicate the current status of the work.

2. THE COMPUTATIONAL SHELL

Of primary importance is that the computational environment be
interactive. It is instructive to note that at present a great deal of data
reduction and analysis is carried out with general purpose commercial
plotting packages, several of which exist for the different common
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computers in use (e.g. PC's, Macintoshes, UNIX workstations). Interactive
systems are extremely useful for the exploratory review of data and
modeling results and for carrying out tasks where the final criterion is a
non-quantitative visual measure, as in data smoothing, background
subtraction, and spectrum matching. Simple plotting is usually
inadequate for these purposes. It is generally necessary to have some level
of data manipulation or programming capability. We therefore envision
the user environment as a shell providing an embedded, interpretive C
language processor in conjunction with a set of capabilities specifically
addressing the field of plasma spectroscopy. The interactive language
interpreter is an essential key to achieving this goal as it provides the
framework for implementing many of the features we require. In
particular, it provides a capability for data manipulation, a vehicle for
code development, coordinates access to databases, provides the graphics
capabilities, supports a sophisticated structured binary file data access,
allows a transparent linkage to user-developed applications and routines,
and enables a graphical interface for a user's routines. These topics will be
discussed further.

In deciding upon the choice of language, we had to ensure that it provided
the necessary flexibility and functionality, but did not require an
unreasonable familiarity on the part of the user. As noted, since the shell
will likely be used on an intermittent basis we must choose a language
which is already commonly known, is standardized, widely-available, and
which is compatible with current developments in workstations and
computer science. Only two choices present themselves: FORTRAN and
the C language. While FORTRAN is undeniably more widespread in
scientific usage, we find the utility of C's data pointers and structures, and
its underlying relationship with the UNIX operating system a convincing
choice. We note that the C language can be employed in a simple fashion
quite like FORTRAN so that casual users need not be overly concerned. In
addition, we support a transparent linkage between the shell and a user's
externally compiled code (in either FORTRAN or C) which allows one to
continue working in FORTRAN and to use pre-existing code. We
consider it unacceptable to provide a language which is a bit like



FORTRAN, a bit like C, and a bit of imagination as this would impede its
utility and acceptability. In sum, we provide an interpretive (ANSI) C
language capability that supports the standard data types (e.g. arrays,
pointers, and structures), control loops (for, while, if/then, switch/case),
function calls, and access to the standard C libraries. As the ANSI
standard is being followed, any convenient textbook on the language
serves as a reference. The additional capabilities which we provide, in
particular the data manipulation and graphics capabilities, are by means
of standard function call conventions. A further benefit of following the
language standard is that a piece of code developed in the shell may .be
directly ported to compiled code. This code may be used either
independently or accessed from within the shell via linkage. The usual
execution speed penalty for interpretive code is thus avoided.

In dealing with massive amounts of data, it is often convenient to be able
to manipulate the information as arrays, rather than as individual values.
Aside from the simplicity and clarity that this allows, one can obtain a
significant speedup in calculations since the interpreter is invoked only
once for the full array. This has been previously recognized and full
computer languages, such as the APL language, have been designed
toward this end. More recent developments oriented toward scientific
usel4. 15 have also followed this approach. For reasons of standardization
mentioned above, we have chosen not to implement array-based
manipulations as part of the language syntax, but to provide this via
standard function calls. These functions can automatically handle
variables at different levels of dimensionality (scalar or multi-dimensional
array) or type (i.e. real or integer). This frees the user from constantly
passing along the variable's dimensions as arguments, or calling a set of
different routines depending on its type. This is espedially useful when
dealing with data from a database. In such cases, the amount of data
returned from a request varies, depending on the specified constraints or
the completeness of the database. Also, as there are fewer parameters to
be passed between routines, the reliability of the user's work is increased.
A large number of these routines have been provided and are used to
advantage in the atomic kinetics modeling application. The functional
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capabilities include simple binary operations, such as arithmetic,
relational, and logical, as well as more complex operations such as
indexing, subset selection, and array catenation. The fundamental
argument in support of array-based functionality is that it is insufficient to
provide ready access to databased information if it remains cumbersome
to work with the data after it is obtained.

3. DATABASES

We use the term "database"” to describe essentially any logically organized
collection of reference information (experimental or theoretical) employed
in a physics research problem. This rather loose definition is appropriate
since it characterizes the highly varied approach used for data archiving in
the physical sciences. Databased information tends to be data which is
used repeatedly, which is difficult to compute and/or collect in an
organized fashion, or which requires special expertise to obtain. Aside
from providing a repository for the information, a database may provide
convenient methods for accessing subsets of the data. However, this is
much more true in commercial database implementations than in the field
of physics.

A user's application drives the data requirements so that, in the present
area of work, we tend to think of fundamental atomic properties,
equation-of-state data and experimental measurements as information
suitable for databasing. One envisions accessing an atomic physics
database for such purposes as constructing a comprehensive atomic
kinetics "model”, or for more specific applications involving compound
and complex atomic processes. Examples include calculations of line
shapes for multi-electron emitters, dielectronic recombination coefficients,
or the synthesis of beam-excited electron emission spectra.

We believe the utility of databasing to be much more general than this.
For example, the output of hydrodynamics codes can be profitably
archived. This information tends to be massive and can be used for a
variety of post-processing applications. The input to such codes is equally
appropriate. One typical input might be the spectral definition and
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history of the drive pulse available from a specific laser facility. This is
usually not a strictly experimental quantity but is a construct prepared
with some effort. A iibrary of such quantities characterizing the different
facilities would be of general interest. Further, the startup file used to
specify a hydrodynamics calculation could be usefully archived,
particularly if tagged by the salient parameters. These startup files can be
tiresome to construct due to the large number of sometimes obscure
defining options typically required. This, however, would not be
particularly interesting to researchers beyond the author's working group.
In sum the output from any calculation, computer or hand-constructed, is
appropriate for archiving if it has further utility either to the author or to
other workers.

As this suggests, we propose a rather general usage of databasing. We
must now consider what kind of technology is appropriate for
implementing this capability. The applications described above show that
database use can be grouped according to whether the data is only of local
interest, or is useful to the community as a whole. Also, it is not always
necessary that a database be relational. A relational database is designed
to allow very general access to the information, though at an overhead
cost of access time, storage space, and in the design of the database itself.
A relational database would not be necessary for a situation where general
selectivity was not required. As an example of a non-relational database
application, consider that a hydrodynamics calculation requires access to
the full extent of an equation-of-state database. The only required
selection criteria in this case is the atomic composition of the material of
interest.

Given the varied use of databases and the need to support existing
relational databases and text file archives, we recognize that several
different database implementations will need to be supported. In
addition, some highly-idiosyncratic, or limited-interest databases are
distributed privately and consist of a data file together with a set of access
routines. In this case it is probably best to use the supplied function call
interface. In the shell, we implement an ideal which is to access databases
in a manner that is independent of the type of the database. In this
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approach a library of access functions has been developed which confine
the database-specific portion of the access to a single routine which
specifies the data to be read.

The overall process of accessing a database requires, at minimum, a means
of initiating a connection to a database server, selecting the database to
access (e.g. argon or aluminum), requesting subsets of data, and
terminating the connection. It is primarily in specifying the data request
that database-type dependencies occur. The access routines are designed
to be simple fo use and resemble working with standard UNIX files. All
operations utilize a DATABASE descriptor in the same spirit as the C
language FILE descriptor, or the FORTRAN logical I/O unit number. The
advantages of using the shell database routines are many: space for the
returned data is automatically allocated, the result is returned as a data
structure which may be easily passed to other routines, the returned data
structure is independent of the actual database type, a frequently accessed
database may trivially be re-written as a database of a different type (for
example a structured binary file database, with a significant speedup in
access time), it requires little change to read a database of a different type,
and database access is quite straightforward using the shell routines.

The types of data archives which are presently accessible with the shell
interface are briefly described below. It is relatively simple to support
additional types by providing new server routines. Server routines are
described further in the following section.

relational databases

An atomic physics database is representative of a database type which has
general utility throughout the field, can contain a massive amount of
information, and for which selective, relational, data access is of benefit.
Accordingly we have developed an atomic physics database on a UNIX
workstation using a standard, commercial relational database product.
Such products are available from several vendors — the choice is arbitrary
since the widely-accepted Standardized Query Language, SQL, is used in
all transactions. A SQL-compliant database can be viewed as a set of
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tables, where each table has a number of columns. The columns are
themselves identified by name. Each row in a table is one entry in the
database. The atomic physics database is organized such that the different
tables have information on the physical states, basis states, radiative
transitions, collisional cross sections, efc. Additional tables describe the
codes used to generate the stored data and other aspects of the
calculations.

Note that as the quantities stored in a database can have arbitrary names,
it is essential to provide a means for obtaining the schema (organizational
structure) for the database. Since this can be true of other database types,
we have provided an additional shell access function to return this
information. - '

The specification of the data request is in the form of a SQL "select"
command, which is of the following general form:

select x, vy, z from tablel, table2 where constraintl and

constraint2 or constraint3.

The selected quantities x, y, z are the names of the desired quantities,
exactly as appearing in the schema of the database. Examples from the
atomic database are: state_energy, parity, totald. The "from" field
indicates which tables are to be searched. The final portion of the
command presents search constraints. In the absense of constraints the
database will return all entries of %, y, z data in the database. For this
database, we generally have constraints to apply, such as to return only
those results where the atomic ion has 5 electrons, or where an x-ray line
position is within some bounds. As required, quite complex and exacting
constraints can be constructed. In particular, the constraints of one
request can be included with another in order to form correlated requests.
This is advantageous for the purposes of developing atomic kinetics
models and will be discussed further in Section 7.

11




structured binary file databases

In contrast to the example of an atomic physics database, the output of a
user's code containing results for x-ray absorption coefficients or
hydrodynamic simulations are best stored in a different type of database.
In such cases, the selectivity of a relational database is not required, but
rapid access to the data is. Application specific databases such as these
may be implemented using portable, structured binary files designed for
use as scientific data management systems.16 A simplified interface to two
of the most general systems, netCDF,17 and PDBLib,!2 is provided as part
of the shell and in UNIX library form for use in stand-alone applications.
These file systems offer compelling advantages over native binary access.
As a databasing scheme, they also offer specific advantages over the use of
a relational database. In brief they provide fast access to the data, allow
both read and write access to more complex data structures than provided
by SQL, have no overhead in defining the database, and are widely used
by research groups and many commercial application programs. Of
additional importance, they are institutionally supported yet reside in the
public domain.

While these file systems do not provide the access authentication
capability or general relational access provided by commercial relational
databases, these are also among their -advantages. The complexity of
administering a database system and, as required, bypassing the
authentication system are often considerable nuisances for the owner of a
database. Since structured binary files do not natively support SQL
commands, only a somewhat abbreviated SQL syntax is made available by
the shell. For example, it is not possible to impose constraints in the
“select” command - the full variable is retrieved. An example of a
database composed of PDB files is presented in Section 8.

text file databases

The most common form of archiving is tabular data in simple text files.
Such files may be accessed from within the shell by the usual C language
170 libraries. Due to their frequent use as a "database" in the form of
tabular arrays, we additionally provide access via the database library.
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These are the same functions as used to access any of the other database
types. The syntax for indicating a selection of a text file reduees to
specifying the lines and columns of interest. As a convenience, delimiters
may be specified to eliminate the need for precise formatting statements.
For such file types, the emphasis is on simplifying the access to the data.

ALADDIN databases

Within the plasma physics community there exists a standardized file
format for representing atomic physics transition data. This format, the
ALADDIN data format,19 has been developed under the auspices of the
International Atomic Energy Agency (IAEA) and consists of both a data
formatting standard for a diverse set of processes and a set of data access
subroutines. The term "ALADDIN" is also used to refer to a specific
collection of atomic rate data maintained by the IAEA (in ALADDIN
format).® The data files themselves are standard text files. This is an
example of a privately distributed database which could simply be linked
to the shell and used according to its documentation. Due to the
international charter of the system, and its possible wide-spread use, we
have chosen to support access to ALADDIN data files via the shell
database library. As in previous cases it is only in the syntax of the data
request that this type of database differs from the others. The ALADDIN
syntax is quite unusual and we have not attempted to cast it into a SQL-
like form. As a consequence it remains necessary for the user to specify
his request in the ALADDIN form. In other respects access to these
databases is identical to the previous cases.

4. DISTRIBUTED DATA ACCESS

Access to distributed data arises in two contexts: access to remote
databases, and access to files residing on other machines as a result of
calculations carried out there. In the latter case, the data is of a temporary
nature. The goal is simply to bring the results of the calculation back for
use by the shell. Remote databases are data archives of a more permanent
nature which generally have some specialized data access procedure, for
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example using SQL commands. We have implemented an approach
where both sets of data are accessed in a similar fashion.

Interest in distributed, or remote, databases is not a recent development
due to the increased use of data networks. In many cases databases which
are developed for independent reasons in varied locations are later seen to
be of great value if made generally accessible. So, one is attempting to
facilitate access to data which is already distributed. This is the case in
databases of atomic energy levels and processes (a good summary of
atomic data archives throughout the world is given in Ref. 20). A
difficulty with such a disordered development that there is very little
commonality in the software implementation of these databases. In
general, the access software is database specific, the interface is by
command line only (i.e. there is no callable function interface), the
returned data is usually very specific and limited (e.g. eigenstate
properties may not be available), and the “database” may simply be a file
directory. Additionally, most of these databases are not on-line.

Given the varied nature and location of these archives, we have chosen the
PVM message passing interface?! as the most reliable and capable means
of communication. PVM stands for "parallel virtual machine" and is
intended specifically for facilitating the management of processes and data
on a heterogeneous, distributed network of cooperating computers. The
“virtual" machine is defined by enrolling actual machines. The enrollment
process consists merely of specifying the participating computers by
network address. The processes to be connected may be running either
locally or over a network. PVM also has the capability of "spawning" (i.e.
starting), processes on any machine enrolled in the virtual machine. This
is invoked through the agency of a PVM server daemon. In the present
discussion, we connect to distributed databases by requesting PVM to
Spawn a remote server process which can communicate with the database.
As the databases have highly specific interfaces, the server process must
be of an appropriate type in each case. To the extent possible, these server
processes speak in standard SQL on the network side and in whatever
fashion is required on the database side. This approach restricts the
idiosyncrasies of specific databases to just the server code. As a
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consequence, new database types may be supported with no changes in
the shell. Since PVM transparently integrates all data resources in the
virtual machine the shell need never concern itself with the actual physical
location of the requested data, aside from initially specifying its address.

Database server routines presently exist for accessing SQL-compliant .
databases, structured binary file databases, ALADDIN format data files,
and simple text data files. The procéss begins with the shell requesting
that a server process of a specific type be spawned on a specified machine.
The server process created by this request then initiates a connection back
to the shell, after which the shell provides the name of the database to be
connected, or the complete file path of the file to be accessed. The server
then connects to the database and enters into a sequence of transactions
with the shell. All the steps to establish a connection with a database are
transparent to the user and are invoked when the database "open"
function is called. A database transaction consists of the issuance of a
“select" operation upon the database, after which the server process
assembles the result and transmits it back to the shell. When a database
“close” function is called, the server receives an instruction to close its
connection to the database and quit. In the case of simple file transfer
between machines (for example the input or output file for a calculation
on a remote machine) the server process has a similar dialog with the
shell, but simply transfers the file and terminates.

Dealing with a remote, general-access database presents new
complications regarding access authentication, database availability,
multiple- versus single-use licenses, and whether the requesting process,
usually the shell, should block - that is, wait ~ for the data request to
complete. An additional consideration is the question of locating a
distributed database. When requesting that a database be opened, it is
necessary to know the network address of the archive. At present the user
specifically provides this information. A preferred approach is to
establish a network directory server to translate published database names
into a complete specification for accessing the database. This would
include the machine address, the -type of server required, and as
necessary, the pathname to the data.
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5. PROCESS COMMUNICATION

A principle goal of the developers of the PVM library was to enable
calculations to be carried out by the cooperation of multiple distributed
processes on a varied set of machine architectures. Multiple processes can
cooperate by the parallel execution of a specific calculation, i.e. parallel
i)rowssing, or by coordinating an overall task such that different processes
carry out specific portions of the work. This latter approach, termed
distributed processing, is the model used by the shell. We are not, in fact,
specifically seeking a distributed processing capability. In general a user
will be running the shell and perhaps one or two specific application
programs. In many cases, these processes will all exist on the same
machine. The use of other machines will most likely occur in the context
of a request to access a remote database. Distributed data processing may
also be attractive if a significant amount of data is to be obtained from a
remote site. In general, we prefer to carry out as much of a calculation as
possible at the site where the data actually resides so as to avoid
unnecessary data transmission. This would not be possible in the case of a
public-access database server where the only permitted function is data
retrieval, but would be possible on a machine where the user has more
general access permissions. Another scenario for distributed processing is
to call upon a high-performance workstation or supercomputer to carry
out an intensive numerical calculation. The results of the calculation
would then be returned to the shell on the local machine for analysis,
archiving, or for input to a further calculation.

All these activities can be handled within the PVM framework. This
library can handle communications either locally or across the network
and provides for data format conversions between machines of a different
type. PVM has a high level of institutional support and is widely-used by
scientific research groups.

We support the use of distributed processing by allowing the user to
Spawn new processes, on any cooperating machine, at will from within -
the interpreter shell. When a new process is spawned, the user is returned
a PROCESS pointer which, like a FILE or DATABASE pointer, carries all
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the information needed by other shell routines to communicate with the
task. Communications functions are available which allow a user to
implement data transfer and process synchronization between the shell
and the new process. One application of process synchronization is to
coordinate a hydrodynamics code and an atomic kinetics solver so that as
the hydrodynamics steps through time, the kinetics solver receives
updated spatial state properties. The kinetics solver could then compute
new level populations and pass them back. Yet another code could then
use these data to compute x-ray emission spectra as a function of time. A
user can thus create new physics simulation capabilities by coordinating
existing packages. The different physics packages are completely isolated
(perhaps even on different machines), except for the information
specifically transferred. As a consequence, modifications in one code are
unable to cause unexpected effects in the other. This is an extreme
example of "data hiding" which is strongly encouraged as code
development gets large or multiple authors are involved.22

6. GRAPHICS AND GRAPHICAL INTERFACES

The shell graphics capability is intended to be compatible with, and used
in a fashion complementary to the large number of data plotting packages
already in wide use in scientific settings. Sophisticated, commercial multi-
dimensional visualization software is readily available to those requiring
it. Additionally, everyone will, by natural selection, continue to use the
programs they find most comfortable. However, as it is so much easier to
comprehend trends and relationships visually, it is of great importénce
that provision is made for a convenient and reasonable data plotting
capability integral to the shell. Further, there are special graphing
requirements in the plasma spectroscopy, notably Grotrian diagrams,
which are not generally found in other software packages and which we
will provide.

As with other aspects of this shell, we restrict ourselves to the use of
standards. In this case we have adopted the X Window System?3 with the
Motif interface standard?* for all graphical work. This system is suitable
for both data plotting and for the development of graphical interfaces. In
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addition to the strength and flexibility inherent in X Windows, another
advantage is that a great number of compatible extensions exist in the
public domain. In particular we have employed the plotting widgets
available in the Athena widget set.2> A good deal of capability is obtained
this way. As a standard part of the shell we provide a plot capability for:
multiple curves, contour plots, double x and y axes, linear and logarithmic
scaling, arbitrary text placement, and creation of PostScript™ display files.
There is editing control over all aspects of the display, incdluding tic marks,
font size and style, curve patterns and color, axis scales, and other features
commonly expected. The creation of the plots and setting the desired
display properties may be done by function calls, or by use of a graphical
plot editor interface.

The plot widgets also provide a "callback" capability, which allows the
user to specify a function to be called when a particular event occurs. The
events which are supported are: motion of the cursor within the plot
window, the selection of points or objects within the plot by use of a
mouse, and the specification of rectangular regions within the plot by a
click-drag sequence. These callbacks are easily employed by the user to
select plotted items for modification, to choose an (x, y) coordinate pair
within a plot, to extract a set of (x, y) coordinates as a path, and to
interrogate the system about the properties of selected items. The utility
of callbacks in an actual data analysis setting is illustrated in Section 8.

The close relationship of the plot package to the shell interpreter allows
selected items, such as a displayed curve or a set of coordinate pairs to be
created as new variables within the interpreter for further use (perhaps as
input to some calculation). The connection to the interpreter also works in
the opposite direction, so that if a data variable in the interpreter is
plotted, any modification of the data will cause a re-draw of the curve in
the plot. This allows the interpreter to carry out data reduction activities
on a plotted curve with a continuously updated display of the results.
Note also that this allows a plot to be tied to the updated results from a
spawned simulation calculation. As the simulation advances it sends the
updated information, e.g. zonal state properties, back to the shell which
then immediately updates the plot display. We refer to this close,
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interactive relationship of the interpreter, plots, processes and the user, as
active graphics.

A graphical user interface (GUI); while often criticized as an unnecessary
decoration, has particular utility in the context of a database or file
browser. Since the schema of a.database may be difficult to remember, it
is very useful to get a quick display of the definitions of the database
tables. It is also useful to view files before reading them to ensure that the
correct file has been selected. A GUI is not essential, but it does make
these tasks simpler and more direct. Another advantage of a GUI is, if
properly implemented, the simplicity that it provides to the user for
setting parameter values in an application interface (for a plotter, a
hydrocode efc.) that would otherwise require a complex guidebook and an
arcane function call interface. A GUI also allows much more rapid
changes as it can largely bypass a keyboard-based interface. Finally, a
GUI allows a user to readily identify choices. For example, in performing
an instrumental broadening of a synthesized spectrum, the choices for
setting the resolving power (e.g. fixed FWHM, A/AA, Bragg law variation)
are immediately apparent. Aside from the convenience factor, there is less
opportunity for error when the interface is made more intuitive.

It is a challenging undertaking to provide a user-oriented package for GUI
development. We have chosen to provide a limited capability, yet one
sufficient to allow a user to specify text display and input boxes, radio and
check boxes, slider controls, two-dimensional (x, y) point selection boxes,.
scrollable lists, and dialog boxes. These are not particularly difficult to
implement as they are provided as part of the X/Motif windowing system
itself. Since standard X Windows and Motif library calls are used, an
ambitious user is free to add additional capabilities. Such modifications
are very welcome. The authors would be interested in user contributions
which could benefit the overall community.

7. EXAMPLE I: ATOMIC KINETICS MODELS

The study of high-temperature, highly-ionized plasma sources frequently
requires a consideration of the non-LTE character of the plasma. In
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particular, the spectroscopic modeling of laser-produced plasmas,
espedially for such sensitive features as emission line ratios or laser gain
estimates generally requires the use of comprehensive, highly-accurate
numerical models of the atomic state. These "atomic models" can vary
extensively in the detail of the electronic energy level structure and the
physical processes which they include. It is quite common, though, for
such models to include ‘a multi-ion representation of an atom with a
distribution of energy levels within each charge state. Quite frequently a
good description of multiply-excited states above the lowest continuum
will also be required. Transitions between the atomic states defining a
model may include a variety of physical processes. It is usual to include
the excitation and ionization contributions from radiative processes,
electron collisions and autoionization transitions. Multi-step processes,
such as dielectronic recombination or resonant excitation-autoionization
are also often included, as may heavy ion and charge-exchange collisions.
These latter processes are especially important in studies of magnetically
confined plasmas. An atomic kinetics model is also subject to various
possible approximations to reduce the number of states to a more
manageable size, hopefully without adversely affecting the physical
behavior under study.

The energy separation of atomic states depends on the details of the atom
but all atoms show a hydrogenic trend of increasing density of states near
the ionization limit. The decreasing level separation and the increasingly
collisional nature of these highly-excited states provides justification for
the use of composite, or "average" level descriptions. Rates connected to
such states must then be appropriately summed or averaged to ensure the
consistency of the reduced model. In addition, it is important to construct
these average levels in a physically appropriate manner to retain the
relevant kinetic properties. There is no "best" préscription for specifying
the averaging process. This remains an art requiring an iterative
reduction, or extension, of a model to obtain the desired balance between
size, complexity and accuracy.

One approach to balancing model accuracy and complexity with
computational efficiency is to develop a sequence of models of graduated
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complexity where the one with the least detail is used to model the gross
physical properties, for example the charge state distribution. A more
detailed model is then run in a post-processing fashion to compute the
properties of spectroscopic interest. This is, in fact, the most common
scheme, but it frequently suffers in the implementation in that the two
models may bear no relationship to each other. In many cases the models
differ in the values of the physical properties (energy level values, rates),
the rate processes included, and qualitatively in the manner in which the
levels are connected.

The task of constructing and executing averages over an atomic model
possessing many hundreds of atomic levels and tens of thousands of rates
is sufficiently complex that very few researchers have this capability. In
addition, the exercise is sufficiently onerous that only limited
investigations are made of the sufficiency or accuracy of the reduced
model. Specific rates can be evaluated, gross plasma properties can be
compared, but a detailed evaluation of the scaling behavior of the kinetic
model is the exception.26

It is for this reason that we have included a very general capability for
constructing and evaluating atomic models as an integral part of the
plasma modeling environment. This "application"” is written as a program
within the shell itself, using the built-in C language interpreter. The
interpreted code provides loops over processes and ion stages, makes calls
to an atomic physics database for some of its information, keeps track of
the many data constituents, and carries out the steps to define and execute
a user-specified kinetics model average. The calculation is not limited by
the interpretive overhead since many of the routines used in the
calculation are written in compiled code and, furthermore, make use of
array processing for additional benefit. We will limit the discussion here
to qualitative remarks on the model construction process since the
primary concern is with capability and methodology. Implementing the
model-making capability within the shell offers a number of advantages to
the developer: the shell simplifies the tasks of selection of energy levels,
physical process selection and comparison, and evaluation and
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modification of the model — all of which are best done within an
interactive framework.

Using the atomic physics database

It is worth emphasizing that an atomic model is largely defined once the
energy levels and the level averaging process have been specified.
Considering any particular process type we know that any transition
connecting levels in the model should be included. Thus the set of energy
levels is the key item. Specifying energy levels to be obtained from the
atomic physics database involves the use of constraints in the select
statement. These constraints can be applied to any of the properties which
define the energy level in the database.

For this reason, the database design we employ includes a number of
quantities to facilitate the data selection process. For example, a set of
atomic states may be chosen from the database on the basis of the
principal quantum number of its outermost electron, and on the number
of electrons in the state (i.e. the charge state) as follows:

select state_energy, stwt, level_key from state_table

where (nbound = 4) and (nouter <= 5)

More complex requests are equally easily stated:

select state_energy, stwt, level key from state_table
where (nbound = 4) and (nouter = 5) and (nouter_next = 3)

and (parity = -~1) and (code = "mcdf"™)

This request will return data on the odd-parity beryllium-like states of the
configurations: 1523151, 1512113151, which have been computed with the
MCDF code.

The quantity "1evel_key" in the above request is a database-wide unique
level identifier assigned to each physical energy state as it is added to the
database. An archived transition between two levels also retains the
corresponding level identifiers, under the names "levkey lower" and
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"levkey_upper" in the rate table. It is thus possible to establish an
unambiguous assignment of transition rates between any two levels.” By
demanding a match between these keys in an SQL “select" request on
transition rates, we can be assured that the resiﬂting rates connect the
appropriate levels. More geﬁerally, the full set of constraints used to select
out the energy levels can be simply appended to the transition rate request
in conjunction with the 1evel_key constraint. For example consider the
following request for energy levels with a set of constraints on the levels:

select state energy, stwt, level key from state_table

vhere {Level constraints}

To get all radiative rates connecting these levels, we simply request:

select rate, levkey_lower, levkey_upper from
rad rate_table, state_table where {Level constraints} and

(levkey_ lower = level_key)

Further constraints on the rates to be returned, such as those within a
wavelength window, or those with a value exceeding 100 sec], may be
similarly appended to the requést. We see then that a SQL-compliant
relational database is of great utility in selecting and correlating
information of a varied sort. All the difficulties of searching and matching
conditions are enforced by the database search engine. Other SQL
keywords exist for ordering the results, counting the results, selecting
extrema, efc.

To obtain this capability requires the existence of codes to compute the
quantities of interest, and which provide output that can be installed into
the database. This is the case for the (highly-ionized) atomic physics
database where a family of atomic properties codes based on the MCDF
atomic structure code has been in use for many years.27-30 These codes
have been extensively employed in the calculation of massive sets of
atomic level and rate data.

Given that we can extract energy states and connecting transitions from
the database, we now consider methods for modifying the model level
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structure, either to add levels, delete levels, or to obtain average energy
levels of the sort described earlier. The criteria for averaging levels
together varies greatly from researcher to researcher, and from problem to
problem. As a consequence, a very general capability is required in order
to obtain a utility of wide-spread applicability. A general approach to
level deletion and consolidation is obtained through the application of
logical operations based on the properties of the atomic states. The
method is thus relational in the same fashion as accessing the data from
the atomic physics database. Two routines have been provided which
"operate” on the energy level data structures. These routines are used to
indicate levels to be deleted, and the levels to be averaged together. Level
deletion will be addressed first.

Deleting states from the model

All the levels resulting from a database request are set by default to be
“active". A level may be deleted simply by marking it as inactive. From a
calculational point of view, an inactive level does not exist in the problem.
Information relating to the level persists in the data structure, so that the
level may be restored if desired, but all operations concerning model
construction will regard the level as non-existent. The activity status of a
state in the level data structure is specified by a Boolean array. This array
may be extracted or replaced by calls to the routines: GetProperty() and
SetProperty(). These are general routines to access properties of
"opaque" data structures, i.e. structures where the specific internal data
organization is not of interest to the user. Opaque data structures, in
conjunction with these access routines, are used in many contexts within
the shell. '

We will present a short example on modifying the level structure of a
model. Begin by extracting the array of (active) energy levels:

GetProperty (BeStruct, ENERGY, &earray):

In the above, BeStruct is a data structure of beryllium-like states. The
second argument indicates what property to extract. The return variable
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earray is an array of floating point data. To determine which energy
levels have an excitation energy below 600 eV, we perform a relational
operation on the energy array, making use of an array-based function
provided by the shell:

testl = le(earray , 600.);

The function le() carries out the less than or equal comparison of its
arguments so that the variable test is now a Boolean array whose values
depend on the comparison of the energy values in earray with the
criterion of 600 eV. To "delete" the energy levels which fail this criterion,
one simply resets the selection array in BeSt ruct with the array test1:

SetProperty(BeStruct, ACTIVE, testl):

Energy levels above 600 eV no longer exist in the model! Also, since
transitions to inactive levels are ignored, we have, in a single step
modified the model in a fully consistent fashion.

Much more complicated criteria can be applied to the deletion process.
The set of state energies is only one of many state-related properties which
can be extracted by GetProperty(). Any succession of relational tests,
based either on the state properties or on a more arbitrary basis (e.g. only
accept the first 47 states), can be applied to determine which states are to
be deleted. A simple extension to the above example is to delete those
states with an excitation energy above 600 eV and whose outer electron
has an angular momentum greater than 3 (such a consideration migh-t be
appropriate when developing an opacity model). Continuing the
previous example, the orbital momenta of the outermost electron must be
extracted and tested: ;

GetProperty(BeStruct, LOUTER, &larray):;

test2 = le(larray , 3);

The requirement that both the energy and momenta are satisfied is now
imposed:
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test = and(testl, test2);

and the set of active states is modified:

SetProperty(BeStruct, ACTIVE, test);

Construction of composite, or average, energy levels

An average level is a single, effective energy level which represents the
contribution of a set of levels to the kinetics of the system. The statistical
weight of this effective level consists of the sum of its members' weights.
The energy value is taken as a simple weighted average of the constituent
levels' energies, as weighted by their statistical weights. This prescription
does not strictly preserve the atomic partition function but the deviation is
small when the constituent levels are closely spaced. Ideally, with an
appropriate choice of levels, the average level will preserve both the
dynamical and equilibrium distributions of the state populations.

An average level will additionally retain as many of the properties of its
constituents as is physically sensible. If all the member levels have the
same total momentum, the averaged level will too have that value. The
same applies to the electron configuration and parity. The computation of
the averaged level's properties is thus straightforward. The pertinent
question is to determine which levels can be combined in this fashion
without compromising the non-equilibrium character of the full kinetics
model - or at least the part leading to the observables. To determine the
acceptability of a model, one needs to observe, and compare, different
levels of model completeness and averaging. Therefore, the process of
averaging must be simple, flexible, and direct. The following approach
has been found to be effective.

The function AverageLevels() is a low-level routine used to specify
states (by level index) for combination into an average level. The usage is:

AverageLevels (BeStruct, level list);
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The array level list contains a set of level indices, defining the new
average level. This array may be of arbitrary length. Internally, the
routine computes the properties of the average level and adds it to the
model. This level is marked as being an average level, and it retains a
record of its constituent levels, each of which remain in the data structure.
Keeping the sublevels in the data structure ensures that the iterative
development cycle remains general. For example, the model's level
structure may at any point be completely redefined since the sublevels are
readily restored. The level list may include levels which are themselves
already composite levels, in which case their list of member states
becomes part of the new one. To average levels 5 and 23 together, we

type:
int level_ list[] = {5, 23};

Averagelevels (BeStruct, level_list);

Transitions between, or connecti:ig to levels which are now part of an
“average level must be properly summed to preserve the strength of the
transition. For a dipole transition, we average over initial states and sum'
over final states. Since the transitions are processed after the model's level
set has been chosen, their averaging can be carried out automatically,
according to the current set of energy levels, without any intervention by
the user. Accounting for average levels and their effect on transitions is
integral to the model-making code. The detailed mechanics need never be
directly considered by the user.

The level averaging capability is extended by another function,
AverageGroups(), which simultaneously carries out a number of
averaging operations. The call is '

AverageGroups (BeStruct, groups, select):

The second argument, groups, is a integer matrix whose rows define the
averaging groups. The number of rows in this matrix must agree with the
number of levels in BeStruct; an arbitrary number of columns is
allowed. This matrix is usually derived from properties of the levels. This

27




approach automatically results in the correct number of rows. The final
argument, select, is a Boolean array which indicates which levels are to
participate in the averaging process. A zero entry in this array indicates
that the corfespondng level is not to be involved in the averaging process.
A pre-declared value of ALL is available to indicate that all levels are

subject to averaging.

The use of this routine is best indicated by example. If we were to
combine all levels into groups characterized by parity, we would expect to
obtain just two groups corresponding to the even and odd symmetries.
This is done by first obtaining an array containing the parity values of the
states, and then using that array to define the groups:

GetProperty(BeStruct, PARITY, &parities):

AverageGroups (BeStruct, parities, ALL);

The array parities is a sequence of -1 and +1 values corresponding to
odd and even parities. In this case the array parities serves asan N x 1
matrix to define the averaging groups. A group is defined by all levels
which have the same value in the array. If entries 1 through 23 are -1 and
24 through 46 are +1, then the first group consists of the first 23 levels; the
second group is the second 23 levels. After the averaging, we will have
just two levels, corresponding to the averages of these two groups. The
plus and minus one values may be scattered throughout the array, the
routine will still bring them together into the correct group. A more
physically reasonable version of this example might be to apply such a
parity grouping only to levels whose energies are above some critical
value, for example the ionization potential. This requires that the selection
array contain an entry of 1 for every level above this value and a 0 for
those below. The same group definitions are used, they are simply
ignored for those levels which are not selected. The example is modified
as:

GetProperty(BeStruct, PARITY, &parities);

GetProperty (BeStruct, ENERGY, &energies);
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test = gt (energies, 600.);

AverageGroups (BeStruct, parities, test):

We allow for the second argument to be a matrix (and most frequently it is
a matrix) to allow for more general group definitions. To construct a
group according to the combined criteria of parity and total state
momentum, we extract the parity array and the momentum array and
concatenate them to form an N x 2 matrix. The groups are still defined as
rows (corresponding to the levels) with identical values. In this more
general case the rows must be identical, element by element. Rows which
have identical parity and momentum values result in similarly defined
groups, and belong to the same composite level. The previous example of
groups defined by parity, for levels above 600 eV, will now be extended to
groups defined by (parity, momentum), for levels above 600 eV. The
concatenation of the parity and momentum arrays is performed by the
function, cat, as shown in the following:

GetProﬁerty(BeStruct, PARITY, &parities):
GetProperty(BeStruct, MOMENTUM, &totald);
testgroup = cat(parities, totald, COLUMN_WISE);
GetProperty(BeStruct, ENERGY, &energies);

test = gt(energies, 600.);

AverageGroups (BeStruct, ‘testgroup, test);

Composite levels are frequently defined as levels with identical
configurations. This gives rise to several possibilities since a configuration
could be defined by relativistic orbital occupation numbers, non-
relativistic occupation numbers, shell occupation numbers, or some
combination of these. For this purpose we ignore complications due to
multi-configurational basis states. As the occupation numbers are known
to the database, by default we extract them and make them part of the
level data structure. Like other state properties, they may be extracted:

GetProperty (BeStruct, NLJ CONFIGURATION, &nljconfigs);
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In the case of N levels whose electrons are all in shells up to principal
quantum number # = 4, there are 16 occupied relativistic orbitals (Is1; to
4f712). For this case, the above function call returns the integer matrix,
nljconfigs, which is of size Nx16. For the same levels, using
NL_CONFIGURATION to extract the non-relativistic configurations would
result in an N x 10 array of non-relativistic occupation numbers (Is to 4f).
A configuration array so obtained may be used directly to define the
groups for averaging:

AverageGroups (BeStruct, nljconfigs, ALL);

This results in a model with relativistic average configurational levels. As
in previous examples, we could modify the group definition by a column-
wise concatenation of the state momenta to the array nljconfigs, or
modify the levels to be affected by changing the selection argument. A
frequent variation is to define levels where the outer electron is shell-
averaged and the inner, core electrons are averaged by non-relativistic
configuration. Within a single ionization stage, this prescription results in
sequences of core-excited Rydberg levels. Other functions are available to
simplify the construction of composite levels according to such variations
as energy binning or thermal bands.

Internal calculation of energy levels

We have thus far discussed energy levels as obtained from an atomic
database. It is also possible to construct models whose energy levels are,
in whole or in part, supplied by the model-rﬁaking code. These energy
levels are based on an internal calculation of Dirac-Fock-Slater (DFES)
single-electron energies.31 Multi-electron relativistic configuration levels
may be constructed wholly with these results. Or, in conjunction with ab
initib atomic structure calculations, these energies may be used to
construct sequences of core-excited Rydberg levels. In such levels, the
departure of the running, valence electron from its continuum is
determined by the internal DFS calculation. The averaging and deletion
processes described previously r;xay be employed regardless of the levels'
origin.
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Internal calculation of transition processes

The transition data in a model may be obtained from a variety of sources.
The default preferred data source is the atomic database. However, a
large number of processes may be required in a model and the database
may lack the necessary information. In this case the user may specify
among a number of secondary data sources. These consist of theoretical
or semi-empirical models of the process which can be carried out in-line.
A variety of internal calculations are available, depending on the
particular process in question: oscillator strengths,32-34 auto-ionization
rates,? cross sections for electron collisional excitation,?6-43 heavy-ion
excitation,** photo-ionization,43:46 and electron collisional ionization.47-58
In addition to these, a user may provide his own rate routines in
FORTRAN or C code, and have them linked to the shell for use in atomic
model construction. The inverse processes for all transitions, including
those obtained from the database, are computed by the principle of
detailed balance. This occurs in the routines which evaluate and solve the
rate matrix, not in the preparation of the atomic model.

The internally available calculations generally provide cross sections or
rates appropriate for a single electron interacting with an effective nuclear
charge. We employ statistical branching ratios and screening coefficients>9
to apply the cross sections to transitions between more highly resolved
levels, or configurations with inner-shell vacancies.

Internal representation of transition processes

Electron-ion collision processes are computed as cross sections —
continuous functions of the relative energies of the colliding particles. For
the inelastic processes of interest in this work, the usual approximations of
isotropy, rapid thermalization among like particles and the extreme
difference in mass between the ions and the electrons indicate that in the
final kinetics model the transition process need only be represented as rate
coefficients, i.e. cross sections integrated over an assumed- (Maxwellian)
electron distribution function. To provide additional capability, by default
we leave these processes as cross sections within the models. This allows
the user to use non-Maxwellian electron sources or to model electron

31




scattering processes. For situations where this generality is not required, it
is possible to “"process" the collision cross sections into the more common
rate coefficient form, assuming a Maxwellian electron distribution. This
processing results in a parameterized (in temperature) fit to the rate
coefficient. The user can thereby eliminate the overhead of computing the
rate integral each time the rate matrix is set up.

Energy level identification

New problems arise when attempting to use an approach as general as
that presented here. In particular we must consider how to combine the
results of atomic rate calculations from different codes. The usual context
for this problem is when the atomic structure calculation used to define
the energy levels in a kinetics model differs from the atomic structure
calculation used in computing the rates which we wish to use. An ab initio
rate calculation gives results in terms of transitions between levels as
defined in its reference atomic structure calculation. Due to different
numerical or physical models, the level definitions of different structure
calculations may not agree. A mapping must then be determined which
can reliably treat the problem of energy level identification. For highly-
ionized ions we find it convenient to map levels in the following fashion.

The energy levels in each of the two structure calculations must first be
split into groups according to the parity and total momentum of the states.
This is readily accomplished using the functions developed to construct
averaging groups as described above. Within a single such group. we
energy order the levels in the two calculations and then pair the two sets
of levels together. There are two principle assumptions in this approach:
the underlying physical model in the two calculations are similar, and the
two calculations are of identical level sets. In many cases, one calculation
may contain many more levels than another (generally in the form of
additional levels with higher-lying valence electrons). This complication
may be resolved by further defining the "groups" to include the shell
electron occupation numbers. For highly-ionized atoms, we frequently
find the shell occupation numbers to be good quantum numbers, even for
calculations employing multi-configurational basis states. In particular
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situations it may be found that some other scheme must be used to define
the level "groups". We see that this represents a very minor change in the
process ~ the approach itself is general.

Evaluation of kinetics models

Simple routines have been provided to solve the system of rate eq{xations
defined by the atomic model. These routines return a data structure
which contains the solution to the rate equations, i.e. the level populations,
and additional quantities of interest. This includes, for example, the
column sum of the rate matrix (which should be identically zero in the
steady-state). Quantities are extracted using the standard access routine
for opaque data structures:

GetProperty(solnStruct, POPULATIONS, &pops):

which here requests the array of level populations.

The rate equations may be solved either in steady-state, or with time
dependence. Further, the plasma state can be specified quite generally by
an electron energy distribution and photon spectrum. For steady-state,
constraints on the relative ion abundances may be applied.

Kinetics models in external physics application codes

A standard UNIX library exists to allow a user to link the evaluation and
solving routines into their stand-alone physics code. The most direct way
to get the kinetics models into an external code is, from within the shell, to
write the model into a structured binary file. The model is then accessed
from a user's FORTRAN or C code by reading the file (with the structured
binary I/0 library) and passing the resulting unit number to the routines
which evaluate the rates for a specified plasma state. The resulting rate
dafa structure is next passed to the solver routine, which solves the rate
equations and returns the solution data structure. As within the shell, the
numerical quantities of interest are obtained by use of the GetProperty()
function. The full model-solving capabilities are available in this fashion:
time-dependence, general plasma state specification, efc.
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Graphical Displays

Given that a kinetics model may be constructed we must then consider
means of visualizing it. A graphical representation in the form of a
Grotrian diagram is a common format and so has been provided within
the shell. In these diagrams, the energy levels are drawn as functions of
some quantity which aids the user in evaluating the general level
organization or in visualizing the transition processes in the model. The
interconnections of levels are indicated in the form of arrows showing the
processes or population fluxes of relevance. The independent variable
and the processes shown depend on the interests of the user and the
specific problem under study.

We have therefore chosen to provide a general Grotrian diagram
capability which allows the user to indicate which levels to display and
the horizontal offsets to be used. This capability follows the usage
conventions of the more general Cartesian plot routines. In the Grotrian
diagrams the graphic properties of the levels may be individually set (e.g.
line thickness, color, etc.). Transition processes may also be shown and
modified on an individual basis. The horizontal shift given to the levels
may be arbitrarily specified, or based on properties of the energy levels
themselves. For example, to shift levels according to their total momenta,
the momenta is simply extracted from the model data structure (in the
fashion already described) and then supplied to the plot routine as the
new offset. It is equally convenient to offset levels by the number of
electrons in the atomic state or by any other property of the levels. The
shell functions used to average energy levels by classifying them into
specific groups may also be used here to specify a more complicated
scheme for the level offsets. This may even be done dynamically; we can
initially construct a diagram with shifts determined by bound electron
count and then reset the offset property to view the same levels offset by
electron count and total momentum. When the diagram is shifted like this,
any indicated transitions are automatically adjusted to continue
connecting the appropriate levels. In addition to the function call
interface, an interactive GUI editor is provided. A final point: since the
full model is known to the plotter, it is possible to bring up a display of
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information about an energy level once it has been "selected". This is
available through the plot editor.

8. EXAMPLE II: AN EXPERIMENTAL DIAGNOSTIC

One aim of this project is to simplify the use of large-scale data sets in the
study of plasma spectroscopy. An example which illustrates the
manipulation of massive amounts of data is to model the absorption
spectrum of keV x-rays by a sample containing aluminum as a diagnostic
element. Theoretical LTE absorption models are quite sensitive to the
plasma temperature so that this technique can be used as a temperature
diagnostic, given adequate knowledge of the density.2 Several such
experiments have recently been carried out with such high quality that the
plasma temperature is constrained to within a few eV.60,61

The diagnostic technique depends on the use of a spectrometer of
moderate to high resolving power (A/AX of 800 - 2000) to measure the Kt
absorption by an aluminum plasma of a broad-spectrum backlighter. The
experimental measurement covers the spectroscopically rich line region
from 1520 - 1600 eV. The present example will reproduce the analysis of
an earlier study? fo illustrate the utility of the shell. A description of the
experimental method may be found in the recent works of Perry,$2 or
Koch.63 We will here be concerned only with developing the aluminum
temperature diagnostic. The method has recently been successfully
extended to other elements in differing wavelength regions.64:65 The
diagnostic capability illustrated here can readily be used in these cases by
a change in the underlying data file.

For a uniform slab, x-rays are exponentially attenuated according to their
absorption coefficient, Ky(p, T), which is a function of density, p,
temperature, T, and photon frequency, v. The transmission is given by

Tv=L/Iy =expl-pLxfp, 7],

where I°y is the direct backlight spectrum and Iy is the transmitted
spectrum. The quantity pL is the areal mass density. A reasonably
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accurate (£ 20%) estimate of p, needed in the evaluation of ¥, has been
obtained from side-on radiography. We assume that all experimental
corrections to the data have been applied. To compare with experiment
we must include the response function of the spectrometer, and so
compute a quantity, T1y,

T = [ Ry, v3D) Ty av’,

where I' =1 /AM is the resolving power of the instrument and Ri(v, v’; I,
the instrument function, is typically represented as a Gaussian function
whose width is determined by T.

The calculation of Tl depends ultimately on the existence of a highly-
complete, spectroscopically accurate database of aluminum x-ray
absorption coefficients.2 The computation of the absorption coefficients
requires substantial effort. That is, the atomic physics quantities, e.g. line
positions and oscillator strengths, require high precision and represent a
large collection of data since absorption by satellite lines (from multiple
stages of ionization) is significant. The opacity calculation using these
atomic data must be computed on a dense grid in p, T, and v. Thus, the
final database approached 100 megabytes in size. The development of the
database is, in itself, a substantial theoretical effort.

The iterative modeling cycle is straightforward, but tedious in execution.
The intent of this section is to indicate how the shell environment may be
used to first make the underlying database widely available, and second,
to make its use relatively straightforward, even for a novice. We begin by
considering the ideal implementation. In principle the only activity
required of the user is to select values for (p, T) and A/AL. As these are
varied we must re-evaluate those quantities which depend on them. The
interface must allow a means of selecting p, T, and A/AA, and for plotting
the theoretical T together with the experimental quantity. The ideal
approach is a graphical user interface. Then, as the independent variables
change, a recalculation of the appropriate dependent quantities is invoked
by a specification of callback routines. The internal shell mechanisms thus
ensure that all quantities are updated in proper sequence. For example,
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changing p or T invokes a new interpolation in the opacity table. This
change in Ky invokes a recalculation of Ty, which results in a new T4, and
finally in the plot itself being updated.

We now describe how we access the aluminum opacity database. This
data was originally available as numerous text files, each of which
contained a tabulation of Xy for a single value of (p, T). The chosen
database implementation was to rewrite these files as structured binary
data files and to use the existing distributed file server mechanism for
access. Thus, we have a system that can access any of these files, from any
machine on the Internet, simply by specifying the host archive machine
and directory path. A loop loads the full opacity set into a data structure
designed for interpolation in two independent variables. A companion
interpolation function is used to evaluate K{p, T) as an arbitrary function
of its arguments.

Figure 1 illustrates the complete interface as presented to the user. At this
point, the opacity data set has already been loaded, default values of (p, T)
and A/AA have been set and the dependent éiuantities of Xy and Tk, have
been plotted. The shell graphical interface tools include simple
mechanisms for setting one and two dimensional quantities with a click of
a mouse button. We employ one of each of these in the figure. The
plasma conditions are specified by clicking in the window labeled “Plasma
State Picker"; A/AM is set with the slide control labeled “Resolving Power".
In the transmission plot, we see the experimental quantity in dashed
pattern, the theory is represented as a solid line. The sequence of ﬁghi‘es
which follow show the entire analysis of the experiment as carried out
with three clicks of a mouse button.

Initially (Figure 1) we observe from the transmission 'spectrum that the
computed charge state distribution represents a state that, compared to
experiment, is overly ionized. For reference, we note that the main
lithium-like absorption occurs at about 1580 eV. By clicking in the state
picker window we lower the temperature leading to the result in Figure 2.
Now, while the overall ionization balance matches the experiment, we
note that we need to increase the resolving power. This is clear from the
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" lack of detail‘in the theoretical spectrum. Doing so leads to Figure 3,
which is an acceptable comparison. Now iterate on the density, which is
far less sensitive, to bring it into line with the experimentally determined
value (0.0257 + 0.005 g/cm3). Since decreasing the density results in
further ionization of the plasma, we compensate by simultaneously
lowering the temperature. We thus arrive at the final result, consistent
with all experimental constraints, as shown in Figure 4.

9. SUMMARY

A user-oriented plasma modeling environment has been described. This
environment has been developed with great attention to facilitating the
data management and manipulation activities encountered in the design
and analysis of plasma spectroscopy experiments. The individual
components of the project, the interpretive language processor, database
communications, graphical display and interface, have been described in
detail. Some effort has been made to indicate how these different
components interact to provide further capability. Examples have been
presented to show the potential of this approach in settings of general
interest. | -

The first example, the construction of atomic kinetics models,
demonstrated the utility of the interactive shell language in developing
large, correlated physics data sets. The selection of the model's level
structure, beginning with the database and continuing into the shell, has
been discussed in considerable detail to demonstrate the flexibility and
power of the approach. Atomic kinetics models can now be developed in
a straightforward, uncomplicated fashion. The approach is sufficiently
general that a user is free to develop level averaging schemes of his own
design, as appropriate to his application.

The second example was to develop a graphical user interface to eliminate
the rote activities involved in spectrum-matching data analysis. The
analysis package was readily constructed — a consequence of the general
approach taken in designing the shell and its underlying code subsystems.
This example additionally validated the use of structured binary data files
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and data access over a network in a physics data analysis setting. With a
change in the absorption coefficient database, this analysis capability may
be applied to transmission experiments involving other elements and
transition arrays.6465 We note also the potential for application to
experiments.and data sets involving Stark-broadened line profiles.66

Additional work will be carried out to move the shell from a research to a
general user environment. It is essential also to establish additional
collaborations within the plasma modeling community to ensure the
generality and flexibility of the implementation. We will be soliciting
interest from reseachers, in both experiment and theory, to develop
additional applications.

This work was performed under the auspices of the U.S. Department of
Energy by the Lawrence Livermore National Laboratory under contract
No. W-7405-ENG-48.
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FIGURE CAPTIONS

Figure 1. User interface as initially presented. In the transmission plot,
experiment is dashed line pattern, theory is solid curve. Density scale in the
“State Picker" is logarithmic. Judging from strength of lithium-like absorption
in the 1580 eV region, the theoretical charge state distribution is overly-ionized
compared to experiment.

Figure 2. Selecting a lower temperature in the “"State Picker" brings the
theoretical ionization balance into agreement with the experiment.

Figure 3. The resolving power is increased to match that of the measurement.

Figure 4. A lower plasma density, consistent with radiographic measurement,
is selected. The temperature is simultaneously decreased to maintain the
ionization balance. Analysis now matches all experimental constraints.
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