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SUMMARY 

This report documents the results of a preliminary, two-month study 
t o  determine the design constraints imposed by heat transfer considerations 
on canisters containing sol i di f i  ed, high-level nuclear waste. The waste i s  , 

derived from the reprocessing of 1 ight water reactor fuel for uranium 
recycle a t  160 days after reactor discharge. The study was conducted for . 

Rockwell Hanford Operations in support of their high-1 eve1 Waste Canister 
' 

Envelope study. 

Candidate solidified waste forms considered in this study are in-can 
melted borosilicate glass and stabilized calcine. Each canister i s  . - 

assumed t o  be ten feet long,  f i l led with waste t o  a height of eight feet, 
and fabri ca,':?d of 304L stainless' steel. Air- and water-cooled. interim 

storage of ?-.& canister a t  the Fuels Reprocessing Plant (FRP)  are con- 
sidered ~ r - i  :.- to ultimate storage in deep geologic media a t  Federal re- 
positories.' Candidate repository media are sa l t ,  shale and basalt. 

Canistei. design constraints arise because of the need t o  maintain the 
waste forms, canisters, and geologic media below certain cri t ical  tem- 
peratures. Design constraints, in terms of the maximum a1 lowable canister 

diameter and heat load, are presented for interim storage a t  the FRP and 
for ultimate storage a t  the  repositories. For interim storage, these con- 
straints are presented parametrically in terms of: the time since re- 

processinq (i .e. ,  the waste age) a t  which the canister i s  f i l led and 

enters interim storage; the type of cooling used during 1nteri111 storage; 
the temperature constraints t h a t  may be imposed; and whether or no t  the . 

canister i s  overpacked. For geologic storage i t  i s  assumed t h a t  the 
canister i s  overpacked and enters geolocic storage ten years after rey. 

processing . Prel imi nary conclusions, and recomrnendati.ons fo r  future 

analyses, are presented. 

iii 
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1 . INTRODUCTION 

Reprocessing o f  i r rad ia ted  Light-Water Reactor fue l  elements t o  re- 
cover urani um and p l  utoni  um, using the so l  vent ext ract ion process, w i  11 
generate h ighly  radioact ive (i .e., high-level) 1 i q u i d  wastes. T i t l e  10 

o f  the Code o f  Federal Regulations, Par t  50, (10CFR5O) requires that :  

0 A Fuel Reprocessing Plant 's  inventory o f  high-level l i q u i d  radio- 
ac t ive  wastes must be l i m i t e d  t o  tha t  produced i n  the p r i o r  f i ve  
years ; 
High-level l i q u i d  radioact ive wastes must be converted t o  a dry 
s o l i d  and placed i n  a sealed container, o r  canister, p r i o r  t o  
t ransfer  t o  a Federal repository; and 
A l l  high-level wastes must be transferred t o  a Federal reposi tory 
no 1 a te r  than ten years fo1 1 owing reprocessing. 

I n  ea r l y  1976 the U.S. Energy Research and Development Administration ex- 

panded the nuclear waste management e f f o r t  and created the National Waste 

Terminal Storage (NWTS) program. Responsibi l i ty f o r  management o f  t h i s  

program i s  w i th  the Of f i ce  of Waste I so la t i on  ( 6 ~ 1 )  o f  the Union Carbide 

Corporation - Nuclear Division. The pr inc ipa l  object ive o f  the NWTS pro- 

gram i s  t o  provide reposi tory f a c i l i t i e s ,  such as t h a t  shown i n  Figure 

1-1, i n  various deep geologic formations a t  mu1 t i p l e  locat ions i n  the 

F i  gure 1-1. ARTIST'S CONCEPT OF A FEDERAL REPOSITORY (REFERENCE 1 ) - 
1-1 



United States which w i  11 safely d i  spose o f  the commercial rad ioac t i ve  b 

waste which must be de l ivered t o  a Federal repos i to ry  f o r  terminal  storage. 

Design c r i t e r i a  f o r  the h igh- leve l  waste can is te r  are no t  defined i n  

10CFR50. A d e f i n i t i v e  can is ter  design i s  requ i red i n  order t h a t  f i r m  plans, ' 

designs, cost  evaluations, e tc .  can be prepared f o r  reprocessing and d i s -  

posal f a c i l i t i e s  and operations. Toward t h a t  end, OW1 i n i t i a t e d  the high- 

l e v e l  Waste Canister Envelope Study a t  the A t l a n t i c  R i c h f i e l  d Hanford Com- 
pany (now the Rockwell Hanford Operations o f  the Rockwell I n t e rna t i ona l  

Corporation). The ob jec t i ve  o f  t h i s  study i s  t o  es tab l i sh  can is te r  design 

c r i t e r i a  andudesigns t o  ensure. t h a t  the can is ters  w i l l  -be compatible w i t h  

a l l  handl ing equipment and environments, from the t ime o f  waste s o l i d i -  

f i c a t i o n  ~ r n t i  1 empl acernent i n  a Federal rep~si tor .y ,  i ncl  udinq poss ib le  

r e t r i evab le  operat ion dur ing a f i xed per iod a f t e r  emplacement. 

The power densi ty o f  the waste a t  the t ime o f  reprocessing can be on 

the order o f  10 w a t t s  per cublc inch. AS snown i n  Figure i -2 f o r  a i y p i c a i  

YEARS AFTER REMOVAL FROM REACTOR 



e 
h igh - leve l  waste can is ter , ,  thc :  i :.::! t generated by t h e  vari.ous r a d i o a c t i v e  - .  

isotopes i n  t h e  h igh - leve l  wasts  &cays w i t h  t ime t o  approximately 5 p e r - ,  

cent  a f t e r  10 years and t o  0.5-percent  a f t e r  100 years. Thus, development 
of design c r i t e r i a  f o r  h igh - leve l  waste c a n i s t e r s  must consider  both t h e  

time-dependent power and the  temperature 1 imi . ts 'wh ich  have been prescr ibed 
I 

f o r  t h e  candidate waste forms, c a n i s t e r  m a t e r i a l s  and geologfc storage 

media. 

The TRW Defense and Space Systems Group was se lec ted by Rockwell t o  

support t h e  h igh - leve l  Waste Canister  Envelope Study by conduct ing an ana lys i s  

t o  de f ine  t h e  cons t ra in ts  imposed on t h e  c a n i s t e r  designs by heat  t r a n s f e r  

considerat ions.  Rockwell , technical d i r e c t i o n  was provided by Dr. E. L. . 

Moore. The o b j e c t i v e  was t o  determine acceptable c a n i s t e r  geometries and 

heat  l oads .  f o r  the  range o f  candidate waste forms, c a n i s t e r  conf igura t ions ,  

i n t e r i m  storage techniques and repos l  t o r y  geologic media. The approach 
+h-+ e.. a-c ~ A ' . $ . I . I c  +n - P  n m * . n n C i  5 7  1 r r  n v = m < . v + ~  . : - 'n~ osi-.: c l - a ~ '  r ~cr;;p! ?-+P I f fe 
b 1 1 1 1 t .  .111-1  2 d 3 ~ t ~ ~  ..UJ CV JLCIUCI1 . .  . I J  -..-.... ..- -..- -.-..: - --. 
cycle,  rev iew past  heat  t r a n s f e r  s tud ies  o f  c a n i s t e r  1 i fe-cycle phases 

t h a t  have been conducted by o the r  agencies, i d e n t i f y  .gaps i n  e x i s t i n g  

i n fo rmat ion  and f i l l  these gaps w i t h  computer-aided heat  t r a n s f e r  analyses. 

.Due i n  p a r t  t o  t h e  sho r t  pe r iod  of t ime a l l o t t e d  t o  coinplete thi .s 

study, i t  was necessary t o  assume t h a t :  cani 's ter  geometries would be 
1 imi.ted t o  a cy l  i n d r i c a l  shape; and one- and two-di.mensi.ona1 thermal 

models would provi.de. an adequate degree o f  accuracy. The pr imary ou tpu t  
o f  t h i s  study, then, i.s t h e  d e f i n i t i o n  o f  t he  maximum a l lowab le  ' can is te r  

diameters f o r  t h e  range o f  candidate waste forms, cani.ster conf igurat i .ons, 

interim storage techniques and reposi..tory medfa. 

Sect ion 2 o f  t h i s  r e p o r t  desc.ribes the  study scope and assumptions. 

Sect ion 3 presents t h e  r e s u l t s  obta ined f o r  t h e  base1 i n e  cases considered 

and examines poss ib le  a l t e r n a t e  cases. Conclusions and recommendations 
a r e  contained i n  Sect ion 4. The d e t a i l e d  thermophysical p r o p e r t i e s  used. 

i n  t h i s  study, a b ib l i og raphy  o f  t he  r e p o r t s  t h a t  were reviewed, and a 

v e r i f i c a t i o b  --: o f  the  thermal model used f o r  the  g l a s s - f i l l e d  can is ter ,  w i t h  - - .  

f i n s ,  a r e  documented i n  the  appendices. 



2. APPROACH 

The o v e r a l l  o b j e c t i v e  o f  t h e  study repor ted  he re in  was t o  determine 

t h e  acceptable geometries and heat  loads o f  h igh - leve l  r a d i o a c t i v e  waste 

cani  s  t e r s  based on heat t r a n s f e r  1 i m i t a t i o n s  . The general approach 

adopted t o  meet t h i s  o b j e c t i v e  cons is ted  o f :  
- 

e Reviewing the  1 i t e r a t u r e  t o  compile app l i cab le  study r e s u l t s .  

e As necessary, supplementing past  s tudy r e s u l t s  w i t h  heat  t r a n s f e r  
analyses. 

With c e r t a i n  exceptions which a re  noted i n  t h e  appropr ia te  sect ions,  t h e  

1 i t e r a t u r e  reviewed (see Appendig B, B i  b l  iography) i n d i c a t e d  t h a t  pas t  

thcrmal analyses had been c o n A ~ ~ i c t . ~ d  w i t h  groundrules and assumptions which 

were , : ,u f f i c ien t ly  d i f f e r e n t  t h a t  t h e  r e s u l t s  cou ld  n o t  be r e a d i l y  e x t r a -  

po la ted t o  t h e  groundrules and assumptions adopted i n  t h i s  study. There- - 
 far^, -..- =;;al\;cr;= .., --- y=;-c ..-. - ~ a J f a r q ? ; ~ d  . - .  i c  t . h e  ! ~ y e q ~ n t .  ~tljdy.  A 

d e t a i l e d  d iscuss ion of the study scope and assumptions i s  presented i n  t h e  

fol1or.ri ng paragraphs. 

2.1 SCOPE 

For heat  t r a n s f e r  considerat ions,  t h e  c a n i s t e r  l i f e  c y c l e  was assumed 

t o  c o n s i s t  o f  the  f o l l o w i n g  p r i n c i p a l  phases: 

Waste s o l i d i f i c a t i o n  and Can is ter  F i l l  ing ,  w i t h  t h e  f o l l o w i n g  
two opt ions :  in-can me1 t i n g  t o  produce a b o r o s i l i c a t e  g lass- type 
waste form, o r  f l u id i zed -bed  c a l c i n a t i o n  p lus  s t a b i l i z a t i o n  t o  
produce a ca lc ine- type waste form. 

I n t e r i m  Storage of t he  can is te rs  a t  the  Fuels Reprocessing P l a n t  
(FRP) i n  e i t h e r  a i r  o r  water. 

e Transpor ta t ion  of t h e  can is te rs  from t h e  FRP t o  the  Federal 
repos i to ry ,  i n  sh ipp ing casks designed i n  accordance w i t h  DOT 
a.nd NRC r e q ~ i i  rements . 

/ 
A 

e Geologic Storage, i n c l  uding r e c e i p t  a t  t h e  repos i  . . .-. 
operat ions i n v o l v i n g  emplacement i n  e i t h e r  a s a l t  
b a s a l t  medi um and residence i n  the  medi um f o r  an . .- 
i o Q  o f  t ime. Th is  phase inc ludes the  p o t e n t i a l  f o r  r e t r i e v a l  f o r  
a l i m i t e d  -: t ime a f t e r  emplacement. - .  - 

The waste s o l i d i f i c a t i o n  and c a n i s t e r  f i l l i n g  phase was n o t  addressed 

i n  t h i s  s tudy because i t  i s  the  sub jec t  o f  i n t e n s i v e  t reatment  by t h e  

agencies respons ib le  f o r  development o f  t h e  waste forms (e. g. , ~ a t t e l  l e  

P a c i f i c  Northwest Laborator ies,  BPNL, i n  the  case o f  b o r o s i l i c a t e  g lass) .  



Simi lat.'.;, si!z transportation phase was not t reated here because the 

desigr: c:i:,;zraints imposed by heat t ransfer  considerations during transporta- 

tion are  being assessed in a separate, Rockwell-funded study. Therefore, 

the present study focused on the design constraints imposed by heat t rans-  

f e r  considerations during the interim storage and geologic storage phases 
of the canis te r  l i f e  cycle. 

2.2 ASSUMPTIONS 

This section describes the.assumptions tha t  were made i n  modeling the 
interim storage and geologic is01 ation phases of the high-level waste 
canister l i f e  cycle. These assumptions a re  related to:  the schedule; the 

canis ter ,  overpack and sleeve desi gns ; the design of the Federal repository; 
zhe thermophysical properties of the materials involved; and the teh- 

perniure conslilaints tha t  were imposed. A1 though cer tain design and 
operational aspects involved in the proposed management . 

. 
of high level 

wastes have not,  as ye t ,  been defini t ized the assumptions made here a re  
thought to  be consistent with current planning. 

The canis ter  design constraints a re  d i rec t ly  affected by the time a t  . 

which certain operations occur, specif ical ly:  the time a f t e r  reactor dis-  
charge a t  which reprocessing occurs; the time a t  which the canis ters  con- 
taining so l id i f ied ,  high-level waste f i r s t  enter  interim storage a t  the ' 

FRP; and the time a t  which the canis ters  a r e  emplaced in the Federal . . 

repos i tory. 

After the spent fuel i s  removed .from the reactor i t  i s  stored for  
several months to  a1 low the short-ha1 f-1 ived isotopes, such as iodine 
131, to decay. For this study, an elapsed time from reactor discharge t o  
fuel reprocessing of 160 days was assumed (Reference 2 ) .  

- e 
The groundrul es es tab1 i shed by 10CFR50 a re  tha t  h i  gh-1 eve1 1 -iquid b.: 

wastes must - be sol id i f ied  and placed in sealed canis ters  within 5 years 
a f t e r  reprocessing and transferred t o  a Federal repository within 10 - 
years. Theoretically, so l id i f ied  wastes could reach the repository very 

soon a f t e r  reprocessing. However, due to  the rapid thermal decay during 

the f i r s t  10 years,  and the likelihood of there being an economic incen- 
t i ve  to  delay t ransfer  fo r  the maximum possible time, i t  is  more l ike ly  



t h a t  t he  waste w i l l  be approximately 10 years o l d  when t r a n s f e r r e d  t o  t h e  

repos i to ry .  Thus, the  base l ine  case considered i n  t h i s  s tudy cons is ted o f  

i n i t i a l  placement o f  can is te rs  i n t o  i n t e r i m  storage a t  any t ime d u r i n g  the  

f i r s t  5 years a f t e r  reprocessing, s torage u n t i l  t he  waste i s  10 years o ld,  

fo l lowed by t r a n s f e r  to,  and emplacement .in, t he  Federal repos i to ry .  

2.2.2 Physical  Models 

The s o l i d i f i e d  h igh - leve l  waste was assumed t o  have been generated as 

the  r e s u l t  o f  t he  reprocessing o f  spent f u e l  from a l i g h t  water r e a c t o r  (LWR). 

Uranium-only recyc le  was assumed. Emphasis was placed on waste f rom a pres- 

sur ized water r e a c t o r  (PWR) because o f  t he  h igher  i nhe ren t  power per  u n i t  

volume. Appendix A g ives $he d e t a i l s  o f  t h e  i n i t i a l  f u e l  enrichment and 

burnup assumed, and t h e  r e s u l t a n t  thermal h i s t o r y  f o l  lowing reprocessing a t  

160 days out;-of-reactor.  

The c a n i s t e r  i s  assumed t o  be f a b r i c a t e d  frcm S ~ ! ~ & : I ! F  ":,?n<L ? ! s f ? -  

l e s s  s tee l  pipe. The c a n i s t e r  i s  10 f e e t  long. Although n o t  t r e a t e d  i n  t h i s  

study, t he  r e s u l t s  f o r  a  c a n i s t e r  w i t h  l e n g t h  g rea te r  than, o r  l e s s  than, 10 

f e e t  a re  expected t o  be i d e n t i c a l  f o r  i n t e r i m  storage, and o n l y  s l i g h t l y  

d i f f e r e n t  f o r  geologic storage. The c a n i s t e r  i s  f i l l e d  w i t h  waste t o  a  

he igh t  o f . 8  fee t .  Canister  diameter i s  a  v a r i a b l e  whose maximum i s  con- 

s t r a i n e d  by t h e  var ious  temperature l i m i t s .  

A  c a n i s t e r  con ta in ing  b o r o s i l i c a t e  g lass which has been formed by 

in-can me1 t i  ng' conta ins i n t e r n a l  f i n s  o f  304L s t a i n 1  ess s t e e l  . A1 though 

the  f u n c t i o n  o f  these f i n s  i s  t o  conduct heat  i n t o  t h e  waste d u r i n g . i n -  

can me1 t i n g ,  they are  a l s o  e f f e c t i v e  i n  conduct ing heat  away f rom t h e  

center1 i n e  dur ing  i n t e r i m  storage and geologic storage. BPNL i s  i n v e s t i  - 
ga t ing  a  v a r i e t y  o f  f i n  con f igu ra t i ons .  The e i g h t - f i n  design shown i n  

Figure 2-1 i s  a  t y p i c a l  BPNL design f o r  a 12-inch-diameter c a n i s t e r  

(Reference 3). This f i n  con f igu ra t i on ,  w i t h  the  l eng th ,  determined by t h e  

c a n i s t e r  rad ius ,  was used i n  t h i s  study. Because o f  the  assumption o f  . 

c0nstan.t f i n  th ickness the  e f f e c t  o f  these f i n s  on t h e  g lass c e n t e r l i n e  
- .  - 

t e m p e r a t ~ r ~ d e c r e a s e s  w i t h  i nc reas ing  rad ius .  I n t e r n a l  f i n s  were n o t  - 
i nc luded f o r  can is te rs  con ta in ing  ca lc ine .  Figures 2-2 and 2-3 show t h e  

r e s u l t a n t  heat  1  oadi ng f o r  g lass-  and c a l  c i  n e - f i  11 ed' can is te rs  , res-  

p e c t i  vely. 



FIGURE 2-1 . FIN/CANISTER DESIGl -(BOROSILI CATE GLASS. ONLY) 

WASTE AGE. YRS. 

FIGURE 2-2. GLASS-FILLED CANISTER HEAT LOADING 



WASTE AGE, YFARS 

F I G U R E  2-3. - CALCINE-FILLED CANISTER HEAT LOADING 

A canis ter  overpa.zk, constructed of carbon s t e e l ,  i s  assumed t o  be 
optional during interim storage in + i r  or  water, but mandatory during' 
storage in the ~ e d e r a l  repository (Reference 2 ) .  

Two modes of i n teiNim storage were i nves ti gated : a i  r-cool ed and water- 

cooled. In a i r ,  the canis ters  a re  assumed to be oriented ver t ica l ly  

and to  be cooled only by f ree  convection and radiation: no forced a i r  
cooling was included. In water, the canis ters  a re  stored i n  basins and 

water w i t h  a bulk temperature of 49'C 'is circulated around the canisters.  
Figure 2-4 (Reference 4) shows the water basin cool ing concept.  he , 

detailed design i s  seen to  depend on whether or not the canis ters  a re  I 

Due-to mine s t a b i l i t y  and hole closure considerations, a s a l t  re- 

posi tory requires a sleeve t o  be inserted into the hole bored in to  the  
f loor  fo r  canister emplacement. Any remaining gap between the sleeve 

and the bore hole i s  backfilled with crushed s a l t .  I t  i s  expected 

'(Reference '5) tha t  the crushed s a l t  will become compacted and assume ' . 

the thermophysical . -.- . pfoperties of dense s a l t  within 20 years a f t e r  em- 

placement. In t h i s  study the backfilled annulus of crushed s a l t  was 

a s s u ~ e d  t o  always have the propert ies  of.dense s a l t .  A removable con- 
c re t e ,p lug ' r e s t s  on the overpack and ac ts  as a radiation shield.  Figure 
2-5'ihows the dimensions of the canister/overpack/sleeve system fo r  a 

.- . . repository i n  s a l t .  Wall thicknesses and gap dimensions a re  consistent . - .- 

with Reference 1. O 

. - 
2-5 . . 



PRIMARY COOL1 NG LOOP 

EMERGENCY - TOWER 
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FIGURE 2-4. WATER B A S I N  COOLING CONCEPTS 



F I G U R E  2-5, CAN1 STER/OVERPACK/SLEEVE CONFIGURATION 
. . FOR A REPOSITORY I N  S A L T  , - - - . . - . . . - 

2-7 



I t  was assiiingci tha t ,  because of t h e i r  s t a b i l i t y  re la t ive  t o  s a l t ,  a 
-repository located in shale o r  basalt  would not require a-sleeve. In 
shale and basalt  the canis ter  i s  placed d i rec t ly  i n  a hole bored i n  the 

f loor  and the annular gap i s  backfilled with crushed material from the 
mine. .This configuration is  shown i n  Figure 2-6. .-' 

Canisters will be emplaced, in rooms a t  a depth of 2000 fee t  (Refer- 
ence 1)  below the surface of the ear th.  Each room i s  assumed to  be 15 
f ee t  high ( ~ e f e r e n c e . 6 ) .  As described i n  Section 2.2.4,' the two- 

dimensional thermal model which was selected t o  analyze canis te r  tem- 
perature his tor ies  necessarily neglected the sides of the room, or  
pi1 l a r s ,  as potential paths fo r  heat conduction. The physical arrangement 
which the thern~al model represents is  one of the center-most canis ters  i n  

a room containing several rows of canisters.  The u n i t  ce i l  around each 

canis ter  can thus be represented by a long,.cylindrical core which is 
i;o-tixj a; .*.; .;;;.I .;;;.,, ca',ls s.iiei. te,.l .i iie. 5ai..-i i e , ,  .& ~l~t~?-dfii iei-~sioaal . . 

studies (Reference 5)  have shown an advantage fo r  narrow rooms with' a 
single row.of canis ters .  This advantage was probably due, i n  par t ,  t o  
the proximity of the p i l l a r s  to  the canis ters  and the resul tant  paths fo r  

increased heat conduction away from. the room. Therefore, the resu l t s  , 
.. ....- ........ - .... . - - - 

obtained here for  a repository located in s a l t  a re  probably conservative 

( i .  e . ,  the calculated diameters are. smal l e r  than i f  a three-dimensional 
. model had been used). However, fo r  shale and basalt  no def in i t ive  work 

. . 
has been performed in defining the optimum room width and canis ter  layout. 
I t  i s  expected that  larger  rooms can be mirred i n  shale and basal t  because 
of the i r  re la t ive  s t ab i l i t y .  Therefore, the resu l t s  obtained here fo r  

shale and basalt  may be more representative than the resu l t s  obtained f o r  
s a l t .  . . . . . . . .  , -- ............ .....-.. 

Forced a i r  circulation will . probably be ut i l ized  to  maintain the flooP 

temperature a t  an acceptable level during the time tha t  a room is  being 
f i l l e d  with canis te rs ,  i n  order tha t  personnel and equipment can work 
within therroom, &.: 

After a room i s  f i l l e d  with canis ters  i t  will remain 

open until the end of the r e t r i evab i l i t y  period, during which time room 

a i r  circulation may or  may n o t  b e  ut i l ized.  The retr ievabi l  i t y  period -.. 
' 

, 
may be as short  as f ive  years f o r  a repository i n  s a l t  (Reference ,7). The 

ef fec t  o f  a i r  c i rculat ion during the r e t r i evab i l i t y  - period i s  examined 
.... . . . . .  . . .  . 

I 

i n  References 5 and 8. In Reference 8 ,  fo r  example, i t  i s  shown tha t  



FIGURE 2-6. CANISTER/OVERPACK CONFIGURATION FOR A 
REPOSITORY IN SHALE OR BASALT 



. . . .  - ..... . 

approximately 65 percent of the total  heat generated in the f i r s t  f ive  

years a f t e r  emplacement can be removed by the circulat ing a i r .  

Forced a i r  c i rculat ion was not considered i n  t h i s  study. I t  was con- 

servatively assumed tha t ,  imedia te ly  a f t e r  canis ter  emplacement, the room 
-. . - - . - . . 

i s  backfilled with crushed s a l t ,  shale o r  basalt  t o  a height of 70 per- 
:- 

cent (Reference 6)' of the room height, thus creating an a i r  gap between 

the cei l ing and the backfil l .  The a i r  i n  t h i s  gap i s  assumed quiescent 

( i . e . ,  no forced a i r  c i rculat ion) .  
8 

The actual stratigraphy of the 'geologic media above and below the 
room wi 11 vary from one type of formation t o  another. Some e a r l i e r  wonk 
  reference.'.^) has addressed the actual stratigraphy for  a known location 

(Project Sa l t  Vault). Because i t  may not be possible to  derive a general- 
ized s t rat igraphic model fo r  eac'h type of repository rkdium considered, 

2" hec32.5e ~i!rh  f 3 . r - f i e l d  strat igraphic variations are.expected t o  h~:!e 
only a small influence on canis ter  thermal response, the medium i n  each 

. . 
case was assumed t o  extend uniformly t o  the ground surface and t o  a depth 
of 10,000 fee t  below the mine. Figure 2-7 summarizes the mine layout 
assumed here., 

- - . . . . . -  . ~p . - . . - . . .  .----- 
FIGURE'  2-7. -MINE LAYOUT '' 

The shale formation in whf  c h  a reposl tory may be located i s  1 i kely to  
be s t r a t i f i e d  and have anisotropic properties. For t h i s  study i t  was 

.- -- .-. assumed tha t  t h e  s t r a t a  a re  horizontal. . ,  , . , . ,, . , ,  . . . . . . . .  . . .  .. 



2.2.3 Thermophysical Properties 

The thermophysical properties of each of the waste forms, metall ic 

members and geologic media tha t  were addressed in t h i s  study are  presented 

i n  Appendix A. Temperature-dependent properties were used fo r  a majority 
of the materials. Appendix A i s  self-explanatory, fo r  the most par t ;  
however, some comnents a re  pertinent. 

As shown, the borosil icate glass thermal conductivity value's used i n  
t h i s  study a re  somewhat lower than have been used previously. However, . . 

because the baseline case i n  this study assumes the glass t o  incorporate 

f in s ,  changing the glass conductivity has l i t t l e  e f fec t  on the r e su l t s  
. obtained here. Convel.,sely, i f  the f i n s  were t o  be deleted a larger  e f fec t  

on the r e su l t s  would be incurred by changing the, glass conductivity. 

4 
The thermophysical properties of pure s a l t  ( i  .e . ,  NaC1, o r  ha l i t e )  

have been well characterized. Previous studies (~e fe rences  5 and 6j have 
-. 

' used the values reported by Birch and Clark (Reference 9 )  and analytical 
resu l t s  based on these values have shown good agreement w i t h  experimental 

- 
resul t s  a t  Lyons, Kansas (Reference 10). ' However, sal  t properties may 

' vary from formation to  formation, and even from one location i n  a formation 
to  another, depending on the amount of impurities present. Figure 2-8 

shows, fo r  example, the variation in s a l t  thermal conductivity ?ram 
- .  

various data sources. 
. - 

.... Whereas s a l t  1,s reasonably we1 1 characterized, there i s  a paucity of 
data for  shale and basal t .  Shale is known t o  be anisotropicaand have a 
temperature-dependent thermal conductivity. As explained in  Appendix A,  
it was necessary to  approximate, based on l i t t l e  available data,  the 
thermal conductivity values i n  the parallel  and vert ical  directions.  
Additional l y ,  Reference 13 describes the resu l t s  of shale heating t e s t s  
i n  which endothermic reactf'ons, caused by the presence of a Kaolini t e  
mineral impurity, were observed. Such reactions were not accounted fo r  

in the heat: t ransfer  n~odels in t h i s  study. 

As with shale,  few thermal conductivity data points were found fo r  

basal t  as a function of temperature and i t  was necessary to  interpolate  
the available data. For both shale and basalt  the thermophysical pro- 

per t ies  will  vary with the water content, which again may vary from s i te  
t o  s i t e .  



F I G U R E  2-8. THERMAL CONDUCTIVITY O F  SALT 



In ~ u m n a ~ ~ ,  a1 though the geologi;;media thermophysical properties 
used here are  thought t o  be representative values, i t  must be recognized 
tha t  f a i r l y  wide variations are  possible, some of which may a f fec t  the 

resu l t s  presented here. These resu l t s  should be re-calculated when a 
specif ic  s i t e  has 'been selected, and when def in i t ive  properties f o r  tha t  
s i t e  have been determined from borehole samples. 

Thermal Cri ter ia  

The thermal cr,i t e r i a ,  o r  temperature l imi ts ,  t ha t  were assumed are  
described below. These temperature 1 imi ts ,  when combined with the thermal 

models and thermophysical properties d i rec t ly  resulted i n  the canis ter  

const::aints reported i n  Section 3. 

2..2. ( .  Waste Forms 
4 

;;irjh-level 1 iquid wastes can be converted t o  a dry so l id  by, fluidized- 
bed ,:alcination a t  temperatures ol: 5uu't t o  66ir"C. T h i  prrjduci i s  Liieil ' .  

s tab i i ized ,  or  denit,rated, a t  a temperature of 600°C t o  750°C. The 
s tabi l ized calcine resulting from this process has n i t r a t e  and water con- 
ten ts  of less  than 0.02 and 0.006 weight percent, respectively., In order 

t o  avoid the canis ter  pressurization tha t  would be incurred by fur ther  
volatization of these resi.duals, and the volatization..of ruthenium and 
cesium in the waste, which occurs a t  approximately 750°C and higher, a 
maximum a1 lowabl e temperature fo r  s tabi  1 i zed calcine of 700" was used 
(Reference 14). 

Cal cine has the undesirable property of re1 a t i  vely high 1 eachabi 1 i t y  
i n  water. This property can be improved by combining the calcine w i t h  

glass f r i t ,  pouring the mixture into a canis ter  and me1 ting the mixture 
a t  approximately 1 100°C. When cooled, the resul tant  borosil i ca t e  glass 

form i s  a sol id  with low leachabili ty.  However, the property of 'low 

leachabili ty i s  'destroyed a t  elevated temperahire because the glass 
dev'i tri f i  es . Therefore, the maximum a1 1 owabl e temperature of glass s 
dictated bb the need t o  avoid devi t r i f i ca t ion .  A review of the l i t e r a t u r e  . . - 
indicated tha t  this temperature l imi t  has been variously taken a t  any- 

where from 660°C up to  the glass processing temperature of approximately 

1100°C. BPNL is  responsible for  develuoping the borosil i ca t e  glass as a 
part  of the i r  Commercial High-Level Waste Fixation Program and, based on 



a discussion (Reference 3) with personnel from tha t  agency, a maximum 

allowable temperature of 800°C was selected for  t h i s  study. 

2.2.4.2 Structural Materials 

The canister  material, 304L s ta in less  s t e e l ,  i s  susceptible t o  s t r e s s  
corrosion cracking i f  i t  has been sensitized (Reference 15). Sensitization 
i s  the process in which trace amounts of carbon, present as an impurity i n  

304L, combine with chromium t o  form chromium carbide. The carbide migrates 
to  the grain boundaries and affects  the material 's  strength and corrosion 
properties, Sensitization of 304L 'occurs i n  the temperature range from 
430°C t o  790°C (Reference 15) ; however, t o  avoid sensi t izat ion an upper- 

1 imi t temperature of 350°C was conservatively selected (Reference' 16) f o r  
th i s  study. 

The primary concern w i t h  a sensitized canister  i s  i t s  decreased 
integriCty i f  stressed end exposed t o  a water envir~nment , especially i f  

the chloride and oxygen levels i n  the water are  uncontrolled. A sensitized 
canister which i s  stressed and exposed t o  an a i r  environment appears t o  be 

of 1 esser concern (Reference 15). 

A canister  containing' borosilicate glass which was produced by in-can 
melting will have been sensitized as the resul t  of heat-up t o  the glass 
me1 t i  ng temperature (approximately 11 OO°C) and during cool down. However, 

as the degree of sensitization i s  both time- and temperature-dependent, 
the extent of the sensitization incurred by in-can melting can be minimized 
by proper temperature scheduling. Additionally, the glass-f j l led canister .  
will be under an e l a s t i c  tens i le  load s t r e s s  a f t e r  the glass has sol idif ied 
and the canister  has reached thermal equil i brium,. 

A calcine-fil led c a n i ~ t e r  will a lso have been sensitized i f  i t  is  
used as the containment vessel during s tahi l  ization: 

Thus, the ef fec t  of constraining glass- and cal cine-fil  led canister  
temperatures to  350°C during interim storage, regardless of whether they 
are overpaclced, was investigated i n  t h i s  study. Such a constraint was 

not considered t o  be a baseline cr i te r ion  for geologic storage (Section 
-- . -. -. - - - .. -. -. 

3.2.2 and 3.3.2); however, it was investigated as an al ternate  approach 
and i s  discussed i n  Section 3.5. 



No temperature c o n s t r a i n t s  were imposed on the  overpack o r  t h e  sleeve. 

Because of t h e  r a d i a l ,  outward heat  f l o w  these components w i l l  always be 

a t  a  temperature lower than t h a t  o f  t he  can is te r .  

Reposi t o r y  Media 

The f o l l o w i n g  temperature l i m i t s  have been prescr ibed (Reference 5) 

f o r  a  r e p o s i t o r y  l oca ted  i n  s a l t ,  based on e a r l y .  t e s t  r e s u l t s  ob ta ined i n  

connect ion w i t h  P r o j e c t  Sal t Yaul t (Reference 10) : 
* 

a No more than 1 percent  o f  t he  s a l t  i n  a  u n i t  c e l l  s h a l l  be a t  
a  temperature above 250°C. 

m No more than 25 percent  o f  t he  s a l t  i n  a  u n i t  c e l l  s h a l l  be a t  a  
temperature above 200°C. 

These values were used i n  ihe present  study. 

No temperature l . im l t s  have been prescr jbed f o r  shale and basa l t ,  and 

none were used i n  t h i s  study. This i s  an area which requ i res  f u r t h e r  

d e f i n i t i o n  as, f o r  example, sha le  f r a c t u r e s  a t  e levated temperature, thus 

: a f f e c t i n g  mine s t a b i  1  i ty and f u r t h e r  decreasing i t s  thermal c o n d u c t i v i t y  

perpendicular  t o  the  bed. 
. . 
2.2.5 Thermal Model s  

The f o l l o w i n g  paragraphs descr ibe t h e  thermal models which were used 

f o r  s teady-state and t r a n s i e n t  thermal ana lys i s  o f  t h e  system descr ibed 

i n  Sect ion 2.2.2. Inc luded are  the  r a t i o n a l e  . f o r  s e l e c t i o n  o f  each model 

and a  d e s c r i p t i o n  o f  t h e  model d e t a i l s .  

2,2.5.1 One-Dimensional Model 

A one-dimensional thermal model was used t o  analyze t h e  can is te r ,  

w i t h  o r  w i thou t  an overpack, i n  i n t e r i m  storage a t  t h e  FRP. Two storage 

concepts were addressed: passive a i r  c o o l i n g  and r e c i r c u l a t i n g  water  

cool ing.  The one-dimensional ( rad ia l )  model y i e l d s  r e s u l t s  which a re  

genera l l y  app l i cab le  t o  a  plane perpendicular  t o  t h e  waste/canister /over-  

pack ( o p t i o n a l )  a x i s  o f  symmetry a t  a  p o i n t  hal fway between . t h e  ends o f  

t he  w a s t e - f t l  l e d  sec t i on  (i .e., f o u r  f e e t  from the bottom o f  t h e  c a n i s t e r ) .  

*A ' u n i t  c e l l '  i s  the  volume o f  s a l t  whose area i s  de f ined by the  adia-  
b a t i c  b n ~ ~ n d a r y  concent r ic  w i t h  the  c a n i s t c r  and whose thickness Ss 
equal t o  the  h e i g h t  o f  t h e  can is ter .  



For the air-cooled storage concept the canister ,  with o r  without over- 

pack, was assumed to  be stored in a vertical position. Other canisters  
were assume.d t o  be a t  a suf f ic ient  distance tha t  thermal interactions 
could be ignored. Thus ,  heat t ransfer  is  by f ree  convection and radia- 
tion to an ambient heat sink. The ambient a i r  temperature., and the tem- 

perature of the surroundings t o  which the outer surface radiates ,  were 
both assumed t o  be 26.7"C (80°F). Convective heat t ransfer  from the 
vertical wall was included. Temperature-dependent surface emissivities 
of the canister  (304L s ta in less)  and the optional overpack (carbon s t e e l )  

were also included i n  the model. Modelling of the recirculated water- 
cooled storage concept assumed the water to  maintain the surface tem- 

perature a t  5 3 O C  (Reference 4 ) .  

The one-dimensional , radi a1 'therrr:al model necessarily excludes any 
circumferential or axial bherrnal gradients. For the calcine-f i l led . -  

canister there will be no circumferential gradient, because of the homo- 
geneous wa'ste form. There will be an axial gradient resulting from i n -  
creased heat losses a t  the ends due to the surface area of the end caps. 
However,. t h i s  axial gradient i s  expected t o  be small, due to  the high 
length-to-diameter r a t io  (approximately 10:l) . Therefore, the one- 

dimensional model provides a very good approximation for  the calcine- 
f i l l e d  canister  in e i ther  mode of storage. 

For the borosi 1 ica te  gl ass-f i l  led canister ,  the vol ume and thermal 
power of the glass displaced by the f ins  were accounted for ,  The glass- , 

f i l l e d  can5ster will exhibit  a circumferential gradient, due t o  the f ins ,  
and an axial gradient, due to the f ins  and the canister end-caps. In the 
model, the ef fec t  of the f ins  was simulated by 'smearing' the f ins  and 

obtaining effect ive thermophysi cal properties for. the gl ass/f in  com- * 
bination.. This simulation i s  reasonably valid i n  predicting waste center- 
l i ne  temperature because the f ins  do not extend a l l  the way t o  the center- 

1 ine. These f i  ns will impose some circumferenti a1 temperature dis tr ibut ion 

on the.  canister ;  however, because ;he f ins  d i  not extend a l l  the way t o  the 

canister ,  and because the canister  has a relat ively h i g h  thermal con- 

ductivity,  the circumferential temperature dis tr ibut ion i s  expected t o  
be minimal. Additionally, the axial gradient i n  the glass-f i l led canister  
may be greater than for  the calcine-f i l led canister  because of the higher 

- - - - .- - -- " 

*See Appendix C. 
- - -  - - 
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axial conduction afforded by the glass/f in  combination. Overall, how- 

ever, such gradients are  expected t o  be very small and the one-dimensional 

thermal model can be assumed to provide a reasonable approximation f o r  
the finned, g lass - f i l led  canister.  

I .  

2.2.5.2 Two-Dimensional Model 

A two-dimensional thermal model was used for  t ransient  thermal 
analysis of overpacked canis ters  i n  geologic storage a t  reposi tor ies  
located in s a l t ,  shale and basalt  formations. The primary objective of the 

analysis was to  determine the maxi,mum .allowable s i ze  and heat load of can- 
. . 

i s t e r s  which would b e  coni is tent  w i t h  the temperature 1 imi ts fo r  the waste, 
canis ter ,  and geologic media described i n  Section 2 . 2 . 4 .  

The canis ter  must be modeled in de ta i l  in order to  determine the peak 

temperatures of the waste and canister.  In t u r n ,  the thermal response of 
the waste and canis ter  a re  coupled t o  the therpal response of the surround- 
ing medium i n  the repository. That i s ,  variables i n  the repository con- 
figuration such as the distance between canis ters ,  the presence of a back- 
f i l l e d  room above the canis ters ,  and the thermophysical charac ter i s t ics  of 
the repository medium af fec t  the thermal behavior within the canis ter .  
Therefore, the detailed canister model must be coupled t o  a detailed model 
of an appropriately selected portion of the repository. Thus, a re la t ive ly  
large and complex thermal model i s  indicated; ideally,  i t  should be three- 
dimensional. However, the short  time available to  conduct this study 
n e c ~ s s a r i l y  cnnstrained the model t o  be two-dimensional. A two-dimensional 

model of the repository can be constructed in any of three d i f fe rent  ways: , 

i t  was, therefore,  necessary to  judiciously se lec t  that  model which would 

yield accurate resu l t s  for  the canis ter .  

An X-Y-Z coordinate system can be defined for  the repository with 
the Z axis located along the local ver t ica l .  A horizontal cu t ,  i n  the 
X-Y plane, a1 1 ows for  detail  ed model ing of the canis ter  cross-section, 
but neglects the heat flow i n  the axial  (Z) direction.  heref fore, t h i s  

model prov.ides inval id resu l t s  because i t  neglects the heat absorbing 
capacity of the massive volume of geologic medium above and below the 

cross-section. Alternately, a vertical  cu t ,  i n  the X-Z plane, while 



v a l i d  f o r  fa r - f i e1  d  analysis o f  the reposi. tory , does n o t  a1 1  ow accurate 

modeling o f  the canister .  Clear ly,  an R-Z, c y l i n d r i c a l  coordinate system 

must be used i n  order t o  include a l l  d i rec t ions  o f  heat f l ow and t o  a l l ow  

the can is te r  t o  be modeled i n  d e t a i l .  

Assuming t h a t  canisters are emplaced i n  the mine f l o o r  i n  a  ma t r i x  

cons is t ing  o f  several rows, and assuming t h a t  the can is ters  have i d e n t i c a l  

heat-generation charac te r i s t i cs ,  an ad iabat ic  boundary w i l l  be establ ished 

around each can is te r  which can be approximated as a  c i r c u l a r  boundary as, 

shown i n  Figure 2-9. This boundary has a  diameter equal t o  the p i t ch ,  P. 

Extending t h i s  boundary t o  the ear th ' s  surface, and down t o  some a r b i t r a r y  

depth (assumed t o  be ten thousand f e e t  below the  mine) r e s u l t s  i n  the c e l l  

shown i n  Figure 2-10. This c e l l  i s  i d e a l l y  su i t ed  t o  charac te r i za t ion  i n  

the R-Z, c y l  i n d r i  cal  coordinate' system. 

' SYMMETRY 

FIGURE 2-9. CANISTER MATRIX SHOWING APPROXIMATE 
SYMMETRICAL BOUNDARY 

The R-Z coordinate system has l i m i t a t i o n s  which ar'ise from the a x i -  

symmetric Constraint :  . . on ly  conf igurat ions which are a x i s y m e t r i c  can be 
-.< 

t rea ted  exac t l y  bu t  some t h a t  are not  axisymmetric may-be reasonably 

approximated as such, The conf igurat ion shown i n  Figure 2-10 i s  a x i -  

symmetric because the mine room and b a c k f i l l  cover the e n t i r e  c e l l  and 

the can is te r  i s  a  concentr ic  cy l inder .  A case w i t h  ' in terna l  f i n s  i n  the 



c CANISTER SEGMENT REMOVED 
FOR CLAR!,E 

FIGURE 2-10. CELL DEFINED FOR THE R-Z MODEL 
. ..r,.rr,. U  ̂-- - I ,.I.- .-- -*I . .+ -- . - * - .  - . ._ .-.. _-,,. "..-. . _I_%-- .- .-l.l...IY..-,+Î  --.-. ---...- - . *. - 
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canister  can be simulated with the R-Z model i f  an appropriate e f fec t ive  
waste conductivity i s  assumed. In t h i s  approach the,  f in s  a re  "smeared" 
such tha t  the overall e f f ec t  of the f i n s  i s  accounted for .  A s i tua t ion  
tha t  cannot reasonably be handled i n  the a x i s m e t r i c  system i s  an 

asymmetric mine room: i n  t h i s  case a three dimensional model i s  necessary. 

Solution Method. The thermal analyzer computer program S I N D A ~ ~ S  

chosen as the sol ution tool fo r  the cani ster-reposi tory. analysis. The 
solution method of SINDA i s  based on a lumped-parameter representation of 
a physical system. Using t h i s  method a physical system i s  represented as 
an equi val ent thermal network having nodes w i t h  a speci f i c  capacitance 
which are  connected by heat flow paths, or "conductors", through which 
heat is  driven by the temperature difference between nodes. The important 
heat t ransfer  mechanisms of conduction, radiation and convection can be 

modeled with SINDA, along with heat sources and sinks. The capacity, C ,  

of a node i is  define* by its volume, V ,  density, , and spec i f ic  hezt, 

c as 
P ' 

For conduction the value of the conductance, G ,  i s  defined by the thermal 
conductivity of the material, k ,  the cross-sectional area,  A ,  and the  
length, L,  of the flow path as 

Radiation and convection conductors are  discussed i n  a subsequent section 
(Model Detai 1 s )  . The nodal ization of the canister-reposi tory system is  
also described i n  the Model Details section, while the numerical solution 
techniques of SINDA and the i r  application t o  the long-term geologic storage 

thermal problem are  discussed be1 ow. 

Given~a thermal network model s e t  up fo r  SINDA solution, a varfety of - 
numerical methods a re  avai 1 able within the SINDA framework fo r  t ransient  

solutions. Each of these methods involves the solution of a s e t  of ordinary, 

non-1 inear d i f fe rent ia l  equations obtained by taking a heat balance on 
each node i as shown below. 

- . -  . . 
. . . . -.. .- .. 
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where N i s  the number of adjacent nodes, j, connected t o  node i and qi is  the 
heat per u n i t  volume generated i n  node i .  The various numerical solution 

techniques d i f f e r  i n  the f i n i t e  difference formulation of the time- 
derivative. There a re  two general c lass i f ica t ions  of formulations: 
exp l i c i t  and implicit .  The exp l i c i t  formulations compute tem- 
peratures step-by-step, and the requirement of stabi 1 i ty. places an 

upper 1 imi t on the time increment. Imp1 i c i  t formulations require 
a sjmul taneous computation procedure and a re  usually unconditionally 
stable.  

The time scale  involved in t ransient  solutions for  long-term geologlc 
waste storage i s  unusually large. One i s  faced w i t h  the prospect of 

simulating a time span of up t o  one hundred years,  o r  more, with time 
increments tha t  a re  constrained by the opposing 1 imitations o i  accuracy 
and economy. Clearly, an implicit  solution scheme must be used so tha t  
no minimum time s t ep  i s  required f o r  s t a b i l i t y .  As the solutian pro- 

gresses i n  time, larger  and larger  time s teps can then be taken as the 
dynamic nature of the model slows. 

In examining the available SINDA imp1 i c i  t f i n i t e  difference methods . 

the backward-time-di fference method was ident i f ied as the most 1 i kely 
candidate. The computational procedure used t o  solve the s e t  of simul- 
taneous eq"ations i s  a re i  t e ra t i  ve , one.  his re i t e ra t ive  backward- 

difference solution technique was found t o  be too slow i n  convergence f o r  
the time increments necessary and some degree of radiation "wobble" was 
ident i f ied as a problem. , 

Using a technique reported i n  Reference 16 the convergence problem 

was solvedS'by developing a backward-time-difference method tha t  uses a 

Newton-Raphson i te ra t ion  computational procedure t o  solve the s e t  of 
simul taneous equations. The backward di fference system consists of 

simultaneous equations of the form: 



where the superscript ( O )  denotes the temperatures a t  a new time. An 

exist ing steady-state sol ution routine tha t  employs the Newton-~a~hson 
computational procedure was modified t o  account for  the t ransient  energy 
storage term on the l e f t  side of the above equation. This was accomplished 
by connecting to  each node i in the model a psuedo-boundary node. The 
conductor between the boundary node and the model node i s  given a con- 
ductance of val ue Ci/dt .  Before each s tep  the pseudo-boundary node is 
s e t  t o  the current temperature (Ti) of i t s  corresponding node i and the 
conductance i s  computed based on the time s tep ( ~ t )  and the capacitance 
of' node i (C. ) . The pseudo node i s  he1 d constant a t  Ti while new ten- , . 1.  . .  

peratures Tio are  calculated fo r  the next time. Esseniiaiiy,  a steady- 

s t a t e  solution i s  performed a t  each time s tep by t reat ing the C,/nt as i f  

i t  is '  a conductor between two nodes in  "space", ra ther  than i n  time. 

This procedure was tested against classical t ransient  sol utions fo r  
i t s  accuracy and proved to  be qui te  sat isfactory.  Time increments from 

a few days a t  s tar t -up,  to  a year a t  l a t e  times when temperature changes' 
a re  very .,slow, have' been used w i t h  no convergence problems. 

.. .- 

Model Details. The nodalization and heat t ransfer  considerations of -- 

the thermal. model a re  discussed i n  t h i s  section. A typical i~odal con- ----- 

figuration in the R-Z model i s  shown i n  Figure 2-11. Each node i n  the 
R-Z model consists of an annular ring. In the radial direction each ring 
or  node i s  connected t o  i t s  respective inner and outer concentric rings 
by a radial  conductor. Axially, the nodes are  stacked one on top of 
another and connected by axial conductors. The value of a radial  con- 
ductor i s  calculated by the formula 

where e i s  the thickncss of the annular ring and Ri and Ro a r e  the radi i  

t o  the inner and outer nodes, respectively. This formula takes into 



FTRllRF ?-,I ! . TYP!CP.! NOOE AND CONDUCTOR CONF!GURPTION IN R - z  MODEL 
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account the increasing area perpendicular to  the heat flows. Axial con- . . 

ductance i s  computed by 

where A i s  the constant area perpendicular t o  the conductor and L is  the 
1 ength between nodes. 

Fi yure 2-12 shows a vertical  cross-section of the nodalized u n i t  
c e l l .  Canister detai l  is not included here. Each rectangular section i n  

t h i s  figure represents an annular r i n g  and thus a node. Each node i s  

connected by radial and axial conductors as previously described except 
across the room a i r  space where radiation and convection are  the heat 
t ransfer  mechanisms. Note tha t  near the canis ter  the nodes a re  close 
together b u t  grow far ther  apart  with increasing distance from the canister.  
T h i s  allows- for accurate modeling of regions near the canis ter  i n  which ! 

steep temperature gradients a re  expected; Fewer nodes a re  necessary fa r ther  

from the canis ter ,  where slow changes and mild gradients occur. 

Above the room any radial variations a re  ignored and each node 
becomes a s ingle  disk having a diameter equal t o  the pitch. I t  i s  assumed 



FIGURE 2-12. VERTICAL CROSS SECTION OF NODALIZED CELL 
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t ha t  the a i r  gap will damp out any radial  gradients from below. Each node 
along the battom of the a i r  gap i s  connected t o  the node above the gap by 
a convection conductor and a radiation conductor. A cutout of the room 
area i s  shown i n  Figure 2-13. 

FIGURE 2-13. CUTOUT FROM FIGURE 2-12 SHOWING'RADIATION AND 
CONVECTION MODELING OF THE ROOM A I R  GAP ' . . 

Heat i s  convected from the bottom of the r o o k t o  the a i r .  (represented 

by a single node in the center) which i n  turn ionvects heat t o  the cei l ing.  
The convective heat t ransfer  coeff ic ient  i s  calculated fo r  natural con- 

... 

vection from a horizontal surface. The conductance of a convective 
path, Gc, i s  given by 

Gc = hcA; 

I 

where h, is  the heat t ransfer  coefficient and A i s  the area of the con- 
vecting node. Radiation exchange between two surfaces of the same 

emissi vi ty'i's modeled by a radi a t i  on-conductor 



C i,4 .- 7 8;  . . ." - 
Assuming a shape factor  of unity between two paral le l  surfaces the 

radiation conductance between a bottom node and the top surface is 
approxi mated by 

where Ai i s  the area of the bottom node. SINDA automatically changes the 

driving force of radiation paths t o  temperature t o  the fourth power. 

The modeling de ta i l s  of the canis ter  and i t s  surrounding area a r e  
shown in Figure 2-14. Internally the waste i s  broken in to  four radial  

nodes and eight axial nodes, each connected by conductors as previously 
de6c;ri bod. Foc~~sing a t t e n t i ~ n  on a horizontal section containing waste 

nodes i t . i s  seen .chat the outer waste nbde i s  connected t o  the adjacent 
metal canis ter  wail node. Any temperature drop across the metal canis ter  

wall or  the overpack i s  ignored so that .  each section of wall o r  overpack 

can be represented by a single node. Each canis te r  wall node is  connected 
to  the adjacent overpack node by a conduction conductor and a radiation con- 
ductor. T h u s ,  heat i s  allowed to conduct across the s lab  of a i r  or radiate  
between the metal surfaces. Again, a shape fac tor  of u n i t y  i s  assumed and 
with non-equal surface areas and emissivi t i e s  the radiation. conductance i s  
given by 

where the subscripts ( i )  and (0)  denote inner and outer surfaces, res- 
pectively. The overpack node i s  then connected t o  the f i r s t  so l id  

repository medium node through a conductor across an annulus of crushed 

material. Continuing outward i n  the radial  direction are  s i x  nodes of 
increasing:;-si - ze, a1 1 of which are  connected by radial  conductors. The 

outer boundary of the unit cel l  i s  nmdeled as an adiabatic surface since 
i t  i s  a surface of symmetry in the f ie ld  of canis ters .  Each horizontal 

section, except a t  the canister ends, i s  connected above and below t o  

another identical section by ax ia l  conductors as shown i n  Figure 2-14. 



' CANISTER 

FIGURL 2-14. VERTICAL ;CROSS-SECTION OF CANISTER AND SURROUNDING 
AREA SHOWING THERMAL CONDUCTORS AND NODES 
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Above the w a s t e - f i l l  l i n e  the noda l i za t ion  i s  i d e n t i c a l  except f o r  

the missing waste nodes. Across t he  a i r  space above the can is ter ,  con- 

vect ion and rad ia t i on  are modeled. Note t h a t  a l l  the metal nodes are 

connected a x i a l l y  so t h a t  heat i s  al lowed t o  f low away from the waste, up 

through the can is ter  wa l l  and the overpack. 

The heat generated by the waste i s  impressed on each waste node 

based on i t s  volume. A t  each t ime step new heat loadings are ca lcu la ted  

based on the age o f  the waste so t h a t  the.power decay i s  accounted f o r .  - .. 
. - 

F i n  Modeling. As mentioned previously,  the a x i s y m e t r i c  cons t ra i n t  , -- 
.. - 

o f  the R-Z coordinate system does no t  a l low the de ta i led  modeling o f  ...... - 
i n t e r n a l  f ins  i n  the canister .  The ove ra l l  e f f e c t  o f  the  f i ns ,  though, 

can be accounted f o r  by determining an e f f e c t i v e  conduc t l v l t y  o f  the 

gl.ass/f in combination and thus 'Smearing' . . .  the  f i n s  t o  a l low so lu t ions.  - . . . 

-- 
I n  est imat ing the ef fect i " ;  conduct iv i ty  a  p a r a l l e l  heat f l ow path . 

assumption i s  made f o r  the f low through the f i n s  and the waste. . 

.- 

The two r a d i a l  heat flow paths a re  shown i n  Figure 2-15 f o r  the waste . . 

and the f i n .  For the conductors which inc lude the f i n  f l ow  path, an over- 

a l l  conductor i s  ca lcu la ted i n  the fo l low ing  manner. The A I L  term o f  the. 

waste conductor i s  ca lcu la ted as i f  the f i n s  were not  present by 

FIGURE 2-1 5. HORIZONTAL CROSS-SECTION OF CANISTER DEPICTING PARALLEL ' 

... .................... ... .... . HEAT FLOW PATHS THROUGH FIN AND WASTE -;-- 



The same term f o r  the f i n  i s  computed by 

where AF i s  the cross-sect ional area o f  a f i n ,  N - i s  the number of f i n s  

and L i; the length  between nodes. The waste conductor i s  then computed 

by subt rac t ing the AIL f o r  the  f i n s  and m u l t i p l y i n g  by the waste con- 

duc t i  v i  ty  

The f i n  conductance i s  then computed,based cr; 'tR; ..:onductivity o f  the f i n  

materi.al. The sum o f  ._ .. the  p a r a l l e l  waste and f i n  xmductances becon~es the 
.. 

e.f.feci;.i iie conductance foi, ccrndilcto;' &h- 4- z -  ,.l "-'A- C < - + .  
bl lab IIIb.IUbeL.3 I S , ' " .  

The same procedure i s  taken f o r  a x i a l  conductors i n  accounting f o r  t he  

f i n s .  The displacement volume o f  the f i n s  i s  a l so  taken i n t o  acco"nt 

when computing the heat sources f o r  each waste node. 

The r e s u l t s  obtained using t h i s  approximation t o  determine waste center- 

l i n e  and can is te r  surface temperatures d1.e compared i n  Appendix C t o  thc  . 

- resu l t s  obtained f o r  a deta i led,  two-dimensional model o f  the same cross- 

sect ion. As seen i n  Appendix C there  i s  c lose agreement i n  the  r esu l t s .  
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3. RESULTS 

Sections 3.1 and 3.2 describe the design constraints obtained for  the 
baseline cases described in Section 2. Typical temperature his tor ies  fo r  
these cases are  described,.in Section 3.3. The effects  on the design con- 

- - .  . .-.- .- 
s t r a in t s  of perturbing the baseline cases are  discussed i n  Section 

3.1 DESIGN CONSTRAINTS FOR CANISTERS CONTAINING BOROSILICATE GLASS 

Following are the resul t s  obtained for  canisters containing the 

glass waste form with internal fins: 

3.1.1 Int .~rim Storqqe 

Figure 3-1 shows, as a function of the waste age since reprocessing, 
the maximum allowable canister d iamte r  and resulting heat load for  a 
glass-fi  1 led, water-cooled canister  i n  interim storage. Water cooling 
i s  assumed to  maintain the external surface temperature a t  53OC, Three 
cases are  shown in Figure 3-1, corresponding t o  three different  design 

,approaches. 

Case 1 of Figure 3-1 corresponds to a canister ,  without an overpack, 
direct ly cooled by water. The canister surface i s  maintained a t  53OC; 
t h u s , ,  the only constraint on the canister  i s  imposed by the maximum 
allowable waste temperature of 800°C. This case resul ts  i n  the greatest  

allowable diameter and heat load for any waste age. 

Cases 2 and 3 correspond to overpacked canisters.  In both cases, 

smaller di'ameters and heat loads resul t  due to  the thermal resistance 
caused by the a i r  gap between the overpack and the canister.  In Case 2 ,  

there i s  no constraint on the canister  temperature: t h u s ,  only the waste 

temperature constrains the canister  diameter. The net e f fec t  will be tha t  

the canister temperature will decrease from 450°C for waste aged zero years 
t o  350°C o r  1 ess a f t e r  1.8 years. I f  i t  i s  requi red t o  1 imi t the canister 

* .  

ternperatur; t o  350°C o r  l e s s ,  in order: t o  avoid sensi t izat ion,  Case 3 shows - 
that  the net e f fec t  will be to  reduce the canister  diameter for waste 

aged 1.8 years o r  less:  for  waste aged over 1.8 years the allowable 
diameters and resul tant  heat loads for  Case 3 are  the same as for  Case 2. 
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I t  i s  l ike ly  tha t  considerations other than thermal constraints will 

d ic ta te  a minimum practical canister  diameter. In this event, Figure 3-1 
can be used t o  determine, for  a given diameter, the minimum allowable 
waste age since reprocessing. For example, i f  a diameter of 12 inches 

i s  selected, Figure 3-1 shows tha t  the waste must be from 0.1 year t o  1.2 
years old, depending on whether the canister  is  overpacked and whether .or 
not the canister i s  constrained..to a temperature of 350°C. 

Figure 3-1 can also be used to  determine the elapsed time necessary 
before a canister  can be overpacked. For example; assume i t  i s  necessary 
t o  encapsulate 1-year-old waste i n  the largest  possible canister  com- 
patible with water cooling and, a t  a l a t e r  time, provide i t  with an over- 
pack. From Figure 3-1, Lhc la rges t  canister  diameter for  1 -year-old waste 
is  17 inches without an overpack. I t  is seen tha t  t h i s  s i ze  canistel* cam 

he wmoved from water cool ing, provided with an ,ovelnpack, and replaced in 

water cooling, a t  a waste age of approximately 2 years. 

Figure 3-2 shows the maximum allowable canister  diameter, as a 
function of waste age, for  a glass-f i l led canister  i n  ambient a i r  storage. 

A canister ,  wi t h o u t  an overpack, is  represented by Case 1 of Figure 
3-2. For Case 1 ,  i t  i s  assumed t o  be a requirement t o  1 imi t the canister  
surface temperature t o  350°C or  l e s s ,  i n  order t o  avoid sensi t izat ion. ,  

This cr i ter ion constrains the diameter for  waste aged up t o  approximately 
2.7 years: for  older waste the waste temperature constrains the diameter. 

Cases 2 and 3 represent an overpacked canister  i n  a i r .  In Case 2 ,  

the canister  temperature i s  not constrained. T h u s ,  the waste.temperature 

i s  the only constraint on canister  diameter. In t h i s  case, the canis ter  

temperature will always exceed 350°C. In Case 3 ,  both constraints apply: 

canister temperature no greater than 350°C and waste temperature no 
greater than 800°C. 

T h e  minimum waste age required for  an air-cooled canister  with fixed 
djametera';can also be obtained from Figure 3-2. - 

The canister  diameters shown i n  Figure 3-2 for  air-cooled storage 

are  seen to  be considerably smal l e r  than the diameters shown in Figure 
3-1 fo r  water cooling. In order t o  provide for  the largest  possible 

canister ,  i t  may be required t o  water-cool . . the canister  for  a period 
. . . . . . . . . . . .  

3-3 
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p r i o r  t o  s u b j e c t i n g  i t  t o  a i r - c o o l  i ng . If, f o r  example, i t  i s  necessary  

. t o  use an overpacked, 12-inch diameter can is te r ,  and main ta in  t h e  c a n i s t e r  

a t  350°C o r  below, F igure  3-1 shows t h a t  a minimum waste age o f  1.2 years  

i s  required.  F igure  3-2 shows t h a t  t h e  same c a n i s t e r  can be a i r - coo led  
- ... 

a t  a waste age o f  3 years; Thus, the  c a n i s t e r  need o n l y  be water-cooled 

f o r  approximately 22 months. 
. - 

3.1.2 Geol oq l c  Storage 
.- 

* 
F igure  3-3 shows t h e  maximum a1 lowable diameters and heat  loads f o r  

g l a s s - f i l l e d  can is te rs  emplaced i n  a s a l t  repos i to ry .  For  a p i t c h  o f  up 

PITCH, FT. 

FIGURE 353. DESIGN CONSTRAINTS FOR CANISTERS CONTAINING BOROSIL ICATE - 
GLASS STORED I N  A SALT REPOSITORY (10-YEAR-OLD PWR WASTE; 
CANISTER WITH OVERPACK) 

*A1 1 geologic s torage curves assume a minimum p r a c t l  c a l  c a n i s t e r  d l  ameter 
of 6 inches. Also, c a n i s t e r  spacings o f  up t o  50 f e e t  a re  shown, a l -  
though g rea te r  spacings are, o f  course, possib le.  

. . .  ............... .......... ...... . - -- . .- - . . . . - . . . . . . . . . . . .  , -- - - - - - . . .  . .- .. 



t o  50 f e e t ,  the allowable diameter increases with increasing pitch, and is 
constrained by the 25 percent s a l t  temperature cr i te r ion .  Convergence of 

the two s a l t  temperature c r i t e r i a  indicates tha t  the one percent s a l t  
temperature cr i te r ion  will become the dominant constraint a t  some pitch 
greater than 50 feet .  The waste temperature cr i te r ion  does not constrain 

diameter within the envelope shown; however, extrapol a t i  on of the resul ts 
indicated tha t  the waste temperature dominates a t  a pitch of approximately 
70 f ee t  or more, and constrains the glass-f i l led canister  t o  approximately 
22 inches in diameter, with a corresponding heat load of 9 kw.. 

The canister  design constraints i n  a shale repository are shown i n  
Figure 3-4. Lacking defini t ive data on shale temperature 1 imi t s ,  the 
waste temperature cr i te r ion  i s  the only constraint on di ameter. A1 1 owabl e 

diameter i s  seen to  increase with pitch up  t o  a pitch of 50 fee t ,  beyond 

PITCH, FT. 

FIGURE 3-4. DESIGN CONSTRAINTS FOR CANISTERS CONTAINING BOROSILICATE 
GLASS STORED IN A SHALE REPOSITORY (1 0-YEAR-OLD PWR WASTE;. 

-. -- - - - -- . .- - - -. , ., , , 

' CANISTER WITH OVERPACK) - - -  --..--.. . .. . - 
3-6 - 
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which the allowable diameter stays constant a t  cpproximafely 15 inches, 

corresponding to  a heat load of 4.3 kw. Restated, a canis te r  w i t h  diameter 

greater than approximately 15 inches will cause the waste center l ine tem- 
perature t o  exceed 8 0 0 ° C ,  regardless of the spacing. . 

The resu l t s  fo r  a basal t  repository are  shown i n  Figure 3-5. As f o r  

shale,  the only constraint for  canis ters  i n  a basalt  repository i s  assumed . . 

t o  be the waste temperature c r i te r ion .  The allowable diameter i s  seen t o  
t 

increase with increasing pitch up  t o  a pitch of 50 f e e t ,  beyond which i t  

i s  constrained t o  approxlma~ely 19 inches, corresponding t o  a heat load of 
7 . 0  kw. . . 

P I T C H ,  FT. 

FIGURE 3-5. DESIGN CONSTRAINTS FOR CANISTERS CONTAINING BOROSILICATE 

~ . 
GLASS IN A BASALT REPOSITORY (1 0-YEAR-OLD PWR WASTE; 
CANISTER WITH OVERPACK) .- 

. - .- - -- -- - - - . - .- 
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From the foregoing resul t s  i t  i s  seen tha t  the a1 lowable canister  
diameter generally increases with pitch until the maximum allowable dia- 
meter i s  reached. Thus, there i s  a range of acceptable s izes  fo r  each 

repository medium. Because the fixed costs of real e s t a t e  and mining 

will vary .approximately direct ly with the mine area required, i t  is 
desirable t o  determine i f ,  within these canister  diameter ranges, there 
is  a diameter which minimizes the requi'red mine area. Figures 3-3, 3-4 

and 3-5 have been replotted i n  Figure 3-6 t o  show the mine area require- 

ments (per 1000 MTU of fuel reprocessed) fo r  the three geologic media. 
The des i rabi l i ty  of one geologic medium over another cannot be inferred from 
Figure 3-6 because of the different  mining cost fo r  each medium. Addi-., 

t ional ly,  i t  must be rei terated tha t  the curves for  'shale and basal t  do 
not include any constraints on repository temperatures. 

10"" I I 
7 1 1 - SALT ' 1 - 

I I - BASALT - 
- y- !> , SHKE . , - 

! ! - ! 
I 

I - 
I i 

I I ! 

CANISTFR DIAMETER* I N .  

:FIGURE 3-6. NET MINE AREA REQUIREMENTS FOR OVERPACKED, . . 
GLASS-FILLED CANISTERS 

With these qualifications,  Figure 3-6 can be used t o  determine the 

trends for  each medium. For a repository * i n  s a l t ,  the mine area required 

i s  constrained by the s a l t  temperature c r i t e r i a  and i s  ,essentially i n -  
dependent of canister  diameter. However, for  shale and basal t ,  the net 
mine area, which i s  constrained by the allowable waste temperature, is - 
seen t o  decrease wi t h  decreasing canister  diameter. T h i s  suggests tha t ,  

for  shale and basalt ,  many small canisters are  preferable t o  fewer large 
canisters.  

% 

On the other hand, for  a fixed quantity of waste, the vari.able costs 

- 
a s s o k i t e d  w i t h  hand1 ing, possible overpacking, in-mine transportation and 

. . .  . . . . . .  . . . . . . .  . . . .  - . . . . . . . . . . .  
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canister hole boring probably increase in proportion t o  the to ta l  number 
of canisters processed. This suggests tha t  a small number of large 
canisters i s  preferable for  s a l t .  However, for  shale and basal t ,  these 
qua1 i ta t ive  considerations of fixed and variable costs suggest tha t  there 
may be a cost-optimum canister  diameter for  each of the two media; how- 
ever, such an investigation i s  oytside the scope of the current study. 

1n the preceding resul t s  for  gl ass r f i  11 ed canisters  , the cr i te r ion  
which most often constrains the canister  s i ze  is  seen to  be the maximum 
a1 1 owabl e glass temperature of '8000~. Because the glass center1 i ne tem- 
perature i s  d i rec t ly  affected by the f i n s ,  i t  i s  very important t o  re- 
cognize tha t  t . l - i ~  re;.:,:~l t s  described above apply only to  the f i n  design 
adopted for  th i s  sLiidy (see section 2.2.1). Up t o  a point, f ins  of 

increased thickcess, or more f ins ,  will allow greater canister  s izes  and 
heat loads than shown here, even accounting for  the waste displaced by 
these f ins .  Other forms of centerline cooling, such as waste dilution o r  
the substitution of an annular canister ,  could also be employed t o  obtain 
larger canisters with increased heat loads. 

A canister  must be designed t o  be compatible with the design con- 
s t r a i n t s  imposed by both the cooling method selected for  interim storage 
and the repository medium for  which the canister  i s  destined. Therefore, 
Figures 3-1 and 3-2, and Figures 3-3 t h r o u g h  3-5 must be assessed 
collectively.  Repositories in s a l t ,  shale and basalt  can accept glass- 

f i l l e d  canisters of up  to  22 inches, 15 inches and 19 inches diameter,' 
respectively. Reference t o  Figures 3-1 and 3-2 indicates the minimum 

allowable waste age for  these diameters as a function of the interim 
storage mode sel ected 

For the following reasons, i t  may be desirable t o  water-cool glass- 
f i l l e d  canisters during interim storage a t  the FRP rather  than use a i r -  

cool ed s torage: 
. ;__ - .  - 

0 Water basin cooling (of spent fuel assemblies) i s  state-of-the-art .  . 

m Water cooling i s  a more effect ive heat t ransfer  medium, t h u s  
a1 1 owS ng 1 arger canister  diameters. 

0 Water basins provide greater protection against accidental 
mechanical impact. - . . . . . . . . . .  

. . . . .  ... ... . . .. - -- -- .. 



'However, because the canisters will have been 'sensitized, to  a degree, as  

the r e su l t  of the in-can. me1 t i n g  process, and because they will be under * 
an e l a s t i c  tens i le  s t r e s s  , i t  may be desirable t o  overpack the canis ter  
prior t o  water-cooled interim storage rather than deferring this operation 
u n t i l  l a t e r .  In water-cooled storage, overpacked canisters provide an 
added benefit (Reference 1) : overpacking el iminates the requirements fo r  

concrete cover blocks and eliminates the need for  a two-loop water cooling 
system because of the lowered probability of contaminating the basin water 
with a fa i led  canister.  Also eliminated are the diversion features of 

the ventilation system i n  the storage area which provide the option of 
routing the exhaust a i r  through a HEPA f i l t e r  pr ior  t o  discharge t o  the 
stack. 

Figure 3-1 can then be used to' determine the minimum waste age re- 
quired for  glass-f i l led canisters which are  overpacked and water-cooled 
i n  interim storage. For the 22-inch-diameter canister destl ned t o r  sai  t, 
a waste age of 3.3 years or  greater i s  required. For shale,  the 15-inch- 

di ameter canister  requires waste aged approximately 1.6 years. For basal t ,  
a 16-inch diameter requires waste aged approximately 1.7 years. 

A potential disadvantage with water-cooled interim storage i s  the 
degraded integri ty  of a canister  in the event of an accident which re- 
s u l t s  e i the r  i n  f a i lu re  t o  circulate  the water or in complete loss  of 
water. Such events are  of extremely low probability, as redundant pumps 
and water supply systems w i  11 be incorporated. This redundancy notwi t h -  

standing, Figure 3-7 shows the t ransient  temperature response of a 
typical cani s t e r  fol lowing complete and instantaneous loss of water. The 

canister shown in Figure 3-7 has a diameter of 9.6 inches, has an over- 
pack, contains l-year-old waste, and i s  designed t o  limit the canister  sur- 
face temperature t o  3506C during normal condi t iens of water-cooled storage. 

Thermal equil i b r i  urn has been obtained prior t o  the accident: the over- 

pack temperature i s  5 3 ' ~ ,  the canister  i s  a t  350°C, and the glass center- 
l i ne  temperature i s  approximately 540°C. A t  time zero, a l l  the water is  
removed and the temperatures increase with time until  reaching a new 
equilibrium. Thc overpack equilibrates a t  approximately 335OC. The 

*Stress re1 ie f  a s ,  for  example, by canister  sub-cooling i s  not currently 
,planned (Reference 4). . . . . . . . . . . . . . .  . -  . . . . . . . .  -. . 
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ITIME AFTER LOSS OF WATER, HOURS, 

FIGURE 3-7. TEMPERATURE HISTORY OF AN OVERPACKED, GLASS:' 
FILLED CANISTER FOLLOWING LOSS OF WATER COOLING - 

can is te r  equ i l i b r i um  temperature i s  455OC, which i s  w i t h i n , t h e  temperature 

regime (430-790°C) a t  which s e n s i t i z a t i o n  occurs. The peak center1 i n e  

temperature reaches 640°C a f t e r  approximately '6 hours. Therefore, the  

ove ra l l  e f fec t  o f  a loss-of-coolant  accident  i s  no t  seen t o  be catastrophic.  

3.2 DESIGN CONSTRAINTS FOR CANISTERS. CONTAINING CALCINE 

Fol lowing are the r e s u l t s  obtained f o r  can is ters  conta in ing the 

ca lc ine  waste form. The basel ine case described below assumed a c y l i n d r i -  

cal  can is te r  conf igura t ion:  an annular cy l i nder ,  i n t e r n a l  f ins ,  waste 

d i l u t i o n  o r  o the r  forms o f  ca lc ine  temperature reduct ion are n o t  i n -  

cluded i n  the basel ine case, bu t  are  discussed separately i n  Section 3-4. 

3.2.1 I n t e r i m  Storage 
. -.. -- - 

Figure 3-8 shows the resu l t s '  obtained f o r  ca l c i ne - f i . l l ed  can is ters  

i n  water  cool ing.  Two cases are  shown: w i t h  and wit.hout an overpack. 

Without an overpack the can is te r  i s  maintained a t  5 3 O C  and the  al lowable 

diameter as a f unc t ion  of waste age i s  constrained by the waste tem- 
- - - -  -. - perature of 700°C. I n  Case 2, which represents an overpacked can is ter ,  - -  - 

3-1 3 
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. . 

the diameter is similarly constrained by the waste temperature, regard- 
less  of waste age. I t  was found tha t  the canister  temperature i s a l w a y s  

less  than 350°C for  Case 2. 
I 

The resul ts  for  air-cooled calcine canisters a re  shown i n  Figure 3-9. 

As for  glass-f i l led canisters ,  three cases are  shown. Case 1 ,  without 

an overpack, i s  constrained only by the waste temperature and, fo r  the 
diameters shown, the canister  i s  always a t  a temperature of l e s s  than 
350°C. With an overpack, and allowing the canister t.0 exceed 350°C, 

is  represented by Case 2.'. Constraining the canister  temperature l o  350°C 

i s  represented by Case 3. For short-aged wastes, .it can be seen tha t  there 
!is only a s l igh t  difference in the resul t s  obtained for  a l l  three cases. 

Comparison of these resul t s  w i t h  the resul t s  obtained for  glass- 

f i  1 led canisters in ~ i b u r e s  3-1 and 3-2 shows that '  the calcine results i n  
s ian i f i cant ly  - 'smaller allowable canister  diameters and heat loads. These 
resul t s  a re  caused by a combination of two factors:  the lower allowable 
waste temperature for  calcine; and the '  lower thermal conductivity of 
calcine compared t o  the finned glass.  For calcine, the maximum possible 
canister  diameter, 10 inches, could be used i f .  the waste is aged fo r  

the maximum a1 lowable time ( i  . e . ,  5 years) ,  placed i n  a canis ter  without 
an overpack and then placed in water-cooled interim storage. From 

Figure 3-9, t h i s  same canister could be transferred t o  air-cooled storage 
1.5 years 1 a t e r .  

3.2.2 Geologic Storage 

Figure 3-10 shows the maximum a1 lowable canister  diameters and heat 

1 oadings for  cal cine-fi 11 ed canisters emplaced in a s a l t  repository. For 
a pitch of up to  approximately 40 f e e t ,  allowable canister  diameter 
increases with pitch, and i s  constrained by the 25 percent s a l t  tem- 
perature cr i ter ion.  However, a t  a pitch of greater than 40 fee t ,  the 
waste temperature cr i te r ion  1 imi t s  the maximum a1 lowable canister  dia- 

meter to  10:.8 A. . inches. - 
The canister design constraints i n  a shale repository are  shown i n  

Figure 3-11. As discussed i n  Section 2.2 ,2 ,  lacking defini t ive data on 

shale temperature l imi ts ,  the maximum allowable waste temperature i s ,  
assumed t o  be the only constraint on diameter. I t  i s  seen i n  Figure 3-11 

. . . . . .  
- - .. - .... - .. -. . . .  . . . . .  - - . . . .  - - - - ... - .. - - - .-- . -- --  .- - - .- . 
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P I T C H ,  FT. 

FIGURE 3-10. DESIGN CONSTRAINTS FOR CANISTERS CONTAINING CALCINE 
STORED I N  A SALT REPOSITORY (10-YEAR-OLD PWR WASTE; 
CANISTER WITH OVERPACK) - .  

P I T C H ,  FT. 

FIGURE 3-11. DESIGN CONSTRAINTS FOR CANISTERS CONTAINING CALCINE 
. . . . --. - . . STORED I N  A SHALE REPOSITORY (10-YEAR-OLD PWR WASTE; 

CANISTER WITH OVERPACK) 



t h a t  t he  a1lo;gable' diameter increases s l i g h t l y  w i t h  p i t c h ,  up t o  a 

maximum p i t c h  C P  50 f e e t .  The maximum diameter a t  a p i t c h  o f  50 f e e t  o r  

g rea te r  i s  8.5 inches. 

F igure 3-12 shows the  r e s u l t s  obta ined f o r  basa l t .  A l lowable d ia -  

meter increases w i t h  jncreas ing p i t c h  up t o  a p i t c h  o f  30 f e e t :  a t  30 

f e e t  and greater  t h e  diameter cannot exceed 9 inches. 

PITCH, FT. 

FIGURE 3-1 2. DESIGN CONSTRAINTS FOR CANISTERS CONTAINING CALCINE WASTE 
STORED IN A BASALT REPOSITORY (10-YEAR-OLD PWR WASTE; 
CANISTER WITH OVERPACK) 

Cal c i  n e - f i  11 ed can is te rs  des t ined f o r  geologic s torage a r e  thus 

const ra ined t o  maximum diameters o f  10.8 inches, 8.5 inches and 9 inches, 

corresponding t o  s a l t ,  shale and b a s a l t  geologic media, respec t i ve l y .  

F igure  3-13 shows t h e  n e t  mine area requ i red  f o r  c a l c i n e - f i l l e d  

can is te rs  as a f u n c t i o n  o f  c a n i s t e r  diameter, w i t h  t h e  q u a l i f i c a t i o n  t h a t  

no temperature l i m i t s  have been prescr ibed f o r  shale and basa l t .  F igure  

3-1.3 shows tha t ,  f o r  a r e p o s i t o r y  i n  s a l t ,  there  i s  no b e n e f i t ,  i n  terms 

o f  a decreased mine area requirement, t o  be der ived by us ing  can is te rs  

smal le r  than 10.8 inches i n  diameter. However, i n  shale and b a s a l t  r e -  

p o s i t u r i e s ,  t he re  i s  a mine area advantage associated w i t h  us ing  t h e  - 
smal les t  diameters. Therefore, as described i n  Sect ion  3.1.2, t r a d e o f f s  

between v a r i a b l e  cos ts  and f i x e d  cos ts  lnay i n d i c a t e  an optimum c a n i s t e r  * 

d iameter f o r  shale and basa l t .  
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3.2.3 Summary 

The re la t ive ly  poor thermal conductivity of calcine and the lower 
a1 lowable waste temperature constrain the cal cine-fi 11 ed, cyl indrical 
canis ter  diameters and heat loads to  values which are  less  than those 
a1 1 owabl e fo r  gl ass-f i  11 ed canisters.  

Because the canis ter  will probab'ly have been sensit ized prior t o .  
i.nterim storage, i t  may be desirable t o  overpack a calcine-f i l led canis ter  
prior to  interim storage. The maximum allowable diameter f o r  any given 

waste age resu l t s  from using water-cooled storage. However, even f o r  * 

water-cooled storage, the maximum diameter which can be used, correspond- 
ing to  an overpacked canis ter  with 5-year-old waste, i s  approximately 9 

inches. These resu l t s  indicate tha t  t o  use the maximum s ize  which the 

repository'can A. . accept, ' the  waste will have to  be aged fo r  a t  l e a s t  4.5 - 
years. 
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J 3.3 TEMPERATURE HISTORIES 

~ ~ ~ i c a l  temperature h i  t o r i e s  o f  t he  waste, can is te r ,  overpack and * - -  -. 

mine' a re  presented i n  F igu r  3-14 3-15 and 3-16 f o r  a  g l a s s - f i l l e d  ' . . 
c a n i s t e r  i n  s a l t ,  shale and basa l t ,  respec t i ve l y .  I n  each case t h e  canis-  

t e r  diameter i s  assuied'to be 12 inches and the  heat  load i s  2.75 kw a t  

the  t ime i t  i s  emplaced a t  the  r e p o s i t o r y  10 years a f t e r  reprocessing. 

The c a n i s t e r  i s  assumed t o  have the  minim& a l lowab le  pi tih i n  each r e -  

spect ive  r e p o s i t o r y  medium. From Figures 3-3, 3-4 and 3-5 t h e  minimum 

p i t c h  f o r  a  12-inch diameter c a n i s t e r  i s  35 f e e t ,  20.4 f e e t  and 26.6 f e e t  

f o r  s a l t ,  shale and basa l t ,  respec t i ve l y .  The l o c a t i o n  o f  t he  nodes i s  

shown i n  t h e  sketch on t h e  Figures. Node a  i s  t h e  g lass cen te r - l i ne ,  node 

b  i s  the  c a n i s t e r  arid tiode c i s  t h e  overpack. Nodes d  and e  a re  a t  r a d i i  

which encompass 1 percent  and 25 percent  o f  t he  s a l t  i n  t h e  u n i t  ce l ' i  , r e -  

spect ive ly .  Node f i s  a t  t h e  rad ius  o f  t he  u n i t  c e l l .  The l o c a t i o n  gf 

nodes g, h, i and J were selected a r b i  t r a r i i y  t o  show the  Lempei..atu~= 

h i s t o r y  a t  var ious l o c a t i o n s  i n  the  repos i to ry .  

I n  a  s a l t  repos i to ry ,  as shown i n  F igure  3-14, the  g lass  c e n t e r l i n e  

temperature peaks a t  approximately 320°C i n  about 12 years. The c a n i s t e r  
ana overpack peak s h o r t l y  the rea f te r .  As shown . - i n  F igure  3-3, f o r  a  

12-inch diameter c a n i s t e r  the  c o n s t r a i n t  i s  t h e  25 percent  s a l t  c r i t e r i o n  

(node e).  As shown, node e  peaks a t  e x a c t l y  200°C a t  approximately 35 
1 .  

years a f t e r  emplacement. Most o f  t h e  near - f i e ld  r e p o s i t o r y  nodes a r e  seen 

t o  peak by 4 5  years, except fo r  nodes i and j, loca ted  a t  43 fee t  above 

t h e  room and a t  t h e  e a r t h ' s  surface, respec t i ve l y .  

I n  shale, t he  c a n i s t e r  i s  designed f o r  a  maximum c e n t e r l i n e  tempera- 

t u r e  o f  800°C. As shown, t h e  c e n t e r l  i n e  temperature (node a)  peaks a t  

800°C a t  approximately 18 years. Mine temperatures a re  s t i l l  i nc reas ing  

a t  36 years, due t o  t h e  poor c o n d u c t i v i t y  o f  t he  shale. 

F igure  3-16, f o r  basa l t ,  s i m i l a r l y  shows the  waste c e n t e r l  i n e  peaking 

a t  8000C, - a t  about 28 
. . --: 

* Small . i n f l e c t i o n s  i n  these f i g u r e s  a r e  due t o  changes o f  t ime steps. 
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In this section the e f fec t  on the design constraints of a1 ternate  

cases i s  investigated. These a l te rna te  cases represent potential changes 
to  the baseline cases described in Section 2. Typical e f fec ts  a r e  

presented. . - 

. . .  3.4.1 Waste Source, - - 

The baseline case assumed tha t  the canis ter  contains 10-year-old PWR. 
. - 

waste a t  the time i t  i s  emplaced in the repository. As seen i n  Appendix A ,  

the waste generated by reprocessing Boiling Water Reactor (BWR) fuel 'has - .  

. . -  
a thermal inventory which i s  approximately 75 percent to  80 percent o f  - 

PWR waste. For the typical case of a g lass - f i l led  canis te r  i n  a s a l t  . ' 

repository, Figure 3-17 shows a comparison between the maximum a1 1 owabl e 
diameter, as a function of pitch, for  BWR and PWR waste. As expected, 

.- .. 
B W ~  waste i s  seen t o  allow for  s l igh t ly  greater diameters. 

3.4.2 Waste Aqe 

The baseline case assumed tha t  10-year-old PWR waste i s  received a t  
the repository. Theoretically, waste with almost zero age cculd be 
received, b u t  5-year-old waste- i s  probably a lower l imi t .  .Figure 3-18 

shows the e f fec t  of 5-year-old waste on the allowable diameter. As shown, 

Siyear-01 d waste requires  s l igh t ly  smaller diameters due t o  the increased 
heat output. 

3.4.3 Ambient Air Temperature i n  Interim Storage 

In Reference 18 the e f fec ts  of ambient a i r  temperature on the tem- 
peratufes of canist'ers i n  air-cool ed inteiim storage are  shown. Even 
considering a wide range of ambient temperatures, the e f fec ts  are  seen t o  

3.4.4 Canister Emissivity 
/ 

As shown . . in Referencel7,  the c a n i s t e ~  emissivity can have a s igni-  
* .  

f icant  e f fec t  on the canis ter  and waste centerline temperatures i n  a i r -  - 
cooled interim storage: as emissivi ty decreases, the canis te r  and center- . , 

l i n e  temperatures increase. The same trend would be observed i n  4 '  geologi'c 

storage with an overpack. However, the emissivity values fo r  oxidized 

........... . s ta in less  s tee l  used i n  t h i s  study ( in  t h e  range o f  0.7 t o  0.85) a r e  i n  . . . . . . . . .  . . . . . . . . .  . . . .  -- 
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FIGURE 3-1 7. EFFECT OF WASTE SOURCE ON DESIGN CONSTRAINTS FOR 
CANISTERS CONTAINING GLASS I N  A SALT REPOSITORY . 

- . .  .. 
(1 0-YEAR-OLD WASTE; CAN lSTER . . .  WITH OVERPACK) . . - . - -- . - 

. . . - - 
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~ 1 ~ u ~ ~ 3 - 1 8 .  EFFECT OF WASTE AGE ON D E S I G N  CONSTRAINTS FOR C A N I S T E R S  
C O N T A I N I N G  GLASS I N  A S A L T  REPOSITORY (CANISTER W I T H  
OVERPACK) 



c lose agreement w i t h  values observed (Reference 3) f o l l o w i n g  in-can, 

me1 t j n g .  Therefore, lower  values o f  em iss i v i  t y  do n o t  appear t o  be 

r e a l i s t i c .  

3.4.5 Cani ster/Overpack B a c k f i l l  

WASTE AGE , YEARS 

FIGURE 3-1 9. EFFECT OF OVERPACK BACKFILL ON THE ALLOWABLE DIAMETER AND 
HEAT LOADING OF GLASS-FILLED CANISTERS I N  WATER-COOLED . 

-- INTERIM STORAGE . - -  - - . - - - - . - - - -. 



on the  a l lowab le  diameter of an overpacked, g l a s s - f i l l e d  c a n i s t e r  i n  

water-cooled i n t e r i m  storage i s  shown. An increase o f  up t o  2 inches can 
be gained f o r  waste aged 5 years. Likewise, s i m i l a r  advantages would 
r e s u l t  f o r  a i  r -coo l  ed, overpacked g lass can is te rs  i n  ' i n t e r i m  s torage and 

overpacked, c a l  c i n e - f i l l  ed can is te rs  i n  e i t h e r  water- o r  a i r - c o o l e d  

i n t e r i m  storage. I n  geologic storage, a  he1 ium b a c k f i l l  would o n l y  be 
o f  b e n e f i t  i f  i t  can be assured t h a t  t h e  overpack remains l e a k - t i g h t  f o r  

an i n d e f i n i t e  p e r i o d  o f  t ime. 
- .  . 

3.4.6 Mine B a c k f i l l  

The base l ine  cases f o r  s a l t ,  shale and b a s a l t  assumed t h a t  t he  e n t i r e  

room, and the  annulus between t h e  overpack and t h e  hole, a re  b a c k f i l l e d  i m -  

med ia te ly  a f t e r  the  c a n i s t e r  i s  emplaced. Th is  base l ine  case f o r  b a s a l t  i s  

shown as a  dashed l i n e  i n  F igure  3-20. I f  t h e  room i s  n o t  b a c k f i l l e d , .  

t h e  thermal res i s tance  between. t h e  mine f l o o r  and c e i l i n g  i s  increased, 

causing a  s l i g h t  reduc t ion  i n  t h e  a l l o w a b l e ' c a n i s t e r  diameter. I f  n e i t h e r  

t h e  room n o r  the  annulus are  b a c k f i l l e d ,  t h e  a l lowab le  c a n i s t e r  diameter 

i s  increased. Th is  r e s u l t s  f rom t h e  heat  t rans fe r  across t h e  gap. When 

the  annulus i s  b a c k f i l l e d ,  heat  t r a n s f e r  i s  by conduct ion through crushed 

basa l t .  Without an annul us b a c k f i  il , heat  t r a n s f e r  i s  by f r e e  convect ion 

and r a d i a t i o n .  The thermal c o n d u c t i v i t y  o f  crushed b a s a l t  i s  s u f f i c i e n t l y  

low t h a t  i t  creates more o f  a  thermal res i s tance  than an a i r  gap. The 

op tilnum c o n f i g u r a t i o n  f o r  basa l t ,  t he re fo re ,  may be t o  b a c k f i l l  t h e  room 

b u t  n o t  the  annulus. This t r e n d  i s  o n l y  app l i cab le  t o  crushed b a c k f i l l  

w i t h  1 ow thermal conduc t i v i t y .  

3.4.7 Canister  Temperature Const ra in t  

As descr ibed prev ious ly ,  i t  was assumed f o r  the  base l ine  cases pre-  
' 

sented i n  Sections 3.1, 3.2 and 3.3 t h a t  t h e  c a n i s t e r  i s  overpacked when 

emplaced i n  the  r e p o s i t o r y  and t h a t  t he re  i s  subsequently no c o n s t r a i n t  on 

the  c a n i s t e r  temperature. Thus, f o r  t h e  1  arger  c a n i s t e r  diameters, 

c a n i s t e r  ' temperature may be w i t h i n  t h e  regime a t  which s e n s i t i z a t i o n  occurs, L' 
poss ib l y  l ead ing  t o  s t r e s s  co r ros ion  cracking.  However, t he  waste must 

be r e t r i e v a b l e  f o r  a  pe r iod  o f  5 years; thus, e i t h e r  t h e  can is te r ,  t h e  

overpack, o r  both must remain i n t e g r a l  f o r  5 years  t o  f a c i l i t a t e  removal 

o f  t he  waste. I f  i t  can be shown t h a t  t h e  overpack remains i n t e g r a l  i n  
- - 



FIGURE 3-20.  EFFECT OF BACKFILL ON DESIGN CONSTRAINTS FOR 'CANISTERS 
CONTAINING GLASS IN A BASALT REPOSITORY ( I  Q-YEAR-OLD 
PWR WASTE; CANISTER WITH OVERPACK) 
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The net e f fec t  on the allowable diameters of l i m i t i n g  the canister  

temperature to  350°C, for  glass-f i l led canisters  i n  s a l t ,  shale and basalt  
i s  shown in Figures 3-21, 3-22 and 3-23, respectively. In s a l t ,  this con- 
s t r a i n t  i s  seen to  have an ef fec t  only for  pitches greater than approxi- 
mately 48 f ee t  and diameters greater than 16 inches. In shale and basa l t ,  

however, t h i s  constraint i s  seen to  s ignif icant ly a f fec t  the allowable 
diameters and heat loads. Large canisters i n  s a l t ,  and a l l  canisters  i n  

shale and basalt ,  are  affected because the waste centerline temperature i s  
approximately 8 0 0 ' ~ ~  and the presence of the f ins  causes the canister  
surface t o  have a temperature approaching tha t  of the waste centerline.  

Similar resul ts  for  cal cine-fi 11 ed canisters a re  shown i n  Figures 
3-24,.3-25 and 3-26. However, because the calcine conductivity is rela-  

t ive ly  poor, and the centerline i s  constrained t o  700°C, canister  tem- 
perature i s  normally not much higher than 350°C. In the case of a calcine- 

f i l l e d  canister  i n  a sai  t repository, .i;ht?i-e i s  irri e.:f--~ct :us t; t h f s  zcz.- 
' 

s t r a i n t .  

3.4.8 Calcine Canister Configuration 

As described i n  Section 3.2, calcine-fil led canisters  resul t  in small 
allowable diameters due to  the waste centerline temperature constraint and 
the poor thermal conductivity. Techniques (Reference 14) fo r  a1 lowing 

enlarged calcine canister  di ameters and heat loads incl ude dilution of the 

waste form or  the inclusion of an annulus. . - 

Reference 19 describes di 1 u t  i ng calcine wi t h  sand, yi el ding a mixture 
, w i t h  essent ial ly  the same thermal conductivity as calcine, but w i t h  lower 
thermal power per u n i t  volume. T h i s  technique can be shown to  provide no 

s i ze  advantage when the canister  surface temperature is  the dominant con- 
s t r a i n t  on diameter. Some advantage may accrue fo r  those cases where 

centerl i ne temperature i s  1 imi t i  ng , b u t  t h i s  was not fur ther  investigated 
i n  t h i s  study. 

where-& ther  the ' centerl i ne temperature o r  the canister  temperature - 
is the dominant constraint on cal cine-fi l led  canisters ,  an advantage 

can be gained by providing the canister  with an annulus, thus cre- 
ating a void i n  the center. The diameter of the inner cylinder can then 

'be a constant, independent of the outside diame.ter, or the diameter can 
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FIGURE 3=21. CANISTER DIAMETER CONSTRAINT INTRODUCED BY L I M I T I N G  CANISTER 
TEMPERATURE TO 350°C (GLASS-SALT; 1 0-YEAR-OLD PWR WASTE; ;.. - 
CANISTER 'WITH OVERPACK) 
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' IGURE 3 - 2 2 .  CANISTER DIAMETER CONSTRAINT INTRODUCED BY L I M I T I N G  CANISTER 
TEMPERATURE TO 3 5 0 ° C  _ (GLASS-SHALE, . . - ,  10-YEAR-OLD PWR WASTE; 
CANISTER WITH OVERPACK) 



FIGURE 3-23. CANISTER DIAMETER CONSTRAINT INTRODUCED BY L I M I T I N G  CANISTER 
I TEMPERATURE TO 350°C (GLASS-BASALT, 10-Y EAR-OLD PWR WASTE; 

C CANISTER WITH OVERPACK) 
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FIGURE 3-24. CANISTER DIAMETER CONSTRAINT INTRODUCED BY LIMITING CANISTER 
TEMPERATURE TO 350°c (CALCINE-SALT; 10-YEAR-OLD PWR WASTE; 

. . -.- - CANISTER WITH OVERPACK) 
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F I G U R E  3-25. C A N I S T E R  DIAMETER CONTRAINT INTRODUCED BY L I M I T N G  C A N I S T E R  
. 'TEMPERATURE T O  3 5 0 ° C  (CALCINE-SHALE:  IO-YEAR-OLD PWR WASTE; 

CAN I S T E R  WITH OVERPACK) 

- 
P I T C H ,  ft . - - ... -- - 

F I G U R E  3-26. C A N I S T E R  DIAMETER CONSTRAINT INTRODUCED BY L I M I T I N G  C A N I S T E R  
TEMPERATURE TO 350°c (CALCINE-BASALT; 10-Y EAR-OLD PWR WASTE; 
C A N I S T E R  WITH OVERPACK) 



vary as a  func t ion  o f  t he  ou ts ide  diameter. To i n v e s t i g a t e  t h e  advantages 

o f  an annul.us, t h e  i n n e r  c y l i n d e r  was assumed t o  have a  diameter o f  one- 

h a l f  t he  ou ts ide  diameter. 

Very s i g n i f i c a n t  increases i n  a l lowab le  diameter and heat  l o a d  r e s u l t  

f o r  annular,  c a l c i n e - f i l l e d  can is te rs  i n  i n t e r i m  storage as shown i n  

Figures 3-27 and 3-28. 

Figures 3-29 and 3-30 show t h e  e f f e c t  o f  the  annulus on t h e  diameters 

and heat  loads al lowed f o r  two r e p o s i t o r y  media: s a l t  and shale. Com- 

par ison o f  F igure  3-29 w i t h  F igure  3-24 i n d i c a t e s  the  advantages o f  t he  

annular c y l i n d e r  i n  a  s a l t  repos i to ry .  I f  c a l c i n e  center  l i n e  temperature 

i s  the o n l y  c o n s t r a i n t ,  the  maximum a l l owab le  heat load ing i s  increased 

from 4 kw (F igure  3-10) t o  approximately 6.5 kw (Figure 3-29). I f  t h e  

c a n i s t e r  sur face .temperature i s  a l s o  a  cons t ra in t ,  'the maximum a l lowab le  

; heat loadi,nq i s  increased t o  q rea te r  than 5 kw. F igure  3-30 shows d i r e c t l y  

the  advantage o f  the  annular c y l i n d e r  i n  a  .shale repos i to ry .  If the  waste 

center  l i n e  temperature i s  the  o n l y  cons t ra in t , . t he  maximum a l lowab le  heat  

load ing i s  increased from approximately 2.4 kw t o  3.2 kw. Likewise, t h e  

annular c y l i n d e r  a l lows a  maximum heat  l oad ing  o f  1.9 kw, compared t o  1.8 

kw, i f  the  c a n i s t e r  sur face temperature i s  the  dominant c o n s t r a i n t .  

3.4.9 Model i ng Approach 

As descr ibed i n  Sect ion 2.2.2, t he  two-dimensional RZ model used i n  ' 

t h i s  s tudy necessar i l y  neglected t h e  wa l l s ,  o r  p i l l a r s ,  o f  t he  mine room. 

A comprehensi ve, three-dimensional ana lys i s  i s  repo r ted  by Cheverton. and 

Turner i n  Reference 5 f o r  c a l c i n e - f i l l e d  can is te rs  i n  a  s a l t  repos i to ry ,  

i n  which the  p i l l a r s  a r e  included. The r e s u l t s  obta ined,  i n  t h e  c u r r e n t  

study can, the re fo re ,  be compared w i t h  Reference 5. 

There a re  c e r t a i n  d i f fe rences,  o the r  than t h e  p i 1  1  ars,  between t h e  

model 1  i n g  o f  Reference 5 and t h e  model 1  i n g  o f  t h i s  study. These d i f f e r e n c e s  

a f f e c t  t he  r e s u l t s  obtained. - 
z .  

'Whereas t h i s  study assumes a  homogeneous medium above and below - 
the mine room, Reference 5 inc ludes sha le , layers  above and below 
the mine room, and a mixed shale and s a l t  l a y e r  above the  mine 
room. The i n c l u s i o n  o f  shale w i l l  genera l l y  increase mine- level  
temperatures and p r e d i c t  smal l e r  a1 lowable c a n i s t e r  heat  loadings, 
a t  a  g i ven 'p i t ch ,  because o f  t he  poor c o n d u c t i v i t y  o f  shale i n  
the  t ransverse d i r e c t i o n .  

- . . . - . . -. . . . . - -. - . . - - . . 

3-34 



WASTE AGE, YEARS . . I ... ! :-I '. 

FIGURE 3-27. EFFECT OF ANNULAR CANISTER ON ALLOWABLE DIAMETER AND 
HEAT LOADING OF CALCINE-F ILLED CANISTERS I N  WATER- 
COOLED I N T E R I M  STORAGE (PWR WASTE) . 
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FIGURE 3-28. EFFECT OF ANNULAR CANISTER ON ALLOWABLE DIAMETER 

AND HEAT LOADING OF CALCINE-FILLED CANISTERS I N  
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FIGURE 3-29. DIAMETERS FOR CALCINE-FILLED ANNULAR CANISTERS I N  A . 

SALT REPOSITORY (10-YEARTOLD PWR WASTE; CANISTER 
WITH OVERPACK) 
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FIGURE 3-30. DIAMETERS FOR CALCINE-FILLED ANNULAR CANISTERS IN A 
SHALE REPOSITORY (1 0-YEAR-OLD PWR WASTE; CANISTER 
WITH OVERPACK) 



r Whereas this study assumes a maximum allov.able temperature of 
700°C for  the calcine,  the study reported in Reference 5 assumed 
a maximum allowable temperature of approximately 600°C. The 
lower temperature wil I cause smaller a1 lowable canis ter  heat 
loadings fo r  fixed values of pitch. 

a A constant calcine conductivity, greater than tha t  used in t h i s  
study, was used i n  the Reference 5 study. The higher conductivity 
will r e su l t  in larger allowable canis ter  heat loadings fo r  fixed ' 

values of pitch. 

8 The canis ter  configuration examined i n  Reference 5 does not appear 
to  include an overpack. Deletion of the overpack will r e su l t  i n  
larger a1 1 owabl e canister heat loadings for  fixed values of pitch. 

.The canister i s  assumed in Reference 5 to  be f i l l e d  with waste to  
a height of 10 f ee t ,  whereas th i s  study assumed i t  to  be f i l l e d ,  
t o  ,only 8 fee t .  The assumption nf a greater f i l l  height pro- 
bably increases the allowable heat loadings fo r  fixed values of 
pitch. 

Fny the 15-foot-wid? rcm.  Referease 5 assumes a sin,g!e row of 

canisters down the center of .the room, and a pi1 l a r  width of 25 fee t .  
Two rows of canis te rs ,  each 4-foot distance from 30-foot-wide p i l l a r s ,  - 
are  assumed fo r  the 30-foot-wide room. The 50-foot-wide room a lso  

assumes two rows of canis ters ,  each located 4-foot distance from 50-foot- 
* 

wide p i l la rs . .  Figure 3-31 shows tha t ,  a t  large pitches where the waste 
temperature i s  a constraint ,  t h i s  .study predicts canis ter  heat loads 

FIGURE 3-31 . COMPARISON OF RESULTS FOR CALCINE-FILLED 
CANISTERS IN A SALT REPOSITORY (1 0-YEAR- 
OLD PWR WASTE - _ - - . - . - -  - - - 
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which agree to  within 75 percent. However, a t  small values of pitch, 

there i s  considerable difference in the r e su l t s ,  wherein t h i s  study pre- 
d i c t s  canis ter  powers only 40 percent of Reference 5 values. This 

difference can be at t r ibuted to  the presence of the p i l l a r s ,  which pro- 
vide conduction paths from the uni t  ce l l  to  the overburden. 

Comparing these resu l t s  as  a function of pitch may not be altogether 

valid because, fo r  a given pitch, the u n i t  ce l l  areas a re  d i f fe rent  f o r  
the two studies.  Reference 5 u t i l i z e s  a rectangular u n i t  ce l l  with one 
dimension fixed and the other equal to  the pitch. Therefore, the re-' 

s u l t s  should be compared on the basis of total  area (including the p i l l a r ,  
where applicable) per kilowatt of waste. These resu l t s  a re  compared i n  

Table 3-3. 

Comparison of the resu l t s  in the region where the s a l t  c r i t e r i a  a re  
the dominant constraints el iminates the differences in calcine conductivj ty  
znti msrj.;vim 31 p4!2h!o t ~ ~ p e r z t 2 - 0 -  I t  .is 5 2 ~ ~  -eycm 3-3 f C ~ ~ u C  kaf  -C-- 4 .,I 

those values of pitch where the s a l t  temperature c r i t e r i a  a re  the dominant 
constraints,  the heat ibadings predicted in th i s  study are  approximately 
85 percent of the heat loadings predicted in Reference 5 fo r  30-foot and 
50-foot rooms, wherein the p i l l a r s  occupy 50 percent of the total  area. 
Differences in the resu l t s  are  much greater fo r  the 15-foot room, i n  

which the p i l l a r  occupies 62.5 percent of the total  area. This comparison 
underscores the importance of the p i l l a r s  in conducting heat away from 
the u n i t  c e l l .  



TABLE 3-1. COMPARISON OF AREAL POWER DENSITIES 

j Areal Power Density Constrained by Waste Temperature cr i t lsr lon 



4. CONCLUSIONS AND RECOMMENDATIONS 

The canis ter  design constraints ( i . e . ,  the maximum allowable inside 

diameters and corresponding heat loadings) a re  sumnarized in Tables 4-1 
and 4-2 for  waste which i s  derived from reprocessing PWR fuel and i s  incor- 

porated in borosil i ca te  glass-fi  11 ed canis ters  and cal c ine-f i l  led canis ters .  
For interim storage, these design constraints a re  presented parametrically 
i n  terms of:  the time since reprocessing ( i  .e. , the waste age) a t  which' 
the canis ter  enters interim storage; the type of cooling used during 
interim storage ( i  .e . ,  reci rculated-water cooling or  passive a i r  cooling) ; 
the, temperature constraints imposed ( i  .e. , waste temperature only, or  waste 
temperature plus canis ter  temperature); and whether or  not the canis ter  is 
overpacked. For geologic str~i-age 'ii: i z  a~sumed tha t  the canis te r  is always 
overpac ked , enters geologic storage 7 0 years a f t e r  reprocessing and i s  
empl'aced in- e i  t h y  2 sz! t . sh??e nr h;rc;l?? !: re?ncit.r?ry, 

The design c.onstraints shown for  borosi 1 ica te  g lass - f i l l  ed canis ters  

r e f l ec t  a typical f in  design: i n  t h i s  caw,  8 f ins  ,' each 0.25-inch-thick, d .  

which extend radia l ly  from a point 1 .5 inches from the canis ter  centerline . . 
t o  a' point 0.5 inch from the canis ter .  other f i n  designs would r e su l t  i n  

d i fferent  design constraints.  A1 though the thermal model 'homogenized' the , 

fin/waste combination, i t  was found t o  typically provide resu l t s  accurate 
to  within one percent of the resu l t s  from a more detailed model. 

As seen i n  Tables 4-1 and 4-2, short-aged wastes in some cases require 

canis ters  of very small diameter. I f  other considerations (e-g.  , costs)  

d ic ta te  a fixed canis ter  diameter, then the high-level l iquid waste must 
' 

be aged fo r  a minimum period pr ior  t o  reprocessing. The data presented i n  

Section 3 shows the minimum waste age required as a function of canis ter  
- d i  ameter. 

Water-cooled interim storage a1 lows s ignif icant ly greater canis te r  
diameters pnd heat loadings than passive storage i n  a l r .  In the unlikely 

event of a ~ a c c i d e n t  during water-cooled interim storage which resu l t s  i n  - - - 
loss of water, the resu l t s  may not be catastrophic: i n  a typical case 

investigated, the resu l t s  showed only tha t  the canis te r  temperature would 
equi l ibrate  within the 304L s ta in less  s teel  sensi t izat ion regime. I f  water- 



INTERIM STORAGE. ' GEOLOGIC STORAGE . 

(1 )  ~umbe is  shown i n  the  t a b l e  a r e  the  maxlmum allowable c a n l s t e r  ins lde  dlameters, I n  Inches. 
Numbers i n  parentheses a re  the  corresponding heat  loadings I n  k l lowat ts .  

( 2 )  With over ack. 
( 3 )  Without o 9 erpack 
(4)- A l l  can is ters  i n  geologic storage a re  overpacked 



TABLE 4-2. D E S I G N C O ~ T ~ R I N T S  FOR CANISTERS WITH PWR WASTE I N  CALCINE(') 

I N T E R I M  STORAGE GEOLOGIC STORAGE 

{ I  ) Numbers1 shown i n  the tab le  are the rnaximum allowable canister  inside diameters, f n  fnches. 
Numbers i n  parentheses are  the corresponding heat 1 ozdi ngs , i n  k i  1 owa t t s  . 

12) With overpack , 

3) Without overpack 
4) A1 1 cani sters i n  geologic storage a r e .  overpacked. 



coo l i ng  i s  se lec ted as the  technique f o r  . i n t e r i m  storage t h e  r e s u l t s  o f  a 
l oss-o f -coo lant  acc ident  should be i n v e s t i g a t e d  i n  g rea te r  d e t a i l .  

I f  t h e  f a c i l i t i e s  a v a i l a b l e  f o r  water-cooled storage a re  l i m i t e d  com- 

pared t o  t h e  f a c i  1 i ti es avai  1 ab le  f o r  passi  ve, a i  r - coo l  ed storage, t h e  

c a n i s t e r  can be emplaced i n  water-cooled storage f o r  a pe r iod  and then 

removed and p laced i n  a i r - coo led  storage. The data presented i n  Sect ion  3 

can be used t o  determine t h e  requ i red  i n i t i a l  .durat ions o f  water-cooled 

storage. 

The i n c l  us ion o f  an overpack, around t h e  c a n i s t e r  always r e s u l t s  i n  

smal ler  a l lowab le  c a n i s t e r  diameters due t o  t h e  thermal res i s tance  imposed 

by the  a i r  which i s  assllmed t o  be i n  t h e  gap between t h e  overpack and t h e  

can is te r .  Some advantage can be gained du r ing  i n t e r i m  storage by f i l l i n g  

t h i s  gap w i t h  he1 lum ins tead  o f  a i r ,  due t o  the  r e l a t i v e l y  h igh  condvct i  r,:.i.y 

o f  he1 i urn. . L ikewise, hel.i.um would prov ide  an advantage du r ing  geol og'i c  

s torage i f  i t  can be shown t h a t  t h e  overpack remains l e a k - t i g h t  f o r  a '  

pe r iod  i n  excess o f  t h a t  requ i red  f o r  the  waste temperature o r  c a n i s t e r  

temperature t o  reach a maximum. 

The temperature o f  t he  surrounding ambient a i r  du r ing  a i r - .cooled 

storage has l i t t l e  e f f e c t  on t h e  design cons t ra in ts .  However, t he  emiss iv i  ty  

o f  t he  exposed sur face,  whether i t  i s  t h e  overpack o r  the  can is te r ,  has a 

major e f f e c t  on t h e  design cons t ra in ts .  The e m i s s i v i t y  used i n  t h i s  s tudy 

i s  i n  t h e  range o f  approximately 0.7 t o  0.85. 

Because o f  t ime and resource cons t ra in ts ,  t h e  thermal model o f  t h e  

cani  s t e r l r e p o s i  t o r y  conf i  gu ra t i on  used i n  t h i s  s tudy was a two-dimensional ; 

R-Z representa t ion .  The model necessarj  l y  exc l  uded nearby w a l l  s  , o r  

p i l l a r s ,  which can be e f f e c t i v e  i n  conduct ing heat upward t o  t h e  overburden. 

A comparison o f  t h e  r e s u l t s  obta ined here w i t h  t h e  e a r l j e r  r e s u l t s  o f  a 

three-dimensional ana lys i s  i n d i c a t e s  t h a t  t h e  three-dimensional model 

r e s u l t s  i n  somewhat l a r g e r  a1 lowable c a n i s t e r  diameter and heat  1 oading 

a t  any g igen - .-. p i t c h ,  and a h igher  maximum heat l oad ing  per  gross (room p l u s  

p i  1 l a r )  ac;e. The d i f f e rences  appear t o  be on t h e  order  o f  10 t o  20 per-  - 
cent, and are probably due t o  t h e  increased thermal conductance a f fo rded 

by t h e  p i l l a r s .  Therefore, depending on the  room and p i l l a r  dimensions, 

t he  r e s u l t s  o f  t h i s  study may be conservat ive. 



In geologic storage, the maximum a1 1 owabl e cani s t e r  di ameter increases 
w i t h  increasing pitch until  a pitch i s  reached beyond which there is  no 
further  thermal interaction between canisters .  Beyond th i s  value of pitch, 

the canister diameter remains a constant which is  defined by the waste 
character is t ics  and the thermal d i f fus iv i ty  of the reposi.tory medium. The 

geologic storage design constraints shown in Tables 4-1 and 4-2 are  thus 
the largest  possible diameters and heat loadings which can be accommodated 

in the various repository media. 

I t  i s  seen i n  Tables 4-1 and 4-2 tha t  a s a l t  reposi ta,ry a1 lows the 
largest  single cani'ster diameter while shale a1  lows the smallest diameter. 
Additionally, the resul ts  for a s a l t  repository show tha t  the maximum 
allowable heat loading per gross acre i s  essent ial ly  independent of 
canister  diameter. This i s  due t o  the one percent and 25 .percent s a l t  
volume-temperature c r i t e r i a .  Thus, the canister  diameter u1 timately sele-  

- .  ted EZ;. Cc the  ::?x<zc~ C ~ Z P  whir!! CST! he accommodated by the repository 

surface storage f a c i l i t i e s ,  the transporter,  e tc .  On the,other hand, the 
resul t s  for shale and basalt  indicate tha t  the maximum allowable heat 
loading per acre increases with decreasing canister diameter. This resul t  
is' due t o  the assumption tha t  there are  no temperature constraints for  

, shale and basalt;  thus, the only constraint i s  on the waste centerline tem- 
perature. The net e f fec t  of maximizing the areal heat loading, and em- 
placing many, small-d.iameter canisters i n  shale and basalt  i s  to  ra ise  the 
bulk average temperature of the mine. The resul t s  show tha t  a s ignif icant ly 

greater heat loading per gross acre i s  allowable in shale or  basalt  than 
i n  s a l t .  1 

Limiting the temperature of the canister  t o  350°C, to  avoid sens i t i -  
c. 

zation when overpacked i n  geologic storage, i s  seen t o  impose a major . 
penalty on glass-f i l led canisters ,  and a lesser  penalty on calcine-f i l led 
canisters .  These resul ts  are  due t o  the 'excel l en t  thermal conductivity of 

the glass/f in  combination, which normally causes a canister  temperature 
which is hot  f a r  below the glass centerline temperature of 800°C. Alter- 

- ... - .  

nately, th-e temperature of a cal c ine- f i l l  ed canister i s  normal ly  much - 
' lower than the centerline temperature, due t o  the large thermal resistance 

imposed by the calcine. Thus ,  the beneficial e f fec t  of the f ins  in con- 

ducting, heat away from the center1 ine i s  largely negated i f  the canister  
----. . -. .. must be maintained a t  350°C or  below. 

. . - - . . - -- __ ___ _ _ -  
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The base l ine  cases examined i n  t h i s  s tudy assumed t h a t  t he  annulus 

around the  overpack, and the  mine room, a r e  both  b a c k f i l l e d  w i t h  crushed 

mine m a t e r i a l  a f t e r  t h e  c a n i s t e r  has been emplaced. De le t i on  o f  t h e  room 

b a c k f i l l  causes a  s l i g h t  reduc t ion  i n  a l lowab le  diameter. De le t i on  o f  t h e  

annulus b a c k f i l l  has an e f f e c t  which i s  dependent on t h e  geologic medium. 

Beca.use crushed s a l t  i n  t h e  annulus i s  l i k e l y  t o  become f u l l y  compacted i n  

a  s h o r t  t ime a f t e r  emplacement, and because t h e  c o n d u c t i v i t y  o f  compacted 

sa l  t i s  re1  a t i  v e l y  high, del  e - t ion  o f  t he  crushed s a l t  annul us, a1 l ow ing  

o n l y  a i r  i n  t h i s  gap, would reduce t h e  a l l owab le  c a n i s t e r  diameter. How- 

ever, i'n shale and basa l t ,  d e l e t i o n  o f  t h e  crushed m a t e r i a l  i n  t h e  annulus 

can improve heat  t r a n s f e r  a.cross t h e  a i r  gap, and a l l o w  s l i g h t l y  l a r g e r  

diameters, due t.o the poor conduct ivi t ,y o f  t h e  crushed mate r ia l .  

Because o f  t he  r e l a t i v e l y  poor thermal c o n d u c t i v i t y  o f  t h e  c a l c i n e  

waste form, the  a l lowab le  c a n i s t e r  diameters and heat loadings f o r  c a l c i n e  
-.-- ---- A- -- -:--:=:--r)+l,. C W ~ ~ ~ G V  than f ~ y  h o r o ~ i l f ~ ~ t e  g lass.  T h i s  O I  C 3FSll bV U C  J I yll l I ~ ~ U ) ) W I J  - 8 8 -  v . r e  r..-.. 

disadvantage can be overcome, w i t h  minimum apparent impact t o  c o s t  and 

operat ions,  by i n c l u d i n g  metal 1  i c  f i n s  o r  cons t ruc t i ng  the  c a n i s t e r  as an 

annul us. 

The a b i l i t y  t o  de f ine  an acceptable c a n i s t e r  geometry, o r  geometries, 

i s  d i r e c t l y  a f fec ted  by t h e  degree t o  which. m a t e r i a l s '  p r o p e r t i e s  and waste 

management operat ions have been d e f i  ned. Therefore, c a n i s t e r  design 

d e f i n i t i o n  i s  l i k e l y  t o  be an evo lu t i ona ry  process, i n  keeping w i t h  t h e  

evo lv ing  NWTS program and the- s t a t e  o f  know1 edge regard ing m a t e r i a l s  ' 
p roper t i es  and t h e i r  l i m i t a t i o n s .  Th is  study, conducted a t  a  r e l a t i v e l y  

e a r l y  stage i n  the  development o f  a  n a t i o n a l  h igh - leve l  waste management 

program, has r e s u l t e d  i n  a  d e f i n i t i o n  o f  t h e  impact o f  heat  

t r a n s f e r  considerat ions on c a n i s t e r  s i z i n g  f o r  a  range o f  waste form and 

geologic repbs i  t o r y  candidates. These r e s u l t s  .us t be i n t e g r a t e d  W $  t h  the 

r e s u l t s  o f  other ,  p a r a l l e l  s tud ies  on t h e  e f f e c t s  o f  codes and standards, 

etc.,  be fore  an o v e r a l l ,  i n i t i a l  c a n i s t e r  s i z i n g  can be made. As t h e  NWTS 

program mLtures, i t  i s  l i k e l y  t h a t  t h e  number o f  candidate waste forms and - ... 

r e p o s i t o r y  media w i  11 be reduced, and/or s p e c i f i c  geologic s i t e s  w i  11 be - 
selec ted f o r  d e t a i l e d  i n v e s t i g a t i o n ,  Mnre i n t e n s i v e  heat  t r a n s f e r  s tud ies  

can then be conducted. It i s  recomended t h a t  t h e  f o l l o w i n g  areas be - 
i n v e s t i g a t e d  i n  any subsequent s tud ies :  



a Thi r .s., i i:s suggest t ha t ,  considering repository costs ,  there 
i s  s ~.. :s i ;  S~ptimized canis te r  s i z e  f o r  each of the three candi- 
date geologic media. The resu l t s  also suggest tha t  the gross 
mine area required decreases i f  the mine i s  configured w i t h  
small rooms and 1 arge pi 11 arb. .Therefore, a comprehensi ve 
systems analysis,  encompassing the complete l i fe-cycle  of the 
canis ter ,  should be conducted to  determine these cost-optimum 
sizes  and the sens i t iv i ty  of cost t o  variables such as canis te r  
s ize.  The potential advantages of materials other  than 304L 
s ta in less  should also be explored and the costs of such materials 
should be traded off in th i s  systems study. 

e Actual thermophysical data from samples taken a t  candidate 
repository s i t e s  should be included wherever possible. 

a The thermal l imitations of shale and basalt  should be defined, 
and the one percent and 25 percent s a l t  volume-temperature 
c r i t e r i a  should be verified f o r  a spec i f ic  repository s i t e  of 
in te res t .  

a .  Further definit ion should be made of the time period required 
fgr ,  ;znd operations associated w i t h ,  the  period of retr ievabi l  i?::., 
Specifically,  the need fo r ,  and duration o f ,  a i r  circulation 
shoul d be defi ned. 

a Assuming tha t  applicable codes and standards will  require the 
304L s ta in less  canis ter  t o  be overpacked, i t  should be deter- 
mined whether i t  i s  a l so  necessary to  maintain the canis te r  a t  
350°C or  l e s s  a f t e r  emplacement, especially in shale or  basal t  
where corrosion may not be as s igni f icant  as i n  s a l t .  

a I f  the 350°C cani'ster temperature constraint i s  deleted then 
a l te rna te ,  more effect ive f i n  configurations should be invest i -  
gated. 

a I f  calcine continues t o  be a candidate waste form, internal 
metall ic f ins  should be included in the baseline canis ter  design. 
This feature will have the greatest  impact on calcine canis ters  
destined for  a s a l t  repository. 

a Verify the maximum allowable temperature of each candidate waste 
form. For example, devi t r i  f icat ion of the borosil i ca te  glass ,  
i f  i t  occurs, takes place only a t  the location of peak tern- 
perature ( i  .e. ,  the canis ter  center) .  Because the outer layer 
of glass will be unaffected, some degree of centerl ine devi t r i -  - f i  cation may be acceptable, thus allowing higher centerl ine tern- 

- *. yera tures and 1 arger canis ters .  - 
a If  metall ic f ins  continue t o  be included fo r  borosi l icate  glass- 

f i l l e d  canis ters ,  o r  i f  they a re  adopted fo r  calcine-fi1 led 
canis ters ,  long-term f i n  in tegr i ty  , and contact resistance, i n  
the hot test  portions of the canis ters  should be verified.  
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. APPENDIX A. THERMAL PROPERTIES 

A. l  HIGH-LEVEL WASTE FROM LWR-U FUEL 

Heat Generation Rate (Reference A-1 ) 

Heat Rate (watts/MTU) Time Since 
Reprocessi ng (y rs )  PWR Waste ( a ) ( c )  BWR waste (b) (c )  

(a) Enriched t o  3.24 percent U; 33,000 MWD/MT burnup. 
(b)  Enriched t o  2.6 percent U; 27,500 MWD/MTburnup. 
( c )  99.5 percent o f  uranium and plutonium removed dur ing 

reprocessing; 0.1 percent o f  i od ine  and bromine remaining; 
no xenon, krypton o r  c ladding mater ia ls;  f u e l  i s  reprocessed 
160 days a f t e r  i t s  discharge from the reactor .  

. .  - 



A. l . l  B o r o s i l i c a t e  Glass 

Bu lk  Densi ty  (Ref. A-2) : 3.5 g/cm 3 

218.3 l b / f t 3  

S p e c i f i c  Volume (Ref. A-3) : 60 1/MTU 
I 

2.12 f t 3 / ~ ~ u  
Maximum A1 lowable Temp. (Ref. A-3).: 800°C 

1472°F 

Thermal Conduc t i v i t y  (Ref. A-3) : 

K = 8 . 2 3 7 ~ 1 0 ~ ~  + 7 .9x10-~  T (watts/cm°K) 

F igure  A-1 sumnari zes the  b o r o s i l  i c a t e  g lass c o n d u c t i v i t i e s  f rom 
..-I ..-- ..-a A :- & h 4 +  .-+,,A,, tc -  A,., Da.F- var ious r.eieret~ces. . ,Niiti. t h a t  t h z  v o  I UJSu r t t  l a  ruuJ , . . ylll ..-. 

A-3) a re  somewhat lower  than have been dsed p rev ious l y .  

0 llCOLD1l ENGINEERING SAMPLES (Ref. A-3) 

BNWL-1949 (Ref. A-1) - - RNWL-1666 (Ref. A-5) 

- .-. -- 
TEMPERATURE, O F  

FIGURE A-1 . BOROSILICATE GLASS CONDUCTIVITY 



Speci f i c  Heat (Ref. A-3) : 

p C P  = 1.74 + 0 .00105~  (wa t t s  sec/cm3'~) 

Thus, f o r  a dens i ty ,  p, o f  3.5 g/cm 
3 

C = 0.497 + 3 . 0 0 0 ~ 1 0 - ~  T (wa t t s  sec/g°K) 
P . ! ! f  

= 0:119 + 0 . 3 9 8 ~ 1 0 - ~  T (Btu/ lb°F)  , 

A.1.2 Ca lc ine  

Bu l k  Dens i ty  (Ref.  A-6): 2.2 g/cm 3 

137.2 l b / f t 3  

S p e c i f i c  Vol ume (Ref. A-6) : 36.8 ;[/MTU .. - 

1.30 f t 3 / ~ ~ u  

Maximum A1 lowable Temp. '31f.  A-6) : 700°C 
1292°F 

Thermal Ccriduzti v4 t;. (Rzf .  A-7) : 

wa t t s  
K = [0.177 + (P - 2100)] [I + 0.00148 T] (-) 

where: T % "C 
'1 

p % dens i ty ,  kg/m3 
. . 

K = [0.102 + (9.255 p - 121 ) ]  [0.974 + ,8 .23x l0  

where: T % "F 

S p e c i f i c  Heat (Ref. A-7) : 650 Joules/kg°K 

A.2 DISPOSAL MEDIA 

The ambient temperature.  i n .each o f  t h e  t h r e e  d isposa l  media (i . e.  , 
s a l t ,  sha le  - and b a s a l t )  due t o  geothermal heat  f l u x  i s  shown i n  F i g u r e  

A-2. The -geothermal heat  f l u x  g i v i n g  r i s e  t o  t h i s  temperature g r a d i e n t  - 
was c a l c u l a t e d  t o  be: 

0.023 8 t u / f t 2 h r  



DISTANCE BELOW SURFACE (FT) 

FIGURE A-2. GEOLOGIC FORMATION TEMPERATURES PRIOR TO 

BURIAL OF WASTE (Ref. A-8) 

A.2.1 Sa l t  
- 

A. 2.1.1 .Ful l y  Compacted Sal t  

I3ui k' Density (Ref. A-91;' 2.160 g/cc 

134.7 1b/f t3 

~aximum A1 lowable Temp. (Ref. 8-9) : , 

o .  No more than 1 percent of the s a l t  volume i n  a ' u n i t  ce l l  

--(vertical height same as  the waste canister)  shall  exceed 

250°C (48Z°F). 

o No more than 25 percent of the s a l t  volume i n  a unit  cell 

shall  exceed 200°C (392OF). 



Thermal Conduc t i v i t y  (Ref. A-9) : 

Temperature Conduc t i v i t y  (B tu /hr  ft OF) 

O C  - F - 
0 32. 3.53 

50 122 2.90 

100 21 2 2.43 

150 302 2.08 

200 392 1.80 , 

2  50 482 1.60 

300 572 1.44 

350 662 1.33 

Thermal Di f f u s i v i  ty (Ref. A-10) : 

Temperature ~ i f f u s i v i  ty ( f t L / h r )  

Heat Capacity ( c a l c u l a t e d  from d i f f u s i v i  ty, c o n d u c t i v i t y  and dens i t y )  : 

Temperature Heat Capacity ( B t u l l  b°F) 

" C - " F - 



A:2.1.2 Crushed Sal t 

Bulk  Densi ty  (Ref.. A-8) : 98 1 b / f t 3  t 

Maximum Al lowable Temp.: Assumed t o  be the  same as f o r  f u l l y  

compacted s a l t  

Thermal Conduct iv i ty :  Assumed t o  be 10 percent  o f  values f o r  f u l l y  
. . 

" compacted s a l t  

Heat Capacity: Assumed t o  be t h e  same as f o r ,  f u l l y  compacted s a l t  . - 

Em iss i v i t v :  0.9 (assumed) 

A.2.2 Shale 

A.2.2.1 F u l l y  Compacted Shale 
, 

Bulk Densi ty  (Ref. A-11): 13'2.5 l b / f t 3  

Maximum A1 1 owabl e Temperature: Not 'defined I 

Di f f u s i v i  t y  ( f t L l h r )  

Heat Capacity (Ref. A-11) : 

Temperature ( O F )  Heat Capacity ( B t u l l  b°F) 

Thermal Conduc t i v i t y  . .  

- ... -- - 
Figure A-3 summarizes t h e  data found f o r  shale. Shale i s  known t o  

be a n i s o t r o p i c  and have a temperature-dependent conduc t i v i t y .  Con- 

d u c t i v i t y  values p a r a l l e l  t o  t h e  bed have o f t e n  been assumed t o  be a 
f a c t o r  o f  1.5 t o  2.0 t imes the  values perpet;di c u l  a r  t o  t h e  bed. For  



= PAWLLEL DIRECTION . 

- (1) PERPENDICULAR DIRECTION 
( ~ 1 5 )  DIRECTION NOT SPECIFIED 
- - - - KAMAN SCIENCES (Ref .. A-1 2)' 

- ---. VILORIA & FAROUQ ALI (Ref. A-11) 
0 HDBK. OF PHYS. CONST. (Ref. .A-13) - 

0 
a CHEVERTON, & TURVER ( ~ e f s .  I . A-8 I & A-14) , I I 

0 100 200 300 40U 5UU b TOO 800 900 

TEMPERATURE, OF 

FIGURE A-3. SHALE THERMAL CONDUCTIVITY 

the purposes o f  t h i s  study, the  conduc t i v i t y  values ca lcu la ted  from the 

data o f  V i l o r i a  and Farouq A l i  (Ref. A-11) were assumed t o  represent  t he  

perpendicular d i r ec t i on ,  and a f a c t o r  o f  1.5 was used t o  est imate the  

values i n  the p a r a l l e l  d i r ec t i on .  These assumptions r esu l t ed  i n  t he  

f o l l ow ing  conduct iv i  t.y: 

Temperature (OF) Conduct iv i ty  (Btu/hr f t°F)  

Perpendi cu l  a r  Para1 1 e l  

200 0.835 1.253 

400 0.763 1 .I45 
600 0.657 0.986 

800 0.512 0.768 

- 900 0.408 0.612 
- .-. 

A.2.2.2 ~Fushed  Shale 

Bul k Density: 88.2 1 b / f t 3  (assumed) 

Maximum A1 1 owable Temperature: Not def ined 



Heat Capacity: Assumed t o  be t h e  same as f o r  f u l l y  compacted shale. 

Thermal Conduct iv i ty :  (Assumed t o  be 10 percent  o f  average, f u l l y -  
I compacted s ha1 e) 

Temperature (OF) Conduc t i v i t y  (B tu /hr f t °F)  

Emiss iv i  ty: 0.9 (assumed) 

A.2.3 W a l t  

A.2.3.1 F u l l y  Compacted Basa l t  

Bu lk  Density-(Ref. A-15): 2.68 g/cm 
3 

- ,, ., ,,. 3 
101.2 I D / T t  

Maximum A1 1 owabl e Temperature : Not d e f i  ned 

Thermal Conducti v i  t y  

F igure  A-4 summarizes the  values o f  thermal c o n d u c t i v i t y  g iven i n  

Ref. A-1 5: The sca t te red  data a t  temperatures g rea te r  than approximately 

600°F were approximated by t h e  so l  i d  l i n e  i nd i ca ted .  

- TEMPERATURE, OF 

FIGURE A-4. BASALT THERMAL CONDUCTIVITY (FULLY COMPACTED) 



S p e c i f i c  .Heat (assumed) : 0.2 c a l  /gm°C 

. 0.2 (Btu/ lbeF) 

A.2.3.2 Crushed Basa l t  /. 
I. 

CI 

Bulk  Density (Ref, A-151: 1.95 g/cmJ 

121.6 l b / f t 3  

Maximum Al lowable Temperature: .- Not de f ined 
' _  

Thermal Conduc t i v i t y  (Ref. A-15): 

.3. 

.2 

0 SAMPLE NO. 1 .I 
- A SAMPLE NO. 3 

TEMPERATURE, OF 

FIGURE A-5. BASALT THERMAL' CONDUCTIVITY (CRUSHED) 

Heat Capacity: Assumed t o  be t h e  same as f o r  f u l l y  compacted basa l t .  

Emissi ..- v i t y :  Assumed t o  be 0.9, based.on the  spec t ra l  r e f 1  ectance 
. * 

g iven i n  . Reference* A-1 6.  
.- - ...-. -. - . . . . . .  . -  . . . - - - -. . . .- - - - ,- - - - . - 

A-9 



A.3 WASTE PACKAGING 

A. 3.1 Can is te r  (304L S ta in less  _._. S tee l )  
i -. 

Bu lk  Densi ty  (Ref. A-15): 501 l b / f t 3  

Maximum A1 lowable Temp. (Ref.  A- - 16)': 350°C 
I -. 

Thermal Conduc.ti v i  t y  (Ref. A-1 5 )  : 

Temperature (OF) Conduc t i v i t y  ( B t u / h r / f t  OF) 

Heat Capacity (Ref. A-15): 

Temperature (OF) Heat Capacity ( ~ t u / l b  OF) 

200 . 0.090 

400 0 i091 

600 0.093 

800 0.095 

Emrnisivi t y  (Ref. A-151: 

Temperature (OF) Emi ssi v i  t y  

599 0.75 

900 0.82 

1200 0.87 

. A.  3.2 Overpack and Sleeve (Carbon s t e e l )  

Bu lk  Rensi --..--- ty (Ref. A-15): 489 1 b / f t 3  
- .  

~ a x i m u i  A1 1 owable Temperature: N o t  de f i ned  



Thermal Conduc t i v i t y  (Ref. A - l a :  

Temperature (OF) C o n d u c t i v i t y  ( 8 t u / h r f t " f )  

86.4 39.8 

122.4 37.7 

201.6 33.2 

212.4 32.7 

311.4 27.9 

392.4 24.9 

448.2 23.1 

,572.4 . 21 .O 

. 633.b ' 19.4 

752.4 15.5 

855.0 \ 1.3.0 
~ 3 2 . , ;  ! 2 : 7  

1040.4 12.2 

1112.4 12.0 

1229.4 11.7 

1292.4 11.6 

1472.4 . 11.2 

Heat Capaci ty  (Ref.  A-15): 

Teniperature (OF) Heat Capac i ty  ( B t u / l  b°F) 

122 0.111 

302 0.122 

482 0.129 

662 0.138 

842 0.150 

1022 0.167, 

1202 0.195 

1 364 0.241 - 
- .-. 



Emiss iv i t y  (Ref. A-15): 

Temperature (OF) Emi ss i v i  t y  

A.3.3 A i r  ( a t  1 atm.) 

Density (Ref. A-15): 0.081 l b / f t 3  

Tl.~rr.n~al Conduct iv i ty  (Ref. A-1 5 )  : 

Temperature (OF) 

80 

152 

260 

31 4 

440 

620 

800 

980 

1160 

' I  34U 

1520 

1700 

Conductjvi t y  (Btu /hr f t °F)  

0.01 51 

0.0168 

0.0191 

0.0202 

0.0228 

. 0.0263 

0.0296 

0.0329 

0.0361 

0.0388 

0.041 4 

0.0439 

Heat Capacity (Ref. A-15): 

Temperature ( O F )  Heat Capacity (Btu / l  b°F) 

80 0.243 

152 0.244 - 
0.245 - ... - 260 

31 4 0.245 

440 0.248 

620 . 0.251 

800 0.254 



Temperature (OF) Heat Capacity (B tu / l  b ° F l  

980 .257 

I 1160 ' .260 

1 340 .263 

1520 .266 

1700 .269 

A.3.4 He1 ium ( a t  1 atm.) 

Density (Ref. A-15): 0.011 1 b / f t 3  

Thermal Conducti v i  t y  (Ref. A-1 5) : 

Te111peratur-t. ( O F )  . Conduct iv i ty  (Btu /hr f t °F)  

80 0.0866 

152 0.0935 

260 
n q n - ' ?  
u. I U 3 l  

31 4 0.1087 

440 0.1221 

620 0.143 

800 0.161 

980 0.177 

1160 0.194 

1 340 0.210 

1520 0.225 

1 700 0.240 

Heat Capacity (Ref. A-15) : 

Temperature (OF) Heat Capacity (B tu / l  b°F) 

80 I 1.24 

-152 

260 
- 
- .-. 

31 4 

- 440 

620 

' 800 

980 



Temperature ( O F 1  Heat Capacity (Btull  b°F) 

Bulk Density (Ref. A-17): 138 1b/ft3 '  

Thermal C0nductiv.i t y  (Ref. A-17) : 0.58 B t u / h r  f t  O F  

Spedif ic  Heat (Ref. .A-17): 
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APPENDIX C. FIN MODELING VERIFICATION 

As descr ibed i n  Sect ion 2.2.5 o f  t h i s  r e p o r t ,  t h e  i nhe ren t  l i m i t a t i o n s  

o f  the  two-dimensional, R-Z thermal model which was used t o  s imu la te  t h e  

c a n i s t e r  and r e p o s i t o r y  r e q u i r e d  t h a t  t he  waste and f i n s  be 'homogenized' 

i n  o rde r  t h a t  they a l s o  be represented i n  two-dimensional, R-Z coordinates.  

Homogenizing the  f i n / g l  a s i  combinat ion thus e l  im ina ted the  va r iab le ,  0, 
and was performed by c a l c u l a t i n g  an e f f e c t i v e  thermal conductance r e -  

p resent ing  p a r a l l e l  heat  f l o w  through the  f i n s  and g lass.  The r e s u l t s  

g iven i n  Sect ion 3 o f  t h i s  r e p o r t - a r e  based on t h i s  approach. Sub- 

sequently,  a  t y p i c a l  can i s te r ,  w i t h  f i n s ,  was modeled and the  r e s u l t s  were 

compared w i t h  the  homogenized r e s u l t s  i n  o rde r  t o  v e r i f y  t h i s  approach. 

Because o f  geometr ica l  symmetry, t h e  e i g h t - f i n  c a n i s t e r  design can be 

d i v i d e d  i n t o  s?xteen, pre-shaped segments. When the  medium i n t o  which 

t h e ' c a n i s t e r  i s  p lzced i s  uniform. as !.!hen the . r=n ! 's te r .  i s  s tanding 

v e r t i c a l l y  i n  a i r ,  t he  temperature i n  any one segment w i l l  be i d e n t i c a l  

t o  the  temperatures i n  any' o the r  segment. F igure  C-1 shows one p o s s i b l e  
\ 

segment geometry. The segment i s  bounded by one h a l f  o f  a  f i n , . a  p lane 

c u t  through the  waste halfway between f i n s ,  and t h e  sur face o f  t h e  can is te r .  

The s ides  o f  t he  segment a r e  a d i a b a t i c  surfaces, thus a l l  heat  f l ows  

r a d i a l l y  outward from the  center1 ine .  As shown i n  F igu re  .C-1 , the f i n  

and the  waste betweensthe r a d i i  o f  t h e  i n n e r  and o u t e r  ends o f  the f i n  a re  

d i v i d e d  i n t o  e i g h t  r a d i a l  sec t ions .  Each waste r a d i a l  s e c t i o n  i s  f u r t h e r  

d i v i d e d  i n t o  f o u r  c i r c u m f e r e n t i a l  nodes. An, o u t e r  r i n g  o f  waste, ou ts ide  

o f  t he  f i n ,  i s  a l s o  broken i n t o  f o u r  nodes which a re  connected t o  correspond- 

i n g  can is te r ,nodes.  The center  o f  t he  c a n i s t e r  i s  modeled by one, pie-shaped 

node extending f rom t h e  c e n t e r l i n e  t o  the  f i n ' t i p .  . The thermal conductors 

connect ing t h e  nodes a r e  a l l  shown on F igure  C-1. Note t h a t  t he  r a d i a l  

heat  pa th  through the  f i n  and t h e  c i r cumfe ren t i a l  pa th  through the  c a n i s t e r  

w a l l  a r e  bo th  modeled. A l l  waste nodes have i n t e r n a l  heat genera t ion  which 

i s  dependent on the  waste age s ince  reprocessing. - 
A sti 'dy-state s o l u t i o n  was obta ined f o r  t he  twofdimensional model 

described, f o r  cond i t i ons  rep resen ta t i ve  o f  i n t e r i m  storage i n  a i r .  A 

24-inch diameter c a n i s t e r  was a r b i t r a r i l y  selected, and i t  was assumed t o  

be s to red  i n  s t i l l  a i r  a t  80°F and r a d i a t i n g  t o  a surrounding medium a l s o  





- -- . -- -. - -. . - . . . . FIGURE C-2. COMPARISON OF STEADY-STATE SOLUTIONS 
FOR THE "SMEARED" AND "ACTUAL" F I N  

. - -- . - -- . - .. - .- . .- - . - . -. 

MODELS 



a t  80°F. The waste age was taken t o  be f ou r  years, which i s  the approxi-  

'mate age a t  which the cons t ra i n t  o f  800°C waste was ind ica ted  by the one- 

dimensional, homogenized ,model. F igure C-2 shows the resu l  t i n g  tem- 

peratures f o r  the two-dimensional s o l u t i o n  w i t h  the homogenized, one- 

dime'nsional so l u t i on  alongside f o r  comparison. 

The cen te r l i ne  temperatures a re  seen t o  agree t o  w i t h i n  8 O C .  The 

average can is te r  temperature from the  two-dimensional model agrees t o  

w i t h i n  3OC w i t h  the r e s u l t s  obtained. f rom the one-dimensional model. Thus, 

the r e s u l t s  agree t o  w i t h i n  one percent. Thus, assuming the r e s u l t s  f o r  

a 24-inch can is te r  t o  be representat ive,  the homogenized approach i s  seen 

t o  provide a c lose approximation o f  the ac tua l  case. 




