ARGONNE NATIONAL LABORATORY ANL/MCS-TM~--172
9700 South Cass Avenue
Argonne, Illinois 60439 DE93 004735

ANL/MCS-TM-172

An Entry in the 1992 Overbeek Theorem-Proving Contest
by

Ewing L. Lusk and William W. McCune

Mathematics and Computer Science Division

Technical Memorandum No. 172

November 1992

rmm~ -~ R

[T
kuu L_ i

P
L SRRV

This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy Rescarch,

U.S. Department of Energy, under Contract W-31-109-Eng-38.

S

RISTRISUTION GF T3 DOCUNMENT 1S UNLIMITED

Contents
Abstract
1 Introduction

2 Results

3 Settings and Set of Support

3.1 Settings for the Basic Set

.......

.....................

3.2 Settings for the Equality Set o oL

3.3 Description of the Settings

4 Failures on Equality Theorems 6-10

.......

.....................

5 Summary of OTTER Outputs for the Basic Set

5.1 Theorem 1: 22 = ¢ Groups are Commutative (P-form)
5.2 Theorem 2: The Commutator Theorem (P-form)
5.3 Theorem 3. »? = z Rings are Commutative (P-form)
5.4 Theorem 4: Equi\;'a.lential Calculus, XGK - PYO '
5.5 Theorem 5: Implicational Calculus Single Axiom, CD-67 (Imp-4)
5.6 Theorem 6: Many-valued Sentential Calculus, CD-57
5.7 Theorem 7: Many-valued Sentential Calculus, CD-60

>

6 Summary of OTTER Outputs for the Equality Set

6.1 Theorem EQ-1:
6.2 Theorem EQ-2:
6.3 Theorem EQ-3:
6.4 Theorem EQ-4:
6.5 Theorem EQ-5:

7 Conclusion

References

The Commutator Theorem
Robbins Algebra, (3¢,c+ c¢=¢) — Boolean
On Ternary Boolean Algebra

Group Theory Single Axiom

On Wajsberg Algebra

iii

.....................

NN

x

I
i4
16
19
21

23

23

28
31

35

38

39

An Entry in the 1992 Overbeek Theorem-Proving Contest

by
Ewing L. Lusk and William W. McCune

Abstract

At CADE-10 Ross Overbeek proposed a contest to stimulate and reward work in
automated theorem proving. This paper represents an entry, or perhaps a family of
related entries, in the contest.

1 Introduction

The Conference on Automated Deduction (CADE) has been for nearly twenty years a
meeting where both theoreticians and system implementors present their work. Feeling
perhaps that the conference was becoming dominated by the theoreticians, Ross Overbeek
proposed at CADE-10 in 1990 a contest to stimulate work on the implementation and use
of theorem-proving systems. The challenge was to prove a set of theorems, and do so with a
uniform approach. That is, it was not allowed to set parameters in the system to specialize
it for individual problems. There were actually two separate contests, one represented by a
set of seven problems designed to test basic inference components, and the other represented
by a set of ten problems designed to test equality-based systems.

This paper describes our experiences in preparing to enter the contest with OTTER [5, 6]
and Roo [1, 2], two systems developed at Argonne National Laboratory. Roo is a parallel
version of OTTER, but has such different behavior in some cases that we treat them as
soparate entries. We entered each of them in both contests.

Some of the problems are difficult ones; and although many of the problems had been
done before with OTTER, in each case we had set OTTER’s many input parameters in a way
customized to the problem at hand, and chosen a set of support that appeared to us to be
most natural. It was a challenge to come up with a uniform set of parameter settings and
a uniform algorithm for picking the set of support that would allow OTTER to prove each
of the theorems.

2 Results

OTTER and Roo proved all seven theorems in the basic set first five of the ten prc’lems in
the equality set. See Section 3 for the options settings and set of support used.

Tables 1 and 2 list the results on the two sets for OTTER, for Roo running with 8
processors, and for Roo with 12 processors.

The OTTER jobs were run on SPARCstation 2. We used OTTER 2.2, the version that
was released in July 1991. The Roo jobs were run on an Alliant 2800 with 12 (Intei 1860)
processors. The version of Roo we used is based on OTTER 2.2xa+ (June 1692).

3 Settings and Set of Support

Within each set, all of the OTTER jobs used the same settings. However, the settings for
the basic set were substantially different from those for the equality set. The Roo jobs used
settings slightly different from the OTTER jobs, and (for small technical reasons) the Roo
settings for the basic set varied slightly, depending on whether equality is present.

For the basic set, the initial set of support consisted of the positive input clauses, except
(x=x). For the equality set, the initial set of support depended on whether the theorem
has an obvious special hypothesis—if so, then the set of support was the special hypothesis
and the denial of the conclusion; if not, the set of support consisted of all input clauses.

The rules for the equality set state that an ordering on the symbols may be included
with the input clauses. The ordering is used to orient equality literals.

3.1 Settings for the Basic Set

OTTER: basic set Roo: basic with equality Ro0: basic without equality
set(index_for_back_demod)

set(hyper_res) set(hyper_res) set(hyper_res)

set(back.demod) set(back_demod)

set(dynamic_.demod.all) set(dynamic_demod.all)
assign{pick_giveu_ratio,5) assign(pick_given_ratio,5) assign(pick_given_ratio,5)

clear(print_kept) clear(print_kept) clear(print_kept)
assign(rmaxanem,20000) assign{rmax-mem,32000) assign(max_men,32000)
set{control_rmernory) set(control.mermory) set(control_memory)

3.2 Settings for the Equality Set

OTTER: equality set Roo: equality set
set(knuth_bendix) set(knuth_bendix)
set(index_for_back_demod) set(index_for.back_demod)
set(process_input) set(process_input)
assign(max.-mern,16000) assign(max_mem,32000)
set{control_memory) set(control_mernory)
set(lex_rpo) set(lex_rpo)
clear(print_kept) clear(print_kept)
clear{print_new_deinod) clear(print_new_demo)
elear(print_back_demod) clear(print_back._demod)

3.3 Description of the Settings

set(hyper_res). This option activates the inference rule hyperresolution.

set(back_demod). \When new equalities are deduced, this option causes them to he nsed
as rewrite rules.

Table 1: Results for Basic Theorems
OTTER Roo-8 Roo-12

Theorem 1: z* = e Group

proof time 0.20 0.32 0.32
generated 222 2300 1867
kept 13 30 40
memory (K) 31 728 564
Theorem 2: Commutator
proof time 35.60 26.89 25.97
generated 20575 88838 131429
kept 4505 3684 1697

memory (K) 1564 12515 12670

Theorem 3: x* = = Ring

proof time 145.41 35.57 38.18
generated 56025 134744 221890
kept 13990 4316 2736

memory (K) 4342 14333 18739

Theorem 4: XGK

proof time 407.50 159.87 55.37
generated 177109 663722 263233
kept 15320 16519 9466

memory (K) 8047 19539 22189

Theorem 5: Iinp-4 (CD-67)
proof time 7711.98 1051.55 909.95
generated 8341570 7171447 8182376
kept 17862 14855 7666
memory (K) 10729 13983 15098

Theorem 6: MV-1 (CD-57)

proof time 17.68 4.37 14.71
generated 16687 24159 114051
kept 4837 1024 2000

memory (K) 2171 6479 12161

Theorem 7: MV-2 (CD-60)
proof time 2184.96 427.89 152.53
generated 3214280 4311090 1997084
kept 16250 12374 10750
memory (K) 7216 13664 13755

"able 2: Results for Equality Problems
OTTER ROO-8 RoO-12

Theorem EQ-1: Commutator

proof time 1.49 0.76 0.86
generated 542 1727 2144
kept 114 91 89
memory (K) 255 1208 1460
Theorem EQ-2: Robbins, c+c=c¢
proof time 98.19 18.63 13.43
generated 50001 56067 59151
kept 4548 2450 1235

memory (K) 5652 12676 13342

Theorem EQ-3: TBA

proof time 16.78 4.10 3.16
generated 3945 9307 11170
kept 1030 620 378

memory (K) 1564 4880 5043

Theorem EQ-4: Group single axiom

proof time 44.12 10.56 9.25
generated 3417 11778 16118
kept 2507 1015 863

memory (K) 4470 13889 17110

Theorem EQ-5: Wajsberg algebra
proof time 2248.86 425.99 491.67
generated 1012625 971543 1437272
kept 5897 4374 4022
memnory (K) 6801 13376 14525

set(dynamic_demod_all). Tlus option has OTTER use all new orientable equalities as
rewrite rules.

set(index_for_back_demod). This option causes indexing to be used when searching for
terms to which a new rewrite rule can be applied. Roo requires this “option” whenever
back demodulation is enabled. OTTER frequently benefits from this option.

assign(pick_given_ratio,5). By default OTTER chooses each new given clause based ou
its svmbol count. Hence, a heavy clause that is needed for the proof cannot be used
until all lighter clauses have been used. Recently we have found it useful to mix this
strategy with a breadth-first strategy by choosing some percentage of the given clauses
according to the order in which they are generated rather thar. by weight. This setting
chooses every sixth given clause in order of generation, and the rest by symbol count.

clear(print_kept). clear(print_new_demod).clear(print_back_demod). These options
suppress output, saving file space and a little time.

assign(max_mem,20000). This setting restricts memory usage to 20 megabytes. Its real
use is in conjunction with the next parameter.

set(control_memory). This setting has a relatively complex cffect. Every ten given
clauses, memory usage is analyzed. If more than a third of max_mem has been used.
then the max_weight parameter is automatically set to a value calculated such that
only the lightest 5% of the clauses in the current set of support have lower weight.
No clauses are deleted, but from this point on, new clauses heavier than this weight
are discarded. Using this parameter has the effect of allowing the system to choose a
value for max_weight and adjust it during the run.

set(knuth_bendix). This option causes OTTER and ROO to automatically set a collec-
tion of options that approximate a Knuth-Bendix completion procedure. Under this
option, the theorem prover orders equalities, paramodulates from left sides into left
sides, and back demodulates.

set(process_input). This option causes all input clauses to be processed (subsumption,
demodulation, equality ordering, back demodulation) as if they were generated clauses.

lex(list of symbols). This command specifies an ordering on constant, function, and pred-
icate symbols, with smallest first. For the experiments described in this paper, the
ordering is used to attempt to orient equalities.

set(lex._rpo). This options specifies the lexicographic recursive path ordering for compar-
ing terms when attempting to orient equalities.

Irpo_lr_status(list of symbols). This command specifies that function symbols are to be
compared left-to-right when applying the lexicographic recursive path ordering.

4 Failures on Equality Theorems 6-10

Theorem EQ-6. The fragment { B, W,M} of combinatory logic contains fixed point com-
binators. OTTER found a proof, but the setting were different from those used in
theorems EQ-1 through EQ-5. The important difference is that the initial set of

support cousists of the denial only (so that all generated clauses are negative), and
paramodulation is allowed into both arguments of equality literals. The following
input file causes OTTER to find a proof of EQ-6 in about 27 seconds.

set(para_into).
clear(para_from_right).
set(order_eq).
assign(max_mem, 16000).
set(lex_rpo).
clear(print_kept).

lex([B,W,L,M,a(x,x),f(x)]).
lrpo_lr_status([a(x,x)]).

list(usable).

(x = x).

(a(a(a(B,x),y),2z) = a(x,a(y,z))).
(ala(W,x),y) = ala(x,y),y)).
(a(M,x) = a(x,x)).

end_of_list.

list(sos).
(aly,f(y)) '= a(f(y),a(y,f(y)))) | $Ans(y).
end_of_list.

list(demodulators).
(a(a(a(B,x),y),z) = a(x,a(y,z))).
end_of_list.

Theorem EQ-7. Rings in which z° = z are commutative. As far as we know, OTTER
has never found a proof of this theorem, except with highly specialized settings and
weight templates. We suspect that with associative-commutative unification, OTTER
would be able to prove it.

Theorem EQ-8. The fragment { B, W} of combinatory logic contains fixed point combina-
tors. This theorem is much more difficult than EQ-6, and the strategy above that
works for EQ-6 fails for EQ-8. The kernel method [7], which was developed for this
type of problemn, finds a proof of EQ-8 within a few seconds.

Theorems EQ-9 and EQ-10. On Moufang identities in nonassociative rings (EQ-9), and
on right alternative nonassociative rings (EQ-10). The complicated definitions in these
theorems cause termns in the conclusion to be greatly expanded. OTTER cannot cope
with the complex conclusions, because it likes to focus on simple terms. As with (EQ-
7). we believe that associative-commutative unification would be helpful for these
theorems.

5 Summary of OTTER Outputs for the Basic Set

5.1 Theorem 1: .* = ¢ Groups are Commutative (P-form)

————— OTTER 2.2, July 1991 -----

The job began on altair.mcs.anl.gov, Wed Jun 3 13:15:19 1892
The command was 'otter22".

set (hyper_res).
set(back_demod) .
set(dynamic_demod_all).
assign(pick_given_ratio,5).
clear(print_kept).
assign(max_mem,20000).

set (control_memory).

list(usable).

] -P(x,y,u) | -P(y,z,v) | -P(u,z,w) | P(x,v,w).
[] -P(x,y,u) | -P(y,z,v) | -p(x,v,w) | P(u,z,w).
[1 -P(x,y,u) | -P(x,y,v) | eq(u,v).

[1 eq(x,x).

[l -eq(x,y) | eq(y,x).

[1 -eq(x,y) | -eq(y,z) | eq(x,2).

[1 -eq(u,v) | -P(u,x,y) | P(v,x,y).

[1 -eq(u,v) | -P(x,u,y) | P(x,v,y).

9 [1 -eq(u,v) | -P(x,y,u) | P(x,y,v).

10 [1 -eq(u,v) | eq(£(u,x),f(v,x)).

11 [1 -eq(u,v) | eq(f(x,u),f(x,v)).

12 [1 -eq(u,v) | eq(g(u),glv)).

end_of_list.

W ~N O, G W N

list(sos).

13 [] P(e,x,x).

14 [J P(x,e,x).

15 [1 P(g(x),x,e).

16 [] P(x,g(x),e).

17 (1 P(x,y,1(x,y)).

18 [J P(x,x,e).

19 [J pP(a,b,c).

20 [0 -P(b,a,c).

end_of_list.

OTTER sets dynamic_demod, because back_demod is set.
OTTER sets order_eq, because dynamic_demod is set.

-——-> UNIT CONFLICT at 0.20 sec ---=> 35 Mbinary,34,20] .
Level of proof is 3, length is 4.

1 [-P(x,y,u) | -P(y,z,v) | -P(u,z,w) | P(x,v,w).
2 1 -P(x,y,u) | -P(y,z,v) | -P(x,v,w) | P(u,z,w).
13 [] P(e,x,x).

14 [J P(x,e,x).

18 [] P(x,x,e).

19 [] P(a,b,c).

20 [J] -P(b,a,c).

21 [hyper,19,2,18,14] P(c,b,a).

22 [hyper,19,1,18,13] P(a,c,b).

23 [hyper,21,1,18,13] P(c,a,b).

34 [hyper,23,2,22,19] P(b,a,c).
35 [binary,34,20]

—————————————— statistics -—-=--———-———--
clauses input 20
clauses given 9
clauses generated 222
demod & eval rewrites 26
tautologies deleted 0
clauses forward subsumed 209
(subsumed by sos) 13
clauses kept 13
new demodulators i
empty clauses 1
clauses back demodulated 0
clauses back subsumed 0
sos size 12
Kbytes malloced 31

——————————— times (seconds) -------—---
run time 0.22 (run time O hr, 0 min, 0 sec)

system time 0.11
input time 0.02
clausify time 0.00
hyper_res time 0.05
pre_process time 0.09
demod time U.01
weigh cl time 0.00
for_sub time 0.05
renumber time 0.00
keep cl time 0.00
print_cl time 0.00
conflict time 0.00
post_process time 0.01
back demod time 0.00
back_sub time 0.01
lex_rpo time 0.00
The job finished Wed Jun 3 13:15:19 1992

5.2 Theorem 2: The Commutator Theorem (P-form)

————— OTTER 2.2, July 1991 -----
The job began on altair.mcs.anl.gov, Wed Jun 3 13:13:02 1992
The command was "otter22".

set(hyper_res).

set (back_demod).
set(dynamic_demod_all).
assign(pick_given_ratio,5).
clear(print_kept).
assign(max_mem,20000),

set(control_memory).

list(usable).

1 0] -pP(x,y,w) | -P(y,z,v) | -P(u,z,w) | P(x,v,w).
2 [0 -pP(x,y,u) | -P(y,z,v) | -P(x,v,w) | P(u,z,w).
3 [1 -P(x,y,u) | -P(x,y,v) | eq(u,v).

4 [1 eq(x,x).

5 [-eq(x,y) | eq(y,x).

68 [-eq(x,y) | -eq(y,z) | eq(x,z).

7 (0 -eq(u,v) | -P(u,x,y) | P(v,x,y).

8 [1 -eq(u,v) | -P(x,u,y) | P(x,v,y).

©0

(1 -eq(u,v) | -P(x,y,u) | P(x,y,v).
10 [1 -eq(u,v) | eq(f(u,x),f(v,x)).
11 [1 -equ,v) | eq(f(x,u),f(x,v)).
12 [1 -equ,v) | eq(g(u),g(v)).

13 [1 -P(x,x,y) | P(x,y,e).

14 [J -P(x,x,y) | P(y,x,e).
end_of_list.

list(sos).

15 [1 P(e,x,x).

16 [J P(x,e,x).

17 [1 P(g(x),x,e).

18 [J P(x,g(x),e).

19 [] P(x,y,f(x,y)).

20 [] P(a,b,c).

21 [1 P(c,g(a),d).

22 [] P(d,g(b),h).

23 [J P(h,b,j).

24 [J P(j,g(h),k).

25 [1 -P(k,g(b),e).

end_of_list.

OTTER sets dynamic_demod, because back_demod is set.
OTTER sets order_eq, because dynamic_demod is set.

—---=> UNIT CONFLICT at 35.60 sec ----> 4648 [binary,4647,49] .
Level of proof is 15, length is 37.

i [J -pP(x,y,u) | -P(y,z,v) | -P(u,z,w) | P(x,v,w).
2 [-P(x,y,u) | -P(y,z,v) | -P(x,v,w) | P(u,z,w).
3 {1 -P(x,y,u) | -P(x,y,v) | eq(u,v).

9 [1 -eq(u,v) | -P(x,y,u) | P(x,y,v).

13 [1 -P(x,x,y) | P(x,y,e).

14 [1 -P(x,x,y) | P(y,x,e).

15 [] P(e,x,x).

16 [1 P(x,e,x).

17 1 P(g(x),x,e).

18 [1 P(x,g(x),e).

19 [J P(x,y,f(x,y)).

20 [J P(a,b,c).

21 [P(c,g(a),d).

22 [] P(d,g(b),h).

23 [1 P(h,b,j).

24 [1 p(j,g(n), k2.

25 [1 -P(k,g(b),e).

28 [hyper,17,2,17,16] P(e,x,g(g(x))).

37 [hyper,21,2,17,16] P(d,a,c).

39 [hyper,37,1,17,15] P(g(d),c,a).

41 [hyper,22,2,17,16] P(h,b,d).

45,44 [hyper,41,3,23] eq(j,d).

46 [hyper,41,1,17,15] P(g(h),d,b).

47 [back_demod,24,demod,45] P(d,g(h),k).

48 [hyper,19,14] P(£(x,x),x,e).

49 [hyper,19,13] P(x,f(x,x),e).

65,64 [hyper,19,3,16] eq(f(x,e),x).

67,66 [hyper,19,3,15] eq(f(e,x),x).

79 [hyper,19,2,19,19] P(f(x,y),z,f(x,f(y,2))).

80 [hyper,19,2,19,18,demod,65] P(f(x,y),g(y),x).
160 [hyper,39,2,18,19,demod,65] P(a,g(c),g(d)).
176 [hyper,46,2,18,19,demod,65] P(b,g(d),g(h)).
183,182 [hyper,28,3,19,demod,67] eq(g(g(x)),x).
192 [hyper,47,2,18,19,demod,183,65] P(k,h,d).

312 [hyper,48,1,20,19,demod,67] P(f(a,a),c,b).
317,316 [hyper,49,3,19) eq(f(x,f(x,x)),e).

319 [hyper,49,2,192,19,demod,65] P(d,f(h,h),k).
497 [hyper,176,3,19] eq(f(b,g(d)),g(h}).

705 [hyper,312,1,19,19] P(a,f(a,c),b).

715 714 [hyper,319,3,19] eq(f(d,f(h,h)), k).

932 [hyper,705,2,37,19] P(c,f(a,c),f(d,b)).

1180 [hyper,80,1,49,19,demod,67] P(x,x,g(x)).
1235,1234 [hyper,1180,3,19] eq(g(x),f(x,x)).

1256 [hyper,1180,2,19,160,demod,1235] P(f(a,c),c,f(d,d)).
1481,1480 [back_demod,497,demod, 1235,1235] eq(£f(b,f(d,d)),f(h,h)).
1534 [liack_demod,25,demod, 1235] -P(k,f(b,b),e).
1586,1535 [hyper,79,3,19] eq(f(f(x,y),z),f(x,f(y,z))).
3340,3339 [hyper,932,3,19] eq(f(c,f(a,c)),f(d,b)).
3736 [hyper,1256,2,48,19,demod, 1586,3340,1586,1586,1481,715] P(e,c,f(a,k)).
3775 [hyper,3736,3,19,demod,67] eq(f(a,k),c).

3794 [hyper,3775,9,19] P(a,k,c).

3817 [hyper,3794,2,79,312,demod,317] P(e,k,b).
3959,3958 [hyper,3817,3,19,demod,67] eq(k,b).

4647 [back_demod,1534,demod,3959] -P(b,f(b,b),e).
4648 [binary,4647,49]

—————————————— statistics --—---—~—-—m-—-

clauses input 25

clauses given 165

clauses generated 20875

demod & eval rewrites 32696

tautologies deleted 0

clauses forward subsumed 18332
(subsumed by sos) 6484

clauses kept 4505

new demodulators 117

10

empty clauses 1
clauses back demodulated 2262

clauses back subsumed 60
sos size 2089
Kbytes malloced 1564

----------- times (seconds) ----—-==---
run time 35.65 (run time O hr, O min, 35 sec)

system time 6.88
input time 0.01
clausify time 0.00
hyper_res time 6.07
pre_process time 19.21
demod time 6.33
weigh cl time 0.00
for_sub time 6.37
renumber time 0.94
keep cl time 2.18
print_cl time 0.00
conflict time 1.48
post_process time 9.71
back demod time 7.73
back_sub time 1.82
lex_rpo time 0.00
The job finished Wed Jun 3 13:13:44 1992

<3 Theorem 3: r* = r Rings are Commutative (P-form)

----- OTTER 2.2, July 1991 -----
The job began on altair.mcs.anl.gov, Wed Jun 3 13:19:36 1992
The command was "otter22".

set (hyper_res).

set (back_demod).

set (dynamic_demod_all).
assign(pick_given_ratio,5).
clear(print_kept).
assign(max_mem,20000) .
set(control_memory).

list(usable).

1 [-s(x,y,u) | -s(y,z,v) | -S(u,z,w) | s(x,v,w).
2 (] -s(x,y,u) | -S(y,z,v) | -S(x,v,w) | S(u,z,%).
3 [J -s(x,y,u) | -S(x,y,v) | eq(u,v).

4 [] eq(x,x).

5 [1 -eq(x,y) | eq(y,x).

6 [1 -eq(x,y) | -eq(y,z) | eq(x,2z).

7] -eq(u,v) | -S(u,x,y) | S(v,x,y).

8 [1 ~eq(u,v) | -S(x,u,y) | S(x,v,y).

9 [1 -eqfu,v) | -s(x,y,u) | s(x,y,v).

10 [J -eq(u,v) | eq(j(u,x),j(v,x)).
11 [] -equ,v) | eq(j(x,u),j(x,v)).
12 [1 -eq(u,v) | eq(g(u),g(v)).

13 [1 -s(x,y,z) | s(y,x,z).

14 [J -P(x,y,uw) | -P(y,z,v) | -P(u,z,w) | P(x
15 [1 -P(x,y,u) | -P(y,z,v) | -P(x,v,w) | P(u
16 [J -P(x,y,v1) | -P(x,z,v2) | -S(y,z,v3) | -P(x,v3,v4) | S(vi,v2,v4).
17 00 -p(x,y,v1) | -P(x,z,v2) | -S(y,z,v3) |
18 [J -P(y,x,v1) | -P(z,x,v2) | -S(y,z,v3) |
19 [1 -P(y,x,v1) | -P(z,x,v2) | -S(y,z,v3) | -S(v1,v2,v4) | P(v3,x,v4).
20 [1 -P(x,y,u) | -P(x,y,v) | eq(u,v).

21 [1 -eq(u,v) | -P(u,x,y) | P(v,x,y).

22 [] -eq(u,v) | -P(x,u,y) | P(x,v,y).

23 [1 -eq(u,v) | -P(x,y,u) | P(x,y,v).

24 [1 -eq(u,v) | eq(f(u,x),f(v,x)).

25 [] -eq(u,v) | eq(f(x,u),f(x,v)).
end_of_list.

list(sos).

26 [J s(o0,x,x).

27 [1 s(x,0,x).

28 [1 s(g(x),x,0).

29 [J s(x,g(x),0).

30 [1 s(x,y,j(x,y)).

31 [J] p(0,x,0).

32 [1 P(x,0,0).

33 [J P(x,y,f(x,y)).

34 [] P(x,x,x).

35 [1 P(a,b,c).

36 [1 -P(b,a,c).

end_of_list.

LV,W).
VZ,W).

-S(vi,v2,v4) | P(x,v3,v4).
-P(v3,x,v4) | S(vi,v2,v4).

OTTER sets dynamic_demod, because back_demod is set.
OTTER sets order_eq, because dynamic_demod is set.

-——-> UNIT CONFLICT at 145.41 sec ----> 14124 [binary,14123,36] .
Level of proof is 16, length is 41.

1 [-s(x,y,u) | -S(y,z,v) | -S(u,z,w) | s(x,v,w).
2 1 -s(x,y,u) | -S(y,z,v) | -S(x,v,w) | S(u,z,w).
3 [] -s(x,y,u) | -S(x,y,v) | eq(u,v).

13
14
15
16
17
18
19
20
23
26
27
28
29
30
31

a
d
a
a
(]
(]
d
(
d
]
a
a
a
0
(]

-s(x,y,z) | S(y,x,2).

-P(x,y,u) | -P{y,z,v) | -P(u,z,w) | P(x
-P(x,y,u) | ~#{y,z,v) | -P(x,v,w) | P(u
-P(x,y,v1) | -P(x,z,v2) | -S(y,z,v3) |
-P(x,y,v1) | -P(x,z,v2) | -S(y,z,v3) |
-P(y,x,v1) | -P(z,x,v2) | -S(y,z,v3) |
-P(y,x,v1) | -P(z,x,v2) | -S(y,z,v3) |
-P(x,y,u) | -P(x,y,v) | eq(u,v).
~eq(u,v) | -P(x,y,u) | P(x,y,v).
S(0,x,x).

S(x,0,x).

S(g(x),x,0).

S(x,g(x),0).

S(x,y,j(x,y)).

P(0,x,0).

12

VW)
JZ,W) .
-P(x,v3,v4) | S(vi,v2,v4).
-S(v1,v2,v4) | P(x,v3,v4).
-P(v3,x,v4) | S(vi,v2,v4).
-S(vi,v2,v4) | P(v3,x,v4).

32] P(x,0,0).

33 [1 P(x,y,f(x,y)).

3¢ [J P(x,x,x).

35 [1 P(a,b,c).

36 [J ~P(b,a,c).

37 [hyper,35,15,35,34] P(c,b,c).

38 [hyper,35,14,34,35] P(a,c,c).

43,42 [hyper,28,3,27] eq(g(0),0).

44 [hyper,28,2,28,27] S(0,x,g(g(x))).

63 [hyper,30,19,34,37,30] P(j(b,c),b,j(b,c)).

92 [hyper,30,17,38,34,30] P(a,j(c,a),j(c,a)).

129 [hyper,30,13] S(x,y,j(y,x)).

126,125 [hyper,30,3,27] eq(j(x,0),x).

128,127 [hyper,30,3,26] eq(j(0,x),x).

131 [hyper,30,2,30,28,demod,126] S(j(x,g(y)),y,x).

139 [hyper,30,1,28,30,demod, 128] S(g(x),jlx,y),y).

150,149 [hyper,33,20,32] eq(f(x,0),0).

152,151 [hyper,33,20,31] eq(£(0,x),0).

193 [hyper,33,18,34,33,29,demod, 152] S(x,f(g(x),x),0).

248 [hyper,33,16,34,33,29,demod,150] S(x,f(x,g(x)),0).

258 [hyper,33,16,33,34,28,demod, 150] S(f(x,g(x)),x,0).
325,324 [hyper,44,3,30,demod,128] eq(g(g(x)),x).

450 [hyper,120,2,120,28,demod,128] S(j(g(x),y),x,y).

475 [hyper,120,1,28,120,demod,126] S(g(x),j(y,x),y).

1477 [hyper,139,3,30] eq(j(g(x),j(x,y)),y).

1905 [hyper,193,2,29,131,demod,43,126,325,43,126] S(0,f(x,g(x)),x).
2976 [hyper,248,3,30] eq(j(x,f(x,g(x))),0).

3558 [hyper,258,2,30,131,demod,43,126] S(j(x,f(y,g(y))),y,x).
7630,7629 [hyper,1905,3,120,demod, 126] eq(f(x,g(x)),x).
7631 [hyper,1905,2,450,248,dem0d,43,128,43,128,7630,43,128,43,128,7630,7630] S(x,x,0).
7632 [hyper,1905,1,475,248,demod, 128] S(g(x),0,x).

7636 [hyper,1905,1,258,120,demod,7630,7630] S(x,jly,x),y).
7637 [hyper,1905,1,258,30,demod, 7630,7630] S(x,j(x,y),y).
7793 [back_demod,3558,demod,7630] S(j(x,y),y,x).

7836,7835 [back_demod,2976,demod,7630] eq(j(x,x),0).

8850 [hyper,63,17,34,120,120,demod,7836] P(j(b,c),j(b,j(b,C)),O).
9362,9361 [hyper,7632,3,120,demod,128] eq(g(x),x).
10116,10115 [back_demod,1477,demod,9362] eq(j(x,j(x,y)),y).
10286 [back_demod,8850,demod,10116] P(j(b,c),c,O).

10423 [hyper,92,19,34,7793,7631] P(c,j(c,a),0).

11007 [hyper,10286,19,34,7636,120,demod,128] P(b,c,c).
11206 [hyper,11007,15,33,35] P(f(b,a),b,c).

11469 [hyper,10433,17,34,7637,120,demod,128] P(c,a,c).
12377 [hyper,11206,15,33,34] P(c,a,f(b,a)).

14119 [hyper,12377,20,11469] eq(f(b,a),c).

14123 [hyper,14119,23,33] P(b,a,c).

14124 {binary,14123,36] .

—————————————— statistics ~~-—-=----——-
clauses input 36
clauses given 120
clauses generated 56025

13

demod & eval rewrites 77893

tautologies deleted 1
clauses forward subsumed 563529

(subsumed by sos) 19775
clauses kept 13990
new demodulators 97
empty clauses 1
clauses back demodulated 11495
clauses back subsumed 39
sos size 2410
Kbytes malloced 4342

——————————— times (seconds) -----------

run time 145.46 (run time O hr, 2 min, 25 sec)
system time 20.87
input time 0.04
clausify time 0.00
hyper_res time 20.44
pre_process time 52.21
demod time 12.31
weigh cl time 0.00
for_sub time 18.56
renumber time 2.96
keep cl time 7.94
print_cl time 0.00
conflict time 5.10

post_process time 71.27
back demod time 63.58

back_sub time 7.18
lex_rpo time 0.00
The job finished Wed Jun 3 13:22:23 1992

5.4 Theorem 4: Equivalential Calculus, XGK — PYO

----- OTTER 2.2, July 1991 -—---
The job began on altair.mcs.anl.gov, Wed Jun 3 13:22:37 1992
The command was '"otter22'".

set (hyper_res).
set(back_demod) .
set(dynamic_demod_all).
assign(pick_given_ratio,5).
clear(print_kept).
assign(max_mem,20000).
set(control_memory).

list(usable).
1 [-P(x) | -P(e(x,y)) | P(y).
end_of_list.

list(sos).

2 {1 P(e(x,e(e(y,e(z,x)),e(z,y)))).
3 [1 -P(e(e(e(a,e(b,c)),c),e(b,a))).

14

end_of_list.
OTTER sets dynamic_demod, because back_demod is set.
OTTER sets order_eq, because dynamic_demod is set.

Resetting weight limit to 20.
~---> UNIT CONFLICT at 407.50 sec —---> 15324 [binary,15323,3]
Level of proof is 13, length is 19.

[0 -p(x) | -P(e(x,y)) | P(y).

[P(e(x,e(e(y,e(z,x)),e(z,y)))).

[0 -P(e(e(e(a,e(b,c)),c),e(b,a))).

[hyper,2,1,2] P(e(e(x,e(y,e(z,e(e(u,e(v,z)),e(v,u))))),e(y,x))).
[hyper,4,1,2] P(e(e(e(e(x,e(y,z)),e(y,x)),e(z,u)),u)).
(hyper,6,1,6] P(e(x,x)).

9 [hyper,6,1,4] P(e(e(x,e(e(y,e(z,x)),e(z,y))),e(u,u))).

13 [hyper,8,1,2] P(e(e(x,e(y,e(z,2))),e(y,x))).

18 [hyper,13,1,2] P(e(e(x,e(x,y)),y)).

21 [hyper,13,1,2] P(e(e(x,e(y,e(e(z,e(u,e(v,v))),e(u,z)))),e(y,x))).
39 [hyper,18,1,13] P(e(x,e(y,e(y,e(x,e(z,2)))))).

42 [hyper,18,1,2] P(e(e(x,e(y,e(e(z,e(z,u)),u))),e(y,x))).

108 [hyper,39,1,4] P(e(x,e(y,e(y,x)))).

133 [hyper,108,1,2] P(e(e(x,e(y,e(z,e(u,e(u,z))))),e(y,x))).

146 [hyper,9,1,2] P(e(e(x,e(y,e(e(z,e(e(u,e(v,z)),e(v,u))),e(w,w)))),e(y,x))).
682 [hyper,42,1,18] P(e(x,e(y,e(y,e(x,e(e(z,e(z,u)),u)))))).

2253 [hyper,133,1,2] P(e(e(e(x,e(x,y)),e(y,z)),z)).

8738 [hyper,682,1,4] P(e(x,e(y,e(e(z,e(z,y)),x)))).

8897 [hyper,8738,1,2253] P(e(e(x,e(x,y)),e(z,e(z,y)))).

9048 [hyper,8897,1,21] P(e(e(x,e(y,e(z,2))),e(u,e(u,e(y,x))))).
13855 [hyper,9048,1,4] P(e(x,e(e(y,z),e(e(z,e(y,x)),e(u,u))))).
156323 [hyper,13855,1,146] P(e(e(e(x,e(y,z)),2),e(y,x))).

15324 [binary,15323,3]

O W

——————————————— statistics ———-~——=—m——mm
clauses input 3
clauses given 587
clauses generated 177109
demod & eval rewrites 0
clauses wt,lit,sk delete 102987
tautologies deleted 0
clauses forward subsumed 58802
(subsumed by sos) 12239
clauses kept 16320
new demodulators 0
empty clauses 1
clauses back demodulated 0
clauses back subsumed 0
50s size 14735
Kbytes malloced 8047

run time 407.53 (run time O hr, 6 min, 47 sec)

system time 41.90
input time 0.01
clausify time 0.00
hyper_res time 72.62
pre_process time 100.67
demod time 0.00
weigh cl time 16.72
for_sub time 18.83
renumber time 18.15
keep cl time 21.08
print_cl 1ime 0.00
conflict time 4.38

post_process time 223.50
back demod time 0.00
back_sub time 223.01
lex_rpo time 0.00
The job finished Wed Jun 3 13:30:09 1992

5.5 Theorem 5: Implicational Calculus Single Axiom, CD-67 (Imp-4)

————— OTTER 2.2, July 1991 -----
The job began on altair.mcs.anl.gov, Wed Jun 3 14:27:00 1992
The command was "otter22".

set (hyper_res).

set (back_demod).
set(dynamic_demod_all).
clear(print_kept).
assign(pick_given_ratio,5).
assign(max_mem,20000).
set(control_memory).

list(usable).
1 [3 -P(x) | -P(i(x,y)) | P(y).
end_of_list.

list(sos).

2 [1 P(i(i(i(x,y),2),1(i(=z,x),1i(u,x)))).

3 [J -P(i(i(a,b),i(i(b,c),i(a,c)))).

end_of_list.

OTTER sets dynamic_demod, because back_demod is set.
OTTER sets order_eq, because dynamic_demod is set.

Resetting weight limit to 20.

Resetting weight limit to 18.

Resetting weight limit to 16.

~=-=-> UNIT CONFLICT at 7711.98 sec ----> 17866 [binary,17865,3]
Level of proof is 40, length is 94.

1 [0 -P(x) | -P(i(x,y)) | P(y).

16

[J PGi(i(i(x,y),2),i(i(z,x),1i(u,x)))).

[1 -P(i(i(a,b),i(i(b,c),i(a,c)))).

[hyper,2,1,2] P(i(i(i(i(x,y),i(z,y)),i(y,u)),i(v,i(y,w)))).
(hyper,4,1,4] P(i(x,i(i(y,2),i(z,i(y,2))))).

[hyper,4,1,2] P(i(i(ilx,iCy,2z)),i(iu,y),iCv,y))),ilw,i(i(u,y),1i(v,y))))).
(hyper,5,1,5] P(i(i(x,y),i(y,i(x,y)))).

12 [hyper,7,1,2] P(i(i(i(x,i(y,x)),y),i(z,y))).

15 [hyper,6,1,12] P(i(x,1i(i(y,2),i(z,2)))).

19 [hyper,6,1,2] P(i(i(i(x,i(i(y,z),i(u,z))).i(v,i(z,w))),i(vs,i(v,i(z,w))))).
20 [hyper,15,1,15] P(i(i(x,y),i(y,y))).

23 [hyper,20,1,12] P(i(i(x,y),i(x,y))).

24 [hyper,20,1,2] P(i(i(i(x,x),y),i(z,y))).

26 [hyper,23,1,2] P(i(i(i(x,y),x),i(z,x))).

27 [hyper,24,1,24] P(i(x,i(y,i(z,2)))).

28 [hyper,24,1,23] P(i(x,i(y,y))).

31 [hyper,24,1,4] P(i(x,i(y,i(z,y)))).

32 [hyper,28,1,28] P(i(x,x)).

38 [hyper,31,1,32] P(i(x,i(y,x))).

41 [hyper,38,1,27] P(i(x,i(y,i(z,i(u,u))))).

45 [hyper,38,1,2] P(i(x,i(i(i(y,2z),u),i(i(u,y),i(v,¥))))).

47 [hyper,38,1,2] P(i(i(i(x,i(y,2)),y),i(u,¥))).

48 [hyper,26,1,2] P(i(i(i(x,y),1i(y,2)),i(u,i(y,2)))).

53 [hyper,41,1,38] P(i(x,i(y,i(z,i(u,i(v,v)))))).

61 [hyper,19,1,2] P(i(x,. (i(i(i(y,z),i(w,2)),v),i(z,v)))).

80 [hyper,47,1,2] P(i(i(i(x,y),i(z,i(y,u))),i(v,i(z,i(y,u))))).
85 [hyper,53,1,38] P(i(x,i(y,i(z,i(u,i(v,i(w,%))))))).

92 [hyper,48,1,2] P(i(i(i(x,i(y,2z)),i(u,y)),i(v,i(u,y)))).

122 [hyper,45,1,2] P(i(i(i(i(i(x,y),z),i(i(z,x),i(u,x))),v),i(u,v))).
130 [hyper,61,1,85] P(i(i(i(i(x,y),i(z,y)),u),i(y,u))).

138 [hyper,130,1,26] P(i(x,i(y,1i(z,x)))).

139 [hyper,130,1,2] P(i(x,i(i(i(y,x),2),i(u,2z)))).

166 [hyper,138,1,2] P(i(i(i(x,i(y,i(z,u))),2z),i(v,2))).

338 [hyper,92,1,2] P(i(x,i(i(i(i(y,z),u),2),i(y,z)))).

353 [hyper,338,1,338] P(i(i(i(i(x,y),2),y),i(x,y))).

362 [hyper,353,1,2] P(i(i(i(x,y),i(i(x,y),2)),i(u,i(i(x,y),2)))).
970 [hyper,362,1,47] P(i(x,i(i(i(y,i(z,w)),2),2))).

973 [hyper,362,1,26] P(i(x,i(i(i(y,2),y),y))).

974 [hyper,362,1,24] F(i(x,1(i(i(y,y),2),2))).

991 [hyper,973,1,973] P(i(i(i(x,y),x),x)).

1004 [hyper,991,1,2] P(i(i(x,i(x,y)),i(z,i(x,y)))).

1005 [hyper,974,1,991] P(i(i(i(x,x),y),y)).

1016 [hyper,970,1,1005] P(i(i(i(x,i(y,2)),y),y)).

1027 [hyper,1016,1,2] P(i(i(x,i(y,i(x,2))),i(u,i(y,i(x,2))))).
1072 [hyper,1004,1,1004] P(i(x,i(i(y,i(y,2)),i(y,2)))).

1083 [hyper,1072,1,1072] P(i(i(x,i(x,y)),i(x,y))).

1104 [hyper,1083,1,166] P(i(i(i(x,i(y,i(z,0))),z),2)).

1114 [hyper,1083,1,92] P(i(i(i(x,i(y,2)),i(u,y)),i(u,y))).

1118 [hyper,1083,1,80] P(i(i(i(x,y),i(z,i(y,w))),i(z,i(y,u)))).
1124 [hyper,1083,1,48] P(i(i(i(x,y),i(y,2)),i(y,2z))).

1155 [hyper,1104,1,2] P(i(i(x,i(y,i(z,i(x,u)))),i(v,i(y,i(z,i(x,u)))))).
1177 [hyper,1124,1,2] P(i(i(i(x,y),i(z,x)),i(u,i(z,x)))).

1374 [hyper,1177,1,1083] P(i(i(i(x,y),i(z,x)),i(z,x))).

1565 [hyper,1027,1,139] P(i(x,i(i(i(y,2),u),i(z,u)))).

1566 [hyper,1027,1,2] P(i(x,i(i(y,2z),i(i(i(z,0),y),2)))).

D OV W N

~

17

1567 [hyper,1027,1,1083] P(i(i(x,i(y,i(x,2))),i(y,i(x,2)))).

1577 [hyper,1565,1,1565] P(i(i(i(x,y),2),i(y,2))).

1588 [hyper,1577,1,2] P(i(x,i(i(x,y),i(z,y)))).

1592 [hyper,1577,1,122] P(i(x,i(y,i(i(y,2),i(u,2))))).

1645 [hyper,1588,1,2] P(i(i(i(i(i(x,y),2),i(u,2z)),x),i(v,x))).

1661 [hyper,1566,1,1592] P(i(i(x,y),i(i(i(y,2),x),y))).

1672 [hyper,1661,1,1588] P(i(i(i(i(i(x,y),i(z,y)),w),x),i(i(x,y),i(z,y)))).
1703 [hyper,1661,1,1004] P(i(i(i(i(x,i(y,2)),n),i(y,i(y,2))),i(x,i(y,2)))).
1741 [hyper,1661,1,138] P(i(i(i(i(x,i(y,z)),u),2z),i(x,i(y,2z)))).

1762 [hyper,1661,1,47] P(i(i(i(i(x,y),2),1(i(u,i(y,v)),y)),i(x,y))).
1765 [hyper,1661,1,26] P(i(i(i(i(x,y),2),i(i(y,w),y)),i(x,y))).

2492 [hyper,1645,1,1083] P(i(i(i(i(i(x,y),2),i(u,2)),x),x)).

4636 [hyper,1762,1,2492] P(i(i(i(i(i(x,i(i(y,2),w)),i(y,2)),v),2),i(y,2))).
7184 [hyper,1155,1,1083] P(i(i(x,i(y,i(z,i(x,u)))),i(y,i(z,1i(x,u))))).
10842 [hyper,4636,1,1765] P(i(i(i(x,i(i(i(y,2),y),u)),i(i(y,2),y)),y)).
10924 [hyper,10842,1,1672] P(i(i(x,y),i(i(i(x,2),x),y))).

10927 [hyper,10924,1,1588] P(i(i(i(x,y),x),i(i(x,z),i(u,2)))).

10951 [hyper,10927,1,1741] P(i(x,i(y,i(i(x,2),i(u,2))))).

10953 [hyper,10927,1,1703] P(i(x,i(i(x,y),y))).

11237 [hyper,10953,1,10924] P(i(i(i(x,y),x),i(i(x,2),2))).

11252 [hyper,10953,1,16611 P(i(i(i(i(i(x,y),y),2z),x),i(i(x,y),y))).
11310 [hyper,10951,1,1577] P(i(x,i(y,i(i(i(z,x),u),i(v,u))))).

11344 [hyper,11237,1,1741] P(i(x,i(y,i(i(x,2),2)))).

11355 [hyper,11237,1,2] P(i(i(i(i(x,y),y),i(x,2)),i(u,i(x,2)))).

11414 [hyper,11344,1,1577] P(i(x,i(y,i(i(i(z,x),u),u)))).

12034 [hyper,11355,1,1783] P(i(i(i(i(x,y),y),i(x,2)),i(x,2))).

12131 [hyper,12034,1,11414] P(i(x,i(i(i(y,i(i(x,2),2)),u),u))).

12134 [hyper,12034,1,11310] P(i(x,i(i(i(y,i(i(x,2),2)),u),i(v,u)))).
12136 [hyper,12034,1,10951] P(i(x,i(i(i(i(x,y),y),2z),i(u,2)))).

12188 [hyper,12131,1,1374] P(i(i(i(x,i(i(i(y,2),w),u)),y),y)).

12191 [hyper,12131,1,1114] P(i(i(i(x,i(i(i(y,i(z,u)),v),v)),z),2)).
12238 [hyper,12136,1,1567] P(i(i(i(i(x,y),y),2),i(x,2))).

12442 [hyper,12188,1,11252] P(i(i(x,i(i(i(x,y),2),2)),i(i(i(x,y),2),2))).
13088 [hyper,12134,1,1118] P(i(i(i(x,i(i(i(y,z),u),a)),v),i(z,v))).
13109 (typer,12191,1,1672] P(i(i(x,y),i(i(i(z,i(x,u)),y),y))).

13927 [hyper,13088,1,1672] P(i(i(i(x,y),z),i(i(i(u,x),2),2))).

14592 [hyper,12442,1,13109] P(i(i(i(i(x,y),i(x,2)),y),y)).

14632 [hyper,14592,1,13927] P(i(i(i(x,i(i(y,2),i(y,uw))),2),2)).

14829 [hyper,14632,1,1672] P(i(i(x,i(y,z)),i(i(y,x),i(y,2z)))).

15113 [hyper,14829,1,10951] P(i(i(x,y),i(x,i(i(y,2),i(u,2))))).

16490 [hyper,15113,1,12238] P(i(x,i(i(x,y),i(i(y,2),i(u,2))))).

17865 [hyper,16490,1,7184] P(i(i(x,y),i(i(y,2),i(x,2)))).

17866 [binary,17865,3] .

—————————————— statistics -——-------——--
clauses input 3
clauses given 3096
clauses generated 8341570
demod & eval rewrites 0
clauses wt,lit,sk delete 2972221
tautologies deleted 0

clauses forward subsumed 5351487

18

(subsumed by sos) 83872

clauses lept 17862
new demcdulators 0
empty clauses 1
clauses back demodulated 0
clauses back subsumed 386
sos size 14449
Kbytes malloced 10729

——————————— times (seconds) ~---——----

run time 7714.75 (run time
system time 1863.38
input time 0.01
clausify time 0.00
hyper_res time 2863.86
pre_process time 4227.72
demod time 0.00
weigh cl time 736.90
for_sub time 1461.46
renumber time 866.73
keep cl time 33.44
print_cl time 0.00
conflict time 4.74
post_process time 455.12
back demod time 0.00
back_sub time 450.01
lex_rpo time 0.00
The job finished Wed Jun 3 17:07:15 1992

2 hr, 8 min, 34 sec)

5.6 Theorem 6: Many-valued Sentential Calculus, CD-57

————— OTTER 2.2, July 1991 -~---

The job began on altair.mcs.anl.gov, Wed Jun 3 13:16:562 1992

The command was "otter22".

set(hyper_res).
set(back_demod).
set(dynamic_demod_all).
clear(print_kept).
assign(pick_given_ratio,5).
assign(max_mem,20000).
set(control_memory).

list(usable).
1 [J -P(x) | -P(i(x,y)) | P(y).
end_of_list.

list(sos).

2 [1 P(i(x,i(y,x))).

(0 P(i(ilx,y),i(i(y,2),i(x,2)))).
[0 PCiCi(i(x,y),y),i(i(y,x),x))).
1 PGA(i(n(x),n(y)),i(y,x))).

D W

[1 -P(i(i(a,b),i(i(c,a),i(c,b)))).

19

end_of_list.

OTTER sets dynamic_demod, because back_demod is set.
OTTER sets order_eq, because dynamic_demod is set.

--=-=> UNIT CONFLICT at

Level of proof is 4, length is 5.

0 p(ilx,i(y,x))).

W N -

o))

17.68 sec ----> 4844 [binary,b4843,6]

(1 -P(x) | -P(i(x,y)) | P(y).

{1 PCi(i(x,y),i(i(y,2),i(x,2)))).
[PGi(iCi(x,y),y),10i(y,x),x))).
[] _P(I(l(a,b),1(1(C,a),l(c,b)))).

14 [hyper,3,1,3] P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))).
15 [hyper,3,1,2] P(i(i(i(x,y),2),i(y,z))).

24 [hyper,4,1,15] P(i(x,i(i(x,y),y))).

49 [hyper,24,1,3] P(i(i(i(i(x,y),y),2),i(x,2))).
4843 [hyper,49,1,14] P(i(i(x,y),i(i(z,x),i(z,y)))).

4844 [binary,4843,6]

clauses input
clauses given
clauses generated

demod & eval rewrites

tautologies deleted

clauses forward subsumed

(subsumed by cos)
clauses kept
new demodulators
empty clauses

clauses back demodulated
clauses back subsumed

sos size
Kbytes malloced

------------ times (seconds)
17.
.34
.02
.00
.53
.57
.00
.00
.80
.92
.46
.00
.17
.63

run time

system time

input time
clausify time

hyper_res time

pre_process time
demod time
weigh cl time
for_sub time
renumber time
keep cl time
print_cl time
conflict time

post_process time

N = O P ON OO O WO O W

69

11850
1683
4837

0

1

0

11
4650
2171

20

(run time

0 hr, O min,

17 sec)

back demod time 0.00

back_sub time 2.587
lex_rpo time 0.00
The job finished Wed Jun 3 13:17:14 1992

5.7 Theorem 7: Many-valued Sentential Calculus, CD-60

————— OTTER 2.2, July 1991 -----
The job began on altair.mcs.anl.gov, Wed Jun 3 13:31:24 1992
The command was "otter22".

set (hyper_res).
set(back_demod) .
set(dynamic_demod_all).
clear(print_kept).
assign(pick_given_ratio,5).
assign(max_mem, 20000).

set (control_memory).

list(usable).
1 [1 -P(x) | -PQi(x,y)) | P(y).
end_of_list.

list(sos).

2 [0 p(i(x,i(y,x))).

3 [1 P(i(i(x,y),i(i(y,2),i(x,2)))).

4 (1 P(i(i(ix,y),y),i(i(y,x),x))).

5 [J PG3GE(n(x),n(y)),i(y,x))).

6 [J -P(i(i(a,b),i(n(b),n(a)))).

end_of_list.

OTTER sets dynamic_demod, because back_demod is set.
OTTER sets order_eq, because dynamic_demod is set.

Resetting weight limit to 13.
~-=-==> UNIT CONFLICT at 2184.96 sec ----- > 16257 [binary,16256,6] .
Level of proof is 13, length is 24.

1 [0 -P(x) | -P(i(x,y)) | P(y).

2 [1 P(i(x,i(y,x))).

3 [0 P(i(ilx,y),i(i(y,2),i(x,2)))).

4 [0 PGGEG(x,y),y),i01(y,x),x))).

5 [J P(i(i(n(x),n(y)),i(y,x))).

6 [] -P(i(i(a,b),i(n(b),n(a)))).

7 [hyper,2,1,2] P(i(x,i(y,i(z,y)))).

13 [hyper,3,1,5] P(i(i(i(x,y),z),i(i(n(y),n(x)),2))).
14 [hyper,3,1,3] P(i(i(i(i(x,y),i(z,y)),un),i(i(z,x),u))).
15 [hyper,3,1,2] P(i(i(i(x,y),z),i(y,2))).

18 [hyper,4,1,7] P(i(i(i(x,i(y,x)),z),z)).

21 [hyper,15,1,5] P(i(n(x),i(x,y))).

22 [hyper,15,1,4] P(i(x,i(i(x,y),y))).

27 [hyper,21,1,3] P(i(i(i(x,y),z),i(n(x),2))).

21

33 [hyper,22,1,5] P(i(i(i(i(n(x),n(y)),i(y,x)),2z),2)).

37 [hyper,22,1,3] P(i(i(i(i(x,y),y),2),i(x,2))).

59 [hyper,18,1,15] P(i(x,x)).
63 [hyper,59,1,22] P(i(i(i(x,x),y),y)).

238 [hyper,13,1,63] P(i(i(n(x),n(i(y,y))),x)).

284 [hyper,238,1,27] P(i(n(n(x)),x)).
320 [hyper,284,1,5] P(i(x,n(n{(x)))).

321 [hyper,284,1,3] P(i(i(x,y),i(a(n(x)),y))).
378 [hyper,320,1,22] P(i(i(i{x,n(n(x))),y),y)).
1651 [hyper,378,1,14] P(i(i(x,y),i(x,n(n(y))))).
1762 [hyper,33,1,14] P(i(i(x,i(n(y),n(2))),i(x,i(z,y)))).
2121 [hyper,37,1,14] P(i(i(x,i(y,2)),i(y,i(x,2)))).
3351 [hyper,1651,1,37] P(i(x,i(i(x,y),n(n(y))))).
5608 [hyper,3351,1,321] P(i(n(n(x)),i(i(x,y),a(n(;)N)).
15901 [hyper,5608,1,2121] P(i(i(x,y),i(n(a(x)),n(n(y))))).
16256 [hyper,1762,1,15901] P(i(i(x,y),i(n(y),n(x)))).

16257 [binary,16256,6]

—————————————— statistics -——————-————-
clauses input 6
clauses given 2768
clauses generated 3214280
demod & eval rewrites 0
clauses wt,lit,sk delete 1712800
tautologies deleted 0
clauses forward subsumed 1485230
(subsumed by sos) 16917
clauses kept 16250
new demodulators 0
empty clauses 1
clauses back demodulated 0
clauses back subsumed 24
sos size 13466
Kbytes malloced 7216

——————————— times (seconds) ---~-------

run time 2185.01
system time 689.15
input time 0.00
clausify time 0.00
hyper_res time 845.48
pre_process time 1215.06
demod time 0.00
weigh cl time 271.12
for_sub time 272.29
renumber time 270.75
keep cl time 18.23
print_cl time 0.00
conflict time 3.61

post_process time 26.66
back demod time 0.00
back_sub time 25.92

22

(run time

0 hr, 36 min, 25 sec)

lex_rpo time 0.00
The job finished Wed Jun 3 14:26:09 1992

6 Sumumary of OTTER Outputs for the Equality Set

6.1 Theorem EQ-1: The Commutator Theorem

————— OTTER 2.2, July 1991 -----
The job began on altair.mcs.anl.gov, Fri Jun 5 14:33:33 1992
The command was "otter22".

set (knuth_bendix).

set (index_for_back_demod).
set (process_input).
assign(max_mem, 16000).

set (control_memory).
set(lex_rpo).
clear(print_kept).
clear(print_new_demod).
clear(print_back_demod).

lex([a,b,e,f(x,x),g(x),h(x,x)]).

lrpo_lr_status({f(x,x)]).

list(usable).

o0 (x=x).

0 [J (f(e,x) = x).

0 [1 (£(g(x),x) = e).

0 [1 (£(£(x,y),2) = £(x,£(y,2))).

0 [0 (h(x,y) = f(x,f(y,£(g(x),g(y))))).

end_of_list.

list(sos).

0 [1 (£(x,f(x,x)) = e).

0 [1 (h(h(a,b),b) != e).

end_of_list.

OTTER sets dynamic_demod_all, because knuth_bendix is set.
OTTER clears para_into_right, because knuth_bendix is set.
OTTER sets back_demod, because knuth_bendix is set.

OTTER sets para_from, because knuth_bendix is set.

OTTER sets para_into, because knuth_bendix is set.

OTTER clears para_from_right, because knuth_bendix is set.
OTTER sets dynamic_demod, because back_demod is set.

OTTER sets order_eq, because dynamic_demod is set.

————————————— > process usable:

** KEPT: 1 [(x = x).

++++ cannot make into demodulator: 1 [] (x = x).
** KEPT: [J (f(e,x) = x).

*+x KEPT: 4 [] (£(g(x),x) = e).

** KEPT: 6 [1 (£(f(x,y),z) = £(x,f(y,2))).

*x KEPT: 8 [1 (h(x,y) = £(x,f(y,f(g(x),g(y))))).

1]

0 O W

23

———————————— > process so0S:

** KEPT: 10 [1 (f(x,f(x,x)) = e).

** KEPT: 12 [demod,9,9,7,7,7] (f(a,f(b,f(g(a),f(g(b),f(b,f(g(f(a,f(b,f(gla),
g(®))))),g(b))))))) 1= e).

———————————— > done processing input.

----=> UNIT CONFLICT at 1.49 sec ----> 156 [binary,155,1] .
Level of proof is 13, length is 19.

1 [1 (x =x).
3,2 [1 (£(e,x) = x).
5,4 [1 (£(gx),x) = e).
7,6 [1 (£(£(x,y),2z) = £(x,f(y,2))).
9,8 [1 (h(x,y) = £(x,f(y,f(g(x),gly)))N).
11,10 [J (f(x,f(x,x)) = e).
12 [demod,9,9,7,7,7]
(£(a,f(b,f(g(a),f(g(b),f(b,f(g(f(a,f(b,f(ga),g(b))))),g(®))))))) i=e).
13 [para_into,10,6,demod,7] (£f(x,f(y,f(x,f(y,f(x,y))))) = e).
16,15 [para_from,10,6,demod,3,7] (£(y,f(y,£(y,x))) = x).
18,17 [para_into,15,10] (f(x,f(x,e)) = f(x,x)).
21 [para_into,15,4,demod, 18] (f(g(x),g(x)) = x).
24,23 [para_into,15,10] (f(x,e) = x).
28,27 [para_from,21,6] (f(g(x),f(g(x),y)) = £(x,y)).
32,31 [para_into,27,21,demod,5] (f(x,g(x)) = e).
34,33 [para_into,27,15,demod,28] (f(g(x),y) = £(x,f(x,y))).
36,35 [para_into,27,10,demod,24,34,32,24] (g(x) = f(x,x)).
37 [back_demod,12,demod, 36,36,36,36,7,36,7,7,7,7,7,36,7,7,7,7,7,7,7,7,7,7,7,11,24,7,16,7,16]
(f(a,f(b,f(b,f(a,f(a,f(b,f(b,f(a,f(b,£(a,f(a,b))))))))))) = e).
43,42 [para_from,13,15,demod,24] (f(y,f(x,f(y,f(x,y)))) = £(x,x)).
45,44 [para_into,42,6,demod,7,7]
(f(x,f(y,f(z,1(x,f(y,£(2,x)))))) = £(y,£(z,£(y,2)))).
48,47 [para_from,42,6,demod,7,7,7,7]
(f(z,f(x,f(z,f(x,2(=z,y))))) = £(x,f(x,y))).
56 [para_into,47,10,demod,24] (£(x,£f(y,f(x,y))) = £(y,f(y,f(x,x)))).
62 [para_into,56,56,demod,7,7,16,11,24,7,7,7,7]
(£(y,f(x,f(y,f(y,2(x,1(y,1(x,x))))))) = £(x,y)).
127 [para_from,62,47,demod,48] (£(x,f(y,f(y,x))) = £(y,£(x,£(x,y)))).
163,152 [para_from,127,56,demod,7,7,7,7,11,24,7,7]
(f(x,f(y,f(y,f(x,£(y,£(x,£(x,y))))))) = £(y,£(y,£(x,1(y,y))))).
155 [back_demod,37,demod,153,45,43,11] (e != e).
156 [binary,155,1] .

—————————————— statistics —-——--—=--——-—-
clauses input 7
clauses given 19
clauses generated 542
demod & eval rewrites 1945
tautologies deleted 0

24

clauses forward subsumed
(subsumed by sos)

clauses kept

new demodulators

empty clauses

clauses back demodulated

clauses back subsumed

sos size

Kbytes malloced

——————————— times (seconds)

run time 1.53
system time 0.28
input time 0.01
clausify time 0.00
process input 0.62
para_into time 0.10
para_from time 0.03
pre_process time 1.22
demod time 0.55
weigh cl time 0.00
for_sub time 0.06
renumber time 0.05
keep cl time 0.31
priat_cl time 0.01
conflict time 0.03
post_process time 0.1:
back demod time 0.04
back_sub time 0.07
lex_rpo time 0.13

The job finished

453
31
114
41

18

79
255

(run time O hr, 0 min, 1 sec)

Fri Jun 5 14:33:35 1992

6.2 Theorem EQ-2: Robbins Algebra, (3¢,c+ ¢ = ¢) — Boelean

————— OTTER 2.2, July 1991

The job began on altair.mcs.anl.gov, Fri Jun 5 14:29:55 1992

The command was "otter22".

set (knuth_bendix).

set(index_for_back_demod).

set(process_input).
assign(max_mem, 16000) .
set{control_memory).
set(lex_rpo).
clear(print_kept).
clear(print_new_demod).
clear(print_back_demod).

lex([a,b,c,o0(x,x),n(x)]).
lrpo_lr_status([o(x,x)]).

list(usable).

o [J (x=x).

0 [1 (o(x,y) = o(y,x)).

0 [1 (o(o(x,y),2z) = o(x,0(y,2))).

0 [1 (n(o(nCo(x,y)),n(o(x,n(y))))) = x).
end_of_list.

list(sos).

0 [1 (o(c,c) = c).

0 [J (o(n(o(a,n(b))),n(o(n(a),n(b)))) !'=b).

end_of_list.

OTTER sets dynamic_demod_all, because knuth_bendix is set.
OTTER clears para_into_right, because knuth_bendix is set.
OTTER sets back_demod, because knuth_bendix is set.

OTTER sets para_from, because knuth_bendix is set.

OTTER sets para_into, because knuth_bendix is set.

OTTER clears para_from_right, because knuth_bendix is set.
OTTER sets dynamic_demod, because back_demod is set.

OTTER sets order_eq, because dynamic_demod is set.

———————————— > process usable:

** KEPT: 1 [] (x = x).

++++ cannot make into demodulator: 1 [] (x = x).

** KEPT: 2 [] (o(x,y) = o(y,x)).

++++ cannot make into democdulator: 2 [] (o(x,y) = o(y,x)).
=« KEPT: 3 [] (o(o(x,y),z) = o(x,0(y,2))).

*+ KEPT: 5 [] (n(o(n(o(x,y)),n(o(x,n(y))))) = x).

------------ > process sos:
=x KEPT: 7 [J (o(c,c) = ¢).
*+ KEPT: 9 [] (o(n(o(a,n(b))),n(o(n(a),n(b)))) t= b).

------------ > done processing input.

Resetting weight limit to 18,

Resetting weight limit to 17.

----> UNIT CONFLICT at 98.19 sec ----> 7578 [binary,7577,1] .
Level of proof is 31, length is 62.

1 0] (x = x).

2 [1 (o(x,y) = oly,x)).

4,3 [1 (o(o(x,y),2z) = o(x,0(y,z))).

5 [J (n(o(n(o(x,y)),n(o(x,n(y))))) = x).

8,7 [1 (o(c,c) = c).

9 [] (o(n(o(a,n(b))),n(o(n(a),n(b)))) '= b).

10 [para_from,7,5] (n(o(n(c),n(o(c,n(c))))) = ¢).
13,12 [para_from,7,2] (o(c,o0(c,x)) = o(c,x)).
15,14 [para_into,12,2] (o(c,0(x,c)) = o(c,x)).

16 [para_from,12,5] (n(o(n(o(c,x)),n(o(c,n(o(c,x)))))) = ¢).
18 [para_into,14,3] (o(c,o(x,0(y,c))) = o(c,o0(x,y))).
20 [para_from,14,5] (n(o(n(o(c,x)),n(o(c,n(o(x,c)))))) = c).

23,22 [para_from,14,3,demod,4,4] (o(c,o(x,0(c,y))) = o(c,o(x,y))).
26 [para_into,10,2] (n(o(n(o(c,n(c))),n(c))) = c).

26

28 [para_from,10,5] (n(o(n(o(n(c),o0(c,n(c)))),c)) = n(c)).

42 [para_from,26,5] (n(o(n(o(n(o(c,n(c))),c)),c)) = n(o(c,n(c)))).

45,44 [para_from,26,5] (n(o(n(o(x,0(n(o(c,n(c))),n(c)))),n(o(x,c)))) = x).
56 [para_into,18,2,demod,4,23] (o(c,o(x,y)) = o(c,o(y,x))).

57 [para_into,18,2,demod,4,4,8] (o(x,0(y,c)) = o(c,o0(x,y))).

64 [para_into,56,2,demod,4] (o(x,0(y,c)) = o(c,o(y,x))).

68 [para_from,56,2,demod,4] (o(c,o(x,y)) = o(y,o(x,c))).

70 [para_into,57,2] (o(x,0(c,y)) = o(c,o(x,y))).

71 [para_into,57,2,demod,4] (o(x,o0(c,y)) = o(c,o(y,x))).

72 [para_from,57,5] (n(o(n(o(c,o(x,y))),n(o(x,n(o(y,c)))))) = x).
76 [para_from,57,2,demod,4] (o(c,o(x,y)) = o(y,o(c,x))).
82 [para_from,64,5] (n(o(n(o(c,o(x,y))),n(o{y,n(o(x,c)))))) = y).

86 [para_from,64,2,demod,4] (o(c,o(x,y)) = o(x,0(c,y))).

105 [para_into,76,68] (o(x,o(y,c)) = o(x,0(c,y))).

114 [para_into,86,76] (o(x,o(c,y)) = o(y,o(c,x))).

163 [para_into,9,2] (o(n(o(n(b),a)),n(o(n(a),n(b)))) != b).

166 [para_into,28,71] (n(o(n(o(c,o(n(c),n(c)))),c)) = n(c)).

168 [para_into,28,2] (n(o(c,n(o(n(c),0(c,n(c)))))) = n(c)).

180 [para_into,163,2] (o(n(o(n(b),a)),n(o(n(b),n(a)))) != b).

187 [para_from,166,5] (n(o(n(c),n(o(n(o(c,0(n(c),n(c)))),n(c))))) = nlo(c,o0(n(c),n(c))))).
190,189 [para_from,168,5,demod,23] (n(o(n(o(c,0(n(c),n(c)))),n(c))) = c).

196,195 [back_demod,187,demod,190] (n(o(c,o(n(c),n(c)))) = n(o(n(c),c))).

201 [back_demod,166,demod,196] (n(o(n(o(n(c),c)),c)) = n(c)).

210,209 [para_into,201,2] (n(o(n(o(c,n(c))),c)) = n(c)).

212,211 [back_demod,42,demod,210] (n(o(n(c),c)) = n(o(c,n(c)))).

219 [back_demod,195,demod,212] (n(o(c,o0(n(c),n(c)))) = n(o(c,n(c)))).

230 [para_into,219,68] (n(o(n(c),o(n(c),c))) = n(o(c,n(c)))).

240 [para_into,16,114,demod,8,13] (n(o(n(o(x,c)),n(o(c,n(o(c,x)))))) = c).

276 [para_into,20,2] (n(o(n{o(c,x)),n(o(n(o(x,c)),c)))) = c).

1150 [para_into,240,2] (n(o(n(o(x,c)),n(o(n(o(c,x)),c)))) = c).

2492 [para_into,72,105,demod,13,8] (n(o(n(o(c,x)),n(o(x,n(c))))) = x).

2517,2516 [para_into,72,276] (n(o(n(o(c,0(n(o(c,x)),n(o(x,¢))))),c)) = n(o(c,x))).
2590 [para_into,2492,114,demod,8,4] (n(o(n(o(x,c)),n(o(c,0(x,n(c)))))) = o(c,x)).
2636 [para_into,2492,2] (n(o(n(o(c,x)),n(o(n(c),x)))) = x).

2642 [para_into,2492,2] (n(o(n(o(x,n(c))),n(o(c,x)))) = x).

2788 [para_into,2636,230,demod,15] (n(o(n(o(c,n(c))),n(o(c,n(c))))) = oln(c),c)).
3454 [para_into,82,1150,demod,2517] (n(o(c,x)) = n(o(x,c))).

3508 [para_from,3454,5] (n(o(n(o(c,x)),n(o(n(x),c)))) = c).

3777 [para_into,3508,2] (n(o(n(o(n(x),c)),n(o(c,x)))) = c).

3912,3911 [para_into,3777,26,demod,8] (n(o(n(c),n(o(c,o(n(o(c,n(c))),n(c)))))) =).
5861 [para_into,2590,209,demod,3912] (o(c,n(o(c,n(c)))) = ¢).

5928 [para_from,5861,70] (o(c,o(x,n(o(c,n(c))))) = o(x,c)).

5983,65982 [para_from,5928,2642,demod,4,45] (o(x,n(o(c,n(c)))) = x).

6005,6004 [back_demod,2788,demod,5983] (n(n(o(c,n(c)))) = oln(c),c)).

6015,6014 [para_into,5982,2] (o(n(o(c,n(c))),x) = x).

6039,6038 [para_from,5982,5,demod,6005] (n(o(n(x),n(o(x,0(n(c),c))))) = x).

6040 [para_from,6014,5,demod,6015] (n(o(n(x),n(n(x)))) = n(o(c,n(c)))).

7006 [para_into,6040,6038,demod,6039] (n(o(x,n(x))) = n(o(c,n(c)))).

7023 [para_into,7006,2] (n(o(n(x),x)) = n(o(c,n(c)))).

7066 [para_from,7006,5,demod,6015] (n(n(o(x,n(n(x))))) = x).

7147,7146 [para_into,7066,2] (n(n(o(n(n(x)),x))) = x).

7416,7415 [para_from,7023,5,demod,5983,7147] (n(n(x)) = x).

7576,7575 [para_into,7415,5] (o(n(o(x,y)),n(o(x,n(y)))) = ni(x)).

7577 [back_demod, 180,demod,7576,7416] (b '= b).

7578 [binary,7577,1]

—————————————— statistics --—-————=---—-
clauses input 6
clauses given 249
clauses generated 50001
demod & eval rewrites 122587
clauses wt,lit,sk delete 901
tautologies deleted 0
clauses forward subsumed 45667
(subsumed by sus) 10963
clauses kept 4548
new demodulators 3029
empty clauses 1
clauses back demodulated 1109
clauses back subsumed 3
sos size 3290
Kbytes malloced 6662

——————————— times (seconds) —--—---------

run time 98.31 (run time O hxr, 1 min, 38 sec)
system time 18.22
input time 0.01
clausify time 0.00
process input 0.03
para_into time 6.66
para_from time 4.05
pre_process time 63.38
demod time 24.30
weigh cl time 0.19
for_sub time 7.08
renumber time 3.83
keep cl time 8.73
print_cl time 0.00
conflict time 0.63

post_process time 22.50
back demod time 16.85

back_sub time 5.52
lex_rpo time 9.34
The job finished Fri Jun 5 14:31:54 1992

6.3 Theorem EQ-3: On Ternary Boolean Algebra

————— OTTER 2.2, July 1991 -----
The job began on altair.mcs.anl.gov, Fri Jun 5 07:39:41 1992
The command was "otter22".

set (knuth_bendix).
set(index_for_back_demod) .
set(process_input).
assign(max_mem,16000) .

[\
T

set(control_memory).
set(lex_rpo).
clear(print_kept).
clear(print_new_demod) .
clear(print_back_demod).

lex([a,b,c,f(x,x,x),g(x)]).
lrpo_lr_stacus([f(x,x,x)]1).

list(usable).
000 (x =x).

end_of_list.

list(sos).

[0 (£(f(v,w,x),y,2(v,w,2)) = £(v,w,f(x,y,2))).

00 £y, x,x) = x).

00 (£(x,x,y) = x).

1 (£gly),y,x) = x).

[1 (£(a,g(a),b) !=b).

end_of_list.

OTTER sets dynamic_demod_all, because knuth_bendix is set.
OTTER clears para_into_right, because knuth_bendix is set.
OTTER sets back_demod, because knuth_bendix is set.

OTTER sets para_from, because knuth_bendix is set.

OTTER sets para_into, because knuth_bendix is set.

OTTER clears para_from_right, because knuth_bendix is set.
OTTER sets dynamic_demod, because back_demod is set.

OTTER sets order_eq, because dynamic_demod is set.

O O O OO

———————————— > process usable:
** KEPT: 1 [1 (x = x).
++++ cannot make into demodulator: 1 [(x = x).

———————————— > process SOo8:

*x KEPT: 2 [] (£(f(x,y,z),u,f(x,y,v)) = £(x,y,f(z,u,v))).
** KEPT: 4 [1 (£f(x,y,y) = y).

** KEPT: 6 [] (f(x,x,y) = x).

*x KEPT: 8 [1 (£(g(x),x,y) = y).

** KEPT: 10 [] (f(a,g(a),b) != b).

———————————— > done processing input.

-———> UNIT CONFLICT at 16.78 sec -——-> 1950 [binary,1948,10] .
Level of proof is 11, length is 19.

3,2 [J (£(£(x,y,2),u,f(x,y,v)) = £(x,y,f(2z,u,v))).
5,4 [1 (f(x,y,y) = y).

7,6 [1 (f(x,x,y) = x).

9,8 [1 (£(g(x),x,y) = y).

10 [1 (f(a,gfa),b) '= b).

12,11 [para_into,2,6,demod,7,7] (f(x,y,x) = x).

29

16 [para_into,2,4] (£(f(x,y,2),u,y) = f(x,y,f(z,u,y))).

21,20 [para_into,2,6] (f(x,y,f(z,f(x,y,z),u)) = £f(x,y,2)).

24 [para_from,11,2] (f(f(x,y,z),u,x) = f(x,y,f(z,u,x))).

50 [para_into,16,11] (f(x,z,f(x,y,z)) = f(x,y,2z)).

53,52 [para_into,16,2] (f(f(x,y,f(z,u,v)),w,u) = £(£(x,y,2),u,f(£(x,y,v),w,u))).
82 [para_into,20,4] (f(x,y,f(x,y,2)) = f(x,y,2)).

90 [para_from,20,50,demod,21] (f(x,f(y,f(x,z,y),u),f(x,2,y)) = £(x,z,y)).

102 [para_from,82,2,demod,3] (f(x,y,f(z,u,f(x,y,v))) = £(x,y,f(z,u,v))).

351,350 [para_from,90,20,demod,5] (f(x,f(y,z,x),y) = £(y,z,x)).

386,385 [para_from,350,24] (f(f(x,y,z),u,z) = £(z,f(x,y,z),f(x,u,z))).

445 [para_into,102,20,demod,5] (f(x,f(y,z,x),f(y,z,u)) = £(y,z,x)).

506,505 [para_into,445,50] (f(x,f(y,z,x),f(y,n,z)) = £(y,z,x)).

524,523 [para_into,445,4] (f(x,f(y,z,x),z) = £(y,z,x)).

781 [para_from,505,350,demod,506] (£(f(x,y,z),f(x,z,u),u) = £(x,z,u)).

1301 [para_into,781,523,demod,53,12,524,524] (£(f(x,y,2),u,f(z,u,x}) = f(z,u,x)).
1734 [para_into,1301,523] (£(f(x,y,z),u,f(y,u,2)) = f(y,u,z)).

1855 [para_into,1734,8,demod,386,9] (f(z,f(x,g(y),2),f(x,y,2)) = z).

1948 [para_into,1855,6,demod,351] (£(y,g(y),x) = x).

1950 [binary, 1948,10]

—————————————— statistics —-—------—---
clauses input 6
clauses given 47
clauses generated 3945
demod & eval rewrites 6838
tautologies deleted 0
clauses forward subsumed 3103
(subsumed by sos) 19
clauses kept 1030
new demodulators 919
empty clauses 1
clauses back demodulated 182
clauses back subsumed 3
sos size 798
Kbytes malloced 1564

——————————— times (seconds) --~-=-=~---
run time 16.81 (run time O hr, O min, 16 sec)

system time 1.85
input time 0.01
clausify time 0.00
process input 0.02
para_into time 0.50
para_from time 0.43
pre_process time 11.37
demod time 6.77
wveigh cl time 0.00
for_sub time 0.92
renumber time 0.28
keep cl time 1.41
print_cl time 0.00
conflict time 0.17

30

post_process time 4.32
back demod time 3.01
back_sub time 1.30
lex_rpo time 0.40
The job finished Fri Jun 5 07:40:00 1992

6.4 Theorem EQ-4: Group Theory Single Axiom

————— OTTER 2.2, July 1991 -----
The job began on altair.mcs.anl.gov, Fri Jun 5 07:36:59 1992
The command was "otterZ2".

set (knuth_bendix).
set(index_for_back_demod).
set(process_input).
assign(max_mem, 16000).
set(control_memory) .
set(lex_rpo).
clear(print_kept).
clear(print_new_demod).
clear (print_back_demod).

lex([a,b,c,f(x,x),1(x)]).
lrpo_lr_status([f(x,x)]).

list(usable).
0[] (x =x).
end_of_list.

list(sos).

0 [1 (£(x,i(f(£E(£E(Y),£(i(x),w))),2),i(£(y,2))))) = w).
0 [J (f(a,f(b,c)) '= £(£(a,b),c)).

end_of_list.

OTTER sets dynamic_demod_all, because knuth_bendix is set.
OTTER clears para_into_right, because knuth_bendix is set.
OTTER sets back_demod, because knuth_bendix is set.

OTTER sets para_from, because knuth_bendix is set.

OTTER sets para_into, because knuth_bendix is set.

OTTER clears para_from_right, because knuth_bendix is set.
OTTER sets dynamic_demod, because back_demod is set.

OTTER sets order_eq, because dynamic_demod is set.

———————————— > process usable:

#x KEPT: 1 [] (x = x).

++++ cannot make into demodulator: 1 [(x = x).

———————————— > process soOs:

*x KEPT: 2 [1 (£(x,i(£(£(i(£(i(y),£(i(x),2))),0),i(f(y,u))))) = 2).
#% KEPT: 4 [] (f(£f(a,b),c) '= f(a,f(b,c))).

------------ > done processing input.

31

-——-> UNIT CONFLICT at 44.12 sec ----> 4292 [binary,4090,4] .
Level of proof is 50, length is 92.

3,2 [0 (F(x,i(£(£L(£(iy), £(i(x),2))),u),i(f(y,w))))) = =z).

4 [1 (£(f(a,b),c) '= £(a,f(b,c))).

5 [para_into,2,2] (£(x,i(f(£(i(£(i(y),2)),u),i(f(y,u))))) = i(£(£(1(£(i(v),
£(i(1(x)),2))),uw),i(£(v,w))))).

12 [para_into,5,5] (f(x,i(f(i(£(£(i(£(i(y),f(i(1(i(£(i(2),u)))),v))),w),
1(£Cy,w)))),i(£(z,i(£(£(L(£(i(v6),v)),vT),i(£(v6,v7))))))))) =
i(E(E(L(E(1(v8),£(i(i(x)),u))),ve),i(£(v8,v9))))).

19,18 [para_into,5,2] (i(£(£(i(£(i(y),£(i(i(2)),£(i(2),x)))),u),i(£f(y,u)))) = x).

29 [para_into,18,18,demod,19] (i(f(f(i(£(i(x),f(i(y),£(y,w)))),v6),i(£f(x,v6)))) = w).

48 [para_into,29,5] (i(f(i(f(£(i(£(i(x),fLEGEEE(Y),1(1(2),£(2,u)))))),v))),
w),i(E(x,w)))),i(£(y,i(£(£(i(£(i(v6),v)),vT),1i(£(v6,vT7)))))))) = u).

50 [para_into,29,2] (i(f(x,i(f(y,i(£(£(i(£(i(z),£(1(1(£(i(y),£(i(u),£(u,v))))),
x))),w),i(£(z,w)))))))) = v).

60 [para_from,29,5] (1(£(£(1(£(i(z),£(i(i(x)),f(i(w),£(u,y))))),v),i(£(z,v)))) = £(x,y)).

81 [para_into,60,5] (1(f(i(f(£(i(£(i(x),fGEGEE(Y),1(i(1(=2)),1(1i(u),
£(u,v))))))),w))),ve),i(£(x,v6)))),i(f(y,i1(£(£(L(E(L(vT),W)),
v8),i(£(v7,v8)))))))) = £(z,v)).

98,97 [para_from,60,5] (i(£(£(i(£(i(u),£(1(i(x)),E(i(i(y)),£(i(v),£(v,2)))))),
w),i(f(u,w)))) = £(x,1(y,2))).

99 [para_from,30,2] (£(i(x),f(x,y)) = £(i(2),£(z,y))).

114 [para_into,99,99] (£(i(i(x)),f(i(y),f(y,2))) = £(i(n),f(u,£(x,2)))).

116,115 [para_into,99,5,demod,3] (£(i(v),f(v,i(£(£(i(£(i(w),2)),v6),i(£f(w,v6)))))) = 2z).

125 [para_from,99,29] (L(f(£(i(f(i(x),f(x,£(y,2)))),uw),i(£(i(y),u)))) = 2).

136 [para_from,99,2] (£(x,i(£(£(i(£(i(y),f(y,2))),uw),i(£(i(x),u))))) = 2z).

146 [para_from,114,60,demod,98] (£(y,f(i(2),f(z,v))) = £(y,£(i(v6),f(v6,v)))).

158 [para_into,146,99] (£(x,f(i(i(y)),f(i(z),f(z,u)))) = £(x,£(i(v),f(v,£(y,u))))).

160 [para_from,146,99] (£(i(x),f(x,f(i(y),f(y,2)))) = £(i(u),£(u,f(i(v),£(v,2))))).

210 [para_into,115,99] (£(i(x),f(x,i(f(£(i(£(i(y),f(y,2))),u),i(£(v,u)))))) = f(v,2)).

221,220 [para_into,115,99] (f(i(x),f(x,i(£(£(i(y),f(y,2)),i(£f(u,f(£(i(u),v),2))))))) = v).

224 [para_into,115,2] (£(i(x),f(x,i(f(y,i(f(z,i(£CE(L(£(i(u),E(1(i(£(1(2),v))),
¥))),w),1i(f(u,w)))))))))) = v).

300,299 [para_into,125,99] (1i(£(£(i(£(i(x),f(x,£(y,2)))),f(y,u)),i(£(i(v),E(v,u))))) = 2).

355 [para_into,136,99] (f(x,i(f(£(i(y),f(y,2)),i(£C(i(x),£(£(iu),f(u,v)),2}))))) = v).

1301 [para_into,355,220,demod,221] (£(£f(i(x),f(x,y)),1(£(v6,i(v6)))) = y).

1410 [para_from,1301,210] (£(i(f(i(x),f(x,y))),y) = £(i(£(i(2),£(z,u))),u)).

1434 [para_from,1301,220] (£(i(x),f(x,i(£(£(i(£(i(y),f(y,2))),2),1(f(u,
fO£(i(u),v),i(f(w,1(w)))))))))) = v).

1436 (para_from,1301,114] (£(i(i(x)),f(i(f(i(y),f(y,2))),2)) =
fliu),fCu,f(x,i(£(v,i(v))))))).

1484 [para_from,1410,355] (£(£f(i(x),f(x,f(£(1(y),f(y,2)),u))),i(£(£(i(v),
t(v,u)),i(f(i(f(i(w),f(w,v6))),v6))))) = z).

1489,1488 [para_from,1410,220,demod,221] (£f(i(i(v)),2(i(£(i(w),f(w,v6))),v6)) = v).

1493,1492 [para_from,1410,210] (£(i(x),f(x,i(f(£(i(£(i(y),£(y,2))),2),i(f(u,v)})))) = f(u,v)).

1541 [back_demod, 1436,demod,1489] (f(i(u),f(u,f(x,1(f(v,i(v)))))) = x).

1545,1544 [back_demod,1434,demod,1493] (f(u,f(£f(i(u),v),i(f(w,i(w))))) = v).

1591 [para_from,1541,1301] (f(x,i(f(y,1i(y)))) = £(x,i(£(z,i(=2))))).

1675 [para_into,1544,5] (f(x,f(i(£{f(1(£(i(y),(i(i(i(x)}),2))),u),i(f(y,u)))),
1(f(v,1(v))))) = 1(£(£(i(£(i(w),2)),v6),i(f(w,v6))))).

1802 {para_from,1488,210] (f(i(x),f(x,i(£(£{(1(£f(1(y),2(y,2))),f(i(f(1(u),

32

f(u,v))),v)),i(w))))) = £(i(i(w)),2)).

1857 [para_from,1591,1488] (f(i(i(x)),f(i(f(i(y),f(y,i(£(2,1(2)))))),1(£(u,i(u))))) = x).

1884 [para_from,1591,115,demod,116] (i(f(z,i(z))) = i(£f(v,i(v)))).

1948 [para_from, 1884,1488,demod, 1489] (f(x,i(x)) = f£(u,i(u))).

1969 [para_from,1884,99] (£(i(f(x,i(x))),f(£f(y,i(y)),2)) = £(i(u),f(u,2z))).

2010 [para_from,1948,1544] (f(x,f(y,i(y))) = i(i(x))).

2107 [para_into,2010,99] (f(i(x),f(x,i(y))) = i(i(i(y)))).

2116 [para_from,2010,299] (i(£(i(i(i(£(i(x),f(x,£(y,2)))))),i(£(i(u),f(u,i(y)))))) = 2).

2131 [para_from,2010,210] (£(i(x),f(x,i(£(1i(i(i(£(i(y),£(y,2))))),i(£(u,£(v,i(v)))))))) = £(u,z)

2368 [para_into,2107,299,demod,300] (f(i(x),f(x,y)) = i(i(y))).

2373 [para_into,2368,1884] (f(i(f(x,i(x))),f(£f(y,i(y)),2)) = i(i(2))).

2381,2380 [para_into,2368,2368] (i(i(£(x,y))) = £(i(i(x)),i(i(y)))).

2401 [para_into,2368,158,demod,2381,2381,2381] (f(i(x),f(x,f(i(y),f(y,f(z,u))))) =
F(CE(A3E(2)))), £ (A A (A (v))), £(i(d(v)),1(i(u)))))).

2438 [back_demod,2131,demod,2381,2381] (£(i(x),f(x,i(f(1(£(i(1(i(y))),£(i(i(y)),
i(i(2))))),i(f(u,2(v,i(v)))))))) = £(u,z)).

2446 [back_demod,2116,demod,2381,2381,2381] (i(£(i(£(i(i(i(x))),f(i(i(x)),f(i(i(y)),
1(i(2)))))),1(f(i(n),£(u,i(y)))))) = =2).

2587 [back_demod,224,demod,2381] (£(i(x),f(x,i(£(y,i(f(z,i(£(£(i(£(i(w),f(£(i(1(i(=2))),
ii(v))),y))) W), i(£(u,w)))))))))) = v).

2598 [back_demod,81,demod,2381,2381,2381,2381] (i (f(i(£(£(i (f(1i(x),f (1 (£(L(1(i(y))),
FEEEEE))LEEEEW))) (1 E (), 1(1(v))))D)), W) ,ve),i(£(x,v6)))),
1(£(y,i(£ £ EE(vT), W) ,v8),i(£(vT7,v8)))))))) = £(z,v)).

2604 [back_demod,50,demod,2381,2381,2381] (i(f(x,i(f(y,i(£(£(i(£(i(2),f(£(1(i(i(y))),
F(i(1(iCu))),£(i(i(u)),1(1(v))))),x))),w),i(£(z,w)))))))) = v).

2606 [back_demod,48,demod,2381,2381,2381] (i(f(Ai(£(£(i(£(i(x), (1 (£(1(1(i(yN)),
£(i(1(i(2))),£(i(i(2)),1(1(u))N)),v))),w),i(f(x,w)))),i(f(y,
1(£(£(i(£(i(v6),v)),vT),i(£(v6,v7)))))))) = u).

2617 [back_demod,12,demod, 23811 (f(x,i(£(i(£(£(L(£(i(y),f(i(£(1(i(i(=))),i(i(w)))),
v))),w),i(f(y,w)))),i(£(z,i(£(£(i(£(i(v6),v)),v7),i(£(v6,v7))))))))) =
1(£(£(i(£(1(v8),£(i(i(x)),u))),v9),i(£(v8,v9))))).

2621 [para_from,2368,1488] (i(i(x)) = £(i(y),f(y,x))).

2633 [para_from,2368,210] (£(i(x),f(x,i(£f(i(i(y)),i(f(z,f(£(i(w),f(u,v)),y))))))) = £(z,v)).

2647 [para_from,2368,1301] (£(i(i(x)),i(f(y,i(y)))) = x).

2706 [para_from,2368,160] (f(i(x),f(x,£f(i(i(y)),i(i(2))))) = £(i(u),f(u,f(i(v),£(v,1(y,2)))))).

2709 [para_from,2368,29] (i(£(£(i(£(i(x),1i(i(y)))),2),i(f(x,2)))) = y).

2802,2801 [para_from,2621,1488] (£(i(f(i(x),f(x,y))),f(i(£f(i(2),#(z,u))),u)) = i(y)).

2866, 2865 [back_demod, 1802,demod,2802] (f(i(x),f(x,i(f(i(z),1(w))))) = £(i(i(w)),2)).

2873 [back_demod,2633,demod,2866,2381,2381,2381,2381] (£(£(i(i(z)),2(£(i(i(i(u))),
£(1(iCu)),i(i(v)))),i(i(yIN),i(y)) = £(z,v)).

2879 [back_demod,2438,demod,2866,2381,2381] (f(£(i(i(u)),f(i(i(v)),i(i(i(v))))),
fEE(Y))), £(i(i(y)),1(i(=2))))) = £(u,2)).

2884,2883 [para_into,2647,2621] (£(i(£(i(x),f(x,y))),i(£(z,1i(2)))) = i(y)).

2921,2920 [back_demod, 1857 ,demod,2884,2381] (£(i(i(x)),f(i(i(z)),i(i(i(=2))))) = x).

2929,2928 [back_demod,2879,demod,2921] (f(x,£(1(i(i(z))),£(i(i(=)),i(i(u))))) = £(x,u)).

2938,2937 [back_demod,2606,demod,2929] (i(£f(i(f(£(i(£(i(x),e(i(£(i(i(i(y))),u)),v))),w),
1(£(,w)))),i(£(y, i(£(£(1(£(i(v6),v)),v7),i(£(v6,v7)))))))) = u).

2940,2939 [back_demod,2604,demod,2929] (i(f(x,i(f(y,i(f(£(i(£(i(2),f(£(i(i(i(y))),
v),x))),w),i(£(z,w)))))))) = v).

2944,2943 [back_demod,2598,demod,2929,2938] (f(i(i(i(i(z)))),v) = f(z,v)).

2978,2977 [back_demod,2401,demod,2929,2944] (f(i(x),f(x,f(i(y),f(y,f(z,u))))) = £(z,u)).

2985,2984 [back_demod,2617,demod,2938] (i(£(£(i(£(i(v8),f(i(i(x)),u))),v9),i(£(v8,v9)))) =
f(x,i(i(u)))).

2987,2986 [back_demod,2587,demod,2940] (f(i(x),f(x,i(i(v}))) = v).

Bon

33

3017,3016 [back_demod,2706,demod,2978] (£(i(x),f(x,£(i(i(y)),1i(i(2))))) = £(y,=)).
3114,3113 [back_demod,1675,demod,2985,1545] (i(f(f(i(£(i(w),2)),v6),i(f(w,v6)))) = i(i(z))).
3204 [back_demod,2873,demod,2987] (£(£f(i(i(x)),f(z,i(i(u)))),i(n)) = £(x,2)).

3266 [back_demod,2446,demod,3017] (i(£(i(£(y,z)),i(£(i(n),£(u,i(y)))))) = 2).
3344,3343 [back_demod,2709,demod,3114] (i(i(i(i(y)))) = y).

3706,3705 [para_into,3343,26211 (i(£(i(x),f(x,i(y)))) = y).

3711 [back_demod,3266,demod,3706] (i(f(i(f(x,y)),x)) = y).

3752 [para_from,3343,1591] (f(x,i(£(i(i(i(y))),y))) = £(x,i(£(z,i(2))))).

3759 [para_into,3711,1544] (i(£(i(x),y)) = £(£(i(y),x),i(#(z,i(2))))).

3773,3772 [para_into,3711,2010,demod,2381,2381,2381,2381,3344,3344,3344] (£(£(x,i(x)),y) = y).
3814 [back_demod,2373,demod,3773] (£(i(f(x,i(x))),z) = i(i(2))).

3825 [back_demod,1969,demod,3773] (£f(i(£(x,i(x))),z) = £(i(u),f(u,z))).

3896,3895 [para_into,3772,1884,demod,3773] (£(i(£(y,i(y))),2) = z).

3900,3899 [para_into,3772,1544,demod,3896] (f£(x,i(£(z,i(2)))) = x).

3914,3913 [back_demod,3825,demod,3896] (£(i(z),f(z,y)) = y).

3920,3919 [back_demod,3814,demod,3896] (i(i(y)) = y).

3935,3934 [back_demod,3759,demod,3900] (i(£(i(x),y)) = £(i(y),x)).

3937,3936 [back_demod,3752,demod,3920,3935,3900] (f(x,f(i(y),y)) = x).

4029 [back_demod,3204,demod,3920,3920] (£f(f(x,f(y,z)),i(z)) = £(x,y)).

4042 [back_demod, 1484 ,demod,3914,3914,3914,3914,3935,3937] (f(f(z,u),i(u)) = 2).
4090 [para_into,4029,4042,demod,3920] (£(£(x,y),z) = 1(x,1(y,2))).

4092 [binary,4090,4]

—————————————— statistics ——--—=-mmmmm
clauses input 3
clauses given 57
clauses generated 3417
demod & eval rewrites 9814
tautologies deleted 0
clauses forward subsumed 3327
(subsumed by sos) 503
clauses kept 2507
new demodulators 1584
empty clauses 1
clauses back demodulated 2414
clauses back subsumed 61
sos size 15
Kbytes malloced 4470

——————————— times (seconds) -----------
Tun time 89.93 (run time O hr, 1 min, 29 sec)

system time 3.46
input time 0.01
clausify time 0.00
process input 0.01
para_into time 0.69
para_from time 0.83
pre_process time 71.63
demod time 7.86
weigh cl time 0.00
for_sub time 1.73
renumber time 0.84

34

keep cl time 9.14
print_cl time 0.00
conflict time 0.32
post_process time 16.45
back demod time 14.77

back_sub time 1.43
lex_rpo time 2.54
The job finished Fri Jun 5 07:38:34 1992

6.5 Theorem EQ-5: On Wajsberg Algebra

————— OTTER 2.2, July 1991 -----
The job began on altair.mcs.anl.gov, Thu Jun 4 17:31:43 1992
The command was "otter22".

set(knuth_bendix).
set(index_for_back_demod) .
set(process_input).
assign(max_mem, 16000).
set(control_memory).
set(lex_xpo).
clear(print_kept).
clear(print_new_demod).
clear(print_back_demod).

lex([a,b,T,i(x,x),n(x)]).
lrpo_lr_status([i(x,x)]).

list(usable).
00 (x =x).
end_of_list.

list(sos).

[0 G(T,x) = x).

00 (i(i¢x,y),i(i(y,2),i(x,2))) = T).

0 (iGix,y),y) = iGi(y,x),x)).

(1 (i(i(n(x),n(y)),i(y,x)) = T).

[1 (i(i(i(a,b),i(b,a)),i(b,a)) = T).

end_of_list.

OTTER sets dynamic_demod_all, because knuth_bendix is set.
OTTER clears para_into_right, because knuth_bendix is set.
OTTER sets back_demod, because knuth_bendix is set.

OTTER sets para_from, because knuth_bendix is set.

OTTER sets para_into, because knuth_bendix is set.

OTTER clears para_from_right, because knuth_bendix is set.
OTTER sets dynamic_demod, because back_demod is set.

OTTER sets order_eq, because dynamic_demod is set.

o O O OO

———————————— > process usable:
#x KEPT: 1 [] (x = x).
++++ cannot make into demodulator: 1 [J (x = x).

———————————— > process sos:

*x KEPT: 2 [3 (i(T,x) = x).

*x KEPT: 4 [] (i(i(x,y),i(i(y,2),i(x,2))) = T).

** KEPT: 6 [] (i(i(x,y),y) = i(i(y,x),x)).

++++ cannot make into demodulator: 6 [] (i(i(x,y),y) = i(i(y,x),x)).
** KEPT: 7 [1 (i(i(n(x),n(y)),i(y,x)) = T).

** KEPT: 9 [1 (i(i(i(a,b),i(b,a)),i(b,a)) != T).

------------ > done processing input.

Resetting weight limit to 15.
----> UNIT CONFLICT at 2248.86 sec ----> 11462 [binary,11460,11350] .
Level of proof is 37, length is 86.

3,2 [(i(T,x) = x).

4 [J (i(i(x,y),i(i(y,2),i(x,2))) = T).

6 [J (i(i(x,y),y) = i(i(y,x),x)).

7 [0 G(n(x),n(y)),i(y,x)) = T).

9 [1 (i(i(i(a,b),i(b,a)),i(b,a)) = T).

10 [para_into,6,6] (i(i(i(x,y),y),x) = i(i(x,i(y,x)),i(y,x))).

12 [para_into,6,2] (i(i(x,T),T) = i(x,x)).

21 [para_into,7,2] (i(i(n(x),n(T)),x) = T).

23 [para_from,7,6,demod,3] (i(i(i(x,y),i(n(y),n(x))),i(n(y),n(x))) = i(x,y)).
25 [para_into,21,6] (i(i(n(T),n(n(T))),n(n(T))) = T).

31 [para_from,21,6,demod,3] (i(i(x,i(n(x),n(T))),i(n(x),n(T))) = x).

35 [para_from,25,6,demod,3] (i(i(n(n(T)),i(n(T),n(n(T)))),i(n(T),n(n(T)))) = n(n(T))).
49 [para_into,4,2,demod,3] (i(x,i(i(x,y),y)) = T).

63 [para_into,4,2] (i(i(x,T),i(y,i(x,y))) = T).

92,91 [para_into,49,2,demod,3] (i(x,x) = T).

98,97 [para_into,49,12,demod,92] (i(x,T) = T).

102,101 [back_demod,63,demod,98,371 (i(y,i(x,y)) = T).

103 [back_demod,35,demod, 102,3] (i(n(T),n(n(T))) = n(n(T))).

106,105 [back_demod,10,demod,102,3] (i(i(i(x,y),y),x) = i(y,x)).

111 [para_from,101,4,demod,3] (i(i(x,y),i(x,i(z,y))) = T).

113 [para_from,101,6,demod,3] (i(i(i(x,y),y),y) = i(x,y)).

115 [para_from,101,4,demod,3] (i(i(i(x,y),2),i(y,2)) = T).

151 [para_into,111,49,demod,3] (i(x,i(y,i(i(x,z),2))) = T).

194,193 [para_into,115,21,demod,3} (i(n(T),x) = T).

195 [para_into,115,7,demod,3] (i(n(x),i(x,y)) = T).

210,209 [back_demod,103,demod,194] (n(n(T)) = T).

219 [para_from,193,4,demod,3] (i(i(x,n(T)),i(x,y)) = T).

222,221 [para_from,193,6,demod,3] (i(i(x,n(T)),n(T)) = x).

229 [para_from,195,4,demod,3] (i(i(x,n(y)),i(x,i(y,2z))) = T).

234,233 [para_from,195,6,demod,3] (i(i(i(x,y),n(x)),n(x)) = i(x,y)).

237 [para_from,221,7,demod,210,3] (i(n(i(x,n(T))),x) = T).

248,247 [para_from,237,7,demod,3] (i(x,i(n(x),n(T))) = T).

258,257 [back_demod,31,demod,248,3] (i(n(x),n(T)) = x).

259 [para_from,257,221] (i(x,n(T)) = n(x)).
264 [para_from,257,115] (i(i(i(x,n(y)),n(T)),y) =
272 [para_from,257,4,demod,194,3] (i{x,i(n(x),y))
275,274 [para_into,259,257] (n(n(x)) = x).
276 [para_into,259,221) (n(i(x,n(T))) = x).

]

T).
=T).

36

278 [para_from,259,113,demod,222] (n(x) = i(x,n(T))).

288,287 [para_from,274,7] (i(i(n(x),y),i(n(y),x)) = T).

289 [para_from,274,7] (i(i(x,n(y)),i(y,n(x))) = T.

291 [para_from,278,7] (i(i(n(x),i(y,n(T))),i(y,x)) = T).

322,321 [para_from,219,6,demod,3] (i(i(i(x,y),i(x,n(T))),i(x,n(T))) = i(x,y)).

377 [para_into,151,6] (i(x,i(i(i(i(x,y),y),2),2)) = T).

417 [para_into,264,269] (i(a(i(x,n(y))),y) = T).

429 [para_into,417,274] (i(n(i(x,y)),n(y)) = T).

441 [para_into,429,6] (i(n(i(i(x,y),y)),n(x)) =T).

474,473 [para_into,287,274] (i(i(x,y),i(n(y),n(x))) = T).

479 [para_into,287,272,demod,275,3] (i(n(i(x,y)),x) = T).

491 [back_demod,23,demod,474,3] (i(n(y),n(x)) = i(x,y)).

496 [para_from,287,6,demod,3,288,3] (i(n(x),y) = i(n(y),x)).

500,499 [para_into,479,278] (i(i(i(x,y),n(T)),x) = T).

509 [para_into,491,278] (i(i(x,n(T)),n(y)) = i(y,x)).

511 [para_into,491,274] (i(x,n(y)) = i(y,n(x))).

513 [para_into,491,276] (i(n(x),y) = i(i(y,n(T)),x)).

520 [para_from,491,4] (i(i(n(x),y),i(i(y,n(2)),i(z,x))) = T).

530 [para_from,491,113,demod,234] (i(x,y) = i(n(y),n(x))).

533 [para_from,491,49] (i(n(x),i(i(y,x),n(y))) = T).

536,535 [para_from,491,6] (i(i(n(x),n(y)),n(y)) = i(i(x,y),n(x))).

540 [para_into,496,276] (i(x,y) = i(n(y),i(x,n(T)))).

565 [para_from,496,6] (i(i(n(x),y),x) = i(i(x,n(y)),n(y))).

569 [para_into,511,276] (i(x,y) = i(iCy,n(T)),n(x))).

598 [para_from,511,6] (i(i(x,n(y)),n(x)) = i(i(n(x),y),y)).

624,623 [para_into,530,105] (i(n(y),n(i(i(y,x),x))) = i(x,y)).

627 [para_into,530,6] (i(n(x),n(i(y,x))) = i(i(x,y),y)).

647 [para_from,530,4]1 (i(i(x,y),i(i(n(z),n(y)),i(x,2))) = T).

723 [para_into,289,278] (i(i(x,i(y,n(T))),i(y,n(x))) = T).

726,725 [para_into,289,530] (i(n(i(x,n(y))),n(i(y,n(x)))) =

771 [para_from,441,6,demod,3,624] (i(i(y,x),n(i(i(x,y),y)))

808 [para_into,509,276] (i(i(x,n(T)),y) = i(i(y,n(T)),x)).

1005 [para_from,533,4,demod,3] (L(i(iGilx,y),n(x)),2),i(n(y),2)) = T).

1464,1463 [para_into,229,569,demod,258] (i(i(x,n(y)),i(y,i(x,2))) = T).

1470,1469 [para_into,229,513,demod,258] (i(i(x,y),i(n(y),i(x,2))) = T).

2855 [para_into,9,530] (i(i(i(n(bv),n(a)),i(v,a)),i(b,a)) = T).

7827,7826 [para_from,725,627,demod,275,726,3] (n(i(y,n(x))) = i(i(x,n(y)),n(T))).

8405,8404 [para_into,771,723,demod,1464,3,3,7827] (n(ily,i(x,n(T)))) = i(i(y,n(x)),n(T))).

8431,8430 [para_into,771,291,demod,1470,3,8405,3] (n(i(x,y)) = i(i(n(y),n(x)),n(T))).

10857 [para_from,565,113,demod,106] (i(i(n(y),x),x) = i(i(n(x),y),x)).

10860 [para_from,10857,233,demod,8431,275,8431,275,322] (i(i(n(x),y),x) = i(i(n(y),x),x)).

10862 [para_into,10860,274,demod,538] (i(i(x,y),n(x)) = i(i(y,x),n(y))).

10887 [para_into,10862,496,demod,275] (i(i(n(x),y),y) = i(i(x,n(y)),n(x))).

10936 [para_from,10887,598,demod,275,8431,276,275,8431,275,275,500,3]
(i(i(i(x,y),n(x)),i(i(y,x),n(T))) = y).

11090 [para_into,520,540,demod,258] (i(i(n(x),y),i(i(x,n(2)),i(z,y))) = T).

11114 [para_into,1005,647,demod,275,3] (i(n(x),i(i(n(y),2),i(i(z,x),y))) = T).

11184 [para_into,11090,808,demod,8431,275,3,258,258] (i(i(x,y),i(i(z,x),i(z,y))) = T).

11202 [para_from,11184,377,demod,3] (i(x,i(i(y,i(x,2)),i(y,2))) = T).

11213,11212 [para_into,11202,11202,demod,3] (i(i(x,i(y,2)),i(y,i(x,2))) = T).

11285 [para_from,11212,6,demod,3,11213,3] (i(x,i(y,2)) = i(y,i(x,2))).

11350 [para_from,11285,2855] (i(b,i(i(i(n(b),n(a)),i(b,a)),a)) = T).

11460 [para_into,11114,10936,demod,275,8431,275,8431,3,222]
(i(x,1(i(i(n(x),n(y)),il(x,y)),y)) = T).

T).
= n(x)).

37

11462 [binary,11460,11350]

—————————————— statistics -------—=-——-
clauses input 6
clauses given 768
clauses generated 1012625

demod & eval rewrites 2793093
clauses wt,lit,sk delete 249150

tautologies deleted 0
clauses forward subsumed 761142

(subsumed by sos) 1097
clauses kept 5897
new demodulators 5564
empty clauses 1
clauses back demodulated 3558
clauses back subsumed i8
sos size 1656
Kbytes malloced 6801

——————————— times (seconds) -----------

run time 2249.42 (run time O hr, 37 min, 29 sec)
system time 344.04
input time 0.01
clausify time 0.00
process input 0.01
para_into time 122.66
para_from time 115.25
pre_process time 1927.16
demod time 1567.96
weigh cl time 37.51
for_sub time 56.03
renumber time 69.31
keep cl time 9.72
print_cl time 0.00
conflict time 1.43

post_process time 65.32
back demod time 53.96

back_sub time 10.91
lex_rpo time 76.22
The job finished Thu Jun 4 18:15:07 1992

7 Conclusion

Years of experimentation with theorem-proving systems [4, 9, 3, 5, 6] have enabled us to
accumulate a wide variety of variations and parameters to control our basic theorem-proving
algorithm. The typical user need know about only a few of them. This contest forced us to
consider how we would set them if there were to be a parameterless version of Ol { ER.

Most of the above settings just represent common sense. The value of max_mem did have
to be carefully chosen so that we could get proofs of all of these theorems with the same

38

value.

We thank Ross Overbeek for proposing this exercise, and we hope that others found it

as useful as we did.

References

[1] E. Lusk and W. McCune. Experiments with Roo, a parallel automated deduction

!

svstem. In B. Fronhofer and (5. Wrightson. editors, Parallelization in Inference Sys-
tems, Leeture Notes i Artificial Intelligenec, Vol. 590, pages 139 162, New York, 1992,
Springer-Verlag.

E. Lusk. W. McCune, and J. Slaney. Roo--a parallel theorem prover. Tech. Memao MC'S-
TM-149, Mathematics and Computer Science Division, Argonne National Laboratory.
Aregoune, 1., 1991.

.. Lusk and R. Overbeek. The automated reasoning system [TP. Tech. Report ANL-
S4/27. Argonne National Laboratory. Argonne, Ill.. April 1984,

J. McCharen. R. Overbeek, and L. Wos. Problems and experiments for and with auto-
mated theorem-proving programs. IEEE Transactions on Computers, C-25(R):773--T82,
August 1976.

W. McCune. OTTER 2.0 Users Guide. Tech. Report ANL-90/9, Argonne National
Laboratory. Argonne. Ill., March 1990.

W. McCune. What's New in OTTER 2.2. Tech. Memo ANL/MCS-TM-153, Mathematics
and Computer Science Division, Argonne National Laboratory, Argonne, Ill.. July 1991,

W. McCune and L. Wos. The absence and the presence of fixed point combinators.
Theorctical Computer Sctence. 87:221-228, 1991.

W. McCune and L. Wos. Experiments in automated deduciion with condensed de-
tachment. In D. Kapur, editor. Proccedings of the [1th International Conference on
Automated Deduction. Lecture Notes in Artificial Intelligence, Vol. 607, pages 209 223.
New York. Ju