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SUSTAINED RESONANCE IN VERY SLOWLY VARYING 
OSCILLATORY HAMILTONIAN SYSTEMS*

D. L. Bosleyt and J. Kevorkianf

Abstract. By formulating slowly varying oscillatory systems into Hamiltonian 

standard form, canonical averaging techniques can be performed automatically by 

symbolic manipulation programs to very high orders. For the very slow variation 

considered, these high orders are required to find uniformly valid solutions. When 

resonance is exhibited in these systems, the original system of 2N first order 

differential equations is reduced to two differential equations which embody the 

resonance behavior.

Sustained resonance, also referred to as phase locking, occurs when the 

leading order frequency of the reduced system oscillates about zero for long times. 

The general solution procedure is illustrated, and a highly accurate asymptotic solution 

is found explicitly for a frequently occurring class of problems, which results when only 

a single harmonic of the resonance is present. This solution was not possible for the 

same class of problems with the usual slow time. Two test cases are considered to 

numerically verify all results.

Key words, adiabatic invariants, averaging, Hamiltonian systems, near-identity 
transformations, phase-locking, sustained resonance.

AMS(MOS) subject classification. 34E15

Abbreviated title: SUSTAINED RESONANCE IN HAMILTONIAN SYSTEMS

* This research was supported by the Department of Energy under grant 
DE-FG06-86ER25019.

t Department of Applied Mathematics, FS-20, University of Washington, 
Seattle, Washington 98195.



1. Introduction. Slowly varying oscillatory systems occur frequently in 

physical applications, in both natural and man-made systems. The following are some 

examples. Planetary systems have an obvious oscillatory behavior which may be 

slowly changing due to various long-term effects such as precession, tidal dissipation, 

or variable mass (see Kevorkian [17]). The pancreatic beta cell is an example of a 

biological system exhibiting this behavior, a rapid alternation of the cellular membrane 

potential causes the release of insulin in response to slowly changing calcium 

concentration (see Pemarowski, Miura, and Kevorkian [22]). Spinning re-entry 

spacecraft are affected by the slowly increasing atmospheric density (see Kevorkian 

[13]). Many problems involving acoustic or electromagnetic waves have slowly 

varying features, such as the free-electron laser, designed so that relativistic 

electrons are passed through a slowly varying magnetic field to stimulate the high 

energy, low frequency emission of radiation (see Bosley and Kevorkian [4] and Li and 

Kevorkian [21]).

Perturbation techniques for oscillatory systems are discussed in Kevorkian and 

Cole [15], and more recently in Sanders and Verhulst [23]. Slowly varying oscillatory 

systems are discussed by Kevorkian in [17], who summarizes and extends his 

previous work in [12], [13], [14], and [16] and with Lewin [20], on averaging 

techniques for systems with slowly varying parameters. In particular the phenomenon 

of resonance is discussed, and uniformly valid expansions are found for a class of 

problems exhibiting transient resonance for linear and nonlinear oscillatory systems. 

Li and Kevorkian, in [18] and [21], explore sustained resonance, where the resonance 

persists for long times, with an emphasis on the application to free-electron lasers. 

Kath in [10] and [11] discusses a model for re-entry roll resonance proposed by 

Kevorkian in [13] and derives conditions necessary for sustained resonance to occur. 

Haberman in [9] also derives conditions for capture into sustained resonance based 

on energy bounds, and with Bourland in [5] extends and simplifies the Kuzmak-Luke



procedure for slowly varying second order nonlinear oscillators with weakly nonlinear 

damping. In [6], Bourland and Haberman discuss the behavior of a slowly varying 

oscillator in a double potential well for motions near the separatrix and derive a 

solution in terms of a sequence of Melnikov functions to describe the transition region.

In all of these papers, the rate of the slow variation is considered to be 

equivalent to the strength of the weak damping or weakly nonlinear coupling. More 

precisely, if the ratio of the characteristic time associated with the oscillatory behavior 

to the characteristic time associated with the slow variation is specified as e, a small 

parameter, we can refer to the slow time t = et. The strength of the damping or 

nonlinear effects are then usually considered 0(e). However, in many problems the 

parameters vary more slowly relative to the order of the coupling. The case of the 

much slower time scale, t* = e2 t, which we will call a very slow time scale, where the 

strength of the coupling is still 0(£), is discussed qualitatively by Kevorkian as a 

generalization of the problems considered in [16] and [17] and is examined for a 

particular linear example in [1] by Ablowitz, Funk, and Newell.

However, many details remain unaddressed concerning both transient and 

sustained resonance for this case of very slow variation, as there are significant 

difficulties relative to the usual slow variation of parameters. The principal difficulty is 

that higher order expansions are required to find uniformly valid solutions for the very 

long times considered (t = 0(l/e2)) due to the cumulative effect of averaged terms. 

Also, in the case of transient resonance (which is discussed in [2] and [3]) the 0(1) 

reduced problem which embodies the resonance behavior has no analytical solution in 

the resonance layer in general (as mentioned in [1], [16], and [17]).

Numerical integration of rapidly oscillating functions over long times is very 

difficult. For smaller values of e, numerical integration not only yields inaccurate 

results, but requires an impractical amount of time. On the other hand, due to the very 

large number of terms, high order asymptotic expansions often cannot be calculated by
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hand. The solution technique presented here relies on the use of symbolic 

manipulation programs, which not only keep track of these terms but can be •

programmed to automatically execute a significant portion of the solution procedure.

The final solution, while still containing a large number of terms, can nevertheless be

easily evaluated with the symbolic manipulator's automatic generation of FORTRAN •

code directly from the derived expressions.

In this paper we examine the Hamiltonian system of 2N differential equations

dt dpn COniP i’ t*) + e gniPi, <7p t*\£)

dpn _ dh 
dt dqn e fn(Pb Qb

n = 1, 2,..., N

(1.1a)

(1.1b)

where t* = e2 t is the slow time scale, e is a small parameter, 0 < e « 1, and the 

functions /„ and gn are restricted to be 2k periodic in the This system is said to be 

in standard form, which assumes the transformation of the leading order system to 

action-angle variables. Although we do not consider the details here, our results 

generalize in a straightforward manner to non-Hamiltonian systems as discussed in

[17].

Before we discuss the solution techniques for equations (1.1) we note that 

putting slowly varying oscillatory systems into standard form can be accomplished in 

several ways. Most often, asymptotic and Taylor series expansions in small 

parameters can be used, as can Fourier series expansions to make explicit the 

periodic nature of the functions involved. An action-angle transformation is commonly 

used to remove the dependence on oscillatory variables from the 0(1) Hamiltonian. 

In fact, many weakly dissipative systems can be written in standard form, by 

modifying the slow time dependence in the variational formulation (see Vujanovic and 

Jones [24]). As will be seen, finding a way to put the problem into standard form
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frequently has many advantages over solving the system in its original form. The

• methods of solution for (1.1) are relatively straightforward, permitting automation of 

the procedures in many cases, and solutions can be found accurately to high orders.

In section 2, we examine averaging techniques which eliminate the oscillatory 

behavior and the <7,- dependence from the Hamiltonian and from the system of 

equations. In 2.1, we look at the averaging procedure for a general Hamiltonian 

system in the absence of any resonances. This procedure results in uniformly valid 

expansions for the solution of all the and <7,- for times t = 0(l/e2). Section 2.2 

discusses the modifications necessary to this procedure when a resonance is present, 

and shows that the original problem of a system of 2N first order differential equations 

reduces to a system of two first order equations. The role of symbolic manipulation is 

indicated throughout.

In section 3, we examine the reduced problem for the case of sustained 

resonance where the leading order frequency oscillates about zero for long times. In 

3.1, we define the procedure which generates the asymptotic solution for the general 

reduced problem. The procedure involves several transformations: removing the

• resonance, restoring the equations to standard form through an action-angle 

transformation, then averaging the system using a near-identity transformation. An 

additional adiabatic invariant is found as a result and the system is reduced to 

quadrature. In 3.2, we examine a model for a frequently occurring class of reduced 

problems. This class includes, for example, the reduced problems which result from 

the free-electron laser and the spin-orbital coupling of a planetary resonance. The 

details of these particular applications will be reported elsewhere. An explicit solution 

is discovered via the method of section 3.1. This solution does not exist for the same 

class of problems with the faster slow time t=£f, it demonstrates the strength and 

practicality of the techniques used here. In 3.3 we consider two test cases to 

numerically verify all results.
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2. Averaging for very slowly varying oscillatory Hamiltonian systems.

2.1 Solution for nonresonant Hamiltonian systems. In the absence of any 

resonances for the system, equations (1.1) permit a straightforward asymptotic 

solution. This is achieved by a canonical near-identity averaging transformation which 

eliminates the qi from the Hamiltonian to any order desired while preserving the 

Hamiltonian form. This procedure is discussed in detail in section 4 of Kevorkian [17] 

for the case of slow variations depending on t = et. Therefore, we only summarize 

the results for the case of very slow variations depending on t* = e2 t. The details 

are given in Bosley [2]. Consider a general Hamiltonian of the form

h (Pb Qb = hoiPb **) + £ [tL\(Pb t*) + th(Pb Qb '*) ]
(2.1)

+ £2 [h2(Pb '*) + fo(Pb 4b '*) 1 + 0(£3)

where the averaged parts, tj, have been separated from the oscillatory parts, hj, of 

the Hamiltonian, and the oscillatory parts have zero average over the Qi.

^ lij(Pb 4b **) ^42 ’'' ^4n =°

0 0 o (2.2)

We define a near-identity averaging transformation from the old variables (/?,,<?,) to 

a set of new variables (Pi,Qi) to eliminate the from the 0(e) and 0(e2) parts of 

the Hamiltonian. This is achieved by the use of a generating function F depending on 

the new momenta, P,, the old coordinates, <?,, and the slow time, t*

N
F (Pi, qit t*) = £ Pi qi + e F^P,, t*) + e2 F2(Pi, q^ t*)

i = i (2.3)

where F{ and F2 are to be judiciously chosen later (for details on canonical

transformations, see Goldstein [8] or Landau and Lifshitz [19]). The transformation

resulting from the generating function (2.3) is given by



.5Fj
d<7»

Pn = (^i. '*) + e2 TT4- (^«. <7i. ^*)(tfj
^?n (2.4a)

Gn <7n + €
dF{
*Pn

(Pi, Qi, t*) + e2 (P i, Qi, t*)
(2.4b)

These 2N mixed algebraic relations can be solved asymptotically for the old variables 

in terms of the new, pn - pn(P h Qt, t*) and qn = qn(P,, t*). Note that if £ = 0 , 

we simply have the identity transformation, pn = Pn and qn = Qn. This explains the 

"near-identity" nature of the transformation. For £ * 0, we find the asymptotic 

expansions for pn and qn

Pn = Pn + e°-=-±(Pi,Qi,t*) 
°<1n

N
+ e2[d£±,P Q- t*)-Y -^-1-^11

1 " ^ ^ jL 2n. ZP 1d<1n “t d(fn^j Wj
(2.5a)

+ e3ry y (i a3F, 3f13f1 | aV, |
pf \ 2 dPj dPk dqndqk dPkdq} dPj )

V f ^P 2 ggj + a2F! dF2
yf \a<7«a<7> a^y a<7na<?; ap;

] + 0(£4)

(2.5b)

where all partial derivatives of the generating functions have the old coordinates, qt, 

replaced by the new coordinates, £),, and so are functions of only the new 

variables (P ,•, Q,-) and the slow time t*. The new Hamiltonian is then given in terms 

of the old Hamiltonian and the generating functions by the following expansion:
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H (Pi'Qi, t*;e) = H0(Ph t*) + eHl(Pi,Qi, t*)

+ e2H2(Pi,Qi, t*) + e3 H^PpQi, t*) + 0(e*)
(2.6a)

where

HoiPi, t*) = h0(Pi, t*)

H\(Pi,Qi, t*) = Ai(Pi, t*) + h\{PitQb t*)

N
+y ^sL(pi.i‘)^A-(p 1.01.1*) 

nTl dP* dq»

N

HtPt.Q,,*)- i2+h + X|f|f

(2.6b)

(2.6c)

+ y + y a^a^L _ y a^aF,
dPi d(ii a<?« a<?« dpi

N N
+ V V ( 1 32iin ap. afi aid 32F| 3F,
“ “ 2 dp,dp J itq, dq, dp, dq,dq] dPj

^ + y
frl dPi *<ii ap, a?,

(2.6d)

_ y a^a^ + y a^, af^ + y a^af^ _ y a^2aF,
^ a,,i ,“t aPi a<?i 3Pi dpi (2.6e)

N_ y y aA0 ( a^ aF2 + azF2 aFt + y y azA0 aFt aF2
— jt? aP< ZqMjdPj dq^qjdPj dPidPj

N N N N_ y y ((3Ai | ■> a2fi gji a2fi .a^i _ y y 3 af, af,
“ “ dp I dp, dq,dqJ dq, dP,dqJ dPj " dp,dqj dq, dP,

N N N N
+ l y y +1 y y 3 ^ 3Fi3Fi

2 ~T[ dpidpj dp i dp j dqi dqj 2 ^ ^ dq^qj dP i dP j
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+
y y Y 3io,i 33f, 3Fi , 32f, 3;f, af, 
t7l fTl aPi ^Sq,aqj3qtdPj dq,iq, hP:dqt dPk

N N N - , N N N ,_ y y y + iy y y 33a0 bf,
^ jTf ^ dPidPj d<fj *<lMk dPk 6 ^ ^ " dpfiPjdPk d<li dqj dqk

All expressions in (2.6) are evaluated at the new coordinates, (P i,Qi).

As mentioned, one of the significant difficulties with the very slow time 

variation is the need to calculate high order expansions to ensure uniformly valid 

solutions for very long times. As can be seen from (2.6e), the 0(e3) Hamiltonian 

has an extremely large number of terms; an algebraic computation and simplification 

for any specific case is sure to take weeks of calculation by hand, and more 

significantly has a relatively high potential for undetected errors. In fact, one of the 

difficulties with perturbation techniques in general is the proliferation of higher order 

terms due to the Taylor expansions of even relatively simple 0(1) problems.

This difficulty can be resolved by using a symbolic computation program (e.g., 

SMP, MACSYMA, or Mathematica) to keep track of the higher order terms in the 

expansions. In particular, averaging is especially suited to symbolic computation 

since the mathematical procedures involved (e.g., Taylor series expansions, collection 

of like powers of a small parameter, and integrations of sinusoidal terms) are simple 

and fairly mechanical, but algebraically tedious. As a result, all of the derivations in 

this paper have relied heavily on SMP.

At this point in the procedure we choose Fj and F2 so that Hl and H2 have 

all Qi dependencies removed. This is the part of the procedure referred to as 

averaging, as all oscillatory behavior is removed from the Hamiltonian (see [17] for

details). The new Hamiltonian then has the following form:

H(Pi,Qi,t*,e) = E0(Pn t*) + e Ih(Pi, t*) + e2 E2(pn'*)
(2.7)



The Qi dependence has been removed to 0(£2) and the canonical differential 

equations become

dQn _ BEo 
dt dP „

(Pi, t*) + e a/fi (Pi, t*) + e2 (Pi,t*) + 0(e3)
(2.8a)

dr
0(e4)

(2.8b)

Equations (2.8b) indicate that the Pn are constants to 0{e2) for times t <T , with 

T = <9(l/£2). This constancy for very long times is known as adiabatic invariance, 

and the Pn are called the N adiabatic invariants for this problem. By asymptotically 

inverting the near-identity transformations, we find formulae which give these 

constants as functions of the original variables

aF,Pn = An(Pi,<li, t*; e) = pn - e ^(pt*)
a<7n

(

V

N
(Pi, Qi, t*) + ^ 

; = i

aV, ap,
a<7»aFy a<7;

(2.9)

= constant + 0(£3)

where the constant value of the adiabatic invariants can be computed directly from the 

initial conditions. Equations (2.8a) can be solved by quadrature since the equations 

uncouple due to the constancy of the F,

Qn = i2j dt* dill
dP n

(Ai, t*) dt*
(2.10)

+
dH2
dPn

(Ait t*) dt* + 0(e3) (osc.) + 0(e2) (avg.)

These solutions can be substituted into the averaging transformations (2.5) to find 

pn(t) and Qn(t), the solutions for the original variables



(2.11a)

(Ai,Qi(t), t*)
dQn

+ 0(£3)

(2.11b)

+ 0(£3)

This procedure is exactly parallel to the derivation in [17] except for the t* = e2t 

instead of the t = et slow time dependence. The main difference is the explicit 

calculation of the 0(£3) terms to account for the very long times involved.

2.2 Reduction of Resonant Hamiltonian Systems. If a resonance occurs at 

any time in the system (1.1), the solution (2.11) becomes singular and is no longer 

valid. We now look at the case where a resonance is present and discuss the changes 

to the previous analysis necessary to account for this.

A resonance occurs in (1.1) when a critical combination of the 0(1)
R

frequencies, o(Pi,t*) = ^ r*) where the rn are integers, vanishes at
n = 1

some time. The singularities in the solution (2.11) arise due to the presence of a in 

the denominator of the near-identity transformation, which removes the <7,- dependence 

from the Hamiltonian. Therefore, when a resonance is present in (1.1) we first isolate 

the resonance into a single angle variable before eliminating the rest of the qr We 

define a time-independent canonical transformation from the (p,-, <7,) to new variables 

(Pb Qi) given by
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P\ = Pi

<72 = <72

<7i - <7i + + • • • +

Qn = <7a/

which isolates the resonance into a single variable, , allowing elimination of the 

rest of the qi from the Hamiltonian. The new Hamiltonian is simply the old 

Hamiltonian with the (Pi,qi) expressed in terms of the (Pi,qi). Because this 

transformation has isolated the resonance variable, this new Hamiltonian can be 

written in the form

h (p^ qit t*\ e) = h.Q(Pi, t*)

+ e [ Ai(Pi, t*) + huiPiiqx, t*) + hls(Pi, qh t*) ]
(Z. 1 J)

+ e2 [ &2(Pi> **) + $2c(P*» Qi’ ?*) + fosCPi, qi, t*) ] + 0(e3)

The underbar still represents the averaged part of the Hamiltonian, while the underhat 

indicates a zero average over the . The critical terms, indicated by a subscript c, 

contain all resonant behavior associated with ^ , while the remainder of the 

oscillatory part, indicated by a subscript s, contains all nonresonant terms.

We now proceed in the same way as for the nonresonant case, using near­

identity averaging transformations to eliminate the nonresonant portions of the 

Hamiltonian, hj3, transforming (p^qi) to (Pi,Qi). The transformation formulas 

are altered slightly since we no longer are eliminating all the C?, . We still use a 

generating function of the form (2.3) so the asymptotic expansions for the (p,-, q,) in 

terms of (Pi,Qi) can still be found by (2.5). Since the oscillatory pan of the

Pi - Pi - j^-Pi

rRPr - Pr ~ j^Pi
(2.12)

Pr+i - Pr+i

Pn = Pn
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Hamiltonian has been split into resonant and nonresonant terms, equations (2.6) are 

now given by

HoiPi, t*) = hoiPi, t*) (2.14a)

H^Pi'Qi,!*) = hiPi, t*) + hlciPiyQi, t*) + hls(Pt*)

^(Pi, t*)^iPitQi, t*) 
°Pn °qn

H2iPi,Qi, t*) k-2 + klc + kls + y
— ap, a<7t

(2.14b)

(2.14c)

+ y dh^dp^ + y (^ic aF!
ap, ^ ap,- ap, a<?,

_a|i£aF1 + v Y (i a2Ao aFtaFt 
a<7i a^! “i 2 ap. apy a^,- a<?y

and

H2(Pi,Qi, t*) = tL3 + h 3c + ^3,
V a^i aF2
~ dPi dqi

V - N
a^ic aF2 _ Y dhls dF2 Y ( dhlc

dP, £ dq; dP; £ dp;

Y af,i
— a<?,- a/5,-

dip d2F, dF, }
ap, dq; dqj dPj

(2.14d)

a^i,} dF2
dpi dq;

+ Y + V (^£ + ^25 )a^l - y ^2,^1- dhlcdF,
dpi dq; dp. dp. dq; ^ dq, dP; dq, dP,

_ y y a^o (d2F, dp2 + d2F2 dF, + y y a2h0 dF, dF2
“f “ ap, a?,a^y ap7 a^a^ apy ^ j— ap, ap; a^ a^y

y y + ?iii+ a^ d2F, dF,
tT? jTi dp> dpi dPi dq‘dqj Bpj

13



t y y f ^i, a2F, d2hls aF, aF,
dqi dPidqj dp^qj dqi dP j

y , 3*1, 3V, 3F, S2*!, 3F, dF,
“J a<7! aFja^, aF,- dpidql dq, aF,

•

, 1 y y ( 324i , 324„ , 32Ai, jSF, 3F,

2 ,Tt dPi^Pj dPifyj dp i dp j dq-, dqj

•

, l32AlcpF,\2 , 1 y y d2hlsdF,dF,
2 IdpJ 2 £ f-*x dq;dqj dP; dPj

•

, y y y a4o(i a3fi afi , a2/ri 32f< ^f,
“t ;T? tT[ dpi 2 dqldq]dqk dPj dqidqjdPjdqk dPk

y y v 32io 3f, 32f, 3f, ! i y y y a34o 3f, dF i dF i

•

“ jTf *4? d^i^Py a<?7 6 ^ tT[ dp i dp j dp k dq; dqj dqk
•

We again choose F, and F2 to eliminate all nonresonant terms from the Hamiltonian

to 0(e2). The new Hamiltonian is now of the form

H(PitQht*;e) = U0(Pt*) •

+ e [ifi(Fp t*) + Hlc(Pi,Ql, t*) ]

+ e2 +
(2.15a)

•

+ £3 [ **)+ th(pi’Qi> **) ] + 0(e*)

where

Uo(Pi, t*) = i)(F„ t*) (2.15b) •

Ei(Pi,t*) = Ai(Fp /*) (2.15c)

Hlc(PrQl,t*) = (2.15d) •

if2(^P = h2(Pn t*) + Z2(Pi, t*) (2.15e)
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H^Pi.Qi.n = *2,(',i.e1.<*) + z2c(pj,e1,I*) -
a<?i dp\ (2.15f) 

and
IhVi, <♦) = A3(Pi. <*) + Zi(Pi, (*) + |^- =0

3' (2.15g)

where Z2 and Z ^ are the averaged and resonant parts respectively of

Z2(P,-,(2i, t*)
N - N N
V + IV V a2Ao 9F! 3Fi

aPi a<7i zfrifri ^p^pj ^ ^

and where Z3 is the averaged part of

Z^Pi,Qi, t*)
1 d2t!ic Mu2 + y dhis dF:
2 dqx2 dPx dpi dqi

(2.16)

(2.17)

+ iy V ( d2kx | d2^lc | d2hls dF, dF,
2 /ft dp i dp j dp i dp j dpidpj a?, dqj

N N N+ iy y y a3A0 af, 3F, 3f,
6 “t “t *T! dPidpjdpk dqi dqj dqk

Notice that contains reference to an arbitrary averaged function Fj . The choice 

of E\ therefore is significant in two ways: in accounting for averaged terms of 

0(e3) which become 0(e) terms over long times (r* of 0(1)), and as a contribution 

to the resonant terms in the 0(e2) Hamiltonian.

Because 02> G3..... 0# are removed from the Hamiltonian to 0(e2), the 

associated conjugate momenta, F2, P3,..., are constants to 0(e2). In the case 

of resonance, these are the N-l adiabatic invariants which remain valid through the 

resonance; they are constant to 0(e2) for times t <>T , with T = 0(l/e2). By 

inverting the near-identity and isolating transformations, we find the adiabatic 

invariants as functions of the original variables (p,-, )

15



(2.18)

r riF
Pn = An(Pi> Qi, t*\e) = Pn + f-P\ ~ ^ ^ (Pi> Qi, **)

ri °Qn

+ ei
N

\
3F’ (P.Wi, '*) + S = instant + 0<£3)^Qn ~ dQndPj dQj

for n = 2, 3, . . . , N, where the evaluations of the partial derivatives at (pit are

replaced by the substitutions (2.12) (note that rn = 0 for n > /? ). This function of the 

original variables is a constant of the motion to <9(e2) along solution trajectories. 

Several different systems have been examined by the averaging procedure and the 

original systems numerically integrated; the results are then substituted into 

expression (2.18), verifying that the adiabatic invariants are indeed constant to 

CKe2).

One of the most notable advantages of symbolic manipulation programs is their 

extensive programmability. The entire procedure just outlined in section 2.2 can be 

fully automated on SMP. After entering the Hamiltonian in standard form, the 

programmed steps include isolating the resonance, eliminating all nonresonant terms 

by solving for the 0(e) and 0(e2) generating functions, solving for the averaged 

0(e3) terms to determine , simplifying the final Hamiltonian, and inverting all the 

transformations for an asymptotic solution of the adiabatic invariants in terms of the 

original variables. On a VAXserver 3500 running Ultrix-32 v3.0 with 12 MB of RAM 

and 51 MB of virtual memory, SMP version 1.5 took approximately 20 minutes of CPU 

time to execute this procedure for a 2-D problem. The peak amount of memory 

required was approximately 12 MB. This procedure probably would have taken less 

time and have required less memory if run on later versions of SMP or perhaps on 

another symbolic manipulator; the factorization algorithms (which are time and 

memory intensive operations) have been much improved.

In section 2.1, for the case where no resonances were present, we found a 

solution to the original problem in terms of the N adiabatic invariants, which were
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constants dependent on initial conditions, and N quadratures for the Qn(t). When a 

resonance is present only N-l constants are found, and the system of differential 

equations of order 2N is reduced to a system of order two, for the variables Px and Q\

dQ\ 
dt

t*) + £= <T(/>,-,/*) + £ t*) +
dH \c

dP, BP:
(2.19a)

2 r^—2 fP. t*\ j. rp n j.(Pi,Q^.|•)] + 0(£J)

^ = -£ ^■(Pi.Qi.i*) - e2^(/,„Qi.i*) + 0(£3)
^ oQi (2.19b)

This is the reduced problem we consider in the section 3 for sustained resonance and

in [2] and [3] for transient resonance. The remaining Pn are all constants and the

remaining (?„, n = 2, 3, . . . , N are found as quadratures dependent on the solution for

the system (2.19)

Qn(t*) = f bhc

BP „
{pxm, p2,...,pn, t*)dt*

+ i 
£

+ 1 
£

f
fr
r

BU
BP 

* BH
A

BPf

BU2
BP

BH
A

BP,

L(Pi(t*), P2,...,PN,t*)dt*
n

\c

(2.20)

(/»!(?*), P2,...,PN,Q^t*), t*)dt*

(Pl(t*),P2,...,PN, t*)dt*

(/>1(r*),/>2,...,/VGi(f*), t*)dt* + 0(£)

All that remains is to find uniformly valid solutions to the two coupled differential 

equations (2.19) throughout the resonance when <7(/>i, r*) = 0.
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3. The reduced problem for sustained resonance.

3.1 General solution procedure. In this section we examine the solution for 

the reduced problem (2.19) generated by the averaging procedure given in section 2.2. 

This system of two differential equations isolates the resonance behavior present in 

the system of 2N equations (1.1). If the leading order frequency makes a slow 

passage through zero, then transient resonance is indicated, the results for which are 

presented in [2] and [3]. However, should the leading order frequency remain near 

zero for long times, the system then exhibits behavior known as sustained resonance 

or phase-locking. Sustained resonance is possible only when the frequency c is a 

function of P{, indicating that it is a strictly nonlinear phenomenon.

Since the sustained resonance condition is that <T(/>1, t*) » 0 for long times, 

t* of 0(1) or longer, it makes sense to solve for the critical resonant momentum 

Pc(t*), which satisfies

<r(/>c(r*),r*) = 0

and assume that the actual momentum Px is near Pc(t*). It is easy to show that the 

appropriate rescaled dependent variables P* and 0* are

Pi = Pc(t*) + e1'1 P*(t;e) (3.2a)

Qi = Q*(r,e) (3.2b)
As

and that the rescaled time t is

t = e1,2r (3.2c)

This gives the expansion for the equations in the new variables

dQ* = ^do 
dt ' ^
L_= />*^.(Pc(/*),t*)

(3.3a)

+ e1'2 + ^(PAt*), t*) + ^(Pc(t*),Q*, t*) ]
0/>2 2 or or

18



a2//,+ £[3!££^i+ §!aLp. + ^ai, p.,
dp3 6 a/>2 dP2

+ [^£ el + ^ el+l!&£ el + ^ + &£, + ^
3P4 24 ap3 2 ap3 2 3/> 3F J

and

^!L
dr

,,2d2H

dQ
(Pc(t*),Q*,t*) -£ Ic

dQdP
(Pc(t*),Q*,t*) P*

_e i^p- + + ^(/>c(i*),e*,<*) i
^ 3(2 a/*2 2 dQ (3.3b)

_e3,2[ a_^(Pc(r^QM,t)p*3- + |^(Pc(r*),(2*,r*)/>*] + 0(£2)
3(2 a/13 6 dQdP c

(the subscript 1 is dropped from the partial derivatives). One effect of this rescaling is
/\

that the order of the ratio of the slow time r * to the new fast time t is even higher
/v . / /v 3 ^

relative to the order of the first perturbation term, £= £ 1, since t* = e t. This will 

necessitate a still higher order expansion in £ due to the relatively slower time 

variation than with the t* = e2 t scaling. A second result of the rescaling is that the 

equations for P* and Q* are not in standard form. This question will be addressed 

presently.

Since the 0(1) problem is linear in P*, we can differentiate (3.3a) again with
/N

respect to t to derive a single second order equation for 2*:

* 3cr dHlc (PM*),Q*,t*) = eO((2*,^,r*;e)

dt ~ ^ dt (3.4)
^ 3 ~

where t* = e t. Equation (3.4) represents a very slowly varying nonlinear oscillator
A*

with weak damping term e D . In general, (3.4) is not solvable explicitly, even with 

£ = 0, as the solution involves the inversion of the integral
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(3.5)

t + <f> dQ
■JE- OpHu(Q)

where
<7p = |f (M'*). <*)

(3.6)

which is expressible in terms of known functions only for certain Hlc(Q). For 

example, if HXc(Q) is a polynomial of degree less than or equal to four, then the

integral can be expressed in terms of circular and/or Jacobian elliptic functions. This is 

also the case if Hlc(Q) contains a single sin (coQ) or cos (coQ) term.

Bourland and Haberman in [5] have extended the procedure of Kuzmak-Luke 

to solve the nonlinear oscillator (3.4) for a general potential when the slow time is 

t = et instead of t* = £ t. However, the procedure of Kuzmak-Luke proves 

impractical for the t* = e t slow time, as computation of the higher order terms 

(terms which are necessary for a uniformly valid 0(1) solution) requires finding 

particular solutions to a sequence of linear but non-constant coefficient second order 

differential equations whose forcing functions contain increasingly large numbers of 

terms. The use of symbolic computation in finding these solutions is limited, as the 

integrals prove difficult in general and the integration library may or may not contain all 

the necessary forms.

The procedure of averaging, however, can still be used by casting (3.3) back 

into standard form (1.1) through an action-angle transformation, since (3.3) is 

derivable from the Hamiltonian

H*(P*,Q*, t*;e) p*2 do 
2 dP

(Pc(t*),t*) + Hlc(Pc(t*),Q*,t*)

+ e [
82<t p*3 

dP2 6
+ Ml P*

dp p*]

(3.7)
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+ i1 [^(,*> Q* +
dt* * 3P3 24

p**

dP2 2 3^2 2 #2c]

+ e3 [ d4<y p*5 + P*3 , d3ffic P*3 + 3^2 P* + ?^2c />* i + 0(e4)
aP4 no dp* e dPi 6 ap ap J 1 ;

The action-angle transformation can be found by solving the Hamilton-Jacobi 

equation for the (9(1) Hamiltonian

^ jfrj I dW \2 
2dP\dQ*) + Hlc{Q*) = £0(P)

(3.8)

The generating function IV, a function of the old coordinate and the new momentum, is 

found to be

W(Q*,P) = I V £0(p) - tfic(0) JQ

(3.9)

and the old momentum P* is given by

aiv 2 (£0 - HXc(Q*))
P* =

CTp (3.10a)

The new coordinate, q, is given by

rQ*q = dQ
dp ■(TFpdp) V £0(p) - TCJQ) ,,,nk,

^ (3.1UD)

Relations (3.10) are mixed algebraic relations which must be solved simultaneously to 

find the explicit transformation

Q* =Q*(p, q) P* = P*(p,q) (3.11)

Notice that an inversion of the integral (3.10b) is necessary for this calculation. This 

is exactly the inversion required by (3.5) in solving the single second order differential 

equation. As one might expect, this means that finding the transformation to action- 

angle variables is equivalent to solving the (9( 1) problem.
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An additional condition is necessary to solve for the transformation. The 

functional form £0(p) is determined by requiring p to be the action, defined by

p = toP* dQ*
J (3.12)

where t* is held fixed and the integral is over one period of the motion in the P*-Q* 

plane. Equivalently, the periodicity in the new variable q of the old £)* can be 

constrained to be independent of p (i.e., Q* =Q*(p, q) has fixed period in q 

independent of p). It has not always been recognized that this restriction is essential 

for the transformation to standard form. Although we can choose E0 to have any 

functional dependence on the new p and thereby eliminate q from the 0(1) 

Hamiltonian, the resulting differential equations will have terms of 0(e) and higher 

orders which are secular (i.e., grow linearly in q) for any choice other than the one 

specified by a constant multiple of (3.12). Although this formulation cannot be done 

explicitly in general, an implicit definition from the integral

P = £ V£0(P) - HXc{Q*) dQ*
(3.13)

can be used.

The relations (3.10) and (3.13) give the explicit substitutions of the form (3.11) 

which transform the Hamiltonian (3.7) to a new Hamiltonian which is a function of

(P, q, t*)

h(p, q, t*\ £) = H*(P*(p,q,t*),Q*(p,q,t*),t*;e) + e3f^
at*

When expanded this expression has the form

h(p,q,t*;e) = E0(p, t*) + ehx(p,q,t*)

+ e2h2(p,q,t*) + e3 h2(p,q,t*) + 0(e4)

(3.14)

(3.15)
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Since we have chosen (p, q) to satisfy (3.13), both P* and Q* have fixed period in q 

equal to one and independent of p. Also, the 0(1) Hamiltonian is independent of q, 

which means that (3.15) is in standard form (1.1). (In section 1 we stated that 

standard form (1.1) should be lit periodic in the <7,, but it is only necessary to have a 

fixed periodicity. If we desire a 2k periodicity, we simply divide the integral in (3.12) 

by 2k.)

The transformations (3.2) and (3.10) have removed the resonance from the 

system and as a result, the averaging procedure given in section 2.1 can be applied to 

(3.15) to remove the q dependence and to solve for an additional adiabatic invariant 

Aip, q, t*; e).

To proceed with the averaging we split the Hamiltonian (3.15) into its 

oscillatory and averaged parts

h(p,q,t*-,e) = h0(p,t*) + e [2ti(p, f*) +/»i(p, <7, r*)]

+ £2Ul2(P, t*)+h2(p,q,t*)]
(3.16)

+ e3[h.3(p,t*)+h3(p,q,t*)] + 0(2*)

where the underhat denotes the oscillatory part with zero average over q and the 

underbar denotes the averaged part. We define a near-identity transformation using 

the generating function

F(P, q, t*) = Pq + 2 F.iP, q, t*)
(3.17)

+ 22F2(P,q,t*) + e F3(P, q, t*) 

by which we transform (p, q) to (P,Q). The only modification from the procedure
~ 3

section 2.1 is that an <9(£ ) generating function

in

Hamiltonian should be calculated to 0(£ ); this is solely due to the change in the 

slow time to fast time ratio (t* = £ t rather than t* = £z t). It is necessary to find

23



P=P(P,Q) asymptotically to 0(£4) and q = q{P,Q) to 0(e3) since average terms
4

of 0{e ) must be found. Extending the procedure which generated (2.5) to these 

orders we find

/> = /> + + e2
dq a<72 a/’

+ e3 r^J. _ ^£2^1 _ +
1 a<7 a<72 dP Bq2 BP 2 Bq3 \ BP ) Bq2 BqBP BP

+ a4 tfF+BJi _ tfFiBFjL _ B^BF^ + 1 B3F2IBFA2
Bq2 BP Bq2 BP Bq2 BP 2 Bq3 \ a/> I

(3.18a)
+ b^b^bfi + a^aV^ + B2F1 B2F2 BFt 

Bq2 BqBP BP Bq2 BqBP BP Bq2 BqBP BP

+ a3Ft aF, bf2 _ b2fx /aVi^af, _ aV, a2F, /aF!]2 
Bq3 bp bp a<?2 latfap/ bp a?3 a^pla/*)

_ _ ia2Fi aV, fap^2 + ^
6 a<?4 \ BP ) 2 Bq2 Bq2BP \BP )

and
dF* 1 *2= Q -e^(P,Q,t*) - e2 bf2

BP
B2Fx bfx 
BqBP BP J

e3 r^J. _ d2F2 dP\ _ d2P 1 ^2 
£ BP BqBP BP BqBP BP

(3.18b)

+
1 a3F, (a/M2 + 
2^dP\dP I

B2Fx

BqBP
4] + 0(£4)

where all partial derivatives are evaluated at the new variables (P,Q). Substituting 

(3.18) into

H(P,Q, t*\ e) = h(p(P,Q,t*),q{P,Q,t*),t*-,h + e4^-
dt (3.19)

then expanding as in section 2.1 gives the new Hamiltonian and we can solve
/s 3

sequentially for Fx, F2, and F3 to eliminate Q to 0(e ).



A simplification of the results occurs when the Hamiltonian is a function of just 

one p and one q. In this case all of the generating functions can be found explicitly in 

terms of the Hamiltonian (3.16). This gives

q, t*) =

^ jwhere we have defined the 0(e ) frequency

—J—[

<*))
t*)dq

dh:

1 dp

Defining the intermediate quantity 

Z2(p,q.,*) = klip, q,t*)
Goip, t*)

which can be split into oscillatory and averaged parts 

Z2ip,q,t*) = Z2(P, t*) + £2(P’<7*r*)

we then find

F2(P, q, t*) =
-f

<*) j

i • <*> r 
A)V, /*) J

[h2(P, q, r*) + ?2(^ ^

We define the second intermediate quantity

Z3(p,q,t*) = -f-
dp

+ ll.
6 9p

I

klip, q, t*) klip, q, t*)

Goip, t*)

klip, q,t*)
n0(p,t*)\n0(p, t*) dp

J |-( ki(p, q, t*) J ^
V n0ip,t*) dp\ V C20ip,t*)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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which is also split into oscillatory and averaged parts 

Zi(p,q,t*) = Z3(p, r*) + %3(p,q,t*) 

to give a solution for F3(P, q, t*)

rq

(3.26)

F3(P, q, t*) = — fn0(P, r»))
IhliP, q, (*) + Z3(P, q, I*)] dq

' + {P,f ur, 9,„
Lfl0(P.'*) Qo(P.f) A>V. <*) dp Ji

<7, '*) ^<7
i f

flo2(P. '*) 1
«„(/•, I*) I w

(3.27)

The 0(e) Hamiltonian //4 which results from this transformation has also been found 

in terms of h0, hx, h2, h3, h4 and Z2. Z3 but is too long to include here. The final 

Hamiltonian with all Q dependence removed to 0(£ ) is given by

H(P,t*;e) = &0(P,t*) + e Ai(P, r*)

-2
+ £ [&2(P>'*) + Z2(P,t*)] (3.28)

+ e3 [&3(P, t*) + Z3(P, t*) + Z^P' £)JhZ± f*>] + o(eA)
n0(P, t*)

* 3
The new action P is an adiabatic invariant to 0(e )

<UL = + cCe’)
dt

Thus the equation for Q is uncoupled

O0(P,r*) + eC2x(.P,t*) + £2[fl2(7>,r*) + ^2.(/>,r*)] 
dt dP

(3.29a)

(3.29b)

+ e3[n3(P, t*) + ^-(p,t*)+ l-^L^.r*)] + 0(e*)
dp qq
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and the solution is given by

~ 4.
P(t*) = P0 + (3.30a)

Q(t*) = Go +
xf

e Jo
n0(p0, t*) dt* + Wo.

£ Jo
t*) dt*

f

Jft*
[n2(p0,t*) + °£.(p0,t*)]dt*

o dp

az3

(3.30b)

+ I [^3(p0,r*) + ^i(/>0,r*) +(/> ,*)] dt* + 0(e)
dp qq

valid for times r * of 0( 1) where Q 0 and P0 are constants found from initial conditions. 

The near-identity transformation (3.18) can be inverted to find P as a function of the 

original variables to calculate the value of the adiabatic invariant

P = Mp, q, t*; e) = constant + 0(e4) 

which again can be expressed in terms of the original Hamiltonian (3.16)

A(p, q,t*\e) = p + e----- 1----- £i (P, <7. t*)
Go(P> '*)

+ £ ^ TT
Qq

+^(-4

n02 4 aP lfl„2

(3.31)

+ 23[X(A3-Z3) +
flo fl0 flo flo3P\flo/

_ «L,,2 + 1 3 LLU,/,2 _ 1 3 (iL.
fl02' 23pU2) ' 23pW h?

a2
12flo3P2WI

(3.32)

^i3] + 0(0
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where all functions are evaluated at the old variables (p, q).

transformations (3.18) then (3.11) to get asymptotic solutions for P* and Q* as 

functions of time. As seen, the procedure described by equations (3.16) to (3.32) 

gives an easily programmed algorithm for a symbolic manipulator to do averaging for a •

Hamiltonian system. This is facilitated by the fact that all results can be expressed in 

terms of the original Hamiltonian, so that solutions can be found directly. The general 

formulas themselves have been derived on SMP to reduce them to simplest form. •

The asymptotic solutions (3.30) are easily substituted back into the •

3.2 A model problem. In [17], Kevorkian examines several applications 

which exhibit sustained resonance: the motion of an asymmetrical planet in a slowly 

varying gravitational field, the high altitude motion of a spinning re-entry vehicle, and 

the electron dynamics of free-electron lasers. In all of these examples, the resonance 

occurs in a single harmonic to 0(e). We therefore note that a model Hamiltonian for a 

commonly occurring class of reduced problems can be written in the form

t*; e) = H^P^t*) + e AiP^ t*) sinQj + e2B(Px,t*) (3.33) 

where t* = e2 t, and for sustained resonance to be possible, H0 must be a nonlinear 

function of Pl. The system of equations for the Hamiltonian (3.33) is

dQi
dt

o(Pu t*) + e dA (Plt t*) sin Qi + e2^-(P1,t*)
dPi dPi (3.34a)

e A(P:, t*) cos<2i
(3.34b)

where (7 (P t*) = ^Following the procedure outlined in section 3.1, we

obtain the following equations corresponding to (3.3) governing the rescaled variables 

P* and <2* as functions of f = e1121.
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^= If p*+ ^ [rf - If idt dP dP2 2 dP

, -2 r d3cr p*3 d2A Dlk 
+ £ [—r -7--------r cosQ* ]3p3 6 a/>2

(3.35a)

-3 a4cr p*4 d3A p*2 as. ~4,
+ e _ ~r ^ cos(2 + + 0(e )ap4 24 ap3 2 3^

^ = - A(Pc(r*), r*) sin Q* - e P* sin Q* 
dr a/>

-2 r a2A />*2 . ^ . dPc(t*) n
-e [—- sin Q * +———- ]ap2 2 dt* (3.35b)

~ 3 a3/i p*3 ^4_e3 P^sinG* + (9(e4)
ap3 6

(the subscript 1 has been dropped from the partial derivatives). This new system of 

differential equations is associated with the Hamiltonian (3.7) which becomes

H*(P*,Q*,t*,e) = oP(t*) - A(t*) cos Q*

+ e [Cpp(t*) - AP(t*) P* cos Q* ] 
6

(3.36)
+ i1 [tWO - APP(f) cose* + ^-('*)2* 1

24 2 dt*

-3 p*. p*.
+ e [Gppppit*) - Appp(r*) cos (2* + 5p(r*)P*] + O(e’)

12U o

The notation of subscripting with respect to P indicates partial differentiation and all 

the partial derivatives of a. A, and B are evaluated at Pc(r*) and t*, so are functions 

of the slow time only.

If we eliminate P* from (3.35) we find the following special case of (3.4)

d20* - dO*a ^ + oP(t*)A(t*) sin Q* = e D(Q*,^r,t*-,e)
dt dt (3.37)
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a very slowly varying pendulum equation with weak nonlinear damping. For the case 

£ = 0, t* fixed, we have the phase plane for Q* shown in Figure 3.1a. The region 

inside the heavy line is characterized by periodic motion of Q* about a center, this is 

the region of sustained resonance. Outside the heavy line, Q* increases or decreases 

monotonically. When £ = 0 there is no way to move from one region to the other.
a

However if £ * 0 and slow variation is permitted, these two effects can cause capture 

into sustained resonance (Figure 3.1b) or escape from sustained resonance (Figure 

3.1c). The rate at which either of these processes occurs is very slow compared to a 

single oscillation. For this reason, higher order terms can have a significant effect on 

the long term behavior of the system.

Fig. 3.1b
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Fig. 3.1c

Figure 3.1 Slowly Varying Phase Planes

Rather than solving the problem as a single second order O.D.E. in Q*, the 

Hamiltonian (3.36) can be transformed to standard form via an action-angle 

transformation, generated by (3.9)

G*
V £0(p) +A cos Q dQ

(3.38)

= ^(sin'^^-sin —), i) - (1 - i2) F(sin'1(J-sin —), ib)
V o> l k 2 k 2

Here F and E are the elliptic integrals of first and second kinds respectively, and k is

the modulus (0 < k< 1). The reader will find many useful results for elliptic integrals

in Byrd and Friedman [7]. The generating function W depends on p only through

k(p, r*),definedimplicidy by

P = 16V (£<(*) - (l-*2) «*>)
(3.39)

This relation is found by specifying p to be the action for the system using (3.13). The 

functions K and Ec are the complete elliptic integrals of the first and second kinds 

respectively. Because (3.39) is invertible only in principle, the functional dependence 

of the transformation (and hence the new Hamiltonian) on p will be defined implicidy
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only through the functional dependence on k. From the generating function (3.38) we 

obtain the old variables as functions of the new in the following form

Q* = 2 sin Hit sn(4 K(k) q, k)) (3.40a)

P* = 2 k^/-z- cn(4 K(k) q, k)
(3.40b)

For this transformation, a necessary condition is that aP and A have the same sign. If 

not, we simply shift Q* by n. The new Hamiltonian h ip, q, t*\ e) is defined by (3.14) 

where now

E0ip,t*) = A{t*) {2k1-\) (3.41a)

hxip,q,t*) = pn{t*) k{2 k1 - 1) cn(4tf(jfc) q,k)

+ Pni**) k3 cn3(4 K{k) q, k)
(3.41b)

h2ip,q,t*) = plx{t*) sm\k sn(4 K{k) q, k))
(3.41c)

+ p22«*) k1 (2 k1 - 1) cn2(4 K{k) q, k) + P23(t*) k* cn*{A K{k) q, k)

h3(p,q,t*) = P3l{t*) k cn(4 K{k) q, k)
(3.4 Id)

+ P32(t*) k3 (2 k1 - 1) cnHA K{k)q,k) + P33(t*) k5 cn5(4 K(k) q, k)

+ P34(t*) Eosc(4 K(k) q, k)

and fc is a function of p and t* as defined by (3.39). The function Eosc(u, k) is 

shorthand notation for the oscillatory part of the elliptic integral of the second kind; it 

is defined to have zero average when integrated over the first argument u.

EosM k) = £(am(u, k), k) - u
*(*) (3.42)

The Pi j are functions of r * alone through cr. A, and B and their partial derivatives, and

are given by
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(3.43a)

A(r*)
Gp(t*)

p2l(t*) = 2^f(/*) 
at*

hid*)

/?23(**)

^3l(^)

2A(t*)APP(t*)
<TP(t*)

 2 Ai**) 
' 3 <TP(r*) A(,,)^r-6A-('*)

= 2^ A(f*)
5^*)

ft2<,‘) = t(^y)A
ftsO*) = ^

4 / A(£*) f/2 a(r*) GPPPP^*) _ IQ APPP(t*) 
15 \aP(t*)J \ cP(t*) PPPK

Pu(t*) = 2UA(t*) -d-LI -dll!! 
34 dr* ( V ^(r*)

(3.43b)

(3.43c)

(3.43d)

(3.43e)

(3.43f)

(3.43g)

(3.43h)

(3.43i)

The Hamiltonian (3.41) is periodic in q with period one and has no dependence on q to 

0(1); also, all resonance has been removed so that the 0(1) frequency will not 

vanish. We therefore use the formulas derived in the averaging technique of section 

3.1 to eliminate the oscillatory behavior to the desired order. Transforming ip, q) to 

(P, Q) according to (3.17) and using results (3.20) to (3.27), we solve for F^, F2, and
. ^ 3F3. The resulting Hamiltonian with Q dependence removed to 0(e ) is

H = E0 + £2E2 + e4 [#4 + #4]
(3.44a)

where
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(3.44b)Ko = A (2k2 - 1)

(2P-1) (£t(*)-(l-n *:<*)) i4

12 A Jf(*) (3.44c)
-Vn + MUPn + SM)

}-{3(2p-l)2 Pj- P(l-P)0iAPa - 8/?n012 - 5^,2)

■2X
—2 =

24 A

and if4 has been calculated, but is not shown here. The variable k is used to indicate 

dependence on the new averaged variable P defined by

P = 16 l£c(*) - (l-*2)*(*))
°> ' (3.45)

We can now easily find the solutions for {P, Q) from the canonical differential 

equations.

+ + oCe')
dt dp dp dp dp (3.46a)

dP ~4 9//4 _ 5.<it- = -£ -z-2- + 0(e )
dt (3.46b)

>s 3
Equation (3.46b) implies that P is a constant to <9(e ) for times t* of 0(1), since all 

terms in P are oscillatory in the Q. Q can then be found as a simple quadrature of 

(3.46a)

Q(t*) ■tf dKo
dP

(P, t*) dt* + i t*) dt* + 0(e)
(3.47)

The near-identity transformation defined by the generating functions (3.17) can 

be inverted to find P as a function of the original variables

P = Mp, q,t*\e) = constant + 0(e ) 

which for this problem gives

(3.48)
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+ i {pn(n *<2t2-1) cn(4*«>?■«

+ y312a*) *3cn3(4 *(*)<?,*)}

_ -2 tA:01:)(8A j321sin-1(^sn) -h ^

2 Va 3 <jp (3 49)

+ (£r(fc)(l-2/:2) - AT(^) (1 - £2))
3 Vi4 3 <Tp

* {4 A (3 /?22 + 2 P23) - (Pn + Pn + $ Pn))

+ (Uk\-(l-k2') cn2((2k2-l)Pu + k2 Pn cn2)2

2vA3 cP (1 - i2)

+ —^^)} cn2 ((2 A:2 -l)p22 + k2 P23 cn2)

+ ^-=7=^(8 A (2 /322 + p23) - 5 (2 + /J12)2) ]

2yA3 Op
A, 3

The 0(e ) term has been calculated via SMP but, again, is too long to include here.
A 3

The entire expansion to <9(e ) is used in the following numerical verification of the 

constancy of A.

3.3 Numerical results and final asymptotic solution. We determine the 

accuracy of the analytical expression for the adiabatic invariant by numerically 

integrating the original differential equations derivable from the Hamiltonian (3.41), 

then substituting the results for (p, q) into formula (3.49). Because h does not 

explicitly depend on p, however, but only on p through k, it is easier to set up the 

system of differential equations to be integrated using the variables q and k, which we 

have done for purposes of numerical verification.

fi(p,q,t*-,e) = 16^/2T {ec(Ic) - (l-*2) *(*))
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We consider two test problems to numerically verify our results. Both are 

modifications of examples resulting from physical systems which exhibit sustained •

resonance. Problem I is specified by the functions

(HPi,t*) = l - 1 + (5/2 2t*)2

(3.50a)

A{Px,t*) = 2(5/2~2r*)
P\ (3.50b)

B(Puf) = <1+<5/2-2!*)V
8P!3 (3.50c)

which correspond to a slight modification of expressions used for the free-electron 

laser problem considered in detail in [2] and [4]. The equations which result for P{ 

and Ql are

dQL = { _ l+(5/2-2r*)2 _ e 2(V2-2r»)
dt Pi Pi

sin Ci

- £
2 3(1+ (5/2 - 2 t*)2)2

8 Pi

dP, 2 (V2-21*) „
dt Px 1

The second test case, Problem n, is specified by the functions

o<JPx,t*) = f2Pl- (P12 + m2(r*))1/l 

G)2(r*)
MPi, t*) = 2 (P? + (o2(t*))U

where we let

B(Put*) = 0

co(t*) = 2e~2t'

(3.51a)

(3.51b)

(3.52a)

(3.52b)

(3.52c)

(3.52d)
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These functions give rise to the differential equations

= i2Pl - (Pf + coHt*))'1
- £ --------- ---------—1 v Sinj2i

4 (P2 + 0)2(t*)) (3.53a)

^L = 
dr

- e 0)2(t*)
2 (P ? + coHt*))U

cosQx
(3.53b)

These functions are a modification of the equations derived from the spin-roll 

resonance model originally proposed by Kevorkian in [13] and [20] and discussed by 

Kath in [10] and [11]. The primary changes consist of a reduction of order of the 

original system, and an exponentially decreasing function for co so that motion is now 

outward in the potential well.

For the calculation of the adiabatic invariant, we first examine Problem I for the 

initial conditions k = 0.5 and q = 0.0 at r* = 0.0 and for the value e = 0.1. We find the 

numerical solutions for k and q, and in Figure 3.2a we graph p calculated from (3.39)

and the adiabatic invariant A from (3.49), using these numerical solutions.

o vb

00 uS

VO

<N
«/■>

q

0.0 0.2 0.4 0.6 0.8 1.0 1.2
t*

Fig. 3.2a
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Fig. 3.2b

Figure 3.2 Adiabatic Invariant - Problem I

As expected, the function A proves remarkably constant, particularly in view of the #

large value of e. In Figure 3.2b we show an enlarged version of 3.2a and see the 

oscillatory behavior of A associated with the 0(e ) oscillatory Hamiltonian not 

eliminated by the near-identity transformation. •

We can verify that this error in the constancy is indeed 0(£ ) by choosing 

several different values of £, finding the magnitude of the oscillations numerically, then 

using a least squares log-log fit to calculate the order. Using £ = 0.1, 0.05, 0.02, 0.01, •

and 0.005 and the fitting equation

i /s k
\max A - min A\ = C £ (3.54)

we find that the least squares fit gives AT = 4.012 (with C = 5.603). This result is ^

shown in Figure 3.3.
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K = 4.012

Figure 3.3 Order of the Oscillatory Error in the Adiabatic Invariant

^ 4There is a second contribution to the 0(e ) error associated with the adiabatic 

invariant; this is due to a non-zero slowly varying average value for A. When 

equation (3.46b) is integrated to find P (the adiabatic invariant) as a function of time,
^ 4the 0(e ) slowly varying oscillatory integrand gives rise to the solution,

P = constant + £4 [^(f, /*) + /^(f*)]
(3.55)

This effect is seen more clearly in the integration of Problem II. Using initial 

conditions it = 0.5 and <7 = 0.0 at r*=0.0 for the value £=0.1, we integrate 

equations (3.53) and use (3.49) to calculate the adiabatic invariant with the result 

shown in Figure 3.4.
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Figure 3.4 Averaged Drift of the Adiabatic Invariant - Problem II

The drift in the average value is small but definite. We can again show this 

effect to be 0{e ) by integrating the equations for several different values of e up to a 

fixed value of r*, then subtracting the final average value of A from the initial average 

value in the following expression

| AaVg(fina[) - Aavg(initial)\ = DeM ^ 56^

for e = 0.1, 0.05, and 0.02, we integrate the modified spin-roll system to t* =0.5 and 

find M = 4.050 (with D = 110.51). This fit is shown in Figure 3.5.

Having numerically verified in the manner described above that the two 

sources of non-constancy in the adiabatic invariant are 0(£ ), we may reasonably
3

conclude that the asymptotic formula (3.49) derived for A to 0(£ ) is indeed correct.



Figure 3.5 Order of the Averaged Error in the Adiabatic Invariant

In the verification of the average drift of the adiabatic invariant, we have not 

used smaller values of e as numerical integration becomes increasingly difficult. This 

is one of the primary reasons for solving the problem asymptotically. For example, to 

solve the problem in the range t* e [0.0, 1.0] for a value of e = 1/1000 requires an 

integration to a time of one billion on the fast time scale t. Using FORTRAN 

subroutine DDRIV with a relative error tolerance of 1.0 x 10-14, we find a numerical 

integration of Problem I for e = 1/10 takes only 2 V2 minutes on a VAXserver 3500; 

correspondingly, the e = 1/1000 case would take roughly 1,700 days. Even if time 

were not a factor, it is very difficult to numerically integrate rapidly oscillating 

functions accurately over long times.

The asymptotic solution, on the other hand, requires only a numerical 

quadrature for Q from (3.47) which is a quadrature in r*, and therefore takes the same 

time independent of the value of e (only depending on the numerical accuracy required 

for a valid solution). Moreover, the asymptotic solutions become more accurate as
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£ -» 0, so that the very good results obtained for these larger values can be expected

to get even better. •
/v 3

Since we know P to be a constant to 0(£ ) and we have the time dependence 

of Q specified by (3.47), we can express the variables Q* and P* as functions of time, 

hence the original Qx and Px as well. First we invert (3.45) to find £ as a function of •

the adiabatic invariant and f*. Defining

/(t) = £,(*)- (l-t2)Ar(t) (3.57)

which is a known invertible function, then •

k{t*)
(3.58)

can be easily computed, where the value of A is found from (3.49) and initial •

conditions. Because Q* and P* depend explicitly on k rather than on p, we express 

the final solution in terms of the averaged variables k and Q, of which we know the 

time dependence from (3.58) and (3.47). The asymptotic solutions for Q*(t*) and •

P*(t*) are given to 0(e2) by

Q*(t*) = 2 sin'1 (k sn(4 K(k) Q, k))

+ £ (2 * ^12) k cn(4 K(k)Q,k) sin"1 (* sn(4 K(k)Q,k))
A

+ e2 [ ^21 * 2 hci cn - k cn2 - sn dn sin"1 [k sn)

2A k(l-P)

+ |4 A (3 J322 -k 2 j323) -iPn+PnWPn + SPn)}

24 A 2 (3.59a)

x (Eosc cn _ sndn) 
K(k)k(l-k2)

+ 8 A (4 P22 + 3 ^23) - 32 - 48 pn ^12 - 15 /?12 - ^ dn
16 A2
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and

+ ---^12 +,f12^ k sin'1 (it sn) (2 k cn2 - sn dn sin'1 (it 
A A1

sn))]

/>*«*) = 2* cn(4K(k)Q,k)
V 0>(f*)

^ (2 it 2 - 1) j3n + it2 )312 cn2 + 2 it (2 y3n + /J12) sn dn sin'1 (it sn)
'£l 2VJ^ 1

- £2 [-----------^----- ——(cn sin'1 (jt sn)(l + 4 2cn2-2 jk 2)
2fA~o^ k (1-it2)

+ it sn dn (it ISC2 - cn ))

(1 + 2 it 2cn2-2 it2) r h^ o x2f • -Wr il2 
+ ^----------- --------- -------^ cn(4(2j3n+ J312) [sin 1 U sn)J

XeiA^Op (3.59b)

+ 8 A (P22 + ^23) ~ (2 + PnW P\\ + 5 P12)}

+ {4 A (3 ^22 + 2 P23) - (^n + /?i2)U2 + 5 P12)}

24Va3 dp K(k)k{\-k2)

x { (£c(it) (1 -2 it2) - *(it) (1-it2)) cn (1 +it2cn2-2^2)

+ (£c(^)(l-2^2) - /i:(*)(l-P)(l-6*2)) £OJCsndn} 

+ PnVPn + PiA sncndn sin-ifjtsnjj
Va3 (Tp

where we define

Jr4Ar(*)G
cn2(u, it) sin'1 (it sn(M,/:))du 

0 (3.60)

and where all elliptic functions in (3.59) are evaluated at the arguments (4K(k)Q,k).

The known functional dependence of k(t*) and Q(t*) on time from (3.58) and (3.47)

is used in the expansions (3.59). Although these expansions are relatively large, they
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still can be evaluated simply since SMP can automatically generate FORTRAN code 

for these expressions.

The equations (3.59) also represent a direct transformation of the Hamiltonian 

(3.36) from the variables (P*, Q*) to the final averaged variables (P, Q) 

encompassing both the action-angle transformation and the near-identity 

transformation. These solutions will be valid to (9(e) for f* of <9(1) if the e4 //4 

term is included in the integration for Q(t*). For (9(1) accuracy it is necessary only to 

integrate the if0 and i/2 terms as Hl = M3 = 0. The solution for the original problem 

(3.34) is simply given by

Qi = - &
(3.61a)

/>! = Pc(t*) + eP*(t*) (3.61b)

where the expansions (3.59) are used for Q*(r*) and P*(t*).

The accuracy of these asymptotic solutions can be found by comparing an exact 

numerical solution of the original equations (3.34) for and Px with the asymptotic 

solution given by (3.61) and (3.59). Using (3.51) for Problem I and given the same 

initial conditions as for the calculation of the adiabatic invariant, we find both the 

asymptotic and the exact numerical solution for r* e [0.0, 1.2]. In finding the 
asymptotic solution, we have not included an integration of the ^4/3p term in the

calculation of Q(t*) from (3.47). In Figures 3.6a and 3.6b we show both asymptotic 

and numerical solutions for Qx and Px in the range /* e [1.1, 1.2], the last part of the 

solution region including escape from sustained resonance. In 3.6b we include a plot of 

the resonant momentum Pc(t*). As seen, the agreement is almost identical to 

escape, except for a very small phase error presumably due to not including the 
^H*/dP term in the £? integration.
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Figure 3.6 Asymptotic Solution for Problem I

45



When the same comparison is performed for Problem II with the same initial 

conditions as for Figure 3.4, the results for keeping track of the final phase are less 

satisfactory than for Problem I; but the agreement between the numerical and 

asymptotic results is still very good. In Figures 3.7a and 3.7b, we compare Ql and P1 

found asymptotically with the numerical result in the range t* e [0.0, 1.0], In 3.7b we 

include a plot of the resonant momentum Pc(t*).

Fig. 3.7a
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P. asymptotic

Fig. 3.7b

Figure 3.7 Asymptotic Solution for Problem II

/\ ^
The difference in the phase can be accounted for by including the <9(e ) term in 

the integration for Q in (3.47), which in the case of Problem II contains terms which 

grow exponentially due to the choice for a) (t*). This correction is seen in Figures 

3.8a and 3.8b where we have included this term in the integration. As the asymptotic 

solution becomes nearly identical to the numerical solution up until the point where the 

motion ceases to be periodic, we only show the final few oscillations for comparison of 

the two solutions to see the improvement over Figures 3.7.
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Figure 3.8 Asymptotic Solution with Corrected Phase - Problem II
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As seen, the main error in the asymptotic expansions arises due to error in the 

phase of the oscillations. The amplitude, however, is accurate to the order of the 

expansion. We can use this fact to quickly calculate a very accurate predicted time of 

escape for a system initially caught in sustained resonance. Given a certain set of 

initial conditions within the potential well, we want to know at what time, if any, the 

motion will escape.

From (3.59a) for Q*, the magnitude of the oscillations is governed to 0(1) by 

the value of k. If £ is an increasing function of r* then Q* will have oscillatory motion 

slowly moving outward in the potential well (as in Figure 3.1c). From (3.58) for 

k(t*), since ^ is a constant and f A a monotonically increasing function, this condition 

simply translates to

d > 0
(3.62)

for motion outward in the potential well. The opposite situation occurs for k 

decreasing.

When k is increasing, we identify the time of escape at the point when Q* 

first exceeds the value at one of the saddle points ± it. We use this definition of 

escape rather than an energy condition since cases exist where the energy is 

decreasing, yet the motion is outward from the center of the potential well. This is 

seen in Figure 3.9a for Problem II for initial conditions k = 0.7 and q = 0.0 at t* = 0.0
a

and for the value £=0.1, where we have plotted the energy calculated from the 

Hamiltonian and Qi (scaled) on a common axis. At the point of escape the energy is 

clearly decreasing and has peaked much earlier. In Figure 3.9b we show the slowly 

varying "phase-plane" that is typical for decreasing energy escape. The overall 

motion is outward in the potential well but inward in Q\, which measures the kinetic 

energy.

49



0.
00

 
0.

05
 

0.
10

 
0.

15
 

0.
20

 
0.

25

Fig. 3.9a

Fig. 3.9b

Figure 3.9 Escape from Potential Well
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In order to predict escape, we asymptotically expand the quantity

sm (2 /2) (3 63)

using (3.59a) for Q*. When this quantity approaches ± 1, then Q* ->±n, which 

corresponds to the saddle points in the phase plane. We find an expression for the 

envelope of the oscillations of (3.63), given by

kcR(t*;e) = ±k(t*)

±g2 j (2 P-1) (£,(*) - (l-P) Kpc))
| 4SA2kK(k) (3.64)

x {4 A (3 P22 + 2 fa) - (fa + 012X12 Pn + 5 fa))

+ k(l-P) (SA^-S^n^-S^I
96 A 2 /

-2 fa sin'l(k)

4Ak

where k(t*) is given by (3.58). If kCR never reaches either of the values ±1, then 

escape will not occur, however, should the values reach either ±1, the motion will 

cease to be oscillatory and Q* will then increase or decrease monotonically.

Choosing the maximum of the absolute value of (3.64) for the two possibilities 

gives the algebraic condition

= 1 (3.65)

for the escape time tCR, which can be quickly solved.
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Using the test cases for Problem I (3.51) and Problem II (3.53) problems, both 

of which have motion away from the center of the potential well, we check how 

accurate condition (3.65) is for predicting escape time. Using the same value of 

e =0.1 and the same initial conditions at r*=0.0, k = 0.5 and <7 = 0.0, we plot the 

maximum value of kCR(t*) from (3.64) and the value for Q1 from a numerical 

integration of the original problem on a common axis. When kCR crosses 1 we expect 

the motion of 2! to cease to be oscillatory. In Figure 3.10a we have done this for 

Problem I and have included the value of k as well. Qx is scaled and plotted to show 

when escape actually does occur. In Figure 3.10b we have enlarged the region where 

escape occurs to see how very accurate this calculation is.

Fig. 3.10a
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Fig. 3.10b

Figure 3.10 Escape Condition for Problem I

Figure 3.11 is the identical diagram for Problem II. Again, we find that the 

prediction from (3.65) is remarkably accurate. Other tests have been performed and 

the same excellent agreement is found to well within one oscillation of In fact, if a 

more accurate prediction of escape is needed, the asymptotic solutions (3.59) can be 

used to find the exact phase on the last oscillation.
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Figure 3.11 Escape Condition for Problem II

The model problem considered in this section and given by the Hamiltonian 

(3.34) contains only a single harmonic mode and no averaged term to 0{e ). Also, the 

0(e2) Hamiltonian has been assumed independent of We can generalize this 

problem to include averaged terms of 0(e ) and a general 0(e2) Hamiltonian

H(PuQi,t*;£) = HoCP^t*) + e [A(/>lt f*)sin<2i + aPj, f*)]
(3.66)

+ £2 ff2(P1,Ql, t*) + 0(e3)

and still find a solution nearly identical to the one in this section. The transformation 

removing the resonance and the action-angle transformation remain the same. Only 

the near-identity generating functions are modified slightly, changing the final 

asymptotic expansion.
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