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Abstract. By formulating slowly varying oscillatory systems into Hamiltonian
standard form, canonical averaging techniques can be performed automatically by
symbolic manipulation programs to very high orders. For the very slow variation
considered, these high orders are required to find uniformly valid solutions. When
resonance is exhibited in these systems, the original system of 2N first order
differential equations is reduced to two differential equations which embody the
resonance behavior.

Sustained resonance, also referred to as phase locking, occurs when the
leading order frequency of the reduced system oscillates about zero for long times.
The general solution procedure is illustrated, and a highly accurate asymptotic solution
is found explicitly for a frequently occurring class of problems, which results when only
a single harmonic of the resonance is present. This solution was not possible for the
same class of problems with the usual slow time. Two test cases are considered to

numerically verify all results.
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1. Introduction. Slowly varying oscillatory systems occur frequently in
physical applications, in both natural and man-made systems. The following are some
examples. Planetary systems have an obvious oscillatory behavior which may be
slowly changing due to various long-term effects such as precession, tidal dissipation,
or variable mass (see Kevorkian [17]). The pancreatic beta cell is an example of a
biological system exhibiting this behavior, a rapid alternation of the cellular membrane
potential causes the release of insulin in response to slowly changing calcium
concentration (see Pemarowski, Miura, and Kevorkian [22]). Spinning re-entry
spacecraft are affected by the slowly increasing atmospheric density (see Kevorkian
[13]). Many problems involving acoustic or electromagnetic waves have slowly
varying features, such as the free-electron laser, designed so that relativistic
electrons are passed through a slowly varying magnetic field to stimulate the high
energy, low frequency emission of radiation (see Bosley and Kevorkian [4] and Li and
Kevorkian [21]).

Perturbation techniques for oscillatory systems are discussed in Kevorkian and
Cole [15], and more recently in Sanders and Verhulst [23]. Slowly varying oscillatory
systems are discussed by Kevorkian in [17], who summarizes and extends his
previous work in [12], [13], [14], and [16] and with Lewin [20], on averaging
techniques for systems with slowly varying parameters. In particular the phenomenon
of resonance is discussed, and uniformly valid expansions are found for a class of
problems exhibiting transient resonance for linear and nonlinear oscillatory systems.
Li and Kevorkian, in [18] and [21], explore sustained resonance, where the resonance
persists for long times, with an emphasis on the application to free-electron lasers.
Kath in [10] and [11] discusses a model for re-entry roll resonance proposed by
Kevorkian in [13] and derives conditions necessary for sustained resonance to occur.
Haberman in [9] also derives conditions for capture into sustained resonance based

on energy bounds, and with Bourland in [5] extends and simplifies the Kuzmak-Luke



procedure for slowly varying second order nonlinear oscillators with weakly nonlinear
damping. In [6], Bourland and Haberman discuss the behavior of a slowly varying
oscillator in a double potential well for motions near the separatrix and derive a
solution in terms of a sequence of Melnikov functions to describe the transition region.

In all of these papers, the rate of the slow variation is considered to be
equivalent to the strength of the weak damping or weakly nonlinear coupling. More
precisely, if the ratio of the characteristic time associated with the oscillatory behavior
to the characteristic time associated with the slow variation is specified as e, a small
parameter, we can refer to the slow time 7= ez. The strength of the damping or
nonlinear effects are then usually considered O¢e). However, in many problems the
parameters vary more slowly relative to the order of the coupling. The case of the
much slower time scale, ¢* = e2 ¢, which we will call a very slow time scale, where the
strength of the coupling is still O(£), is discussed qualitatively by Kevorkian as a
generalization of the problems considered in [16] and [17] and is examined for a
particular linear example in [1] by Ablowitz, Funk, and Newell.

However, many details remain unaddressed concerning both transient and
sustained resonance for this case of very slow variation, as there are significant
difficulties relative to the usual slow variation of parameters. The principal difficulty is
that higher order expansions are required to find uniformly valid solutions for the very
long times considered (7= 0(l/e2)) due to the cumulative effect of averaged terms.
Also, in the case of transient resonance (which is discussed in [2] and [3]) the O(1)
reduced problem which embodies the resonance behavior has no analytical solution in
the resonance layer in general (as mentioned in [1], [16], and [17]).

Numerical integration of rapidly oscillating functions over long times is very
difficult. For smaller values of e, numerical integration not only yields inaccurate
results, but requires an impractical amount of time. On the other hand, due to the very

large number of terms, high order asymptotic expansions often cannot be calculated by



hand. The solution technique presented here relies on the use of symbolic
manipulation programs, which not only keep track of these terms but can be
programmed to automatically execute a significant portion of the solution procedure.
The final solution, while still containing a large number of terms, can nevertheless be
easily evaluated with the symbolic manipulator's automatic generation of FORTRAN
code directly from the derived expressions.

In this paper we examine the Hamiltonian system of 2N differential equations

dt dpn COniPi’ t*) + e gniPi, <Ip t*\£) (L1a)
dpn _ dh
dt dgn ¢SO0 (1.1b)
n=12,....N
where t* =el t is the slow time scale, e is a small parameter, 0 < ¢ << 1, and the
functions /,, and gn are restricted to be 2K periodic in the This system is said to be
in standard form, which assumes the transformation of the leading order system to
action-angle variables. Although we do not consider the details here, our results
generalize in a straightforward manner to non-Hamiltonian systems as discussed in
[17].

Before we discuss the solution techniques for equations (1.1) we note that
putting slowly varying oscillatory systems into standard form can be accomplished in
several ways. Most often, asymptotic and Taylor series expansions in small
parameters can be used, as can Fourier series expansions to make explicit the
periodic nature of the functions involved. An action-angle transformation is commonly
used to remove the dependence on oscillatory variables from the O(1) Hamiltonian.
In fact, many weakly dissipative systems can be written in standard form, by

modifying the slow time dependence in the variational formulation (see Vujanovic and

Jones [24]). As will be seen, finding a way to put the problem into standard form



frequently has many advantages over solving the system in its original form. The
methods of solution for (1.1) are relatively straightforward, permitting automation of
the procedures in many cases, and solutions can be found accurately to high orders.

In section 2, we examine averaging techniques which eliminate the oscillatory
behavior and the <; dependence from the Hamiltonian and from the system of
equations. In 2.1, we look at the averaging procedure for a general Hamiltonian
system in the absence of any resonances. This procedure results in uniformly valid
expansions for the solution of all the  and <: for times ¢=0(//e2). Section 2.2
discusses the modifications necessary to this procedure when a resonance is present,
and shows that the original problem of a system of 2N first order differential equations
reduces to a system of two first order equations. The role of symbolic manipulation is
indicated throughout.

In section 3, we examine the reduced problem for the case of sustained
resonance where the leading order frequency oscillates about zero for long times. In
3.1, we define the procedure which generates the asymptotic solution for the general
reduced problem. The procedure involves several transformations: removing the
resonance, restoring the equations to standard form through an action-angle
transformation, then averaging the system using a near-identity transformation. An
additional adiabatic invariant is found as a result and the system is reduced to
quadrature. In 3.2, we examine a model for a frequently occurring class of reduced
problems. This class includes, for example, the reduced problems which result from
the free-electron laser and the spin-orbital coupling of a planetary resonance. The
details of these particular applications will be reported elsewhere. An explicit solution
is discovered via the method of section 3.1. This solution does not exist for the same
class of problems with the faster slow time z=<£f, it demonstrates the strength and
practicality of the techniques used here. In 3.3 we consider two test cases to

numerically verify all results.



2. Averaging for very slowly varying oscillatory Hamiltonian systems.

2.1 Solution for nonresonant Hamiltonian systems. In the absence of any
resonances for the system, equations (1.1) permit a straightforward asymptotic
solution. This is achieved by a canonical near-identity averaging transformation which
eliminates the ¢i from the Hamiltonian to any order desired while preserving the
Hamiltonian form. This procedure is discussed in detail in section 4 of Kevorkian [17]
for the case of slow variations depending on 7= ez. Therefore, we only summarize
the results for the case of very slow variations depending on ¢* =e2 t. The details
are given in Bosley [2]. Consider a general Hamiltonian of the form

h (Pb Qb = hoiPbh **) + £ [tL\(Pb t*) + th(Pb Qb '*) ]

c.h
+ £2 [h2(Pb '*) + fo(Pb 4b '*) 1 + O(£3)

where the averaged parts, Z7, have been separated from the oscillatory parts, 747, of

the Hamiltonian, and the oscillatory parts have zero average over the Qi.

A Lj(Ph 4b ¥%)  M2°" AN =

00 o (2.2)
We define a near-identity averaging transformation from the old variables (/?,,<?,) to
a set of new variables (Pi, Qi) to eliminate the  from the O(e) and O(e2) parts of
the Hamiltonian. This is achieved by the use of a generating function F depending on
the new momenta, P,, the old coordinates, <?, and the slow time, ¢*

N
F (Pi, qgitt*) = £ Piqgi + ¢ F~P,, % + 2 F2(Pi, g t*)

i=i (2.3)
where F{ and F2 are to be judiciously chosen later (for details on canonical
transformations, see Goldstein [8] or Landau and Lifshitz [19]). The transformation

resulting from the generating function (2.3) is given by



. SE (ais oy + e 8k (v < 2%)
d<7» M (2.4a)

Gn <7n+€i£{ (Pi, Qi, t¥) + e2 (Pi, Qi t*)

n (2.4b)
These 2N mixed algebraic relations can be solved asymptotically for the old variables
in terms of the new, pn - pn(Ph Ot t*) and gn=gn(P, t*). Note that if £=0,
we simply have the identity transformation, pn = Pn and gn = Qn. This explains the
"near-identity" nature of the transformation. For £ * O, we find the asymptotic
expansions for pn and gn

Pn = Pn+ e°-=-x(Pi,Qi,t*)
<In

N
+ e2[dfEP O- t¥)-Y -~-1-~11

Vi< " Ve g
(2.52)
+ e3ry » (1 alF, 3F13FI | avVv, |
r\2 dPj dPk  dgndqgk dPkdq} dPj )
V f AP j + alF! dF2
&8 ] + 0(£4)
vy 1 \a<l«a<7?> a’y a<Ina<?; ap;
(2.5b)

where all partial derivatives of the generating functions have the old coordinates, gz,
replaced by the new coordinates, £),, and so are functions of only the new
variables (P, Q,-) and the slow time ¢#* The new Hamiltonian is then given in terms

of the old Hamiltonian and the generating functions by the following expansion:



H (Pi'Oi, t*:e) = HO(Ph t*) + eHI(Pi,Oi, t*)

(2.6a)
+ e2H2(Pi,Qi, t*) + e3 H "PpQi, t*) + 0(e*)
where
HoiPi, t*) = hO(Pi, t*) (2.6b)
H\(Pi,Qi, t*) = Ai(Pi, t) + h\{PitQb t*)
(2.6¢)
N
—+~7 sL(pi.i D A-(pl.01.1%)
nTl dP* dg»
N
PO, %- iz+h + X |E|T
+ 3 + 3 a™a™L 3 anaF,
dPi d(ii a<l < dpi (2.6d)
N N
+ V V (1 32in ap. afi aid 32F| 3F,
<< =< 2dpdps i, dq, dp, dq,dq] dPj
N +
Sl dPi *<ii ap, a?,
_y atatr+y a\ aff + y atafr  y a'laF,
S a,,i  °°t aPi & 3Pi dpi  (2.6e)
_yyadl(anafl+ aFl aft +vy y azAl aFt aF]
— Jt? aP< ZgMGjdPj dg ™ qjdPj dPidPj
N N , . . . . N N
"y Yy (CGA| vaffi gjiafi . ahi _yy 3 afaf
<< == dpl dp, dq,dq] dq, dP,dq] dPj Y dp,dqj dq, dP,
; N N +1 N N A F°3F'
% y }I{[ dpidpj dpidpj dqi dqj 2 X X agq’\qj %iPildP]l'



LY Y Y 310,11 33F, 3F1 , 32F 3;F, af,
t7l fTI aPi "Sq,aqj3q#zdPj dq,iq, hP:dqt dPk

N N N - °

N N N
’ 1 33A0 BF
- X _]¥f X dPidPj &<fi *<IMk dPk 6X X dpfiPidPk d<li dgj dgk

All expressions in (2.6) are evaluated at the new coordinates, (P i, Qi).

As mentioned, one of the significant difficulties with the very slow time
variation is the need to calculate high order expansions to ensure uniformly valid
solutions for very long times. As can be seen from (2.6¢e), the O(e3) Hamiltonian
has an extremely large number of terms; an algebraic computation and simplification
for any specific case is sure to take weeks of calculation by hand, and more
significantly has a relatively high potential for undetected errors. In fact, one of the
difficulties with perturbation techniques in general is the proliferation of higher order
terms due to the Taylor expansions of even relatively simple O(1) problems.

This difficulty can be resolved by using a symbolic computation program (e.g.,
SMP, MACSYMA, or Mathematica) to keep track of the higher order terms in the
expansions. In particular, averaging is especially suited to symbolic computation
since the mathematical procedures involved (e.g., Taylor series expansions, collection
of like powers of a small parameter, and integrations of sinusoidal terms) are simple
and fairly mechanical, but algebraically tedious. As a result, all of the derivations in
this paper have relied heavily on SMP.

At this point in the procedure we choose Fj and F2 so that /I and H? have
all Qi dependencies removed. This is the part of the procedure referred to as
averaging, as all oscillatory behavior is removed from the Hamiltonian (see [17] for

details). The new Hamiltonian then has the following form:

H(Pi,Oi,t*e) = E0Pn t*) + e Ih(Pi, t*) + e E2(pn'®)
2.7)



The Qi dependence has been removed to O(£2) and the canonical differential

equations become

don _ BEo b py e ¥ Py ey rer  (Pie) + 0y

dt  dp, (2.8a)
O(c4)

dr (2.8b)

Equations (2.8b) indicate that the Pn are constants to Ofe2) for times ¢t <7, with
T=<9(1/£2). This constancy for very long times is known as adiabatic invariance,
and the Pn are called the N adiabatic invariants for this problem. By asymptotically
inverting the near-identity transformations, we find formulae which give these
constants as functions of the original variables

Pn = An(Pi,<li, t*; ¢) = pn — e ke C pot%)

a<Tn
(2.9)

N
(Pi, 0i, t*) + ~ aV, ap,

y a<TvaFy a<l; = constant + O(£3)

where the constant value of the adiabatic invariants can be computed directly from the
initial conditions. Equations (2.8a) can be solved by quadrature since the equations

uncouple due to the constancy of the F,

=) B e a .

+ ZIH2 (Ait t*) dt* + 0(e3) (osc.) + O(el) (avg.)

n

These solutions can be substituted into the averaging transformations (2.5) to find

pn(t) and On(?), the solutions for the original variables



(AL, Qi(1), 1*)

do
(2.11a)

+ O(£3)

(2.11b)

+ O(£3)

This procedure is exactly parallel to the derivation in [17] except for the #* = e2¢
instead of the 7= ez slow time dependence. The main difference is the explicit

calculation of'the O(£3) terms to account for the very long times involved.

2.2 Reduction of Resonant Hamiltonian Systems. If a resonance occurs at
any time in the system (1.1), the solution (2.11) becomes singular and is no longer
valid. We now look at the case where a resonance is present and discuss the changes
to the previous analysis necessary to account for this.

A resonance occurs in (1.1) when a critical combination of the 0(1)

R
frequencies, o(Pi,t*) = ™ r*) where the rn are integers, vanishes at

n=1

some time. The singularities in the solution (2.11) arise due to the presence of a in
the denominator of the near-identity transformation, which removes the <. dependence

from the Hamiltonian. Therefore, when a resonance is present in (1.1) we first isolate

the resonance into a single angle variable before eliminating the rest of the gr We
define a time-independent canonical transformation from the (p,-, <7,) to new variables

(Pb Qi) given by
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< - <7+ Tt P\ = Pi

Pi - j*-Pi

D= <M Pi

PR - PR ~ ApPi

Q.12
PR+ - PR+I
ON = </ PN = PN
which isolates the resonance into a single variable, , allowing elimination of the

rest of the ¢i from the Hamiltonian. The new Hamiltonian is simply the old
Hamiltonian with the (Pi,qi) expressed in terms of the (Pi,qgi). Because this
transformation has isolated the resonance variable, this new Hamiltonian can be

written in the form

h (0" qit t¥\ e) = hO(Pi, t%)

+ e [ Ai(Pi, t*) + huiPiigx, t*) + hlis(Pi, gh t*) ]
(Z.1J)

+ e [ &2(P> **) + $2c(P*» Qi’ ?*) + fosCPi, qi, t¥) ] + O(e3)

The underbar still represents the averaged part of the Hamiltonian, while the underhat
indicates a zero average over the . The critical terms, indicated by a subscript c,
contain all resonant behavior associated with -, while the remainder of the
oscillatory part, indicated by a subscript s, contains all nonresonant terms.

We now proceed in the same way as for the nonresonant case, using near-
identity averaging transformations to eliminate the nonresonant portions of the
Hamiltonian, #4j3, transforming (p”qi) to (Pi,Qi). The transformation formulas
are altered slightly since we no longer are eliminating all the C?,. We still use a
generating function of the form (2.3) so the asymptotic expansions for the (p,, g,) in

terms of (Pi,Qi) can still be found by (2.5). Since the oscillatory pan of the

12



Hamiltonian has been split into resonant and nonresonant terms, equations (2.6) are

now given by
HoiPi, t*) = hoiPi, t*) (2.14a)

HAPI'Qi,I*) = hiPi, t*) + hiciPiyQi, t*) + his (27 )

(2.14b)
NP, 1) PitQi, t%)
°Pn °gn
H2iPi,Oi t*) k2 + kic + kis ~ >
— ap, (2.14c)
+ 3 dh™dp” + Y (Mic aF! Y af.i
ap, 7 ap-ap, a<h . afs

_ali£aFl + ~ Y (1 a2Ao akFtaFt dip d2F, dF, |

a<li a™! <1 2ap.apy at- ap, dq,; dqgj dPj
and
~
H2(Pi,Qi, t¥) = (I3 + h3c + A3, v ‘pr jf 2
o aq (2.14d)
V -
atic aF2 _ Y dhls dF? Y ( dhlc j dF2
dP, AL dq; dP; Fa dp; dpi dq;
+Y +V (A£+A25 Jarl -y N2, - dhlcdF,

dpi dq; dp. dg, dq, dP: dg, dP,

"0 (pF, apr + ar ar, 1Yy Dl gr gr
X ap, ala'yap atatapy N apap; at 2

VY t 2iii+ a~  &F, dF,
T?3Ti  dp dpi dPi  dq‘dqj BPJ

13



t 3 3 ™1, alF, d2hls aF, aF,
dqi dPidqj dp”™qj dqi dPj

>, 3%, 3V, 3F, S2*!, 3F, dF,
<] <! aFjan, aF,-  dpidql dq, aF,

, | > 3 (3241 , 324,, , 32A1, JSF, 3F,
2 Tt dPi"Pj dPifyj dpidpj dg-, dqj

, 132AlcpF.\2 |, | ~ ~ d2hlsdF,dF,
2 ldpJ 2 £ f~* dq;dqgj dP; dPj

, Y Y 3 ad4o(d1 a3fi afi , a2/m 32 F,
<t ;T? tT[ dpi 2dqldg]dgk dPj  dqidqsdPjdqk dPk

v > V 32io 3F, 32F, 3F, !

. : iy > 3 a34o 3F, dFidFi
<< JTf *42 NPy <7 6 =~

{T[ dpidpjdpk dq, dgj dqk
We again choose F, and F2 to eliminate all nonresonant terms from the Hamiltonian
to O(e2). The new Hamiltonian is now of the form

H(PitQht*;e) = UO(Pt™)

+ e [ifi(Fp t*) + Hic(Pi, Ol t*) ]

(2.15a)
+ e +
+ £3 [ )+ thpiQ> *¥) ] + 0(e*)
where
Uo(Pi, t*) = i)(F,, t*) (2.15b)
Ei(Pi,t*) = Ai(Fp /*) (2.15¢)
Hlc(PrQlLt*) = (2.15d)
if2("P = h2(Pn t*) + Z2(Pi, t¥%) (2.15¢)

14



H"Pi.Qi.n = *2,(',i.el.<¥) + z2c(pj,el,I*) -
< dp (2.159)
and
ThVi, <¢) = A3(Pi. <*) + Zi(Pi, (*) + |- =0
3' (2.15g)

where Z2 and Z" are the averaged and resonant parts respectively of

N - N N
A4 + IV V a2Ao 9F! 3Fi

- 1 * [] () . .
Z2(P,-,(21, t*) aPi i Zﬁ'lﬁ‘l ApAP] A A o6

and where Z3 is the averaged part of

| d2tlic Muae? + ~7 dhis dF:

NP7 ; %
27 01, 1) 2 dgx? dPx dpi dgqi

(2.17)

+ 1y V ( d2k | A27e | d2hls  dF, dF,
2 /ft dpidpj dpidpj dpidpj a?, dqj

e N N N
tily Yy  aho AR, 3F, 3F,
6 <“t ““t *T! dPidpjdpk dqi dgj dqk

Notice that contains reference to an arbitrary averaged function Fj . The choice
of E\ therefore is significant in two ways: in accounting for averaged terms of
0O(e3) which become O(e) terms over long times (r* ofO(1)), and as a contribution
to the resonant terms in the O(e2) Hamiltonian.

Because 02 G3..... O# are removed from the Hamiltonian to O(e2), the
associated conjugate momenta, F2, P3,.._, are constants to O(e2). In the case
of resonance, these are the N-1 adiabatic invariants which remain valid through the
resonance; they are constant to O(e2) for times ¢ <>T , with T=0(l/e2). By
inverting the near-identity and isolating transformations, we find the adiabatic

invariants as functions of the original variables (p,-, )
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F
Pn = An(Pi> Qi 1¥\e) = Pu + f-P\ ~ A =~ (pi> 0, *4
ri

On
(2.18)
+ ei ’ i, '* S = instan <
\ %é‘n(P.W, )+~dQndedQ/' tant + O<£3)
forn =2, 3, ..., N, where the evaluations of the partial derivatives at (pit are

replaced by the substitutions (2.12) (note that rn =0 forn >/? ). This function of the
original variables is a constant of the motion to <9(e2) along solution trajectories.
Several different systems have been examined by the averaging procedure and the
original systems numerically integrated; the results are then substituted into
expression (2.18), verifying that the adiabatic invariants are indeed constant to
CKe2).

One of the most notable advantages of symbolic manipulation programs is their
extensive programmability. The entire procedure just outlined in section 2.2 can be
fully automated on SMP. After entering the Hamiltonian in standard form, the
programmed steps include isolating the resonance, eliminating all nonresonant terms
by solving for the O(e) and O(e2) generating functions, solving for the averaged
0(e3) terms to determine , simplifying the final Hamiltonian, and inverting all the
transformations for an asymptotic solution of the adiabatic invariants in terms of the
original variables. On a VAXserver 3500 running Ultrix-32 v3.0 with 12 MB of RAM
and 51 MB of virtual memory, SMP version 1.5 took approximately 20 minutes of CPU
time to execute this procedure for a 2-D problem. The peak amount of memory
required was approximately 12 MB. This procedure probably would have taken less
time and have required less memory if run on later versions of SMP or perhaps on
another symbolic manipulator; the factorization algorithms (which are time and
memory intensive operations) have been much improved.

In section 2.1, for the case where no resonances were present, we found a

solution to the original problem in terms of the N adiabatic invariants, which were
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constants dependent on initial conditions, and N quadratures for the On(z). When a
resonance is present only N-1 constants are found, and the system of differential

equations of order 2N is reduced to a system of order two, for the variables Pr and O\

OV _ o) + & ) + e
dt darp, BP:
(2.192)
A %
2 =2 fP. t*\ J. ﬁ)z’,@/\h)] L 0(£J)
~ = _£ "m(Pi.Qi.i*) - €2 (/,,,Qi.i*) + 0(£3)
~ 0Qi (2.19b)

This is the reduced problem we consider in the section 3 for sustained resonance and
in [2] and [3] for transient resonance. The remaining Pn are all constants and the
remaining (?,,, n=2, 3, . . ., N are found as quadratures dependent on the solution for

the system (2.19)

'BH(

BP. {pxrme, P2, ..., Pn, t*)dt*

On(t*) =

+i T BYrpia™), P2, PNt
sl s,

.20

BH
+1 AN 1), P2, PN, ON™), t¥)di*
£fBPf( (%) 0N, 1)

Vigz (PI(t*),P2, ..., PN, t*)dt*

BH
V' ap (PIEDP2 VG, 9)dr* + 0(L)

All that remains is to find uniformly valid solutions to the two coupled differential

equations (2.19) throughout the resonance when <7(/>i, r*) = 0.
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3. The reduced problem for sustained resonance.

3.1 General solution procedure. In this section we examine the solution for
the reduced problem (2.19) generated by the averaging procedure given in section 2.2.
This system of two differential equations isolates the resonance behavior present in
the system of 2N equations (1.1). If the leading order frequency makes a slow
passage through zero, then transient resonance is indicated, the results for which are
presented in [2] and [3]. However, should the leading order frequency remain near
zero for long times, the system then exhibits behavior known as sustained resonance
or phase-locking. Sustained resonance is possible only when the frequency cis a
function of P{, indicating that it is a strictly nonlinear phenomenon.

Since the sustained resonance condition is that <T(/>1, t*) » 0 for long times,
t* of O(1) or longer, it makes sense to solve for the critical resonant momentum

Pc(t*), which satisfies
<t(/>c(r*),r*) =0

and assume that the actual momentum Pr is near Pc(z*). It is easy to show that the

appropriate rescaled dependent variables P* and 0* are

pi = Pc(t®) + ell P*(t;e) (3.2a)

Qi = OQ*r.e) (3.2b)
1
and that the rescaled time 7 is

t=el2r (3.2¢)

This gives the expansion for the equations in the new variables

d%_% L (Pe(/), %)
(3.3a)
+ el + NPAt™), t*) + SO Lc(t*),0% t%) ]
0/>2 2 or or
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+ £[31££° 1+ §lalp. +AH, p.,
dp3 6 a/>2 dP?

t [Melt S eltll&telt ™ &L+
3Pf 74 ap} 2 ap3 2 3> 3F )

and
AL ,,ZdZHIc
: Pc(t*),0%,t*) -£ Pc(t*),0%,t*) P*
ir dQ(c( ), 0*,t%) deP(C( ), OQ*,t%)
_eiTyp— + + N/ =c(1®),e*,<*) i

_e32[ a N(Pc(xr™QMLt)p*3- + | SCBe(r®),(2%*,r*)/>*] + 0(£2)

3(2a/13 6 dQdP ¢
(the subscript | is dropped from the partial derivatives). One effect of this rescaling is
that the order of the ratio of the slow time r * to the new fast time Q is even higher
relative to the order of the first perturbation term, éé= £ /] , since t* = /;3 ;‘ This will
necessitate a still higher order expansion in £ due to the relatively slower time
variation than with the #*=e2 ¢ scaling. A second result of the rescaling is that the
equations for P* and Q* are not in standard form. This question will be addressed
presently.

Since the O(1) problem is linear in P*, we can differentiate (3.3a) again with

respect to ¢ to derive a single second order equation for 2*:

* 3er dHlc (PM*),0*t*) = eO((2*,M,r*;e)
dt ~ ~ dt 3.4)

/\ ~

where t* =e # Equation (3.4) represents a very slowly varying nonlinear oscillator

A*
with weak damping term e D . In general, (3.4) is not solvable explicitly, even with

£=0, as the solution involves the inversion of the integral
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t+ ¢ do
mJ/E- OpHu(Q)
3.5)

where
<p = | E(M'*). <*)

(3.6)

which is expressible in terms of known functions only for certain Hlc(Q). For
example, if HXc(Q) is a polynomial of degree less than or equal to four, then the
integral can be expressed in terms of circular and/or Jacobian elliptic functions. This is
also the case if Hlc(Q) contains a single sin (coQ) or cos (coQ) term.

Bourland and Haberman in [5] have extended the procedure of Kuzmak-Luke
to solve the nonlinear oscillator (3.4) for a general potential when the slow time is
t=et instead of t*=£ z However, the procedure of Kuzmak-Luke proves
impractical for the * =e ¢ slow time, as computation of the higher order terms
(terms which are necessary for a uniformly valid O(1) solution) requires finding
particular solutions to a sequence of linear but non-constant coefficient second order
differential equations whose forcing functions contain increasingly large numbers of
terms. The use of symbolic computation in finding these solutions is limited, as the
integrals prove difficult in general and the integration library may or may not contain all
the necessary forms.

The procedure of averaging, however, can still be used by casting (3.3) back
into standard form (1.1) through an action-angle transformation, since (3.3) is

derivable from the Hamiltonian

p* do

H*(P* Q% t*e
(P*,Q ) 5 P

(Pc(t®),t%) + Hic(Pc(t®), 0% t*)
(3.7)

2r p*3 ]
, Mz P py
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+ZI [TG™> 0F £ P
dr  * 3P3 24 dP) 2 3/ 2 #2c]

+ e} [ déy p*5 + P*3 | d3ffic P*3 + 372 px 4 9r0c i+ 0(ed)
aps M0 dp* e dPi 6  ap ap |
The action-angle transformation can be found by solving the Hamilton-Jacobi

equation for the (9(1) Hamiltonian

NjfrjldW\2
2dP\dQ*) + Hic{Q*) = £0(P)
(3.8)
The generating function IV, a function of the old coordinate and the new momentum, is

found to be

WQ*P) = IV £0(p) - tfic(0) JO
(3.9
and the old momentum P* is given by
. - %
iy 2 (£0 - HXe(Q*)
P* =
CTp (3.10a)
The new coordinate, g, is given by
%
r
q = ! dQ
dp wm(7Fpdp) V £0(p) - TCJO) > >0k,
2 (3.1UD)

Relations (3.10) are mixed algebraic relations which must be solved simultaneously to

find the explicit transformation

0* =0%*(p, q) P* =P*p.q) (3.11)
Notice that an inversion of the integral (3.10b) is necessary for this calculation. This
is exactly the inversion required by (3.5) in solving the single second order differential
equation. As one might expect, this means that finding the transformation to action-

angle variables is equivalent to solving the (9( 1) problem.
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An additional condition is necessary to solve for the transformation. The

functional form £0(p) is determined by requiring p to be the action, defined by

p = toP* dQ*
J (3.12)

where #* is held fixed and the integral is over one period of the motion in the P*-Q*
plane. Equivalently, the periodicity in the new variable g of the old £)* can be
constrained to be independent of p (i.e., 0* =0*(p, q¢) has fixed period in ¢
independent of p). It has not always been recognized that this restriction is essential
for the transformation to standard form. Although we can choose E( to have any
functional dependence on the new p and thereby eliminate g from the O(1)
Hamiltonian, the resulting differential equations will have terms of O(e) and higher
orders which are secular (i.e., grow linearly in ¢g) for any choice other than the one
specified by a constant multiple of (3.12). Although this formulation cannot be done
explicitly in general, an implicit definition from the integral
P = £ VEOP) - HIC/0% dO*
(3.13)

can be used.
The relations (3.10) and (3.13) give the explicit substitutions of the form (3.11)

which transform the Hamiltonian (3.7) to a new Hamiltonian which is a function of
(P, q, %)

hip, q, t*\ £) = H*(P*(p,q,t*),0*(p.q.t™),t*e) + €3t

at* (3.14)
When expanded this expression has the form

h(p,q.t*;e) = EOp, t*) + ehx(p,q.t™)

+ e2h2(p,q.t™) + e’ h2(p,q,t™) + O(ed)

(3.15)
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Since we have chosen (p, ¢) to satisfy (3.13), both P* and Q* have fixed period in ¢
equal to one and independent of p. Also, the O(1) Hamiltonian is independent of ¢,
which means that (3.15) is in standard form (1.1). (In section | we stated that
standard form (1.1) should be Ziz periodic in the <7, but it is only necessary to have a
fixed periodicity. If we desire a 2K periodicity, we simply divide the integral in (3.12)
by 2k.)

The transformations (3.2) and (3.10) have removed the resonance from the
system and as a result, the averaging procedure given in section 2.1 can be applied to
(3.15) to remove the ¢ dependence and to solve for an additional adiabatic invariant
Aip, q, t*; e).

To proceed with the averaging we split the Hamiltonian (3.15) into its

oscillatory and averaged parts
h(p,q,t*-,e) = hi(p,t*) + e [Ui(p, f*) +/»i(p, I, r*)]

+ £2UL2(P, t*)+h2(p,q,t%)]
(3.16)

+ e3[h3(p,t*)+h3(p,q,t™)] + 0(2%)

where the underhat denotes the oscillatory part with zero average over ¢ and the
underbar denotes the averaged part. We define a near-identity transformation using

the generating function

F(P, q,t*) = Pq + 2 F.iP, q, t¥)
(3.17)
+ 22F)(P,q,t*) + ¢ F3(P, q, t¥)

by which we transform (p, ¢) to (P,Q). The only modification from the procedure in
~3

section 2.1 is that an <9(f ) generating function

Hamiltonian should be calculated to O(£ ); this is solely due to the change in the

slow time to fast time ratio (z* = £ ¢ rather than #* = £z #). It is necessary to find
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P=P(P,Q) asymptotically to O(£4) and g = g{P,QO) to O(e3) since average terms

4
of Ofe ) must be found. Extending the procedure which generated (2.5) to these

orders we find

P> =r+ + e
dg a<12 a/’

+ eI r~Y. | NE2ANT +
| K1 < ap  Bg2 BP 2 Bq3 \BP) Bq2? BgBP BP

+ ad  HYF+BJi FiBFjL B~ BF™ + | B3F2IBFA?
Bq? BP  Bgq2 BP  Bq) BP 2 Bg3 \a> 1

(3.18a)
+ B—B—BFI + a~a N\ + BF| B)F) BF!

Bq? BgBP BP  Bq) BgBP BP  Bq) BqBP BP

+ a3kt aF, B2 _ g/ /aVitaf, aV, aF, /aFi
Bg3 Bp Bp  a< latfap/ Bp  a23 a’pla/¥)

_ _1a2Fi aV, fap”™2 + N
6 a<M \BP) 2 Bq2 Bq2BP \BP )

and

PN «) _ X3 pr) BXFY BF1
0 -enP.O.t) - & L kP B
(3.18b)

e3r~J.  dF2 dP\ _ dP| ~2
£ BP ~ BqBP BP ~ BgBP BP

| a3F, (a/M2 + B2F7

4
+ O(£4
T 2AdP\dP 1 pgpp I+ 0

where all partial derivatives are evaluated at the new variables (P,(J). Substituting

(3.18) into

H(P,O, t*\ e) = h(p(P,O.t%),q{P,O,t*),t* h + e4"~—
dt (3.19)

then expanding as in section 2.1 gives the new Hamiltonian and we can solve

s 3
sequentially for Fx, F2, and F3 to eliminate Q to O(e ).



A simplification of the results occurs when the Hamiltonian is a function of just

one p and one ¢. In this case all of the generating functions can be found explicitly in

terms of the Hamiltonian (3.16). This gives

N, S

, %) = t*)d
g4 t%) ) )dq

where we have defined the 0(2j ) frequency

dh:
I dp
Defining the intermediate quantity
y *
Z2(p.q.,*) = klip, q,t%)
Goip, t*)

which can be split into oscillatory and averaged parts
22ip,q,t*) = Z2(P, t*) + £2(P’<*r*)
we then find
— &

F2(P, g, t*) = [h2(P, g, t%) + 22(~ N
<*) j

i . <E> r

AV, /*)J

We define the second intermediate quantity

Klip, q, t*) klip, q, t*
Zipg.®) = £~ P-4 ) klip, g, t%)

dp Goip, t*)
I
+ 11. klip, q,t%)
6% \nop, t*) dp no(p,t*)
4 |-C ki(p, q, t%) - F —>
V n0ip,t*) dp) V Q0ip,t*%)
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which is also split into oscillatory and averaged parts

Zi(p.q.t™) = Z3(p, r*) + %3(p.q.t*)

(3.26)
to give a solution for F3(P, g, t*)
p
F3(P, g, t*) = f]hl'P, , (%) + Z3(P, g, I*)] d
(q)m)lq()(q)]q

! t {P,j;,,, 9_ ..

LAIO(P.'*)  Qo(P.f) A>V.<* dp

i &
l <7’ v*) AT
flo2(P. '*)
(3.27)

< (/o I W

The O(e) Hamiltonian //4 which results from this transformation has also been found
in terms of A0, Ax, h2, h3, h4 and Z2. Z3 but is too long to include here. The final

Hamiltonian with all O dependence removed fo O(£ ) is given by
H(P,t*e) = &O(P,t*) + e Ai(P, r*)
v E [&2(P>"%) + Z2(P,t™)] (3.28)

+ &3 [&3(P, t¥%) + Z3(P, t¥*) + Z~P' £)ThZx ] + o(ed)

n0(P, t*)
*
The new action P is an adiabatic invariant to O(e )
<UL = + cCe’)
dt (3.29a)

Thus the equation for Q is uncoupled

O0(P,r*) + eC2x(.P,t*) + £2[f12(7>1*) + A2.(/>.1r*)]

dt dP
(3.29b)

t e3[n3P, t9) + ~=(p,t*)+ 1-"L A .r*)] + o
dp O
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and the solution is given by

~4.
P = PO+ (3.30a)
= £t
o@*) = Go + nl(po, t*) dt* + Wo. t¥) dt*
e Jo £ Jo
Jft*
[n2(po,t*) + °£. (po,t*)]dt*
0 dp (3.30b)

f[As(po,r*) + Ay=0%) —8——(> 5] drt + 0(e)
dp OO0

valid for times r* of O( 1) where Q 0 and P0 are constants found from initial conditions.

The near-identity transformation (3.18) can be inverted to find P as a function of the

original variables to calculate the value of the adiabatic invariant

P = Mp, q, t*; e) = constant + O(e4)

(3.31)
which again can be expressed in terms of the original Hamiltonian (3.16)
A, g.t*\e) = p + e—- I £i (P, <. t%)
Go(P> '*)
(=
+ £ "TT S
Q0 no? 4P Ifl)
+ 23[X(A3-73) +
flo 10 flo flo3P\flo/ (3.32)

_«L,2+ 13 LLU/2 13 (L.,
fl02' 23PU2 ' 23PW

a2 A3l + OCO
12fl03P2W I
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where all functions are evaluated at the old variables (p, ¢).

The asymptotic solutions (3.30) are easily substituted back into the
transformations (3.18) then (3.11) to get asymptotic solutions for P* and Q* as
functions of time. As seen, the procedure described by equations (3.16) to (3.32)
gives an easily programmed algorithm for a symbolic manipulator to do averaging for a
Hamiltonian system. This is facilitated by the fact that all results can be expressed in
terms of the original Hamiltonian, so that solutions can be found directly. The general

formulas themselves have been derived on SMP to reduce them to simplest form.

3.2 A model problem. In [17], Kevorkian examines several applications
which exhibit sustained resonance: the motion of an asymmetrical planet in a slowly
varying gravitational field, the high altitude motion of a spinning re-entry vehicle, and
the electron dynamics of free-electron lasers. In all of these examples, the resonance
occurs in a single harmonic to O(e). We therefore note that a model Hamiltonian for a

commonly occurring class of reduced problems can be written in the form
t*¥r e) = H P"t*) + e AiP"™t*) sinQj + e2B(Px,t*) (3.33)
where t* = el z, and for sustained resonance to be possible, H) must be a nonlinear

function of P/. The system of equations for the Hamiltonian (3.33) is

dOi L pu %) + ¢ 4 (P sin Qi + e27-(L711%)
dt dPi

dPi (3.34a)

e A(P:, t*) cos<2i
(3.34b)

where (7(P t*) = ~"Following the procedure outlined in section 3.1, we

obtain the following equations corresponding to (3.3) governing the rescaled variables

P* and <2* as functions of f= ell2l.
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O ' Ll | v AR |

. =2 rd3cr p*3  dlA Dl .
Tt ST T eF cosQT]

(3.35a)
-3 ader p*  diA p*® as. ~4,
+ e _—=x N cos2 + , + 0(e)
aps 24 ap: 2 3
>~ = - A(Pc(r*), r*) sin Q* - ¢ P* sin Q*
dr a>
- * e *
_ez a2A /> Qs - dP;(: _)]n
ap: 2 d (3.35b)

e A1 BiinGt + 9
aps o

(the subscript | has been dropped from the partial derivatives). This new system of

differential equations is associated with the Hamiltonian (3.7) which becomes

H*(P*,Q%*¢t*e) = oP(t*) - A(t*) cos Q*

+ e [Cpp(t*) 6 AP(t*) P* cos Q%]
(3.36)

+ 7l [tWO — APP(PH) cose* + A-('F)2* |
24 2 dr*

* *

3 . .
+ & fGpppiry” |~ Appp() T cos@* ¢ SparPH] + O(e)
0
The notation of subscripting with respect to P indicates partial differentiation and all
the partial derivatives of a. 4, and B are evaluated at Pc(r*) and ¢#* so are functions

of the slow time only.

If we eliminate P* from (3.35) we find the following special case of (3.4)

PR+ oPa)A*) sin Q* = & DOHR 1+, e)

dt dt (3.37)
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a very slowly varying pendulum equation with weak nonlinear damping. For the case
£=0, t* fixed, we have the phase plane for Q* shown in Figure 3.1a. The region
inside the heavy line is characterized by periodic motion of O* about a center, this is
the region of sustained resonance. Outside the heavy line, Q* increases or decreases
monotonically. When £=0 there is no way to move from one region to the other.
However if %* 0 and slow variation is permitted, these two effects can cause capture
into sustained resonance (Figure 3.1b) or escape from sustained resonance (Figure
3.1c). The rate at which either of these processes occurs is very slow compared to a
single oscillation. For this reason, higher order terms can have a significant effect on

the long term behavior of the system.

Fig. 3.1b
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Fig. 3.1¢

Figure 3.1 Slowly Varying Phase Planes

Rather than solving the problem as a single second order O.D.E. in O%* the
Hamiltonian (3.36) can be transformed to standard form via an action-angle

transformation, generated by (3.9)

G*
VLO(p) +A4 cos Q dQ
(3.38)

= Asin'M-sin —), 1) - (1 - 12) F(sin'l(J-sin —), i)
Vo | ( k 2 k 2

Here F and E are the elliptic integrals of first and second kinds respectively, and £ is
the modulus (0 < k< 1). The reader will find many useful results for elliptic integrals
in Byrd and Friedman [7]. The generating function W depends on p only through
k(p, r*),definedimplicidy by

P =16V (£<(*) - (1-*2) «*>)
(3.39)

This relation is found by specifying p to be the action for the system using (3.13). The

functions K and Ec are the complete elliptic integrals of the first and second kinds
respectively. Because (3.39) is invertible only in principle, the functional dependence

of the transformation (and hence the new Hamiltonian) on p will be defined implicidy
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only through the functional dependence on k. From the generating function (3.38) we

obtain the old variables as functions of the new in the following form

O* = 2 sin Hit sn(4 K(k) ¢, k) (3.40a)

P* = 2 k~/-z- cn(4 K(k) q, k)
(3.40b)

For this transformation, a necessary condition is that aP and 4 have the same sign. If
not, we simply shift O* by n. The new Hamiltonian #% ip, g, t*| ) is defined by (3.14)

where now

Elip,t*) = A{t*) {2k1-\) (3.41a)

hxip,q,t*) = pr{t*) k{2 kil - 1) cn(4tf(jfc) q,k)
(3.41b)
+ Pni**) k3 cn3(4 K{k) q, k)

hip,q.t*) = plx{t*) sm\k snd K{k) g, k)
(3.41c)
+ p2o«*®) Kl 2 Kkl - 1) en2(4 K{k) g, k) + P23(t%) k*cen*/A K{k) q, k)

h3(p,q.t*) = P31{t*) k en(4 Kik) g, k)
(3.41d)
+ P32(t*) k3 2 Kkl - 1) cnHA K{k)q,k) + P33(t*) k5 cn5(4 K(k) g, k)

+ P34(t*) Eosc(4 K(k) q, k)

and fc is a function of p and ¢* as defined by (3.39). The function Eosc(u, k) is
shorthand notation for the oscillatory part of the elliptic integral of the second kind; it

is defined to have zero average when integrated over the first argument u.

FEosM k) = £(am(u, k), k) - u
*(F) (3.42)

The Pij are functions of r * alone through cr. 4, and B and their partial derivatives, and

are given by
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(3.43a)

A(r¥)
Gp(t*) (3.43b)
p2l(t*) = 2 M(/*)
at* (3.43¢)
. 2A(t*)APP(t%)
hid*
) <IP(1*) (3.43d)
w2 Ai¥¥®) AN me A ("
~31(M) =7 A 5/%)
(3.431)
O - (A
k| = ¢(y)A
fsO*) 4/ A(£? 72 a@) GPPPP™Y) _ 1Q APPP(t*)
15 \aP(t*)J | cP(t%) PPPK (3.43h)
Pue(t*) = 2UA(t*) -d-LI-d11!
34 dr* ( \' A(l’*) (3.43i)

The Hamiltonian (3.41) is periodic in g with period one and has no dependence on ¢ to
0(1); also, all resonance has been removed so that the O(1) frequency will not
vanish. We therefore use the formulas derived in the averaging technique of section

3.1 to eliminate the oscillatory behavior to the desired order. Transforming ip, g) to
(P, Q) according to (3.17) and using results (3.20) to (3.27), we solve for F*, F2, and

F3. The resulting Hamiltonian with Q dependence removed to O(és) is
H = E0 + £2E2 + &4 [#4 + #4]

(3.44a)
where
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Ko = A (2k2- 1) (3.44b)

(2P-1) (£t(*)—(1-¥4 *:<¥)) i4
- 12 A Jf(*) (3.44c)
Vit MUP#R + SM)

2-I{32p-D? Pj- P(l-P)OiAPa - 8/?n0l] - s",2)
24 A
and 1f4 has been calculated, but is not shown here. The variable & is used to indicate

dependence on the new averaged variable P defined by

P =16 1£€c(*) - (A-F2)*(*))
o> ' (3.45)
We can now easily find the solutions for {P, Q) from the canonical differential

equations.

+ + oCe’)
e 4p dp dp  dp (3.462)
b _ %% e
dt (3.46b)

>5 3
Equation (3.46b) implies that P is a constant to <9(e ) for times #* of O(1), since all

terms in P are oscillatory in the Q. Q can then be found as a simple quadrature of

(3.462)

o(t*) - Z_Lf ‘fo (P, t*) dt* + 1 %) dt* + 0(e)

The near-identity transformation defined by the generating functions (3.17) can

(3.47)

be inverted to find P as a function of the original variables

P = Mp, q,t*\e) = constant + O(e ) (3.48)

which for this problem gives
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Jip,q,t*-,e) = 167/2T {EC(l) - (1-72) *(*)

tz pri(nn *<2t2—1) cn(4*«>?7m«

+ y312a%) *3cn3(4 *(*)<2,%)}

-2 tA:01:)(8A j321sin-1("sn) -h
2 VA3 <p (3 49)

+ (Er(fc)(1-2/:2) - AT() (1 - £2))

3Vid 3 <Tp
*4AG3P0N+2P23) - (Pn+ Pn +$ Pn))
+ @ Tk —(Z—K2) en2((2k2-1) Pu + k) Pn cn2))

2vA3 cP (1 - i2)

+ — N en2 (2 A2 -Dp22 + k2 P23 cn2)

t N—=T7="(BAQBN+p3) - 52 +/12)2)]
2y A3 Op

A3
The O(e ) term has been calculated via SMP but, again, is too long to include here.

A3
The entire expansion to <9(e ) is used in the following numerical verification of the

constancy of A4.

3.3 Numerical results and final asymptotic solution. We determine the

accuracy of the analytical expression for the adiabatic invariant by numerically

integrating the original differential equations derivable from the Hamiltonian (3.41),

then substituting the results for (p, g) into formula (3.49). Because /& does not

explicitly depend on p, however, but only on p through £, it is easier to set up the

system of differential equations to be integrated using the variables ¢ and k, which we

have done for purposes of numerical verification.
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We consider two test problems to numerically verify our results. Both are

modifications of examples resulting from physical systems which exhibit sustained

resonance. Problem I is specified by the functions

(HPi,t*) = 1 - 1 + (52 21%)2

(3.50a)
A{Pr,t*) = 2(5/2~21%)
P (3.50b)
B(Puf) = <1+5/2-21%)V
8P13 (3.50¢c)

which correspond to a slight modification of expressions used for the free-electron

laser problem considered in detail in [2] and [4]. The equations which result for P{

and QI are
dOoL = { _ 1+(/2-2r*)2 e 2(V2-2r»)
d sin Ci
! Pi Pi
(3.51a)
£2 3(1+ (12 =-2¢t%)2)
8 Pi
dP, 2(V2-21% »
The second test case, Problem Il is specified by the functions
0<JPx,t*) = f2P/Z- (P12+ m2(r*))ll (3.52a)
. G)2(r*)
MPi, t*) =
) 2 (P? + (02(t*)U (3.52b)
B(Put*) = 0 (3.52¢)
where we let
co(t*) = 2e~2t (3.52d)
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These functions give rise to the differential equations

= 2Pl - (Pf+coHtY)T ., —1 v Sinj2i

4 (P2+0)2(t*)) (3.53a)

A= 029

dr 2 (P2 + colripu “©

(3.53b)

These functions are a modification of the equations derived from the spin-roll

resonance model originally proposed by Kevorkian in [13] and [20] and discussed by

Kath in [10] and [11]. The primary changes consist of a reduction of order of the

original system, and an exponentially decreasing function for co so that motion is now
outward in the potential well.

For the calculation of the adiabatic invariant, we first examine Problem I for the

initial conditions £ = 0.5 and ¢ = 0.0 at r* = 0.0 and for the value e =0.1. We find the

numerical solutions for k£ and ¢, and in Figure 3.2a we graph p calculated from (3.39)

and the adiabatic invariant 4 from (3.49), using these numerical solutions.

i

i
Y0
N
w
q
0.0 0.2 0.4 0.6 0.8 1.0 1.2
t*
Fig. 3.2a
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Fig. 3.2b

Figure 3.2 Adiabatic Invariant — Problem I

As expected, the function 4 proves remarkably constant, particularly in view of the
large value of e. In Figure 3.2b we show an enlarged version of 3.2a and see the
oscillatory behavior of 4 associated with the O(e ) oscillatory Hamiltonian not
eliminated by the near-identity transformation.

We can verify that this error in the constancy is indeed O(£ ) by choosing
several different values of £, finding the magnitude of the oscillations numerically, then
using a least squares log-log fit to calculate the order. Using £=0.1, 0.05, 0.02, 0.01,
and 0.005 and the fitting equation

i Is K
\max A - min A\ = C£ (3.54)
we find that the least squares fit gives AT=4.012 (with C=5.603). This result is

shown in Figure 3.3.
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K — 4012

Figure 3.3 Order of the Oscillatory Error in the Adiabatic Invariant

There is a second contribution to the 0(84) error associated with the adiabatic
invariant; this is due to a non-zero slowly varying average value for 4. When
equation (3.46b) is integrated to find P (the adiabatic invariant) as a function of time,
the 0(84) slowly varying oscillatory integrand gives rise to the solution,

P = constant + £4 [N(f, /*) + /()]
(3.55)

This effect is seen more clearly in the integration of Problem II. Using initial
conditions it=0.5 and J=0.0 at r*=0.0 for the value £=0.1, we integrate

equations (3.53) and use (3.49) to calculate the adiabatic invariant with the result

shown in Figure 3.4.
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Figure 3.4 Averaged Drift of the Adiabatic Invariant — Problem II

The drift in the average value is small but definite. We can again show this
effect to be 0fe ) by integrating the equations for several different values of e up to a
fixed value of r*, then subtracting the final average value of 4 from the initial average

value in the following expression
|\ AdVg(fina[) — Aavg(initial)\ = DeM ~ 56"

for e = 0.1, 0.05, and 0.02, we integrate the modified spin-roll system to #* =0.5 and
find M = 4.050 (with D = 110.51). This fit is shown in Figure 3.5.

Having numerically verified in the manner described above that the two
sources of non-constancy in the adiabatic invariant are O(£ ), we may reasonably

3
conclude that the asymptotic formula (3.49) derived for 4 to O(£ ) is indeed correct.



Figure 3.5 Order of the Averaged Error in the Adiabatic Invariant

In the verification of the average drift of the adiabatic invariant, we have not
used smaller values of e as numerical integration becomes increasingly difficult. This
is one of the primary reasons for solving the problem asymptotically. For example, to
solve the problem in the range #* e [0.0, 1.0] for a value of e = 1/1000 requires an
integration to a time of one billion on the fast time scale 7z Using FORTRAN
subroutine DDRIV with a relative error tolerance of 1.0 x 10-14, we find a numerical
integration of Problem I for e = 1/10 takes only 2 V2 minutes on a VAXserver 3500;
correspondingly, the e = 1/1000 case would take roughly 1,700 days. Even if time
were not a factor, it is very difficult to numerically integrate rapidly oscillating
functions accurately over long times.

The asymptotic solution, on the other hand, requires only a numerical
quadrature for Q from (3.47) which is a quadrature in r*, and therefore takes the same
time independent of the value of e (only depending on the numerical accuracy required

for a valid solution). Moreover, the asymptotic solutions become more accurate as
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£ -» 0, so that the very good results obtained for these larger values can be expected
to get even better.

Since we know P to be a constant to O(;/Eg3) and we have the time dependence
of O specified by (3.47), we can express the variables Q* and P* as functions of time,
hence the original Or and Py as well. First we invert (3.45) to find £ as a function of
the adiabatic invariant and f*. Defining

/() = £,(%)- (1-2)Ar(b) (3.57)
which is a known invertible function, then

k{t®)
(3.58)

can be easily computed, where the value of 4 is found from (3.49) and initial
conditions. Because Q* and P* depend explicitly on k rather than on p, we express
the final solution in terms of the averaged variables & and O, of which we know the

time dependence from (3.58) and (3.47). The asymptotic solutions for Q**) and
P*(t*) are given to O(e2) by

O*(t*) = 2 sin'l (k sn(4 K(k) O, k))

+£Q %Ak end@ K(KOK) sin'l (* sn(d K(k)O, k)
A

+ e2 [™M2] *2hcicn - k cn2 - sn dn sin"l [k sn)

24 k(1-P)

+ 4A(BBRK232) —iPn+PnWPn + SPn)}
24 A2 (3.59a)

X (Eosc cn _ sndn)
Kk k(l-k2)

+ 8A (4 P2+3723) - 32 -8 pn N2 -15/712 = ™ dn
16 A2
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+ -2 +,£12"  k sin'l (it sn) (2 k£ cn2 - sn dn sin'l (it

SH))]
AAIl
and
[>FE) = 2% (K O,K)
) Vo)
N 2it2-1)j3n + it2)312 cn2 + 210t (2 y3n + /J12) sn dn sin'l (it sn)

> £1 2VIn 1
- £2 [ R (cn sin'l (jt sn)(1 + 4 2cn2-2 jk 2)

2f4~o0” k (1-it2)
+ it sn dn (it ZSC2 — cn ))

gl + 21it2cn2-2 it2) r A= o x2f+ -Wr il2
+ N en(4(2331n+ 1312) [sin | U sn)J

XeiA™NO 3.59b
p (

+8A (P22 +723) ~(2  +PnW P\ +35PI2);

+ {443 7"2+2 P23 - ("™n +/Nh2)U2 +5 P12)}

24VA3 dp KF) N\ -Kk2)
x { (£c(it) (1 -2 it2) - *(it) (1-i2)) cn (1 +it2cn2-272)
+ (£e(MHA-272) - /1:(CHA-P)(1-67*2)) £0ICsndn}
+ PnVPn + Pid sncndn sin-ifjtsnjj
VA3 (Tp
where we define

JrdAr(*)G
cn2(u, it) sin'l (it sn(M,/:))du

0 (3.60)
and where all elliptic functions in (3.59) are evaluated at the arguments (4K (k)Q, k).
The known functional dependence of A(7*) and Q(¢*) on time from (3.58) and (3.47)

is used in the expansions (3.59). Although these expansions are relatively large, they
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still can be evaluated simply since SMP can automatically generate FORTRAN code
for these expressions.

The equations (3.59) also represent a direct transformation of the Hamiltonian
(3.36) from the variables (P* Q*) to the final averaged variables (P, Q)
encompassing both the action-angle transformation and the near-identity
transformation. These solutions will be valid to (9(e) for f* of <9(1) if the e4 //4
term is included in the integration for Q(z*). For (9(1) accuracy it is necessary only to
integrate the 110 and 1/2 terms as HI = M3 = (. The solution for the original problem

(3.34) is simply given by

Il
|
&

o (3.61a)

/> = Pc(t*) + eP*(t*) (3.61b)
where the expansions (3.59) are used for Q*(r*) and P*(*).

The accuracy of these asymptotic solutions can be found by comparing an exact
numerical solution of the original equations (3.34) for and Py with the asymptotic
solution given by (3.61) and (3.59). Using (3.51) for Problem I and given the same
initial conditions as for the calculation of the adiabatic invariant, we find both the
asymptotic and the exact numerical solution for r* e [0.0, 1.2]. In finding the
asymptotic solution, we have not included an integration of the ~4/3p term in the
calculation of Q(*) from (3.47). In Figures 3.6a and 3.6b we show both asymptotic
and numerical solutions for Or and P in the range /* e [1.1, 1.2], the last part of the
solution region including escape from sustained resonance. In 3.6b we include a plot of
the resonant momentum Pc(?*). As seen, the agreement is almost identical to

escape, except for a very small phase error presumably due to not including the
"H*/dP term in the £? integration.



0.95 1.00 1.05 1.10 1.15 1.20

0.90

Q j asymptotic

Fig. 3.6a

P asymptotic

Fig. 3.6b

Figure 3.6 Asymptotic Solution for Problem I
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When the same comparison is performed for Problem II with the same initial
conditions as for Figure 3.4, the results for keeping track of the final phase are less
satisfactory than for Problem I; but the agreement between the numerical and
asymptotic results is still very good. In Figures 3.7a and 3.7b, we compare Q! and P!

found asymptotically with the numerical result in the range #* e [0.0, 1.0], In 3.7b we

include a plot of the resonant momentum Pc(z*).

Fig. 3.7a
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P. asymptotic

Fig. 3.7b

Figure 3.7 Asymptotic Solution for Problem II

A

The difference in the phase can be accounted for by including the <9(¢ ) term in
the integration for Q in (3.47), which in the case of Problem II contains terms which
grow exponentially due to the choice for a) (¢*). This correction is seen in Figures
3.8a and 3.8b where we have included this term in the integration. As the asymptotic
solution becomes nearly identical to the numerical solution up until the point where the
motion ceases to be periodic, we only show the final few oscillations for comparison of

the two solutions to see the improvement over Figures 3.7.
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Figure 3.8 Asymptotic Solution with Corrected Phase - Problem II
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As seen, the main error in the asymptotic expansions arises due to error in the
phase of the oscillations. The amplitude, however, is accurate to the order of the
expansion. We can use this fact to quickly calculate a very accurate predicted time of
escape for a system initially caught in sustained resonance. Given a certain set of
initial conditions within the potential well, we want to know at what time, if any, the
motion will escape.

From (3.59a) for Q*, the magnitude of the oscillations is governed to O(1) by
the value of &. If £ is an increasing function of r* then Q0* will have oscillatory motion
slowly moving outward in the potential well (as in Figure 3.1c). From (3.58) for
k(t*), since ™ is a constant and 4 a monotonically increasing function, this condition
simply translates to

d >0
(3.62)
for motion outward in the potential well. The opposite situation occurs for .
decreasing.

When £ is increasing, we identify the time of escape at the point when Q*
first exceeds the value at one of the saddle points + 7z. We use this definition of
escape rather than an energy condition since cases exist where the energy is
decreasing, yet the motion is outward from the center of the potential well. This is
seen in Figure 3.9a for Problem II for initial conditions £ = 0.7 and ¢ = 0.0 at ¢* = 0.0
and for the value %=0.1, where we have plotted the energy calculated from the
Hamiltonian and Qi (scaled) on a common axis. At the point of escape the energy is
clearly decreasing and has peaked much earlier. In Figure 3.9b we show the slowly
varying "phase-plane" that is typical for decreasing energy escape. The overall
motion is outward in the potential well but inward in O\, which measures the kinetic

energy.
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Figure 3.9 Escape from Potential Well
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In order to predict escape, we asymptotically expand the quantity

sm (2 /2) (3 63)

using (3.59a) for Q*. When this quantity approaches + 1, then Q* ->=4n, which
corresponds to the saddle points in the phase plane. We find an expression for the
envelope of the oscillations of (3.63), given by

kcR(t*;e) = £k(t*)

+g2j 2 P-1) (£,(*) - (/-P) Kpc))
| 4SA2KK (k) (3.64)

X {4A @B P2+2fa) - (fa+012X12 Pn + 5 fa))

t k(1-P) (SAN-S~ "N~ -SI
96 A2 /

-2 fa sin'l(k)
4Ak

where k(t*) is given by (3.58). If kCR never reaches either of the values £1, then
escape will not occur, however, should the values reach either +1, the motion will
cease to be oscillatory and O* will then increase or decrease monotonically.

Choosing the maximum of the absolute value of (3.64) for the two possibilities

gives the algebraic condition

= | (3.65)

for the escape time #CR, which can be quickly solved.
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Using the test cases for Problem I (3.51) and Problem II (3.53) problems, both
of which have motion away from the center of the potential well, we check how
accurate condition (3.65) is for predicting escape time. Using the same value of
e =0.1 and the same initial conditions at r*=0.0, k= 0.5 and <=0.0, we plot the
maximum value of ACR(z*) from (3.64) and the value for Q! from a numerical
integration of the original problem on a common axis. When ACR crosses | we expect
the motion of 2! to cease to be oscillatory. In Figure 3.10a we have done this for
Problem I and have included the value of k as well. QOr is scaled and plotted to show
when escape actually does occur. In Figure 3.10b we have enlarged the region where

escape occurs to see how very accurate this calculation is.

Fig. 3.10a
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Fig. 3.10b

Figure 3.10 Escape Condition for Problem I

Figure 3.11 is the identical diagram for Problem II. Again, we find that the
prediction from (3.65) is remarkably accurate. Other tests have been performed and

the same excellent agreement is found to well within one oscillation of In fact, ifa

more accurate prediction of escape is needed, the asymptotic solutions (3.59) can be

used to find the exact phase on the last oscillation.
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Figure 3.11 Escape Condition for Problem II

The model problem considered in this section and given by the Hamiltonian
(3.34) contains only a single harmonic mode and no averaged term to Ofe ). Also, the
O(e2) Hamiltonian has been assumed independent of We can generalize this

problem to include averaged terms of O(e ) and a general O(e2) Hamiltonian

H(PuQi,t*;£) = HoCP %) + e [A(>It f¥)sin<2i + aPj, f¥)]
(3.66)
+ £ (PLOL %) + 0(e3)

and still find a solution nearly identical to the one in this section. The transformation
removing the resonance and the action-angle transformation remain the same. Only
the near-identity generating functions are modified slightly, changing the final

asymptotic expansion.
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