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Abstract

This paper presents a framework for multiple specialization of logic pro­
grams that incorporates run-time testing. This framework supports special­
ization on the basis of a compiler-generated “wish list” of requirements that 
enable useful optimizations. In addition, entry mode declarations are used 
to restrict the class of reachable activations. Our goal is to generate code 
containing tests at outer levels of the call tree that guard high-performance 
specialized procedures that are likely to be called.

The starting point for this work is the multiple specialization technique 
of Winsborough, which introduced the notion of a call-path automaton. The 
transition function for a call-path automaton specifies which version of a 
procedure should be invoked by each call in each version of each procedure. 
As a first step, we extend such automata to include “test arcs” that select 
different versions. We then show how to construct an automaton containing 
a given set of tests at given test sites. Finally, we discuss techniques for 
abductively deriving a test .at a'given site that, upon success, ensures some 
property at a requirement site.

06U
£

s
3

U.<o THSJ E £ .eno-*-

•S »■§
■s § s
3 s 3 '= P
^ c | « 'S «- ‘3 -s S3 5 c^ Si ̂3 O, >° t; ~ s o -o
u js oo „ .S' £: 
C D c ^
« o T, • B ! -S'
C SS g '= 8
7. w S3 o « Ee o

T3 10 32 ^ S S o «

8

C C

8. g“ E

>J o
W5 C«

c
£ ^

1 s 2 D. ’o. = 5 -
1 a £ i
o 3 £ O

r> vi ,
c. - .2
>< 1/3 "Su c 2 . o — E■S' U 2 B | g 8 S I s o2 8 b^ - u oft- ^ g

<u . 2 
E 'B - 

u h Oo 2 » ■a 5 c
C D>i
«« c - • — § ©
1- >, 2 Ben•- ca 
u, . ^° o -C
■2 S
! 18
£ E =
8 I|

■r o
3 " ^ o 3 c:8 M £

2 I -8
8 o 2•a j= a
u “ SV3 >•> h

"> -0 Cfl I> Ui

Q. «■> C

^ 2 S3 3 to = 3 Z © O « t . i: o o 
I g of ~ .2 .5 
8. E 8 5 7:1 ““ srie-
J § |2 8 8HO u So a g

1 Introduction

Most compiler optimizations for logic programs can be performed only if 
certain “safety requirements” hold. For example, unification can be simpli­
fied if certain arguments to a call are free or ground, data structures can be 
destructively updated if they are no longer referenced, and independent calls 
can be scheduled for parallel execution. A specialized implementation of a 
program component incorporates optimizations that are safe only for partic­
ular activations of that component. Commonly, procedures are specialized 
according to their possible activations as determined by global flow analysis. 
In single specialization [2, 4, 8, 10, 11, 12], one version of each procedure is 
created to handle all of its activations. In multiple specialization [13], sev-
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eral versions of each procedure are created, and the appropriate version is 
selected at each invocation.

An alternative way of introducing specialization is to explicitly guard 
different versions of program components by run-time tests. Applications of 
this approach, e.g., DeGroot’s formulation of restricted-and parallelism [5], 
have inserted tests directly at the site of the optimization. This can lead 
to excessive testing that, at least in some cases, offsets the benefit of the 
optimization. Nevertheless, this approach has considerable merit since it al­
lows specialization to be directed towards specific optimizations. In contrast, 
specialization based solely on flow analysis allows an optimization to be per­
formed only if an activation enabling it happens to be generated. An ideal 
compromise would be to use tests at outer levels of the call tree to enable 
specialized versions of procedures with repeated inner-level optimizations.

This paper presents a framework for multiple specialization of logic pro­
grams that incorporates run-time testing. This framework supports special­
ization on the basis of a compiler-generated “wish list” of requirements that 
enable useful optimizations. In addition, entry mode declarations are used 
to restrict the class of reachable activations. Our goal is to generate code 
containing tests at outer levels of the call tree that guard high-performance 
specialized procedures that are likely to be called.

The starting point for this work is the multiple specialization technique of 
Winsborough [13], which introduced the notion of a call-path automaton. In 
this context, a version of a procedure is associated with a class of activations 
of its clauses. The transition function for a call-path automaton specifies 
which procedure version should be invoked by each call in each version of 
each procedure. The compiler uses the call-path automaton, together with 
a set of entry versions, to determine which versions of procedures should be 
created and how versions should call each other. This paper extends the 
notion of a call-path automaton to include “test arcs”;’ here, an automaton 
is viewed as a directed graph. Upon traversing a test arc, the automaton 
moves to either of two different versions, depending on the outcome of the 
test. Thus, tests provide additional information about procedure activations, 
thereby setting up new specializations. This research uses the framework 
of abstract interpretation to parameterize the specialization process with 
respect to the type of safety requirements used.

The basis of our framework is an algorithm for constructing a call-path 
automaton containing a given set of tests at given test sites. This leaves open 
the problem of generating suitable tests and test sites from the compiler wish 
list. One approach is to insert tests, perhaps suitably strengthened, directly 
at the requirement site given on the wish list. In certain cases, the results 
of such tests will be propagated by the automaton across clause boundaries, 
enabling repeated inner-level optimizations. More generally, one may wish 
to abductively derive a test at a given site that, upon success, ensures some 
property at the requirement site. We discuss techniques for deriving such 
tests. As a first step, using forward abstract execution, we show how to
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determine whether the success of a given test leads to the satisfaction of 
a requirement. Second, using the condensing technique presented in [6, 7], 
we discuss how to collapse this forward-flow computation into essentially a 
single unification. This process reduces the general abduction problem to 
abduction for a single unification. Generally speaking, an efficient solution of 
even this simpler problem must be domain-dependent. We have worked out 
efficient domain-dependent solutions for two nontrivial domains for deriving 
groundness information and plan to report these results elsewhere.

This paper is organized as follows. Section 2 presents a brief overview of 
abstract interpretation for logic programs and extends the standard frame­
work to deal with run-time testing. Section 3 introduces call-path automata. 
Section 4 sketches the proof that our specialization technique is sound. Sec­
tion 5 addresses the issue of selecting suitable tests and test sites and dis­
cusses abduction. Section 6 presents concluding remarks.

2 Abstract Interpretation and Testing

In this section, we present a brief overview of abstract interpretation for logic 
programs and extend the standard framework to deal with run-time testing. 
Our intention here is to give an intuitive understanding of the concepts used 
in this paper, thus, we omit certain details. These concepts are formally 
defined in Section 4, where the soundness of our technique is discussed.

Abstract interpretation [1, 3] is a framework for deriving data-flow in­
formation about a program. In this approach, the given language is as­
signed both a concrete semantics and an abstract semantics. The domain 
of computation states in the concrete semantics is replaced by a domain of 
descriptions of states in the abstract semantics. Each basic operation on the 
concrete domain is replaced by a corresponding operation on the abstract 
domain. Execution of a program according to the abstract semantics pro­
duces an approximation to the data-flow information as given by the concrete 
semantics. This approximation specifies a data-flow analysis.

In this paper, we are concerned with a particular form of concrete seman­
tics, called a collecting semantics, that specifies the set of all substitutions 
that can occur at each point in a program. In this semantics, the basic 
domain of values Substc is taken to be the set of all sets of substitutions 
ordered by subset, alternately written C and Cc- We formalize the meaning 
of programs in terms of several operations, including the following.

• entryc(k, a, S) is the set of all substitutions that can occur on entry to 
the kth clause when atom a is called under a substitution in 5 G Substc- •

• propagatec{b,S) is the set of all possible substitutions that can result 
from executing the clause body b starting with a substitution in ^ G 
Substc-
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In the abstract semantics, Substc is replaced by a domain Subst^ of 
descriptions of substitutions ordered by The operations entryc and
propagatec on the concrete domain are replaced by the operations entryA and 
propagateA on the abstract domain. These abstract operations are expected 
to approximate the concrete operations in the following sense. We assume 
there is a concretization function 7 : Subst^ —*• Substc such that 7(8) is the 
set of all substitutions that are described by S. For each concrete operation 
fc and corresponding abstract operation /a we require that for all S G 
SubstA, fciliS)) C 7(/yi(5)). 7 is required to respect the orderings on the 
domains, i.e., for all S\,S2 G SubstA, Si Qa S2 ==> 7(5'i) Q In all
but Section 4 of this paper, we focus on the abstract domain and operations 
and hence drop the subscript A from abstract operations.

The examples in this paper are based on the abstract domain Prop 
adapted from [9]. Elements of this domain are propositional formulae that 
describe groundness dependencies between variables. For example, X <-► Y 
describes the set of all substitutions where X and Y are in the same state 
of groundness and all subsequent instantiation will leave them in the same 
state of groundness. Thus, X Y describes the substitutions {X ►-*■ a, Y 
b} and {X Y}, but does not describe the substitutions {X i-s- a} or 
{Y !->■ f(Z),X h-*- f(Q)}. Further, true describes all substitutions (T) and 
false describes no substitutions (i.). The concretization function is given by 
7(P) = {<j|V0 : P holds under 0 o 9} where variable v holds under substi­
tution <t iff <j grounds v and the propositional connectives have their usual 
interpretation. Thus, for example, 7(X A Y) = {o\o grounds X and Y}. Ab­
stract operations are defined over this domain, e.g., if the head of clause k 
is p(X,Y), then erctn/^fc,p(f(Q),R), Q «-► R) = X <-> Y. This clause-activation 
description for clause k tells us that, if either X or Y subsequently becomes 
ground, both X and Y will then be ground.

We assume there is a concrete domain of tests Test that, when exe­
cuted-at run-time, test attributes of call arguments that are expressible in 
SubstA- For example, for the domain Prop, elements of Test should de­
termine whether call arguments are ground or contain precisely the same 
variables. We assume tests are applied to arguments, rather than to indi­
vidual variables in a clause. This simplifies the presentation and, in any 
case, is a reasonable approach when one is interested only in procedure-level 
optimizations. Our framework can be generalized to incorporate clause-level 
optimizations directly.

We assume there are functions

then-branchc '■ Test x Atom x Substc —► Substc 
else-branchc - Test x Atom x Substc —*• Substc

that interpret tests on the concrete level. In particular, then-branchc{t, a, S) 
produces the set of all substitutions o G S such that ao satisfies t. Similarly, 
else-branchc(t,a, S) produces the set of all substitutions <7 G S such that do­
does not satisfy t. The abstract versions of these functions, then-branch a
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and else-branch.A, interpret tests on the abstract level. As usual, we require 
that for all .S G SubstA

then-branchc(t, a, ^(S)) C (then-branchA(t, a, S)) 
else-branchc(t,a,/y(S)) C ~/(else-branchA(t, a, S)).

In addition, we assume the analysis does not lose information when tests are 
added, i.e., then-branchA(t, a, S) Qa S and else-branchA(t, a, S) Qa S.

3 Call Path Automata

In this section, we introduce call-path automata, the fundamental structure 
in our multiple specialization technique. First, we introduce the notion of 
call-path automata without tests. The transition function for such an au­
tomaton specifies which procedure version should be invoked by each call 
in each version of each procedure. Our formulation of this concept is taken 
from [13], except that we use entry and propagate. Second, we introduce the 
notion of call-path automata with tests. The transition function for such an 
automaton can select versions of procedures on the basis of the outcome of 
tests.

Throughout our discussion, we assume a fixed rule base with n clauses 
where the ith clause has m; calls in its body.

3.1 Automata without Tests

In our framework, a version of a procedure is associated with a class of 
activations of its clauses. A class of activations of a clause is given by an 
element of the abstract domain Subst describing the state of the computation 
immediately upon entry to the clause. It is convenient to formalize the notion 
of a version as an association of an element of Subst to every clause in the 
rule base.

Version = {1.. .n} —> Subst

All versions that arise in our constructions are everywhere J_ except for 
the clauses of the procedure being invoked. We say the version is for this 
procedure.

A call in the program is indicated by a pair (i,j) where i is a clause 
number and j is the number of a call within that clause. A call path is given 
by a sequence of such pairs indicating clauses selected and calls invoked. 
While scanning a call path, the automaton moves from version to version 
according to the transition function. It is convenient to combine the current 
version v with the current call (i,j) into a single triple (v,i,j) called a Site.

Site = {(v, i,j) | v £ Version Al < i < n Al < j < m,} .
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The transition function A for the call-path automaton is constructed as 
follows.

A : Site —► Version
= entry(k,aj,propagate(ai.. .a,j-i,vi)),

where aj.. .arni is the body of the iih clause and j < mi.
The transition function tells the compiler how specialized procedure ver­

sions should call one another. This leaves open the problem of selecting 
suitable entry versions. One way for the compiler to handle an entry call is 
to invoke the most-general version of the associated procedure. A more satis­
factory solution is to derive entry versions from entry mode declarations; this 
allows specialized versions to be invoked at entry. Conventionally, such mode 
declarations are viewed as being “import” specifications that tell the com­
piler what procedure activations it must be prepared to handle. By contrast, 
in multiple specialization, modes are viewed as being “export” specifications 
of entry versions that the compiler will make available. The compiler has 
the option of providing a different specialized implementation for each entry 
mode declaration. This assumes some mechanism, such as a suitable linker, 
that selects an appropriate entry version for each entry call. The compiler 
needs to construct specialized implementations only for those versions that 
are reachable from the set of entry versions, as formalized below.

EntryVersions C "P( Version)
ReachableVersions : EntryVersions —> V( Version)

Reachable Versions(V) is the smallest set satisfying

1. V C Reachable Versions(V), and

2. A (v,i,j) £ ReachableVersions(V) if v E ReachableVersions(V)

Example 1: Consider the automaton for the program all_p.

1. all_p( □ , _) .
2. all_p( [H|T], X) p(H, X), all_p(T, X).

3. p(A, B) q(B, Q), r(A), s(Q, A).
If the only entry mode declared has all_p called with unknown arguments, 
i.e., true in Prop, the reachable versions are Vi = (true, true, false), V2 = 
(false, false, true), and the trivial version v3 = (false, false, false), which is 
meaningless and reachable as a consequence of the false (J.) elements in 
versions. So, for example, says that Clauses 1 and 2 can be activated with 
any substitution and Clause 3 is not activated. We have A(ui,2,l) = v? 
and A (v\,2,2) = ni.

Example 2: If in addition to the entry modes assumed in Example 1, we 
have an entry mode declaring both arguments to all_p to be ground, we
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obtain two additional reachable versions, V4 — (true,H A T A X, false) and 
v5 = (false, false, A A B), with A(n4,2,l) = V5 and A (1)4,2,2) = V4. Note 
that v± calls n4. This means that the groundness information is propagated 
intact to the recursive invocation.

Generally speaking, there is no guarantee that each reachable version 
will enable unique, useful optimizations. Thus, the compiler may choose to 
collapse versions that enable similar optimizations. This process must be 
performed carefully since versions that enable similar optimizations may, on 
the same call-path input, lead to versions that enable different optimizations. 
There is an obvious correspondence between this problem and the well- 
known (and solved) problem of minimizing deterministic finite automata. 
This correspondence gives a solution to the problem of collapsing similar 
versions, which is described in [13]. Note that, if this process collapses two 
entry versions, the compiler will export the same specialized implementation 
for both entry versions.

3.2 Automata with Tests

We now extend the notion of a call-path automaton to include tests. Recall 
that tests are applied to procedure arguments rather than to individual vari­
ables in a clause. Viewing an automaton as a directed graph, we incorporate 
tests as labels on test arcs. A test arc has one tail and two heads, corre­
sponding to the test outcomes true and false. Tests incorporate additional 
information not already known from the version.

Each test arc is associated with a specific Site. This is formalized by a 
pool of tests given by a set testsites C Site and a function test : testsites —> 
Test. The test pool determines the transition function A : Boolean —> 
Site —> Version for the call-path automaton with tests. The new Boolean 
argument here indicates test outcome. Where there is no test, this Boolean 
is ignored.

A6s = As ifs^ testsites
Atruesk = then-branch(test s,hk, A s k) if s £ testsites
A false sk — else-branch(test s,hk, A s k) if s £ testsites

The entry versions and the test pool determine the versions that label the 
reachable nodes of the call-path automaton. For a set of entry versions V, 
ReachableVersions(V) is defined by analogy to Reachable Versions(V).

Example 3: Suppose that the compiler has indicated on its wish list that 
groundness of both arguments to all_p is required for some optimization. 
(For example, groundness of both arguments allows parallel execution of p 
and all_p under independent and-parallelism.) Suppose further that the 
program of Example 1 is embedded in a larger program containing a sin­
gle call of all_p, located at site s, and that global analysis alone cannot 
guarantee that in this call both arguments are ground. Before any tests are
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added, the functions A true and A false are each identical to A in Exam­
ple 1. Introduction of a test for the groundness of each argument of the 
call at s adds versions V4 and v$ of Example 2 to ReachableVersions: we 
have A trues = V4, A false s = Uj, and Abs' — As' for all s' ^ s and 
b 6 {true, false}. Note that the result of the new test propagates intact to 
recursive calls. Thus, introducing the test at s and applying the call-path 
automaton enables repeated application of the optimized version without 
need for repeated testing.

As in the case without tests, different reachable versions that enable sim­
ilar optimizations should be collapsed. Collapsing versions in an automaton 
with tests is not significantly different from collapsing versions in an automa­
ton without tests.

4 Soundness of A

In this section, we argue that our specialization technique is sound. To this 
end, we introduce the notion of concrete call-path automata. The concrete 
transition functions Ac and Ac are defined analogously to the abstract tran­
sition functions A^ and A^ by using the concrete domains and operations 
Versionc, Sitec, entryc, and propagatec- Versionc and Sitec differ from 
Version a and Site a only in that they are constructed by using Substc rather 
than SubstA- Formally, Substc is taken to be all sets of renaming-equivalence 
classes of substitutions:

Substc = ^({[cr] | o an idempotent substitution})

where [a] is the renaming-equivalence class of a. As discussed in Section 2, 
we assume that the concretization function 7 maps each abstract domain 
element to the concrete domain element it represents.

We now define entryc, propagatec, entryA, and propagateA. Following [6, 
7], we introduce an operator unifyc that combines the standard notions of 
unification, composition, and restriction. "

unifyc : Atom x Substc x Atom x Substc —» Substc 
unifyda, S,a', S') = {[|<r 0 mgu(acr, : 0 E S A o' £ S'},

where some new notation must be introduced: mgu computes a most gen­
eral unifier; using a set of variables disjoint from those in the renaming 
equivalence classes, the overbar renames variables to standardize apart the 
operands; dom(cr) is the set of variables on which o is defined; and the 
vertical bars denote substitution restriction. In addition, we introduce the 
concrete operation initc : Clause —» Substc, which returns the renaming- 
equivalence class of the identity substitution over the variables in the clause. 
The corresponding abstract operations, unifyA and initA, are required to 
satisfy

unifyc(a, 7(3), a', i(S')) C -/(unifyda, S, a', S')) 
initc(C) C -/(initA(C)).
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By using the corresponding versions of unify and init, the concrete and 
abstract versions of entry are each defined according to

entry(k, a, S) = unify(hk, ini1(Ck),a, S),

where Ck is the kth clause and hk is the head of Ck- To define propagate, 
we use the semantic functions of [6, 7]. These use the following domains.

ClauseMeaning = Atom X Subst—+Subst 
RuleBaseMeaning — {l.. .n}ClauseMeaning 

BodyMeaning -- Subst —» Subst

As above, n is the number of clauses in the rule base.

R : RuleBase —» RuleBaseMeaning 
C : Clause —» RuleBaseMeaning —► ClauseMeaning 
B : Body —» RuleBaseMeaning —> BodyMeaning 
F : RuleBase -* RuleBaseMeaning —>■ RuleBaseMeaning

RlCi-.-Cn] 
C[h: -6] e (a, S)

B[le 5 
B[ai...a,-]e5 
FlCx.-.C^ei

fix(JP[C,1_...C„l)
if a and h are unifiable then
unify(a, S, h,B[6] e unifrfh, init(h:-b), a, 5)),
else _L
5
U {ej (a;,B[ai.. .a,_i] e5)| 1 < j < n} 
C[Ct-| e

By using the corresponding versions of the semantic functions B and R, we 
define propagatec and propagate^:

propagate(b, S) = Bf&] (R[r|) S.

An abstract call path automaton is sound if, for every procedure invoca­
tion during execution of the subject program started with an entry version, 
the state reached by the automaton on scanning the current call path ap­
proximates the procedure activation. This global soundness is established 
as follows [13]. First, Ac is related to SLD-resolution semantics with Pro­
log’s left-to-right computation rule. Second, induction on the length of the 
call path is used to show that, on scanning the same call path, the version 
reached by Ac is approximated by the version reached by A^. The inductive 
proof uses a local soundness property, which we state here for completeness.

Fact 4.1 (Soundness of A^) A^ is sound iff for all (vc,i,j) € Sitec, 
va £ Version^, and k £ {1.. .n} we have

vci C i(vA i) => Ac {vc,i,j) k C i(AA{vA,i,j) k)
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Soundness is complicated somewhat by the presence of tests. In addition 
to scanning the sequence of (i, j) pairs that compose the call-path, a call-path 
automaton with tests scans the test outcomes that result from the execution 
of the tests that are given by the test pool for each call on the call path. 
An abstract automaton with tests is sound if, for every procedure invocation 
during execution of the subject program started with an entry version, the 
state reached by the automaton on scanning the current call path and the 
corresponding test outcomes approximates the procedure activation. As in 
the test-free case, global soundness is established by inductive application 
of a local soundness property. Local soundness says that, during execution 
of the subject program, if some procedure activation is approximated by 
the current state in the automaton, then the procedure activation reached 
by selecting the ith clause, executing the first j — 1 calls, and invoking the 
jth call based on some test is approximated by the state indicated by the 
transition function on scanning (i,j) and the outcome of the associated test. 
Local soundness can be established in the manner of the case without tests.

5 Inferring Suitable Tests

In this section, we take up the problem of selecting suitable tests to incorpo­
rate into the call-path automaton. We begin our discussion with two general 
comments about selecting tests. First, tests should be added by starting at 
the outer levels of the program’s call graph and working inward, recomputing 
the reachable versions each time. This approach is recommended because 
the addition of a new test can result in subsequent reachable versions that 
describe smaller sets of procedure activations. Second, tests that always 
succeed or always fail are a waste of time and should not be introduced. 
For site s = (v,i,j), if 5 = propagate{a\.. .aj^i,vi), where ai.. .ami is the 
body of clause i, then we would not want to add at s any test Lsuch that 

' then-branch(t, aj, S) = 5 or then-branch(t, aj, S) = _L.
Recall that our goal is to let the compiler drive the specialization pro­

cess by providing a “wish list” of requirements for worthwhile optimiza­
tions. Formally, a wish list is taken to be a subset of Requirement, where 
Requirement — Proc x Test and Proc is the set of procedure names in the 
program. We want to incorporate tests that ensure that requirements on the 
wish list are met. Moreover, we want such tests to occur at outer levels of the 
call tree where they enable repeated inner-level optimizations. Example 3 
shows that there are cases where direct incorporation of a test on the wish 
list can lead to specializations of the desired form. In other cases, tests will 
have to be derived from the wish list. One approach is to strengthen a test 
on the wish list so that A can propagate it down the call path to other uses 
of the procedure.

Example 4: If the program in Example 1 used 

1. all_p( [] , A, X) p(A, X).
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2. all_p([H|T], A, X) p(A, X), all_p(T, H, X).
to define all_p, the compiler might suggest the requirement (ground(arg1) V 
ground(arg2)) A grovmd(arg3) for all_p, enabling parallel execution of p 
and all_p in Clause 2. When this test is added at the procedure entry, 
the only information that propagates from the test arc’s success branch to 
the recursive call is ground(arg3). Thus the test would have to be repeated 
at the recursive call. On the other hand, the stronger test ground(arg1) A 
ground(arg3) would propagate intact to the recursive call, eliminating the 
need for a repeated test. This example illustrates how helpful it can be to 
incorporate a test that is stronger than the requirement suggested by the 
compiler.

A more general approach is to position a test so that the information it 
provides propagates to several uses of a procedure. This position may not 
be at the entry of the procedure, in particular, it may lie on the call path to 
several uses of the procedure.

Example 5: Consider again the original program in Example 1 and sup­
pose that the only requirement suggested by the compiler is that calls to 
procedure p satisfy gro\md(arg1) Vgro\md(arg2), enabling parallel execution 
of q and r in Clause 3. If this test is incorporated directly at the entry to 
procedure p, there is no way to propagate the information it gains to subse­
quent uses of p, since that site does not lie on the call path to any subsequent 
use. On the other hand, it is possible to recognize uses of all_p that lead 
to this requirement on p being met by testing ground(arg1) V ground(arg2) 
(or just ground(arg2), for that matter).

We now address the problem of finding tests of this sort: given a require­
ment and a test site, is there a test that, when satisfied at the site, ensures 
the requirement is met, and if so, what is the weakest such test? A suitable 
test has the following property. If, at some stage in some execution, the 
activation of the call at the test site satisfies the test, then the requirements 
must be met for all clause activations that are reached during the execution 
of the test-site call. A test that, when satisfied at the test site, guarantees 
satisfaction of a requirement is said to guard that requirement. Here, we 
seek the weakest guarding tests, with the understanding that it may often 
be desirable to use less costly, stronger tests.

We call the process of identifying suitable tests for a given test site and 
a given requirement test abduction because the problem is to find a test 
whose success would allow us to infer that the requirement is met. We begin 
our discussion of test abduction by showing how to determine whether the 
success of a given test incorporated at the test site leads to the satisfaction 
of a requirement. This specification of the abduction problem requires some 
new machinery.

Recall that a site consists of a version, a clause whose activation is 
described by that version, and a call in that clause. For (concrete) site
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s = (v,i,j) and test t at s, the function successc(s,t) gives the set of sub­
stitutions that, at call j of clause i, satisfy t and that arise at site s, i.e., 
that arise at the point of invoking call j of clause i when clause i is executed 
starting with a substitution give by vi. For abstract and concrete alike,

success : Site x Test —► Subst
success({v,i,j),t) = then-branch(t, aj, propagate^ ... aj_i, u i)),

for ai.. .amj the body of clause i and j < mi. Safety of success a follows 
from safety of then-branch a-

When our technique is to be used to specialize unification code, it is 
necessary to test the requirement before performing the unification. Thus, 
our specification of the abduction problem applies the requirements at the 
point of call, rather than in the clause heads. Consequently, we need some 
machinery to construct a description of the call activations possible for each 
call in the program. For given atom a and A £ Subst, the set of call acti­
vations reachable from the call a activated according to A is given by the 
function

ReachableCalls : [Atom X Subst) —> Atom —> Subst

where, under the pointwise order, ReachableCalls(a, A) is the least R : 
Atom —>■ Subst such that

A C i2a, and
for all a' in the program,
propagate(ai.. .aj-i, entry(i,a', Ra1) □ Raj,

where a* .. .ami is the body of the ith clause and j < mi.
Throughout the process of inferring tests, the test pool is omitted from 

calculations. This enables the condensing technique we discuss below. Only 
the candidate test for meeting the requirement is considered. A test that 
is found to satisfy the requirement when the test pool is ignored will also 
satisfy the requirement when the test pool is used, because tests lead to no 
loss of precision.

Using ReachableCalls, we can specify, for each call in the program, the 
activations of that call that are guarded by the test t at site s in the current 
automaton: ReachableCalls(a, success(s, t)), where a is the call at site s. 
These are the call activations that must be considered to determine whether 
t satisfies a given requirement.

The satisfaction of a test req by A 6 Substc and an atom a is expressed 
by satisfiesc{req, a, A), which must obey

satisfies c (req, a, A) iff then-branchc (req, a, A) = A.

To be reasonable, satisfiesA must obey A Qa B => (satisfiesA(i,a, B) => 
satisfiesA(i, a, A)). The safety requirement for satisfiesA is

satisfiesA(i, a, A) satisfiesc(i, a,j(A)).

12



Now, formally, a test t at test site s guards a requirement (p, req) from 
the wish list if,

for all calls a to procedure p,
satisfies(req, a, ReachableCalls(a', successes, t)) a),

where a' is the call at site s. This formula specifies the abduction problem. 
We need a computable approximation for it. We might imagine using the 
abstract analogue of this formula to try out hypothesized tests. However, 
we wish to find a test that is as weak as possible. Thus, we must either try 
numerous tests to see whether they satisfy the requirement, or we must find 
some domain-dependent way to compute good tests directly. In either case, 
it is useful to consider ways to simplify this formula that do not depend on 
t.

In research that will be reported elsewhere, we have developed a method 
for condensing the abstract execution of the program from the test site up 
to the various requirement sites. The method is based on [6, 7]. Suppose 
the call at the test site is a. For each call c to the procedure with the re­
quirement, the condensed execution represents the unification constraints 
that are imposed on the variables in a and c by the execution of a up to 
the invocation of c. These constraints are given by an element B of SubstA 
describing a substitution over the variables in c as well as the variables in the 
call a at the test site. Through a single unification of a under B with a un­
der successes, t), we obtain ReachableCalls(a, successes, t)) c. This reduces 
the general abduction problem to abduction for a single unification. This 
simpler problem can, in principle, be solved by using a generate-and-test 
approach. However, we have worked out a direct solution for two nontriv­
ial domains, including Prop, for groundness analysis. These, too, will be 
reported elsewhere.

6 Concluding Remarks

This paper has presented a framework for multiple specialization of logic 
programs that incorporates run-time testing. The starting point for this 
work was the multiple specialization technique of Winsborough [13], which 
introduced the notion of a call-path automaton. The transition function for a 
call-path automaton specifies which procedure version should be invoked by 
each call in each version of each procedure. The compiler uses the call-path 
automaton, together with a set of entry versions derived from entry mode 
declarations, to determine which versions of procedures should be created 
and how versions should call one another. This paper extended call-path 
automata to include test arcs, which lead to different versions depending on 
the outcome of the test. In this way, tests provide additional information 
about procedure activations, thereby setting up new specializations. We 
presented an algorithm for constructing an automaton containing a given
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set of tests at given test sites. This is the first technique of which we are 
aware that propagates the results of run-time tests across clause boundaries.

This leaves open the problem of generating suitable tests and test sites. 
Our goal is to derive tests from a compiler-generated “wish list” of require­
ments that enable useful optimizations. In addition, since testing can in­
crease run-time overhead, we want tests to occur at outer levels of the call 
tree where they enable repeated inner-level optimizations. One approach is 
to insert tests, perhaps suitably strengthened, directly at the requirement 
site given on the wish list. We have given examples where such tests will be 
propagated by the automaton across clause boundaries, enabling repeated 
inner-level optimizations. More generally, one may wish to abductively de­
rive a test at a given site that, upon success, ensures some property at the 
requirement site. We presented initial work on a technique for deriving such 
tests. Using the notion of condensing introduced in [6, 7], we discussed how 
to collapse the general abduction problem to abduction for a single unifi­
cation. We have worked out domain-dependent solutions to this simpler 
problem for two nontrivial domains, including Prop, for deriving groundness 
information. In our future work, we plan to experiment with specialization 
heuristics based on abduction.
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