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The 300Ludre Syitom running on the Supecyisory
Lontrsl ang Disgmastics System (SO0S) of MFTF-B s,
for the major part, an eveat deiven one. RMegular,
prrisgic polling of tensors® outputs tekes plxce
saly at the local level, in the sensors’
corresponding local coatrol microcomputers (LCC's).
A LEC rzports 2 Sensor's vaiue to the supervisory
conputer Only IFf thers was a significeat change.
This report 15 passed as & message, routed among and
acted upon by a networi of applications and systems
tasks withia the supervisory computer (SC0S).
fommands from the operator's console are Similarly
routed throygh & network of tasks, but in the
opposite direction to the experiment's hardware. In
2 network such as this, response time is partially
determined by system traffic.

Because the hardware of MFTF-B will not be
connected to the computer system for another two
years, we are using the local control computers to
simylate the event driven traffic that we expect to
see during NFTF-8 operation. In this paper we show
how we are using the simulator to measure and
evaluate response, loading, throughput, and
utilization of components within the computer
system. Measurement of the system under simulation
allows us to identify bottlenecks and verify their
unloosening. We also use the traffic simulators to
evaluate prototypes of different algorithms for
selected tasks, comparing their responses under the
spectrum of traffic intensities.

{Work performed under the auspices of the U. S.
Department of Energy by Lawrence Livermore Natignal
Laboratory under contract number W-7405-ENG-48.]

Introduction

It is axiomatic that new systems are badly out
of tune. Beizer [1] enumerates several causes for
this which we paraphrase.

1. Wild guesses and even careful analyses of
load characteristics made by the designer turn
out to be wrong.

2. The system's specification has changed
throughout the development period; the basic
load assumptions were not changed to suit.

3. There were factors left out of all models
and analyses that were dominant; other things
felt to be important became inconsequential
after astute design.

4. The system itself changes the user's
behavior which then changes the load
characteristics.

A fifth common reason, not admitied by Beizer,
is that designers consciously admit inefficient

componenis, budgeting the time for the effigient
replacement to occur after the delivery of the
initial system.

So in some sense tuning is an (terative step,
correcting mismatches between design assumptions and
actual usages, cycling between Lhe design and
evaluation of stages of a software project. It
necessarily must wait until the software and
hardware have been del and integrated, after
the system is operating and all its parts are
playing together.

The experience gained during the MFTF Technology
Demonstration [17, 6] reinforced the idea that
tuning 1s part of systems integration. Algorithms
for the updates of display fields on CRT monitors,
the routing of commands to ard reports from the
experiment's hardware, software filtering, all were
correct but were found to be intolerably inefficient
when subject to the actual traffic load of operating
the WFTF hardware. Diagnosis of the problems
typically took between a half day and three days.
Correction times ranged from two days to two
months. 5Some problems needed more time to correct
than there was remaining in the Technology
Demonstration. These problems were either
tolerated, or their corresponding features were
excised from the system as unessential. The
neophytes among us who hadn't anticipated the need
for initial tuning experienced unwarranted chagrin
when first confronted with slow response times.

This, and the recognition that the bottlenecks
hadn't been completely shaken out by the conclusion
of the hardware tests, led us to develop a traffic
simulator that is presently being u-ed to tune the
supervisory control system as it evolves fraom the
MFTF configuration to the MFTF-B configuration.

The Simulator

The local control computers cyclically poll
instrumentation sensors through CAMAC once per
second and compare the latest value read with the
last value reported to the supervisory computer.
When the LCC recognizes a significant change
(significance is a delta parameter associated with
the sensor), it sends a new report to the
supervisory computer. With Jow pass filtering
enforced, reports from any individual sensor are
spread apart in time. It is not precise but still
reasonable to model the series of reports from an
individual sensor as a Poisson process. One can
prove that the aggregate of reports over many
sensors do form a Poissan process whose rate X is
zqual to the sum of the rates of the individual
reports. We accept this Poisson process as the
characterization of the major source of input to the
SCOS conirol system.

Once we've done this it becomes conceptually
straightforward to simuiate the input. Khen the LCC
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for the magnet power tests of MPIF Tech Dowo,
edch monitor report was logged by SCOS for later
anatysés, From the 500,000 records taken over 5
tharging cycles during the course of two weeis,
repert frequencies were determined by class for the
teroerature sensors, strain guages, pressure guages,
selected voltages, and currents. Each pseudg-Sensor
was assigned a report rave so that the sum of the
rates in any class would match the recorded net rate
for that class. The total ag -~egate rate seen
guring the last power test, tuc one for which the
nost tuning had been done, was .72 reports per
second. This is the benchmark traffic mix being
used to study and measure the existing system and
presently being used to evaluate software
modificctions in the control part af SCDS.

Measurement and Evaluation

Tuning is uswally done in light of a goal,
typically minimum delay, maxiium throughput, or
maximuym utilization. Optimization of any one of
these usually implies a degradation of another. For
example, fastest resporse will occur on an otherwise
idle or unloadeg system Full utilization of some
resource such as CPU, disk or some other 1/0 device
implies that transactions must ba queued up and
waiting at that device, ready to use it the moment
it becomes free., This gueueing contributes to the
delay in completion of the average transaction.

Analytic queueing models [16] are used to
evaluate the tradeoffs among these conflicting
goals. Relatively simple models have recently been
developed which are easy to apply and have proved to
be amazingly robust despite many violations of
stochastic assumptions of the models {15, 3]. The
particular model we chuse for the control and
diagnostic system is the open system queueing
network of [10] also described in other works .on
Operational Analysis [4]. Figure 1 is a diagram of
the queueing network, Figure 2 gives some
definitions and terms, and Figure 3 shows the
algorithm and its inputs and outputs.

The model‘s inputs are the service demands
D;i( A ) which is the total time needed at service
center 1 by each transaction when the arrival rate
is A . The model's gutputs are utilizations,
average residence times at each service center
(waiting in queue and receiving service), and the
average number of transactions at each service
center. The service demands measured for a
representative instrumentation monitor report are
given in Table 1. We discuss below how the
measurements were made.
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Figure 1. Queueing network representation of the
MFTF-B Supervisory Control System. All service
centers queue arriving transactions when busy.
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~ Some sufficiently long time interval of
observatian.

~  Throughput. Number of compieted
transactions per unit time.

~ Residence time (or response time). Time a
typical transaction spends in the system.

- Utilization. Proportion of time a service
center is not idie.

~ Service demand. Service time needed by a
typical transaction at service center i.

- Residence time. Time a typical
transaction spends at center i, both
receiving service and waiting in queue.

~ Arrival rate of transactions. In a stable
system X = A .

~ Population at center i. Average number of
transactions both receiving service and in
queue at service center i.

~ Population. Average number of
transactions in the system.

Figure 2. Important terms for operational analysis
of queueing networks.
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Figure 3. Open queueing network model.

The model predicts average response time and
throughput. Under the assumption that service
demands are constant with respect to arrival rate,
it predicts capacity. The device having the largest
service demand is considered the bottleneck device.
it is the one which will saturate (its utilization
becomes 1.0) first when the arrival rate is
increased. Any additional Toad will just queue up
at this center while throughput remains at
capacity. 1In Table 1 we see that the CPU is the
bottleneck device under this criterion. Hence,
jnitial tuning efforts are best directed at reducing
the CPU demand of each transaction.

The measurements tel) us other things as well.
If we assume that a transaction cannot be receiving
service simultaneously from more than one service
center, then the minimum possibla response time,

aen wihen 8 Teansaction puters an 12le syatem, %
the 390 of the denaniii. Tuning 1o retuce The Somand
U any BF L contery alld rédeCe (W mingmm
respoate Lhme By thit SRowet, Althouph TeguCing L
dennd aL B PON-BRLTHPNRCK Sereith Lenter xilY nave
no efIect in incredsing Ihe 5)5tem's CApICily, We
alss nate that the Senands ol Lhe 12L%0r two devices
{secvice conters) are tasignificont wilh respeit Lo
the flegt three, [a Lhis system it 1s mt
worthuhile spreding aay tuning effort there,

However trading CPU time for 170 time at these
devices, if feasidle, would be worthwhile.

The service time at the disk results from
designs responding to limited memory in the original
system. We estimate that with the uppraded
computers having a larger address space, we should
be able to eliminate BOX of those disk accesses.

The associated CPU activity for sach disk access
will also disappear. Benchmarks have shown that
uwpgrading the CPU to a faster one has resulted in a
25% decrease in service demand,

A larger and faster disk had a similar effect.
The seeks were fewer and faster. Another benchmark
has shown we can get another 20% reduction in CPU
demand with an optimizing compiler. Comguter
scientists generally agree that important reductions
in processing time are gained by identifying
jnefficient algorthims and restructuring the
processing there. This is the basis of a major
tuning effort reported elsewhere [9].

Study of Ramtel: activities show that it is
unlikely that any improvement will be found there.
Decrease in demand there wauld oniy be obtained by
repiacing it with newer, faster hardware. From a
capacity and response standpoint, replacement isn't
warranted until the CPU seryvice demand decreases and
approaches that of the Ramtek--or usage patterns
change, increasing Ramtek demand to levels greater
than those of the other devices. When all the
demands are balanced, uvpgrading would consist of
replacing all devices with faster ones or else
replicating the whole system.

Table 1. Statistics from Benchmark Measurements of the SCDS Magret System Operating Software.

Model Inputs

Arrival Rate

=.72

Model Qutputs

Averages

Service Center
per transaction

Service Demands Utilization

Residence Time Number at Center

! _ {seconds)
¢ CPU .64 .46 1.19 .86
Uisk .38 .28 .53 .38
, Ramtek DMA W21 .15 .24 .18
) Lce .03 .02 .03 .02
! Console Controlier 006, .004 .006 .004

Throughput X= ) =,72

Capacity = X gaturaTION = 1/DMpx = 1.56

Response Time = Z Ry = 2.00 -econds. ]
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callects [A) time wied Dotk by Lhe task ond by Rhe
2perating Syitem running on tank's bohalf, It
Ai58 Coumts Lhe nunber of J/0's and accumilates Cthe
tota) avnber of bytes trangforred for gach device
LRt the task uses. Mhen the task completes
raecution, the oparating system writes the
weumalated statistics into an accounting file from
which billing statoments are periodically
generated. e rewrdte the veport gemerator o break
out and sum the statistics Ly task name rather than
by account ngmber.

ke wrote 2 second program thet would duwp the
partially accumulated statistics for all currently
running tasks in a format identical to the
accounting records 5o that they could also be
processed by our report generator. With these we
were able to make measurements as follows. The
magnet applications tasks were started on the S(0S
computer and the simulator-benchmark was started on
the LCC. The measurement period was 1000 seconds.
At t=0, we saved a snapshot of the partially
accumylated statistics and also reassigned the
accounting file so that any task completion records
made during the measurement period would be diverted
there. At t=1000, we took 2 second snapshot of the
partially accumulated statistics of the then active
tasks and closed the file which collected the task
completion records. Net usages were found by
subtracting the t=0 statistics from the sum of the
t=1000 statistics and the task completion statistics.

1/0 counts of LCC messages told us the number of
monitor reports from which we derived the average
resource demand per monitor report. C(PU time came
directly from the report. Disk transfer time was
derjvable from the number-ot-oytes statistics. The
operating system kept statistics elsewhere on
average seeks and latencies. From this we
calculated that the average disk_access took
13.25 msec. with a variation of less than .5 msec.
Message sizes from the less busy devices were of
fixed size and transmitted serially at 9600 baud,
ang so their times were simply derived.

The service demand times for the Ramtek were
more difficult. The actual transfer times depend on
the values of the data transferred. The Ramtek (TM)
is a graphics system that drives between & and 8
CRT's at an operator console. Each CPU in the SCDS
system drives one Ramtek which in turn drives all
the CRT's on one operator console. The CPU sends a
buffer full of 16-bit Ramtek commands. The Ramiek
accepts and executes these commands, one at a time;
it does not accept the next command from the DMA
until 1t has finished interpreting the previous
one. The commands have a wide variation in
execution times. We used a logic analyzer to plot
the hardware DMA-not-available signal and from that
estimated a mean value of 90 msec. for a buffer

Leansfor.  ypically thers wive Lwd JiD's por
Wl e; the First selected the (AT scrpen, the
second acLuaily redeew the graphics field on the
screen.  The Ramted: i considered Ousy from the
stact of the First 170 to the and of 1he second.
(See Figure 1,)

e calibrated some of the statistics of the
accounting package with hardeire monitors angd feel
there s enough discrepincies in others Lo warrant
thelr calibration also. We are preseatly building a
hardware clrcuit that will mneasure hardware
utilization directly so that we can validate the
accounting statistics (Figure 5).

Reparting on 1tself, the accounting package used
1.5% of the CPU usage and 5% of the disk usage
(checkpointing contributed to 2/3 of this). The
data shown in Table 1 is net demand after the
accounting package overhead was discounted.

Figure 4. Busy time of Ramtek 1/0 device for two
typical transactions. The waveform on the left
represents an update to the date-time displays
on all CRT's. These updates are periodic, every
two seconds. The one on the right corresponds
to a data field update; updates of this kind are
aperiodic.
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Figure 5. Activity burst (busy time) in the
CPU. Row 0--CPU busy. Row--1 Instruction
fetches. Row--3 Processor clock. Rows 4 and
7--0ther memory timing signals. Integrating the
busy signal (and that of Figure 4) over a long
period of time serves as calibration for the
software accounting package.
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The lore of code (mprovement has two fundamental
principles whose first demonstration {s commonly
attridbuted to Xnuth {7). 1. More than fifty per
cent of the time is spent in four per cent of the
code. [l. The location of that four per ceat is not
intultively obvious. Principle Il demands that the
code must be instrumented to determine what is
actually being executed. Several good references
thorouchly enumerate the different ways this can be
done [13, 5]. OQur first choice, and what we expect
to be our most important toal, is to hang a hardware
monitor {(in our case a logic analyzer) on the
address bus of the computer and tally the
frequencies of instruction fetches over ranges of
code. The hardware monitor is non-invasive; it
aever introduces bugs into fragile code as a
software probe sometimes does. It has no software
overhead in collecting and storing statistics and so
we needn’t worry about having to compensate for
artifacts. Thirdly, we can observe parts of the
operating system that are normally unavailable to
software probes.

Figure 6 shows an X-Y piot of activity on the
high order bits of the address bus. The coordinates
of the dotted horizontal line near the middle of the
picture indicate heavy usage of a group of routines
in one re-entrant run time library. Some of these
routines are being tuned. The need for others has
been re-examined with the result that references to
them are being dropped from the applicatfons codes.

We have found a logic analyzer that can tally
address hits in any of eight arbitrary ranges for
runs of 1024 instruction fetches. With this feature
we cap profile instruction fetches to any level of
detail by divide~and-conquer tactics.

The feature operates on a sample-ta)ly-display
cycle, and unless the CPU is busy 100% of the time,
the sampling is biased toward the initial
instructions of the CPU~busy epochs. Even then,
there is the problem of beats due to the analyser
and the software having some common divisor of their
periods, We intend to replace our ad hoc avaidance
of these problems with an external trigger that will
schedule the sampling to be fair.

Figure 6. Map of addresses of instruction
fetches. Y-axis s high order bits of address
bus. X-axis is middle order bits of address
bus. Oots represent multiple instruction
fetches from those memory neighborhoods.

Particular addresses are recognized as states by
the Jogic analyzer. We make timings between the
recognition of the first address and the recognition
of the second. We use this to verify that
subroutines have been speeded up by selected
tuning. This timing capability also allows us to
verify or disprove hunches about what might be
behaving badly due to marginal design. In one case,
the measured execution time of one task, both from
the accounting statistics and from the logic
analyzer, suprised its author. Profiling showed it
to be spending 20X of its time in a single routine
{another author's first programning effort in the
implementation language). The code was being
executed in anticipation of an on-~line trace, once
used for testing but presently unused. Excising
that and the related trace code cut the execution
time by 5/6. We are just gaining experience with
this technique, and it remains to be seen whether
many small improvements on “the other 90% of the
code" will have a significant effect on execution
tima.
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