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Abstract
In a cylindrical plasma, tearing modes can be calculated by asymptotic matching of ideal 
mhd solutions across a critical layer. This requires a quantity A' which represents the ‘discon­
tinuity’ in the ideal solution across the layer. In a torus, poloidal harmonics are coupled and 
there are many critical surfaces for each toroidal mode number, and correspondingly many 
discontinuities A'm. The ideal mhd solutions do not determine the A'm but only a relation 
between them-described by an “-E1-matrix”. We discuss the calculation of the F-matrix for 
a large aspect-ratio tokamak. In a weak-coupling approximation it is tri-diagonal and can be 
computed from integrals over the uncoupled eigenfunctions or from simple “basis-functions” 
comprising triplets of coupled poloidal harmonics. This weak coupling approximation fails 
if A^ is already small for an uncoupled harmonic. An alternative strong-coupling approxi­
mation is developed for this case.
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Introduction

In the cylindrical limit of a circular cross section tokamak, linear perturbations can be 
described by independent fourier harmonics with poloidal and toroidal mode numbers m 
and n. Then if q{r) is the ‘safety factor’, a singularity of the ideal magneto-hydrodynamic 
(mhd) equations occurs at nq(r0) = m, where the perturbation is resonant with the field line 
rotation. There may then be instabilities in which non-ideal effects (such as resistivity) are 
important only in a critical layer ^ around r0; elsewhere the perturbation is still described 
by ideal mhd. These instabilities can be calculated by asymptotic matching of a solution 
of the full equations in the critical layer to solutions of the marginal ideal mhd equations 
elsewhere. The mhd solutions satisfy the boundary conditions at the magnetic axis r = 0 
and at the plasma boundary r = a.

The marginal ideal mhd solutions can be represented near r = r0 as

V’l./i = x r- +Az,tK i x i‘/+) (i)

where ?/> is the perturbed radial magnetic field, x = r — r0 and L,R refer to left and right 
of the critical layer. The indices u relate to the ‘large’ and ‘small’ solutions in the sense of 
Newcomb and

i/± = l/2±(l/4 + £>)1/2 (2)

The Mercier stability criterion is (Z> + 1/4) > 0. At zero pressure i/+ = l,i/_ = 0 and
are then related to the logarithmic derivative of as | x |—> 0.

The solutions inside a symmetric critical layer have even (tearing) or odd (twisting) parity 
and asymptotically can be written

=i x r- +a±(uo i x r (3)

(where AT is a ‘stretched’ coordinate x/S with S the layer width). The quantities A±(cj) 
depend on the details of the plasma model used in the layer. Matching eq.(3) to eq.(l) 
yields

A+(u;)A-(u;) - ^ ""(Ar + Al)(A+M + A'M) + = 0 (4)

If we suppose that A+(o;) and A-(a;) do not vanish simultaneously (as a function of u>) 
then there are two distinct solutions to eq.(4) as £ —> 0. In one of these A_(u;) << A+(cj) 
and the eigenvalue is determined by

A-(u) = 8V+-V-A' (5)
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with A' = (Ar + Al)/2. This is the ‘tearing mode’. In the other solution A+(u;) << A~(u;) 
and

A+(u;) = ^-"-A'. (6)

This is the “twisting mode”. Note that A' embodies all the information needed from the 
ideal mhd solution. Henceforth we will refer to A' simply as the ‘discontinuity’ in the mhd 
solution and if A' = 0 we will refer to the solution as “continuous”.

In an axisymmetric torus the individual poloidal harmonics m are coupled together, 
although toroidal harmonics n remain independent. Consequently, for each toroidal mode 
number n there can be many critical surfaces (wherever nq(r) = integer). Except in the 

‘ vicinity of these critical surfaces the perturbation is still given by ideal mhd equations. Our
objective is to describe a quantity which summarises all the information required from the 
ideal mhd equations in a torus, in the same way that A' summarises all the information 
necessary in a cylinder.

In the present paper we consider only the toroidal tearing mode. This will be seen to 
be a natural extension of the cylinder tearing mode. In part II we will examine the toroidal 
twisting mode. Unlike the tearing mode, this is an intrinsically toroidal perturbation, not 
directly related to the cylinder twisting mode.

The toroidal tearing mode problem was first addressed by Grimm et al ^ who constructed 
a 2-D computer code to calculate the ‘outer region’ solutions. In a later paper Connor et 
al described the mhd solutions by a set of M poloidal harmonics. Then if there are N 
resonant surfaces among these harmonics, a set of (M + N) basis-functions (solutions of the 
marginal mhd equation each consisting of M harmonics) was introduced. These consist of 
M solutions regular at r = 0 and continuous (ie no change in large or small solution) across 
the critical surfaces, and N solutions constructed by starting with (only) the small solution 
at each critical surface and continued outwards (continuously) to r = a.

The full solution is then written as a linear combination of these (M+N) basis functions, 
» with M coefficients a; and N coefficients a-. By construction this satisfies the boundary

condition at r = 0. The requirement that it also satisfy the boundary condition at r = a 
* yields M conditions through which the M coefficients a,- can be expressed in terms of the

N coefficients a(. The introduction of N quantities Am describing the discontinuity in the 
small component (relative to the large component) at each resonant surface then leads to a 
solubility condition which can be written

| £ - A |= 0 (7)
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where the E1-matrix is calculated entirely from the values of the basis functions at the critical 
surfaces and at r = a (ie from ideal mhd) and A = diagonal{Am}. The dispersion equation 
for the toroidal tearing mode frequency follows by writing Am = A“(u;). Clearly the E- 
matrix is a quantity, corresponding to A' in the cylinder, that summarises all the information 
needed from the ideal mhd solution in order to determine an eigenvalue of the full problem. 
(Strictly, the matrix E described here is the inverse of that in ref. 6.)

In the rest of this paper we discuss the calculation of the .E-matrix for a large aspect- 
ratio tokamak. We first find, in section 3, that a systematic treatment in powers of e leads 
to somewhat different basis-functions to those of ref. 6. These consist only of triplets of 
harmonics irrespective of how many resonant surfaces there may be. Each triplet consists 
of a central haxmonic with a discontinuity in its small solution at its resonant surface plus 
small sidebands which are continuous at their resonant surfaces. Furthermore, unlike the 
basis functions of ref. 6, each triplet individually satisfies the boundary conditions at both 
r = 0 and r = a. With these basis functions the matrix E has a simple tri-diagonal form. 
This development is formally a weak-coupling theory with coupling parameter e/AjJ, (where 
A^, is the discontinuity in the mt>l haxmonic in the absence of coupling).

“Strong coupling” occurs, even when e << 1, if one or more of the A^ are small; this 
situation is discussed in section 4. There we find that the most convenient description is in 
terms of overlap integrals between single harmonics rather than in terms of basis functions. 
This development also leads to a tri-diagonal E-matrix. An alternative description of the 
strong coupling situation, using basis functions, is also discussed in section 4. In this case 
the basis functions are multiplets of coupled harmonics (not generally just triplets) and they 
do not lead to a tri-diagonal E-matrix.

Finally, in section 5 we mention some consequences of the E-matrix for the toroidal 
tearing mode frequency and structure. A fuller discussion of this will be given elsewhere.

1 Marginal Ideal MHD Equations

The marginal ideal mhd equations were derived in appendix B of ref. 6 and are summarized 
here. The coordinate system (r, 0, <j>) (where <j> is the toroidal angle, 0 is an angle-like poloidal 
coordinate and r is a flux-surface label) is chosen so that the magnetic field lines are straight 
and the Jacobian is J = R2r/Ro. The axisymetric field can be written

B = E0Eo[/(rW x Vr + g(r)V<f>] 

and the safety factor is q = rg(r)/R0f(r).

(8)



The linearized marginal mhd equations for a perturbation with toroidal mode number n 
can be expressed in the form

^-[(m - nq)ym) = 2* + C^Vk] (9)

{m-nq)^-= YlDmzk +E'LVk] (10)

where y = Rof£ ■ Vr is effectively the radial component of the displacement £ and z = 
R26B • 'V(j>/Bo is effectively the perturbed toroidal magnetic field.

2 Weak-coupling Theory

In a large aspect ratio tokamak with circular cross section and /3 ~ e2, the coefficients B1̂ 
etc are ~ elfc_ml and, in particular, the coupling between neighbouring harmonics m,m ± 1, 
is ~ e. In order to develop a systematic expansion correct to 0(e2) it is necessary to retain 
diagonal coefficients to order e2 and off-diagonal coefficients to order e. The coefficients which 
remain can then all be expressed in terms of the Shafranov shift, the pressure parameter 
a = —(2Roq2IBl)dp/dr and the shear parameter s = rd(\ogq)/dr. Finally we then have as 
our basic equations correct to 0(e2):

r±[(m _ + E + MZ±lym*) (11)

r(m-n,)^ = F;fc + X;(lVr±,i»i1 + C:tIfc±i) (12)

where we have also introduced im = + (M™/L™)ym. The coefficients L,M,N,P are
given in appendix B of this paper.

If all coupling between different harmonics is ignored, eqs. (11) and (12) reduce to

cmy„ = (m - n9)^:pr^:(m - "ftom - Kv™ = 0 (13)

and if we also retained only the zero order (in e) parts of P™ and this would be the usual 
cylinder equation

= (m ~ mq^lrrlr^rn ~ —(m - nq)ym - mq<T'ym] = 0 
r

(14)

with

. . Id r2
- = JilAB = (15)

Now, eq.(14) has Mercier indices i/+ = 1, i/_ = 0 but the correct indices are

4



= 1/2 ± (1/4 + D)1/2, (16)

c

♦

$

D =
2rp'
Mg (1 - ?2)

Consequently, eq.(14) cannot be used as the zero order starting point for a development in 
powers of e. To avoid singularities in higher order we must include the most singular part of 
P™ (which controls the indices i/±) in the lowest order equation, even though it is formally 
small in e. Then the lowest order equation becomes

iLV =■[£<;» - |£(i - ,’)]*. = o (I?)

which has the correct Mercier indices.
As the starting point for our development in powers of e we take a particular solution 

2/mKr) of eq.(17) which satisfies the boundary conditions at r = 0 and r = a and has a 
discontinuity in its small solution across the singularity at nq(r) = m. Then, returning 
to eqs. (11,12), one can see that induces sidebands mil which are given by

+ + (18)

where Ijj1 = ^[(™ ~ m)y£)]

As the first order contribution we take solutions i/m±i °f eq.(18) which satisfy the boundary 
conditions at r = 0 and r = a and which are continuous (in the sense described in the 
introduction) across the singularities at ng = m i 1.

We also require the 0(e2) contribution to ym. This is given by

(2) [frm+C0'(i:(°l)'']40)+ (m—nq) d (d
£m(°) l JjMO) J —(m - nq)y.(o)

m

+(m - nq^KLZ™)-' '£(LZi'&L +

+ E(^±I4,L +
±

(19)

and we again take the continuous solution satisfying both boundary conditions.
Thus we have constructed a particular solution to the mhd equations consisting of a 

triplet of harmonics (j/m!.i,(2/^ + 2/m+i) °f which satisfy both boundary conditions.
The central harmonic has a discontinuity in its small component at its singular surface and 
is correct to order e2. The sidebands are continuous at their singular surfaces and correct 
to order e. (It is important that this triplet satisfies both boundary conditions. If, like the 
basis functions of ref. 6, it satisfied only that at r = 0 then instead of being 0(e) it 
would be 0{mt) and the theory could not accommodate large m).
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The triplet described above may be computed by integrating the coupled equations for 
three adjacent coupled harmonics (ignoring coupling to all other harmonics) from r = 0 to 
r = a. A discontinuity in the central harmonic at its critical surface, and the three initial 
boundary conditions at r = 0, are iterated until all three harmonics satisfy the boundary 
conditions at r = a. A computer code for constructing triplets in this way has been written 
and will be reported on elsewhere.

Note that a triplet does not itself describe a general tearing mode; this requires a solution 
with a discontinuity Am in every harmonic. Nevertheless a set of these triplets forms a basis 
for constructing a general tearing mode.

3 The E1-matrix

A general tearing mode can be constructed from a superposition of the triplets defined in 
the preceding section. As we will need to identify both haxmonic and triplet we now write 
the triplet as

Y — iV1) , v(°) + y 7/(1) '

mm>
(2) (20)

(the first subscript identifies the triplet, the second the harmonic). In the superposition

r = 2>mrm (2i)
m

three triplets contribute to any haxmonic m and the discontinuity Am in its small component 
at the singular surface (nq(rm) = m) is given by

+ a„ (C<°1 + C£l) + (22)

where the C:tTn are the coefficients of the large component of the corresponding yjiTn at the 
resonance rm. This recurrence relation leads to a solubility condition

| F - A-1 |= 0 (23)

where A = diagonal{Am} and F is tridiagonal. Bearing in mind that F is calculated only 
as an expansion in e, eq.(23) can equally be written

| £ - A |= 0 (24)

where E is also tri-diagonal. The elements of E are given by

/ C(o) _ Q(2) '
P _ a 0 I m,m ^m,m

771771 ““ m c(°)
w 771,771

(25)
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(26)Etm,m±l c'°>

These elements can be expressed entirely in terms of the zero order function If eq.(18) 
is multiplied by and the left hand side integrated by parts, one obtains an expression
for

r(i)

cL°l
i

A2.ii
(27)

where / is a bi-linear integral of t/mii and (of order e) defined in appendix B. A similar 
prodecure applied to eq.(19) allows one to express in terms of integrals of and 
Another derivation of the E-matrix is given in appendix A.

4 Strong-coupling Theory

The expressions for and in the preceding section highlight the fact that the coupling 
parameter is really e/Aj},. Consequently, even when e << 1, the coupling becomes large if 
A°m is small. A different treatment is then required.

We write the underlying equations in the form

£m^ = E/C±Vm±l (28)
±

where £ and K are defined through eqs.(11) and (12) and ipm = (m — nq)ym is the mth 
harmonic of the perturbed radial magnetic field. We again start with the uncoupled function 
V’JJi, satisfying £mi/>m = 0 and the boundary conditions with a discontinuity A^ in its small 
component at its singularity. We then introduce a set of radial harmonics of the uncoupled 
equation, such that

(40) + A'M. = o (29)

and V’Si has the same discontinuity Ajj, and satisfies the same boundary conditions as x/’m- 
Assuming that the ipm (which are orthogonal in p) form a complete set we can expand 
in them and obtain

P.±

<<< I KZ*1 I *■.+.>
(K + Aj(C'm)2

(30)

where A„ = A„ - Aj,, C* is a coefficient of the large component of at its singularity 
and

tp K<{rm)2>
m /ftp n2 (31)
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Now |/{r^±1| is a small quantity, of order e, while the ^ 0) are of order unity.
Consequently for each m we need only retain the p = 0 term in eq.(30) (unless Am were also 
of order unity, but then is itself negligible). Then we have, in the lowest approximation,

'Pm = Olm'Pm- (32)

Inserting this in eq.(30) again yields a three term recurrence relation

^m) = ^ ^ ■fm.mil&mil (33)
±

and a solubility condition

|£ - A| = 0 (34)

with

jp

“/m,m = Ao
m

(35)

Thus, the jB-matrix for strong coupling is again tri-diagonal and similar to that in weak- 
coupling theory. Indeed, as shown in appendix A, the off diagonal elements of the strong 
and weak coupling forms of ^-matrix axe identical to 0(e). Nevertheless the two forms are 
formally based on quite different approximations. The weak-coupling result depends on 
(e/A^) being small and includes order (e/A^)2 contributions, whereas the strong coupling 
result depends on (e/A£j being small and includes only lowest order contributions. One 
expects the strong-coupling form to be more generally applicable.

Although we have constructed the strong coupling f?-matrix from overlap integrals, it 
can also be computed from basis-functions ipi{r). Thus one sets-up a set of basis-functions 
ip*(r), each of which is a multiplet containing N coupled harmonics (where N is the number 
of critical surfaces) launched from r = 0. In each multiplet one harmonic (only) has a 
discontinuity A'- at its critical surface rj, the others are continuous. For each multiplet 
basis-function the discontinuity, and the boundary conditions at r = 0, are iterated until all 
harmonics satisfy the boundary condition at r = a. When a tearing mode is constructed 
from these multiplet basis functions with coefficients aj, the discontinuity A'm at the mi/l 
singularity is given by

Am J2 = &!maLmip™{rm) (36)
j=i

with a solubility condition
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| F - A-1 |= 0 (37)

In this case F need not be tridiagonal, since each multiplet basis-function may contain several 
“strong” harmonics if several are small.

Returning to eq.(34), it is clear that a self consistent solution exists when (Am — A^) 
is order e for all relevant m. However a self consistent solution also exists if (Am — A£J is 
order e2 for a single m and 0(1) for the remainder. This special case can be computed using 
just three basis-functions, each of which contains the same triplet of coupled harmonics, 
centered on the harmonic with near vanishing Am. In each triplet one (only) harmonic has a 
discontinuity at its critical surface. This discontinuity and the boundary conditions at r=0 
are iterated until the triplet satisfies the boundary conditions at r=a.

5 Summary and Conclusions

A. The jF-matrix

In a cylinder, tearing modes can be calculated through an asymptotic matching procedure in 
which the full plasma physics is needed only in a critical layer where nq(r) = m. Elsewhere 
the plasma is described by marginal ideal mhd. At the critical surface the ideal mhd solution 
allows a discontinuity A' in its small component which is to be equated to the corresponding 
A“(u;) from the solution to the equations with full physics in the layer. This gives the tearing 
mode dispersion equation A"(u;) = A'. Thus A' contains all the information needed from 
the ideal mhd ‘external’ part of the problem.

In a torus the various poloidal harmonics m are coupled, so that for each toroidal number 
n there are many critical surfaces nq = integer and correspondingly many discontinuities Am 
in the ideal mhd solutions. Each of the Am must be matched to its corresponding Am(u;). 
However, the mhd equations do not specify any particular set of Am, only a relation 
between them. This relation is given by the E-matrix discussed in this paper. Just as the 
single quantity A' contains all the ideal mhd information needed for the dispersion equation 
in a cylinder, so the E-matrix contains all the information needed in a torus.

We have discussed the structure and calculation of the E-matrix in two large aspect ratio 
limits. In the weak-coupling theory e << A^ [A^ is the discontinuity for an uncoupled 
harmonic] and the coupling between adjacent harmonics is 0(e/A^,). The E-matrix is tri­
diagonal and can be calculated by perturbation or by computing a set of triplet basis- 
functions. In each triplet the central harmonic has a discontinuity at its critical surface 
but the side bands are continuous. Note that only triplets of coupled harmonics need be 
computed irrespective of the number of critical surfaces. The number of triplets required
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equals the number of critical surfaces.
However, even at large aspect ratio (e << 1) the weak-coupling approximation breaks 

down when Ajj, is small. An alternative strong-coupling approximation requires that e « Apm, 
where is an eigenvalue associated with a higher radial mode of the uncoupled mtk poloidal 
harmonic-and is of order unity. This approximation again leads to a tri-diagonal form of 
^-matrix when this is computed from overlap integrals of uncoupled harmonics. It may 
also be computed from multiplet basis functions but it is then not necessarily in tri-diagonal 
form. A special case of the strong-coupling approximation involves only three harmonics 
and can be computed from triplet basis-functions as in the weak-coupling approximation.

B The Dispersion Equation

An important feature of the asymptotic approach to tearing modes is that the E-matrix 
calculated from ideal mhd alone, can be used in conjunction with many different models for 
the critical layers. Each such applications must be discussed individually, but some general 
observations may be made.

The dispersion equation is obtained by substituting A“ (w) from the layer model for the 
Am in the E-matrix.

E(u;)=|E-A-(u;)|=0. (38)

Now, in both weak and strong coupling approximations, the off-diagonal elements of the E- 
matrix are proportional to a small coupling parameter. Consequently the toroidal dispersion 
equation (38) will have solutions only when at least one of the diagonal elements is small. 
There seem to be two generic cases: either (Am — A^J may be 0(e) for several harmonics, or 
it may be 0(e2) for one harmonic and 0(1) for the remainder. In either event, the frequency 
of a toroidal tearing mode will be close to that of an uncoupled harmonic. Thus the toroidal 
tearing mode is a natural extension of the cylinder tearing mode. [However this is not the 
case for the twisting mode which we discuss in part II. The toroidal twisting modes are 
intrinsically toroidal and are not an extension of the cylinder modes - to which they are 
essentially unrelated.]

As far as mode structure is concerned, if (A^ — A~ (w)) is small for only one harmonic 
then the toroidal eigenmode will comprise only that principal harmonic and weak side-bands. 
If (A^ — A~ (w)) is simultaneously small for several harmonics, then the toroidal eigenmodes 
will consist of strong admixture of these harmonics as well as many weaker sidebands.

Two important models for plasma within the critical layer are the low-/? resistive mhd and 
the Rutherford^7) non-linear resistive mhd models. For these models, A" (cu) is proportional 
to some power of u> and vanishes at marginal stability for all harmonics simultaneously. In
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the cylindrical case marginal stability is then described by A' = 0 and stability by A' > 0. 
In the same way marginal stability of toroidal tearing modes, for these models, is given by 
|i?| = 0 and stability by A# < 0 where A# is the greatest eigenvalue of the matrix.

Another important layer model is that of a kinetic plasma with diamagnetic drifts.^ 
Then A^(w) will be large (in the reciprocal layer width S) unless ui is close to the local 
diamagnetic frequency w„. In this case the side bands will be small both in the toroidicity e 
and the layer width 6.

Appendix A. Formal Theory.

The weak-and strong-coupling approximations can be considered as formal perturbation 
schemes. The basic coupled mhd equations can be written schematically as

(£m + Am) V>m = £ /C±Vm±i (A.l)
±

where Am represents both the magnitude of the discontinuity at the singular surface and an 
appropriate operator [for a pressureless plasma this operator is simply 8{r — rm)]. Then the 
triplet introduced in section 2 satisfies

(A.2a)
±

£.±h£±i = KZi^l (A.2b)

[Note carefully the difference between the eqs.(A.2) for a triplet, which refer only to a single 
m, and the eqs.(A.l), which refer to all m].

If we formally solve eq.(A.2b) for we can obtain an uncoupled equation for the 
central harmonic of the mth triplet, ie.,

{*» +&1-T, }<£ = 0 (A.3)

It is convenient to denote this as

Hmi’l = {Cm + &i~ Gm) *1 = 0 (A.4)

then we can write the full set of eqs.(A.l) (for all m) as

= (A£ - Am - Gm)^m + £ (A.5)
±

The right hand side of eq.(A.5) is a perturbation of 0(e2) (the off-diagonal term ~ e is 
equivalent to a diagonal term ~ e2). Thus we can write
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where

= am^+ (A.6)

Hm 5m= (Aj; - Am - Gm)om^ + E K^am±^l±1
±

The left side of this equation can be annihilated in the usual way. Then

(Am ” Am“ < V£|Gm|V£ >) am + £ < > am±l = 0

±

and the solubility condition is

| £1-A |=0

with

S»„ = Al- < ^ I I ^
■‘■'mil

£m,m±l =< | | ^±1 >

(A.7)

(A.8)

(A.9)

(A.10)

which is equivalent to the weak coupling results derived in section 3.
The strong coupling approximation can be considered in a similar way. The basic equa­

tions are again represented by eq.(A.l). Now, however, we assume that several poloidal 
harmonics have Am small in the cylinder limit and a zero order solution is therefore con­
structed from a linear combination of these M ‘degenerate’ harmonics. Thus V’m is written

V’m = amV’m + (A-H)
The coefficients am are undetermined in lowest order. When eq.(A.ll) is inserted in eq.(A.l) 
the solubility condition for in first order yields

(Al - Am)am + £ < > am±1 = 0 (A.12)
±

with solubility condition

\E — Am| = 0 (A.13)

where EmtTn = A^ and Emjm±1 =< V,m|Arm±1|V’m±i >i which is equivalent to the results of 
section 4.

Note that in this strong-coupling approximation, the elements of E are described in terms 
of ^ and the off-diagonal elements are 0(e) while the diagonal elements are 0(1). In the 
weak-coupling approximation the off-diagonal elements are also 0(e), and to this order are 
identical with those of strong-coupling, but the diagonal elements contain contributions of 
both 0(1) and 0(e2/Am±i).

12



Appendix B. Some definitions

The coefficients L, M, N, P of eqs.(11) and (12) are given by the following expressions.
r2,n2 3,

=m(m±l)A's

MZ = NZ=0

Mm*1 = ±m{|(m -nq) + (m±l- nq)[^ - A#,(l - a)]}

N™*1 = ±(m ± 1) ||(m ±l-nq) + (m- nq)[^ - A;(l - a)] J

-9

2rp' (m — nq)
"W

(m —

n (m — nq) t 2rp' /
' w= (m-ng)a + (r09V"* ,^ + ^-(l-g2)m

m (2-3)

m
nq) d f

rdP\
_iL/9 _ j. ir3— - ^a'2 4- —'i
i?2?3 2 ^ q^lR2 2A,+ i2^

■i(4 + 25A>-2A? + 2T)}

2r3 ,2 7 r2 ,
+mV" + 4^ + 3IA1]}

(B.l)

(B.2)

(B.3)

(B.4)

(B.5)

Pm*1 = |(1 + a) + (m - nq)(m ± 1 - nq)(A; + ^) 

where a = —2Rp'q2/BQ,3 = rq'/q and As is the Shafranov shift of the magnetic axis.

(B.6)

(B.7)

The coupling integral I which appears in eq.(27) is a generalisation to finite pressure 
equilibria of the coupling integrals discussed by Edery et al^9*. It is defined by

I = V J dr |m(m + 1) 

, dil>m ch/>m+i

V’mV’m+l
a: + - +

o:(1 + s)

-rA'. dr dr + mxl>r d'l’m+l 
1 dr

R 2(m — nq)(m + l — nq)
AU3_1) + L+“("* + l-n?)

R 2 (m — nq)
( i i \ / dlpm -{m + l)ipm+i-j— -1) + -s + “ (m'"?) (B.8)R 2 (m + 1 — nq)

where the integration is to be interpreted as a principal part integration at each singular 
surface in the sense that

1+5 ^T-Tn+i+5'
in the limit 6, S' —* 0.

ra rrm-S fa
V / Xdr = / Xdr+ Xdr + / Xdr

Jo Jo Jrm+S Jrm+i+S'
(B.9)
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