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Abstract

A Fourier integral representation of the complex transfer
impedance of two parallel loop antennas of radius a, separated on
a common axis by & distance d, is converted into an integral I
whose integrand decays exponentially. This integral is further
manipulated to produce a series representation which can be used
numerically when d = 3a. A second integral Io, whose integrand
also decays exponentially, is derived and, like I,, converges for
d > 0. While a quadrature on I, can be pﬁrformed when d < 3a, the
quadrature requires evaluations of the J; Bessel function of a
complex argument. waever, the 1ntegrané of Ip requires only
elementary functions of complex arzuments and the J1 Bessel
function of real arguments. Consequently, a quadrature on Io
for d < 3a is recommended to complement the series evaluation
for 4= 3a.
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Introduction

The formula

I1(d) = Jl(w)H:E_é)(w) cos (4 d4dC , . w=adk-C

o | (1)

=l . ikz, k: 20, k, 70, a>0,d4>n

1 1 2
where Jl and Hée) are Bessel functions is developed in [3] to express
the complex transfer impedance of two parallel loop antennas of radius a
separated by a distance d on a common axis, The transfer. impedance
relates the open circuit voltage Vvinduced.in the récei&ihg iboﬁ to éﬁe
current I in the transmitting loop by I(d) = V/It. The object of this
manuscript is to derive two representations which can be used to evaluate
I numerically for the calculations in [5]. The necessity for alternate
repreSentations comes about because the convergence rate in (1) is too
slow to obtain accurate answers by numericel integration. The integral
(1) is only conditionally convergent with an ihtegrand which decreases
slowly like o(lgl'l). This means that a quadrature must extend over -
several orders of magnitude to reduce the truncation error to acceptable

levels, and this means unacceptable computer costs.

The key to this development is to note that (1) can be written as a

two sided Fourier transform
+oo

I-= -é— ' Jl'(w) H](_Z)(w) e~19C 4¢ | (2)

and this can be converted into a Laplace transform with an exponentially

decaying integrand. This is done by applying Cauchy's theorem to the
integral in the complex ( plane



5, H](.Q)(W) i g vea/K®- ()

glong the paths of Figures 1 and 2 with R - «», The path in Figure 1
leads to an integral Il’ valid for d > 0, in terms of Ji of a camplex
argument, Il can be further manipulated to produce a ;eries repre-
sentation which, though convergent for d > 2a, is suitable for numerical
evaluation for d much larger than 2a, say d 2 3a, The path in Figure 2
leads to an integral solution I2 which, like Il’ converges for d > O

but expresses the solution in terms of elementary complex functions and
real Jl Bessel functions. Consequently a quadrature on I, is recommended

2
for computation when d < 3a.

1
: The plan is to apply Cauchy s theorem to (3) along the contour of

Solution I f

Figure 1. For the reduction, we show that the 1ntegrals along Cl

to X, along

the integral from Xl 5

through Cu vanish as R ~ », Then, 2Il,

the axis, must be equal to the integral around C. as R — .

p

Before we start the estimation of integrals, we need a careful

analysis of the phasges associated with the branch

J2e® = Jxre ¢ = V'R R, L@ 9)/2

kK - C = Rlelqi , k+( = Rzelqb

where k is a fourth quadrant complex number. The geometric relationships
are shown in Figure 3. Note that the magnitude of the argument of the
factor k- has a jump of 27 in traversing from a point on one side of a
cut to the corresponding point on the other side., This means that
arg(y/ k2-§2) = (¢i+qb)/2 has & jump of magnitude T in moving (continu-
ously) from one side to the other.

We also note, for future reference, the behavior of Ji(z) and le)(z
in the complex z plane for small and large |z] (1, p. 360, 364],

2
ner =50 (2E) WP -3-2eo (Bl

|z| =0, larg z| < (4)



C plane, { = x + iy
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Figure 2.
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Figure 3.



Jl(z) = /ﬁg— { cos (z - 3m/k) ; e|IF(Z)|0(‘Z‘_l)§
12)(z) = /22 @3N b e

2] ~ @, larg 2] < 7.

‘Case I, Contours Cl and C2 of Figure 1

We bound the integrals on Cl and C2 by the triangle inequality, using

., C = Xl + iy and C = X2 + iy. Then, ‘ )

K,

< lo | B Yy, 5o,

C.
3 0

where \Jl(w)| |H£2)(w)‘ is evaluated on Cj for large Xj' The asymptotic
estimates (L) along with

2
|cos (z-3n/h)l2 = cos® (x-3T/4) + sinh? v~ E &

show that ‘Jl| and |H§2)‘ are bounded by i

ot (o)

5 Kl explay/ Rlelsin leqblj 5 K2 exP[aVRle sin —:2552-]
" w fi S
aviy By /R By

respectively for large R where Ry = O(IXj\), R, = O(lle). Here K, and X, .

were inserted to convert asymptotic estimates into rigorous inequality. Then,

RS (cpy ) ] }
(.5)

¥ (2)| .2 K K, exp{@[lsim 5 | + sin —=5
1 Hl ™ | - EA/RTR;—

B



From Figure 3 we see that -1 ~€ < % + P, < O where € is small and positive

when R, and consequently‘Rl, R,, Xl and Y2’ is large. ‘Then,

+Q,

]
N

and the exponential in (5) becomes 1. Therefore, IJlI |H§2)| is bounded by
, ~ - and X2 - o, Since

quantities which decrease like O(Ile_l) for X
exp (yd) is bounded on 0 < y < k,, the integrals along C, and C

5 vanish as

x| = or [xy| = .

Case II, Contours C, and Ch of Figure 1

3
We first treat the case for CL in Figure 1 with { on the semi-circular contour
ig s s
C=k+Re  =k+R(cos 6§ +1i sin 9).

-The triangle inequality produces

i
|| (2)| JRdsingy

!

< le-ikdl 8.

CLl» -TT/2

The estimate in (5) still applies for lJl(w)l |H§2)(w)| on C) since the
arguments w of the Bessel functions have a phase (¢i+¢é)/2 satisfying

A o
5 < 3

- <

within the permissible range |arg wl < 7., This can be seen from Figure 3
by noting the relations -T/2 < @, < 0 and -3m/2 < @ < -m. Thus, the

argument of the exponential function in (5) is zero and

2K K2
BRI e
ma/R Ry

on €. Then, with { =k + R "% ana Ry = K, we have

< lexé}e-ikdlf"

Mg,




where R/VPlRZ = JR/Rz"is bounded by 1. Therefore it remains to verify that

0
lim ;.
Roveo eRIsinbsg _ o,
-I
2
. A b oy 4 ok g
A change of variables sin g = -x gives : o
0 1
£(R) =| eRdsindgg _ e B 4y

-1 6 _xé
5 0
and Watson's lemms shows that f(R) decreases like O(le["l) for R = =,

The contour C3 to the left of the imaginary axis is much like that for
"Cy, in the portion where -1/2 < (Q01+cp2 )/2 < 0. . The point (R,GO) at. which .

(¢i+¢b)/2 = O occurs to the right of the imaginary axis since, on the axis,
we have (see Figure L4) '

h
2 2
cos lcpgl = -2?0 < E{ = COSs CPl

(qi+¢b) (qi'lqbl)

‘which implies |qb| > @, and sin = sin 5 < 0. But, on the

left side of the cut, @ = m/2 and Tqbl < m/2. thus, (g - |qbl)/2 = (qi+qb)/2
can be positive which, according to (5), leads to an exponentially increasing
estimate

( 2K, K N - (@e))
7,1 153)] < 11;2 exp {-._m/_—nlng oin L5221 .

However, this is mitigated by the fact that the exponential

-4 _4 . P SE
e 1ag| = e 1kd‘eRd31n6‘ . m™m<H 5
is decreasing. Since @ - /2 and w, = -1/2 for R = » with  on the left side

of the cut, sin (¢i+¢b)/2 - 0 and _Rz'sin (¢i+¢b)/2 is indeterminant as R = «. .
To resolve this indeterminacy we ise the geametry of Figure 4., We have

10



sin
2

S1

1

sin |¢é

P+,

sl

n(qi+¢b)

2

EANEY

on Cé. Then,

2K,K
< 12

€3

= sin

| _ hl+R sin ¢i
_.___ig;____

> cos |os] =

_ h2-R cos @

R2

(-, ) v/l - cos (-9, 1)
2 2 '

V/Re

g -m

2R2

-R cos 2¢i'(h2 cos @ +h, sin ¢i)A

3R=Ri

/

l1- cos 26 i h2 cos ¢i+h151n ¢i .

2

R,

~ l:E%E_gg = - gin ©

Now, R, = R and R2 - Ras R— » and

2)| eRdsinO <

le-ikdl

ma

0

3m/2

2%

s exp {r(a-2

S(d—2a)Rsin6 Ra
R

for R— =

a)siu 6}

8.

Since sin 6 < 0 on 90 S A= 3ﬂ/2, we can make the honind vanish if A4 > 2a

and R = o,

11
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Case III, Contour C. of Figure 1

>
We first show that the integral about the circle

lk-¢| =

at the top of the keyhole in Figure 1 vanishes as r = O, With ( =k + rele
-m/2 < 6 < 3m/2, we get

b

Jl(avﬁé-ge) = Jl(a eie/2 Véfpék+;eié)
2 (@ kP-) = 1) (@el¥2 foferre®)

where the arguments are small for small r. We therefore need the behavior of
Jl(z) and Hig)(z) for small |z| from (4),

RORT NI HOREE

N

Thus, l |H12)| ~ 1/m remains bounded and
-2 : .
,v/. < % !e-lkd‘ erd81nelrieleld6
o) 3m/2 ‘
-m/2
< % r |e-ikd| ordsing a6.
3m/2

This estimate shows that the integral around the circle vanishes-.as r — O.

The integrals along each side of the branch cut are not the same because
the argument w of Jl(w) H§2)(w) is discontinuous. We consult Figure 3 to get

the correct phase of
- a /k2_g2 - 8 @el(mlﬂpz)/z’.

Thux, the eonbtour about O
*0

rcducecg to
5 ®

ar, = U 5 (8)EB) (B)e

o

“rd(.i)ar + Jl(a)Hig)(a).c-rd (-1) ar

13



where
a=a exp (-3mi/k) Jr JRk-ir
B=aexp (m/4) Jr 2k-ir,

Notice that a = B e‘lrf(a Jump in (¢i+¢b)/2 of‘-n) and thé analytic continua-
tion formulae - : Ey _

Jl(z ™™

-im

Yl(z e )

-Jl(Z)
-Yl(z) + eiJl(z)

together with the definition of H{z)(z)
@),y = :
Hy (z) = Jl(z) - i Yl(z)

give

6)

Il(d) =i g ikd e Td Ji (aJr2+2kir) dr.
0 % 5

Under a change of variables, ar = u, we have

[=<]

. =ikd
I, = e e'ud/? J° QA?+2kaiu) du. (7)

a 1
o)
While the derivation demanded that d > 2a, this integral is valid for 4 > O
and represents the analytic continuation of the solution I, into the region

1
d < 2a. A numerical guadrature of (7) requires evaluation of Jl for complex

arguments which can be obtained from [2].

However, there is an additional manipulation which yields a convergent

series. The series expansion for Ji (z) is [4, p. 97).

1k



° (-1)"(ems2)! _

_ 2m+2 - ’

O D e T
m=0

and
@® N
J‘i W/ u2+2ka.iu) = E a, [u2+2kaiu]m+l .
m=0

Then,

. -ikd L e o

ie :E: -

I-= -—a—— am. e ud/a [u2+2ka.iu]m+l du.
m=0
0

‘This integral is a Laplace transform of the form

[+ ]

v
e'pt(t2+2at)\)'l/2 at = LvL/2) (20) " oo ¢ (op)
- J P v

o |arg ol <7
Re v > -1/2
0

where Kv is the Modified Bessel function of the second kind. This gives

e 2 \m+3/2
_ i :E : 2ka "1 R
m= .

where

| (-1)"(cm+2)1

m! (m+2)! (m+l)1°2

b. = aﬁf(m+2) =

m om+2

(-1)"T (2m+3)
"I (m+L)T(m+2 )T (m+3) - 22572,
The Legendre formula '
22z-l .
T(2z) = T'(z) T(z+1/2)
‘|'|' .

re&uces'b Lu
m

b o DT T@es/2)
T A T(wrl) T(m+3)



Notice that Km+3/2(z) is related to spherical Bessel functions

h(l)(z) --i /2 e-ﬂi(m+3/2)/2'

m+1 mZ m+3/2 (-iZ )

082y =1 [T = SRR ).

Numerically, the functions Km+3/2(z) can be generated by forward recursion on

2v

K\)+l(z) = z_K\;(z) + K\)_l(z)

starting with v = 1/2 and the functions

K-l/2(z) = K1/2(z) =/ n—i €%, Re'z>0.:

. Thus, the final form is

3
2

) 2. Ve
T = Wiﬁ (kg 1 Z Ca(@) Ky sp (ki) (8)
m=0 .
where Re(kdi) > 0 and
-1)™(2m+2) 1 ka®i\® .
Cpld) = 1%! (3;&)?&32)! ( ;d.1>

Cm can also be generated numerically by the recursion,

‘ 2
2m+3 . [ka i)\
Coe1 = ~Cn (mgl)zm%3) ( Z l)'

The rate of convergence of the series can be determined from the asymptotic

expansion of Km

+3/2

for large m,

Kyrg/o(?) o L(m+3/2) (g)m+3/2

2 \z

16
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m+3/2 , m 2, m+3/2
X 2ka2i ‘ X (ikd) ~ (-1)" T(m+3/2 . T(m+3/2 (ha.
0 \ g m+3/2 2. fm I‘%mﬂ ; I"Em+3§ 42

ot (2a)2m+3
g/m m \d

using the asymptotic form [1, p. 257]

I'(z+a a-b
for z - =,

~ Z
z+b e .

This shows that the series converges provided d > 2a, and this form is recom-
mended when 2a/d is much less than 1 where the series converges rapidly.

d 2 3a or 2a/d = 2/3 generally suffices for errors 0(10-8) in 20 terms.

- Solution I,
- &

Many of the details associated with integration of (3) along contours
Cl through Ch and the small circle around ¢ = k of Figure 2 are similar to
those encountered in obtaining the solution Il. The cut xy = -klk2 in Figure 2
is determined so that exponential growth does not occur in the product

|J | |H 2)| as it did in solution I along C. of Flgure 1. Since:

3
@
|J | | (2)l &JRle[ls in )|+ 1ncpl 2]
VTH 2
the exponential growth is removed if
)+,
- < -~ <0

2

on either side of the cut. This is possible since ¢, +p, varies’on the extreme
left in Figure 3 from -1 to near zero on the imaginary axis when R-1 and R2 are
large. Then, (cpl+cp,))/2 = 0 yields

Cp.l 5

Im(v/(k+() (k-C)) = VR;R, sin =0

and
I (k) -k, txciy) (k) ~iky-x-1y)] =
produces
XY = ek,
. 17



Thus, arg(,\/{?-gz) = (cp1+cp2)/2 on the left of the hyperbola xy = -k k, is zero

"and the argument on the right is 1 less. The parameterization for the single
valued functions on the cut is

-k.k,
(- Xf.ay, <y <k, (9)

This construction automatically makes the exponential in the bound (5) equal
to 1 and keeps the produc:t R|J1| |HJ(_2)\ bounded oriE'C3 and Ch’ This in turn
makes the integrals on C3 and Ch vanish as R — ® because _‘exp(-igd)l decreases
exponentially. Finally, 212 is the contour integral on each side of the cut,

-k

P 2) K.k di ,
2112 = JJ_(B)H]_ (8) exp{ + yd}c (v)dy
| : v (kk.di -
+ Jl(Be'l”)HJEQ)(Be'ln)exp ‘ + yd} ¢'(y)day
‘-k2 L

and, using the jump relations (6), we get

k. k. di
I, =| exp + yd} Z8) ¢'(v) ay
where k]_kz
C'ly) == +1 , B = avR R,
y
‘ 2 2 2
R, = [k-c| = «/kl(l"'"kz/Y) + (kyty)T
,_ 2,. ? 2
R2 = lk+g| = A/'k-l(-l-"‘kz/Y) + (Rg"Y) .
A change of variables, y = -k2-v gives
= -]
-k. .k, di k.k
I, = e B exp t2 e_Vsz(p)- 12 il av (10a)
2 : k +v 1 2 :
2 (k #v)
0
o = avRR; = a/lk-c! |k+|
k.k
_ 12 . _ .

18



and this integral converges for d > O since Jl is real and bounded. Since the

Bessel function Jl is real, the integrand is easier to compute than that in (7),

and I2 is recommended for numerical quad+ature.

TFor numerical purposes, we write (10a) in an alternate form
=]
. k dv1
_=kdi -vd
sze exp [k +v] J2( )[(
0

by multiplying and dividing by exp (kldi). In this form, we can assess not
only the exponential decay, but also the local frequencies of J1 and the

— )2 + 1] dv (1ob)

trigonometric terms. Thus, we integrate on v in steps

: 2

. : k
. 2 A
Av = min {% s 1;-, c% , C = max {c, O.l}, A =3 Ek2+vL z———}——g + 1
‘ : k_+v
2n(k, +v.) 2*'1)
c = - k % 0
N k. d i |

2}‘1’,. Kj_:o L i l

to obtain the proper scale of integration where vy is the lower limit of

integration of each step. Notice that when kld is large and k2 small, the
trigonometric terms oscillate with a very high frequency near the origin v = 0.
This means that one ought to use an adaptive quadrature routine to minimize
the possibility of false results. A Gauss routine is preferable to avoid

evaluation at v = 0 when k2 = 0.

This integral was evaluated by a Gauss numerical (adaptive) quadrature
routine on the real and imeginary parts of the integrand and compared with
the Il solution. The agreement where the series converged rapidly, d/2a > 2,
was at least as good as the tolerance used to compute Il apd 12. - Numerical

checks were also made using (7) for d < 2a with similar agreement.

Cases for kl = 0 and k = 0: '

If kl 0, then the hyperbollc cut xy = -kl o degenerates into a portion
of the imaginary axis { = iy, == <y < sz, and the parameterization in (9)
reflects this to give a correct evaluation in (10). However, if k2 - 0, the
cut degenerates into a [ shaped curve containing the real axis segment ( =
0 < x <k, and the entire imaginary exis ¢ = iy, -= <y < 0,

The parameterization in (9) however only picks up the imaginary axis
when k2 = 0, Consequently, an integral around the portion of the cut on

(0,kl) must be added for correct results,

19



kl 0
e-ixd

3, (8)a) (R)ax + | ¥4 (o)1l?) (o )ax

o] § g

Again, we use the analytic continuation formulae (6) to get

22
1 B_ l-x

e (B)ax , k=0

k

o (11)

0

Notice that this integral is not singular at x = kl and reQuires no special

treatment for polynomial type integrators. Numerical checks on Il and I2 for

kzh; O were used to.verify the correctness'of'(ll). i

20
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