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Abstract 

A Fourier integral representation of the complex transfer 
impedance of two parallel loop antennas of radius a, separated on 
a common axis by a distance d, is converted into an integral r1 
whose integrand decays exponentially. This integral is further 
manipulated to produce a series representation which can be used 
numerically when d ~ 3a. A second integral r2 , whose integrand 
also decays exponentially, is derived and, like r1 , converges for 
d > 0. While a quadrature on r1 ca;·1 be performed when d < 3a, the 
quadrature requires evaluations of the J 1 Bessel function of a 
complex argument. However, the integrana. of r2 requires only 
elementary functions of complex arguments and the J1 Bessel 
function of real arguments. Consequently, a quadrature on I2 
for d < 3a is recommended to complement the ·series evaluation 
for d~ 3a. 
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Introduction 

The formula 

I(d) · = J m J
1 
(w)~2 ) (w) cos ( d d( , 

0 

w = a J k2-C2 

(l) 

where J1 and ~2 ) are Bessel functions is developed in [3] to express 

the complex transfer impedance of two parallel loop antennas of radius a 

separated by a dista.nce d on a common axis. The transfer.impedance 

relates the open circuit voltage V induced in the r~ceiving loop to the 

current It in the transmitting loop by I(d) = V/It. The object of this 

manuscript is to derive two representations which can be used to evaluate 

I numerically for the calculations in [5]. The necessity for alternate 

representations comes about because the .convergence rate in (1) is too 

slow to obtain accurate answers by numerical integration. The integral 

(1) is only conditionally convergent with an integrand which decreases 
. -1 

slowly like o(l'l ). This means that a quadrature must extend over 

several orders of magnitude to reduce the truncation error to acceptable 

levels, and this means unacceptable computer costs. 

The key to this development is to note that (1) can be written as a 

two sided Fourier transform 

I= !J+ooJ.(w) H(2 )(w) e·id{;; dC 
2 . 1 1 

-co 

(2) 

and this can be converted into a Laplace transform with an exponentially 

decaying integrand. This is don~ by applying Cauchy's theorem to the 

integral in the complex C plane 

4 



[ W= (3) 
::;.; 

along the paths of' Figures 1 and 2 with R ... oo. The path in Figure 1 

leads to an integral r1 , valid f'or d > 0, in terms of' J1 of' a canplex 

argument. r1 can be further manipulated to produce a series repre­

sentation which, though convergent f'or d > 2a, is suitable f'or numerical 

evaluation f'or d much larger than 2a, say d ~ 3a. The path in Figure 2 

leads to an integral solution r2 which, like r1 , converges for d > 0 

but expresses the solution in terms of elementary complex functions and 

real J 1 Bessel functions. Consequently a quadrature on r2 is recommended 

for computation when d < 3a. 

Solution r1 

The plan is to apply Caucrty' s theor.ef to (3) along . the. contour of 
jl. 

Figure 1. For the reduction, we show that the integrals along c1 . 

through c
4 

vanish as R ... oo. Then, 2I1 , the integral from x1 to x2 along 

the axis, must be equal to the integral around c
5 

as R ... oo. 

Before we start the estimation of integrals, we need a carefUl 

analysis of the phases associated with the branch 

where k is a fourth quadrant complex number. The geome~ric relationships 

:are shown in Figure 3. Note that the magnitude of the argument of the 

:factor k-(; has a jump of' 2n in traversing from a point on one side of' a 

cut to the corresponding point on the other side. This means that 

:arg(j k2 .. (;2 ) = (CI1_ +cp2 )/2 has a jump of' magnitude n in moving (continu­

ously) from one side to the other. 

We also note, f'or future ref'erence, the behavior of' J 1 (z) and ~2 )(z) 
:in the comvlex z plane for s~l and large lzl [1, p. 360, 364], 

J1 (z) = ~ + o (1~12) ~2 )(z) = ~. ~ + o (l~lln 1~1) 
l z l ... 0, l arg z .l < n (4) 
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J
1

(z) = ff- {cos (z- 3n/4); ei!P"fz)lo(lzl-
1

)\ 

Hi2)(z) = /J. e-i(z-3n/4) {1,+ o(l,zl~l)j 

Case I, Contours c1 and c2 of Figure l 

We bound the integrals on c
1 

and c2 by the triangle inequality, using 

G = x
1 

+ iy and G = x2 + iy. Then, 

£. j =1,2 

J 

where \Jl (w) I 1Hi
2

)(w) I is evaluated on cj for large xj. 

estimates (4) along with 

The asymptotic 

2jyj 
Ieos (z-3n/4) 1

2 = cos
2 

(x-3TT/4) + sinh
2 

y""' ~ 

show that \J1 1 and 1Hl2 )1 are bounded by 

(CI1_+<+2) 
K2 exp[~sin , 2 ] 

respectively for largeR where~= o(lxjl), R2 = o(lxjl). Here K1 and K2 . 

were inserted to convert asymptotic estimates into rigorous inequality. Then, 

8 -.~·;;--;_> 
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From Figure 3 we see that -n - e: < cp
1 

+ cp
2 

< 0 where e: is small and posi ti 've 

when R, and consequently.~' R2 , x1 and v 2 , is large. Then, 

Cl1_+cp') 
-!! - ~ < c.. < 0 

2 2 2 " 

and the exponential in (5) becomes l. Therefore, IJ1 1 1~2 )1 is bounded·by 

quantiti:s which decrease like o(lxjl-1
) for x1 ~ -oo and x2 ~ oo. Since 

exp (yd) is bounded on 0 ~ y ~ k
2

, the integrals along c
1 

and c
2 

vanish as 

I xll .... oo or I x21 - oo • . . 

Case II, Contours c
3 

and c4 of Figure l 

We first treat the case for c4 in 'Figure l with C on the semi-circular contour 

i8 C = k + R e = k + R (cos 9 + i sin 8). 

· ·The triangle inequality produces 
' '' 

The estimate in (5) still applies for IJ1 (w)l 1~2 )(w)l on c4 since the 

arguments w of the Bessel functions have a phase (Cl1_+cp2 )/2 satisfying 

Cl\ +cp2 ~n 
-n < -2- < 2 

within the permissible range I arg w I < n. This can be seen from l''igure 3 

by noting the relations -n/2 < cp2 < 0 and -3n/2 < Cl1_ < -n. Thus, the 

argument of the exponential function in (5) is zero and 

2K ~ 
IJll 1Hl(2 )1 ~ _._l_ 

n~ 

on c4• Then, with C = .k + R ei.S and 11_ = R, we have 
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where R/~ = JR/~· is bounded by 1. TherPfore it remains to veri:fy that 

~10 n--w eRdsin8dS = O. 

-n 
2 

A change of variables sin A = -x gives 

~(R) ~no eRdsin8d8 = 

2 
f l -Rdx 

e dx . 

0 Vx. 

and Watson's lemma shows that f(R) decreases like o(IRdl-1
) for R ~ oo. 

~e contour c
3 

to the left of the imaginary axis is much like that for 

.. ·c4 in the portion where -n/2 < (<t>
1

+cp2)/2 so. , The-point (R,8
0

) at. whi,c:;:h 

(Cf>l+<t>2)/2 = 0 occurs to the right of the imaginary axis since, on the axis, 

we have (see F'igure 4) 

cos 
h2 h2 l <t> I = - < - = cos <t>1 2 2R

2 
2R 

h .h. 1. I I d. {41_+<t>2) . w 1.c 1.mp 1.es cp2 > ~ an s1.n f = s1.n 

left side of the cut, cp1 = n/2 and I cp2 l < n/2. 
can be positive which, according to (5), leads 

estimate 

( CIJ. -I <t>21 ) 
2 < 0. But~ on the 

~hus, (Cj)1 - 1~1 )/2 = (Cf]_+~)/2 
to an exponentially increasing 

However, this is mitigated by the fact that the exponential 

I -ikdl Rds:i..ne = e e 

is decreasing. Since Cl]_ ..... rr/2 and cp2 ... -n/2 for R _, co with ~ on the left side 

of the cut, sin (C~J_+cp2 )/2 ... 0 and.~ sin (Cf>l1·cp2 )/2 io inde~erminant as R ..... o:>. 

To resolve this indeteTiminacy we use the geometry of Figure 4. We have 
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I 

sin 

sin 
CIJ.+cp2 

= sin 2 

' 

= j ~..;R cos 2Cf1_- (~ cos Cl\ +h1 sin Cf1.) 
2R

2 

. '. ' ~ ' : ' : 

cos 28 

-· j 1-cos 28 __ _ 8 ~ _ 
2 

sin f'or R ..... oo 

Now, R
1 

= R and ~ ..... R as R -+ oo and 

I on c
3

. Then, 

If (d-2a)Rsin9 
!:: Rd9. 
R 

c' 
3 

Since sin e < 0 on Ao ~ A ~ 3_rr/?. J WP. r.R.n mAkP. t.hA hnlmn V'A.ni Rh ; f' n "> ~~.: 

and R ..... oo. 

ll 
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Case III, Contour c5 of Figure 1 

We first show that the integral about the circle 

at the top of the keyhole in Figure 1 vanishes as r- 0. With C = k + rei 9, 

-n/2 < 9 < 3n/2, we get 

J (~) = J (a eiS/2 t }2k+~ei9) 
1 1 

ffj2)(~ = ~2)(aei9/2 j;J_k+reiA) 

where the arguments are small for small r. We therefore need the behavior of 

J1(z) and Hi2 )(z) for small \zl from (4), 

H(2 ) (z) 
. 1 ' ' 

1 2 
.... r.r.·z: .. 

Thus, \J1 ! 1~2 ) I ""1/n remains bounded and 

f 
0 

1
-TT/2 . 

!e-ikd1 

3n/2 

erdsin8 dS. 

This estimate shows that the integral around the circle vanishes as r - 0. 

The integrals along each side of the branch cut are not the· same because 

the argument w of J1(w) Hi2 )(w) is discontinuous. We consult Figure 3 to get 

the correct phase of 

~tu!, the eontour about a
5 

rcducco to 

212 - .-ik~·OJ1(~)~2)(a)e-rd(-i)dr + [ooJl(et)l~2)(o.)c-rd (.i) drl 
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where 

a = a exp (-3ni/4) Jr J2k-ir 

S = a exp ( m/4) Jr J2k-ir. 

Notice that a= S e-iTT (a jump in (~+cp2 )/2 of' -TT) and the analytic continua­

tion f'ormulae 

Jl(z e-iTT) = -Jl(z) 

Y1 (z e-iTT) = -Y1 (z) + 2iJ1 (z) 

together with the def'inition of' ~2 )(z) 

Hi2 )(z) = J1 (z) - i Y1 (z) 

give 

IL(2)(z e-iTT) = ( ) ( ) -""]_ Jl z + i yl z 

Then, 2I reduces to 

r:>I - 2i -ikdf co. -rd _2 (c) d .__ 1 - e c Ji , r 

0 
and 

( ) -ikdf co -rd __2 r
1 

d = i e e Jl_ ( a)l +2kir) dr. 

0 

Under a change of' variables, ar = u, we have 

Il = iae-ikdfoo.-ud/a ~ ()U2+2kaiu} du. 

0 

(6) 

~ . 

(7) 

While the derivation demanded that d > 2a, this integral is valid f'or d > 0 

and represents the analytic continuation of' the solution r1 i~to the region 

d :5: 2a. A numerical quadrature of (T) requires evaluation of' J1 f'or_ complex 

arguments which can be obtained f'rom [2]. 

However, there is an additional manipulation which yields a convergent 

series. The series expansion f'or ~ (z) is [4, p. 97J. 
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and 

Then, 

I = 

co 

~(z) = L 
m=O 

a z2m+2 
m 

co 

.ri cJ u2
+2kaiu) = L am cu2+2kaiu]m+l 

m=O 

i e -ikd 

a 

(X) 

m=O 

., 

"mf~ .-ud/a 

0 

~ : l ~ . . 

[ 2 . Jm+l u +2ka~u du. 

This integral is a Lapl9.ce transform of the form 
~·r 

larg al < TT 

Re v > -1/2 

where Kv is the Modified Bessel fUnctio~ of the second kind.. This gives 

i Lc:o ( 2.~m+3/2 
I = - b 2ka ~ K (kdi) 

~ '- m d m+3/2 

where 

a.vTT m=O 

b. = a r(m+2) m m 
= (-l)m(2m+2)! 

m! (m+2)! (m+ 1)! • 22rii+2 

(-l)IIt(2m+3) 
= , 2m+2 

r(m+l)r(m+2)r(m+3)·2 • 

. The Legendre f'ormu.La 

reduce::; l.J Lu 
m 

· 22z-1 . 
r(2z) = r(z) r(z+l/2) 

JTI . 

b = ( -lt l'(m+3/2) 

m JiTr(m+l) r(m+3) 

·:: .. · 
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Notice that Km+
3
/ 2 (z) is related to spherical Bessel f'unctions 

h(l)(z) =-i {2 -TTi(m+3/2)/2, ( ) 
m+l J nz e Km+3/2 -iz 

h (2)( ) _ . lfz _ TTi(m+3/2)/2 K (• ) 
1 z - 1 -- - e +3/ 2 1z • m+ TTz · m ·. 

Numerically, the ~~ctions Km+
3
/ 2 (z) can be generated by forward recursion on 

1'.: i 

2v · 
K L 1(z) = --K (z) + K 1(z) 

VI z v v-

starting with v = 1/2 and the functions 

. Thus, the final form is 

r - i - iJZTI 
m=O 

where Re(kdi) > 0 and 

H
.~z. = e· . 

' 
:Re z > 0. · ' 

(
ka

2
i)m. 

2d 

em can also be generated numerically by the recursion, 

e = 1 
0 

(2m+3) · (ka
2
i) 

em+l = -em • (m+l)(m+3) • -d- • 

(8) 

'T'h.P. rate of convergence of the series can be determined from the asymptotic 

expansion .of Km+
3
/ 2 for large m, _ 

( I ) .(~)m+3/2 K ( ) 1 m+3 ~ 
-m.+3/2 z ,.._, 2 

16 



Then, 

m+3/2 m ~ 2 m+3/2 

( 
2) · ( (-1' .. r~m+3 2). rtm+3~2) (4a) 

b 2kda i . Km+3/ 2 ikd) -~ - -- - - -m . 2,Jff r m+l r m+3 d2 

( -l)m l (2d~)2m+3 
,...._ 2.,/fT m 

using the asymptotic form [l, p. 257] 

This shows that the series converges provided d > 2a, and this form is recom­

mended when 2a/d is much less than l where the series converges rapidly. 

d ~ 3a or 2a/d ~ 2/3 generally suffices for errors O(lo-8) in 20 terms. 

Solution In 
c. . ; . \· 

Many of the details associated with integration of (3) along contours 

c1 through c4 and the small circle around C ~ k of Figure 2 are similar to 

those encountered in obtaining the solution I1 • The cut xy = -k1k2 in Figure 2 

is determined so that exponential g~owth does not occur in the product 

IJ1 1 1Hi2 )1 as it did in solution I~ along C~ of Figure 1. Since 

(2) 2 - ~R [I . (Cf1. +cp2) I . Cf1_ +cp2] IJ
1

1 IH~ I ,_, ---- e~:~,Jnln2 SJ.n 2 +sJ.n 2 
-"l rra.JRl R2 . 

the exponential. growth is removed if 
cpl +cp2 

~ 0 -TI < . 2 

on either side of the cut. This is possible since cp, +cp, varies ; on the extreme 
~ r... 

left in Figure 3 from -n to near zero on the imaginary axis when 11_ and ~ are 

large. Then, (Cf1_+cp2 )/2 = 0 yields 

rm(J(k+C)(k-C)) = JR1 ~ sin ~ ~2 
= o 

and 

produces· 
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Thus, arg(Jk2-c2)= (~+~2 )/2 on the left of the hyperbola xy = -k1k2 is zero 

and the argument on the right is TI less. The parameterization for the single 

valued functions on the cut is 

-oo < y < -k2 . (9) 

This construction automatically makes the exponential in the bound (5) equal 

to 1 and keeps the produc't R IJll ~~~) I bounded ori: c3 and c4. This in turn 

makes the integrals on c
3 

and c4 vanish as R ..... oo because lexp(-iCd)\ decreases 

exponentially. Finally, 2I2 is the contour integral on each side of the cut, 

2~ =_(-~ Jl (~)~2) (B) exp I kl;2di + yale '(y)dy 

_, 

and, using the jump relations (6), we get 
-k2 -J lklk2di l _2 I 2 - exp y + yd ~(S) C'(y) dy 

·where 
,. I (y) klk2 . 
"' =-2-+~ S=~ 

y 

~ ::: \k-C I = J ki(l·l·k2/y)
2 

+ (k2+y)
2 

. 

~ = \k+CI = ~k~(l-k2/y)? + (k2-y)2
• 

A change of variables,!= -k2-v gives 

-k df r2 = e 2 . exp [
-klk2 dil d2 e-v J:"(p) 
k

2
+v 1 

0 

18 
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and this integral converges for d > 0 since J1 is real and bounded. Since the 

Bessel function J1 is real, the integrand is easier to compute than that in (7), 
and I 2 is recommended for numerical quad ... ature. 

For numerical purposes, we write (lOa) in an alternate form 

I2 = e-kdif :xp r:1::l e -vd~(p) r k1k2 2 + J dv 
· ~ 2 J ~k2+v) J 

0 

(lOb) 

by multiplying and dividing by exp (k1di). In this form, we can assess not 

only the exponential decay, but also the local frequencies of J1 and the 

trigonometric terms. Thus, we integrate on v in steps 

2TT ~ ~ = 0 '1;" • 

to obtain the proper scale of integration where vL is the lower limit of 

integration of each step. Notice that when k1d is large and k2 small, the 

trigonometric terms oscillate with a very.high frequency riear the origin v = 0. 

This means that one ought to use an adaptiv~ quadrature routine to minimize 

the possibility of false results. A Gauss routine is preferable to avoid 

evaluation at v = 0 when k2 = 0. 

This integral was evaluated by a Gauss numerical (adaptive) quadrature 

routine on the real and imaginary parts of the integrand and compared with 

the I1 solution. The agreement where the series converged rapidly, d/2a > 2, 

was at least as good as the tolerance used to compute I 1 and I 2 •. Numerical 

checks were also made using (7) for d ~ 2a with similar agreement. 

Cases for k1 = 0 and k2 = 0: 

If k1 ~ 0, then the hyperbolic cut xy = -k1k2 degenerates into a portion 

of the imaginary axis ~ = iy, -oo < y ~ ~k2 , and the parameterization in (9) 

reflects this to give a correct evaluation in (10). However, if k2 ~ 0, the 

cut degenerates into a I shaped curve containing the real. axis segment C = x, 

0 ~ x ~ k1 and the entire imaginary axis ~ = iy, -oo < y ~ 0. 

The parameterization in (9) however only picks up the imaginary axis 

when k2 = 0. Consequently, an integral around the portion of the cut on 

(O,k1 ) must be added for correct results, 

19 



1 
2 

[ fk~ -ixdJl. ( B )~2) ( R )dx +1 ~ -ixdJl. ( Cl)~2) (Cl )dx ] 

0 kl 

f'=~ ' 
-in a. = e i3 

Again, we use the analytic continuation fo:rmulae (6) 

13=~ 1 

to get 

(11) 

Notice that this integral is not singular at x = k1 and requires no special 

treatment for polynomial type integrators. Numerical checks on r1 and r 2 for 

k2 .=. 0 were used to . veri:f'y the correctness ·of ·(ll). 
'' 
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