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ABSTRACT

Analytical equations for barrel-tamped explosively accelerated flyer plates are used 
to generate graphical solutions to flyer problems. Given the problem geometrical 
dimensions, explosive weight, detonation velocity, explosive exponent, barrel-tamping 
weight, and flyer weight, the graphical representation of the calculated data allows 
for a fast approximation of the final or maximum flyer plate velocity. Graphically 
obtained flyer velocities are compared to experimentally published data. The 
graphical solution for flyer velocity is particularly useful when a computer is not 
available. The graphical representation of the various barrel-tamped flyer 
parameters results in a parametric study which illustrates the effect on final flyer 
velocity in varying parameters. The graphical analysis scheme can be used with any 
explosive, tamper and flyer materials.
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LIST OF SYMBOLS

a Number of atoms per molecule of carbon 

b Number of atoms per molecule of hydrogen 

a Explosive discount factor (ALFA) 

c Number of atoms per molecule of nitrogen 

C Explosive actual weight

Ce Explosive effective weight

d Number of atoms per molecule of oxygen 

D Explosive detonation velocity

Do Barrel tamping outside diameter

Di Barrel tamping inside diameter

d Explosive diameters

dx Truncated explosive frustrum of cone minimum diameter 

E Gurney energy

G Gamma, detonation gas product exponent

Hf Heat for formation

L Explosive length

Lm Maximum explosive length

M Flyer plate weight

MG Grams of detonation product gases per mole of gas 

MW Molecular weight

N Barrel-tamping cylinder weight

NM Molecules of detonation product gases per gram of explosive

OMB Oxygen mass balance

Pcj Chapman-Jouget pressure



PHI Non-dimensional explosive constant 

Q Detonation energy 

RHOcj Chapman-Jouget density 

t Flyer plate thickness 

T Barrel-tamping cylinder thickness 

V Volume

Va Actual explosive volume 

Vc Explosive frustrum of a cone/effective volume 

Vf Flyer plate maximum velocity 

Vfm Measured flyer maximum velocity 

VT Tamping cylinder maximum velocity 

V0 Detonation product gas untamped velocity 

e Explosive discount angle (THETA) 

pf Density of flyer plate (RHOf)

pN Density of barrel-tamping cylinder (RHOn)

pc Density of explosive (RHOc)

(2E)"0.5 Gurney Velocity (2E)° &





GRAPHICAL ANALYSIS OF
BARREL-TAMPED EXPLOSIVELY ACCELERATED FLYER PLATES

INTRODUCTION

Sandia National Laboratories (SNL), Explosive Components Department has 
responsibilities for the design of components that involve barrel-tamped explosively 
accelerated flyer plates. Hot wire and explosive bridgewire detonator components 
used to initiate larger explosive charges are examples of barrel-tamped flyer 
configurations. Barrel-tamped or untamped flyer plates have been designed to 
perform many varied functions [1-4].

The theory for barrel-tamped explosively driven flyers has been developed and 
published [5-7]. Benham [1] and Mathews [2-4] have expanded the analytical 
solutions to include methods for calculating the fraction of the total or actual 
explosive weight that effectively propels or accelerates the flyer.

Benham’s approach is the most general and was selected to generate the 
graphical solutions presented. The graphical representation of the calculated data 
allows for a fast approximation of the final or maximum flyer velocity when a 
calculator or computer is not available.

GENERAL CONFIGURATION

The general barrel-tamped explosively driven flyer configurations are shown in 
Figures 1 and 2. The cushion material between the explosive and flyer is required for 
certain configurations to prevent spallation or breakup of the flyer before impacting 
the desired target. Spallation of the flyer is more of a concern when the flyer is 
accelerated for a relatively large distance before impact. Most flyer components are 
designed so the flyer impacts the target about the time it is accelerated to about 90% 
of its maximum velocity. This acceleration distance is very short and, therefore, 
spallation is usually not a concern. The following sections present a step-by-step 
description of the procedures, equations, and graphical representations used to 
obtain the maximum velocity for barrel-tamped flyers. All equations used to 
generate the graphical solutions are included in Appendix A.
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TAMPING TO EXPLOSIVE WEIGHT

This is the beginning of the analysis sequence. Barrel-tamping to explosive 
weight ratio (N/C) versus tamping to explosive density ratio (RHOn/RHOc) and 
outside to inside barrel diameter ratio (Do/Di) data are shown in Figure 3. The 
following equation obtained from geometrical and material considerations was used 
to calculate N/C:

(N/C) = (RHOn/RHOc) [(Do/Di)2 - 1] . (1)

If N/C is already known or has to be calculated because parameters fall outside the 
ranges of Figure 3, then proceed to the next section.

EXPLOSIVE DISCOUNT ANGLE

Explosive discount angle [1] (THETA) versus barrel-tamping to explosive 
weight ratio (N/C) data are shown in Figure 4. The following equation derived from 
Gurney theory [1,13] was used to calculate THETA:

THETA = 30/{1.44[(N/C) + 0.5]°-5} (2)

The maximum value for THETA of 30 degrees corresponds to the untamped (no 
barrel-tamping) explosive configuration. Proceed to the next section.

MAXIMUM EXPLOSIVE LENGTH TO DIAMETER RATIO (Lm/d)

Maximum explosive length to diameter ratio (Lm/d) versus explosive discount 
angle (THETA) data are shown in Figure 5. The following equation obtained from 
geometrical considerations was used to calculate (Lm/d):

(Lm/d) = l/[2 TAN (THETA)] (3)

The maximum effective explosive length (Lm) corresponds to a value of 
THETA (0) in Figure 1. Lm can be calculated from Figure 5 or Equation 3. If the 
actual explosive length (L) is greater than Lm, proceed to the next section, otherwise 
skip the next section.
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EFFECTIVE EXPLOSIVE DISCOUNT FACTOR (ALFA)

Effective explosive discount factor (ALFA) versus explosive diameter-to-length 
ratio (d/L) and explosive discount angle (THETA) data are shown in Figure 6. 
ALFA is read from this figure only if the actual explosive length (L) is greater than 
the maximum effective explosive length (Lm) as illustrated in Figure 1. The 
following equation was used to calculate ALFA:

ALFA = (d/L)[l/6 TAN (THETA)] (4)

The effective explosive weight (Ce) is that calculated from the right circular cone 
volume (Equation A15 in Appendix A) as shown in Figure 1 and then skip the next 
section.

EFFECTIVE EXPLOSIVE DISCOUNT FACTOR (ALFA)

Effective explosive discount factor (ALFA) versus explosive length-to-diameter 
ratio (L/d) and explosive discount angle (THETA) data are shown in Figure 7. 
ALFA is read from this figure only if the actual explosive length (L) is less than the 
maximum effective explosive length (Lm) as illustrated in Figure 2. The following 
equation was used to calculate ALFA:

ALFA = 1 - 2(L/d)[TAN(THETA)] + (4/3)(L/d)2[TAN(THETA)]2 (5)

The effective explosive weight (Ce) is that calculated from the frustum of a cone 
volume (Equation A14 in Appendix A) as shown in Figure 2 and go to the next 
section.

ACTUAL EXPLOSIVE-TO-FLYER WEIGHT RATIO (C/M)

Actual explosive to flyer weight ratio (C/M) versus explosive to flyer thickness 
ratio (L/t) and explosive to flyer density ratio (RHOc/RHOf) data are shown in 
Figure 8. The following equation obtained from geometrical and material 
considerations was used to calculate (C/M):

(C/M) = (L/ t)(RHOc/RHOf) (6)

Proceed to the next section.
11



EFFECTIVE EXPLOSIVE TO FLYER WEIGHT RATIO (Ce/M)

Effective explosive [1] to flyer weight ratio (Ce/M) versus actual explosive to 
flyer weight ratio (C/M) and explosive discount factor (ALFA) data are shown in 
Figure 9. The following equation was used to calculate (Ce/M):

(Ce/M) = ALFA(C/M) (7)

Proceed to the next section

MAXIMUM FLYER TO DETONATION VELOCITY RATIO (Vf/D)

Maximum flyer plate to explosive detonation velocity ratio (Vf/D) versus 
effective explosive to flyer weight ratio (Ce/M) and explosive product gas exponent 
(Gamma) data are shown in Figure 10. The following equation [1-4,5] was used to 
calculate (Vf/D):

(Vf/D) = A[(B-1)/(B + 1)] 
where

(8)

A = [8/(G2 - l)]0-5 (9)

B = [1 + (32/27)(Ce/M)]°-5 (10)

G = Gamma (11)

This section concludes the step-by-step analysis sequence for obtaining the 
maximum flyer plate velocity.

GRAPHICAL ANALYSIS VERSUS EXPERIMENTAL DATA

Data from graphical analysis presented here were compared to ten different 
barrel tamped flyer plate experiments published in the literature. The maximum 
flyer velocities resultant from the graphical analysis (Vf) are compared to the 
published measured value (Vfm) in Table I. About half of the compared cases in 
Table I are for L < Lm (Frustrum of cone effective explosive volume) and half are 
for L > Lm (right circular cone affective explosive volume).

12



Care must be taken when solving for flyer velocities from deflagration-to- 
detonation (DDT) detonator configurations. The theory presented here is only good 
for detonating explosives. Therefore, the explosive volume for a DDT detonator 
should be only that for the usually higher density or output pellet.

GRAPHICAL SOLUTION EXAMPLES

The use of the graphical representations of the analytical equations modeling 
barrel-tamped explosively driven flyer plates are demonstrated by two examples in 
Appendix B. The first example is for a flyer problem with geometrical configuration 
per Figure 1 (L > Lm). The second example is for a flyer configuration with 
geometrical configuration per Figure 2 (L < Lm). A step-by-step procedure using 
Figures 1-10 is listed in Appendix B for the two examples

EXPLOSIVE DETONATION VELOCITY

The next two sections include examples of some useful graphical and tabular 
information for flyer plate problems. Flyer maximum velocity (Vf) versus explosive 
to flyer weight ratio (C/M) and explosive detonation velocity data are shown in 
Figure 11. The effect of explosives with various detonation velocities on flyer velocity 
is illustrated in Figure 11. An explosive exponent of 3.0 (Gamma) was used to 
calculate the data of Figure 11.

EXPLOSIVE PRODUCT GAS EXPONENT

The Gurney velocity, (2E)0-5, versus detonation velocity and explosive exponent 
(Gamma = G) data are shown in Figure 12. The effect of explosive exponent on 
Gurney velocity is illustrated in Figure 12. These data were calculated using the 
following equation [13-15]:

(2E)0-5 = 1.26D/(G + 1) (12)

13



COMMON FLYER, TAMPER, AND EXPLOSIVE PARAMETERS

In an effort to make this report stand alone and more useful for practical flyer 
velocity solutions, the following additional information is provided. Table II lists 
common flyer plate and barrel-tamping materials and densities from References 10 
and 11.

Table III and IV list common high explosives with composition comprised of 
carbon, hydrogen, nitrogen, and oxygen (CHNO) elements. The theory described in 
detail in References 12-14 was used to calculate the detonation parameters listed in 
Tables III and IV. Given the following explosive parameters listed in Table III [15]:

1. Carbon atoms per molecule (a),
2. Hydrogen atoms per molecule (b),
3. Nitrogen atoms per molecule (c),
4. Oxygen atoms per molecule (d),
5. Density (RHOc), and
6. Heat of formation (Hf).

The following explosive detonation parameters listed in Tables III and IV are 
calculated [12-14]:

1. Molecular weight (MW),
2. Molecules of detonation product gases per gram of explosive (NM),
3. Grams of product gases per mole of gas (MG),
4. Non-dimensional explosive constant [18-19] (PHI),
5. Chapman-Jouget density (RHOcj)
6. Oxygen mass balance (OMB),
7. Detonation velocity (D),
8. Chapman-Jouget pressure (Pcj),
9. Detonation energy (Q),
10. Gurney velocity (2E)^ 0.5
111 Detonation product gas exponent (Gamma).

Although not all of the above explosive parameters are necessary for the flyer 
velocity solution, they are included here because they could be useful in solving 
general explosively driven flyer problems such as open-face [13], symmetric [8], and 
asymmetric sandwich [8] configurations. The initial explosive density is listed in both 
Tables III and IV. Detonation parameters were calculated for several different 
densities for some explosives. The explosive chemical composition (a, b, c, d atoms 
per molecule), density and heat of formation data were obtained from Reference 15.
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SUMMARY

Graphical representations of analytical equations modeling barrel-tamped 
explosively driven flyer plates have been shown to produce generally good estimates 
of maximum flyer velocity. The flyer velocities resultant from the graphical analysis 
were within 10% of the published experimental data. The parametric study showing 
the effect on final flyer velocity resultant from varying the various flyer parameters 
was presented. The graphs can be used to design flyer components. This graphical 
analysis scheme can be used with any detonating explosive, tamper, and flyer 
materials.
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Table I. Graphical Analysis Versus Published Experimental Data 

Flyer Velocity Comparisons

All Reference 1 Data: COMP-C4 Explosive, D = 0.804 cm/^s)

Vf Vfm Explosive
TEST REF N/C THETA Lm/d L/d ALFA C/M Ce/M G Vf/D (cm/Ats) (cm/Ats) Vf/Vfm Length (L)

26 1 .06 28.0 .97 1.0 .295 4.6 1.5 3.0 .281 .23 .21 1.07 >Lm

MC3644 9 70.0 3.0 9.8 1.0 .90 5.1 4.9 2.8 .48 .30 .28 1.06 <Lm

5 1 4.4 9.6 5.9 1.5 .65 6.7 4.5 3.0 .43 .35 .32 1.08 >Lm

1-13 1 2.71 11.8 2.5 1.87 .42 5.0 2.1 3.0 .30 .24 .23 1.04 >Lm

MC2984 - 3.55 10.6 2.7 1.33 .58 8.5 4.8 3.0 .44 .36 .33 1.09 >Lm

24 1 0.88 19.8 1.5 .75 .56 6.0 3.1 3.0 .36 .29 .31 0.94 <Lm

15 1 0.84 25.0 1.3 2.5 .28 6.2 2.0 3.0 .32 .26 .25 1.04 <Lm

23 1 1.76 14.5 2.1 2.5 .30 20.1 5.5 3.0 .53 .43 .40 1.08 <Lm

11 1 0.84 19.0 1.8 1.5 .26 4.5 1.4 3.0 .26 .21 .21 1.00 <Lm

6 1 4.40 9.5 3.1 1.5 .57 12.1 6.8 3.0 .51 .41 .41 1.00 >Lm



TABLE II. COMMON FLYER AND BARREL-TAMPING MATERIAL DENSITIES

MATERIAL DENSITY(g/cc)

1. STEEL, AISI C1020(HOT-WORKED) 7.85
2. STEEL, AISI 304(SHEET) 8.03
3. ALUMINUM, 2024-T3 2.77
4. ALUMINUM, 6061-T6 2.70
5. ALUMINUM, 7079-T6 2.74
6. COPPER, PURE 8.90
7. LEAD, PURE 11.34
8. TANTALUM 16.60
9. TITANIUM 4.85

10. TUNGSTEN 19.30
11. URANIUM 18.97
12. KAPTON 1.41
13. PLEXIGLAS 1.18
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TABLE III. CHNO EXPLOSIVE PARAMETERS

H.E.
NAME

a
CHEMICAL 
FORMULA 
b c d

MW
(g/mol)

NM(mole gas/ 
g H.E.)

MG
(g gas/ 
mol gas)

Hf(Kcal/
mole)

PHI RHOc
(g/cc)

TNT 7.0 5.0 3.0 6.0 227.0 .025 28.5 -15.0 4.87 1.64TNT 7.0 5.0 3.0 6.0 227.0 .025 28.5 -15.0 4.87 1.00HNS 14.0 6.0 6.0 12.0 450.0 .023 32.0 13.9 4.86 1.69HNS 14.0 6.0 6.0 12.0 450.0 .023 32.0 13.9 4.86 1.65HNS 14.0 6.0 6.0 12.0 450.0 .023 32.0 13.9 4.86 1.60
HNS 14.0 6.0 6.0 12.0 450.0 .023 32.0 13.9 4.86 1.40TATB 6.0 6.0 6.0 6.0 258.0 .029 27.2 -36.8 4.97 1.88TATB 6.0 6.0 6.0 6.0 258.0 .029 27.2 -36.8 4.97 1.40
DATE 6.0 5.0 5.0 6.0 243.0 .028 28.4 -29.2 5.03 1.79
DATB 6.0 5.0 5.0 6.0 243.0 .028 28.4 -29.2 5.03 1.40TETRYL 7.0 5.0 5.0 8.0 287.0 .027 30.5 4.7 5.62 1.71TETRYL 7.0 5.0 5.0 8.0 287.0 .027 30.5 4.7 5.62 1.40NM 1.0 3.0 1.0 2.0 61.0 .037 23.1 -27.0 6.55 1.13NM 1.0 3.0 1.0 2.0 61.0 .037 23.1 -27.0 6.55 1.14
NQ 1.0 4.0 4.0 2.0 104.0 .038 23.0 -23.6 5.49 1.72NQ 1.0 4.0 4.0 2.0 104.0 .038 23.0 -23.6 5.49 1.55RDX 3.0 6.0 6.0 6.0 222.0 .034 27.2 14.7 6.78 1.80RDX 3.0 6.0 6.0 6.0 222.0 .034 27.2 14.7 6.78 1.76RDX 3.0 6.0 6.0 6.0 222.0 .034 27.2 14.7 6.78 1.71
RDX 3.0 6.0 6.0 6.0 222.0 .034 27.2 14.7 6.78 1.36RDX 3.0 6.0 6.0 6.0 222.0 .034 27.2 14.7 6.78 1.00HMX 4.0 8.0 8.0 8.0 296.0 .034 27.2 17.9 6.77 1.89HMX 4.0 8.0 8.0 8.0 296.0 .034 27.2 17.9 6.77 1.40PETN 5.0 8.0 4.0 12.0 316.0 .032 30.4 -128.7 6.79 1.77PETN 5.0 8.0 4.0 12.0 316.0 .032 30.4 -128.7 6.79 .99LX-13 1.8 3.6 1.0 3.3 92.3 .033 26.0 -44.4 6.38 1.53PB9404 1.4 2.8 2.6 2.7 98.6 .034 27.0 .1 6.63 1.84
LX04-1 1.6 2.6 2.3 2.3 90.2 .033 26.4 -21.5 5.60 1.87
COMP B 2.0 2.6 2.2 2.7 100.2 .031 27.2 1.0 6.02 1.72LX07-2 1.5 2.6 2.4 2.4 93.3 .033 26.7 -12.3 6.02 1.87
PB9011 1.7 3.2 2.5 2.6 100.0 .033 25.7 -4.1 6.21 1.77
CYCLTL 1.8 2.6 2.4 2.7 100.0 .032 27.5 3.0 6.29 1.75
LX09 1.4 2.7 2.6 2.7 99.7 .034 27.1 1.8 6.64 1.84
BARATL .7 .5 .9 2.4 60.1 .029 36.1 -70.8 4.79 2.55
COMP C 1.8 3.5 2.5 2.5 100.2 .034 24.5 3.3 6.23 1.59
COMP B 2.0 2.5 2.1 2.7 99.9 .030 27.6 .8 5.97 1.72DIPAM 12.0 6.0 8.0 12.0 454.0 .025 31.7 -20.0 5.08 1.79
DNPA 6.0 8.0 2.0 6.0 204.0 .029 24.0 -110.0 4.68 1.47
EDNP 7.0 12.0 2.0 6.0 220.0 .032 19.4 -140.0 4.30 1.28
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TABLE III. CHNO EXPLOSIVE PARAMETERS(CONTINUED)

H.E.
NAME a

CHEMICAL
FORMULA 
b c d

MW
(g/mol)

NM
(mole gas/ 
g H.E.)

MG(g gas/ 
mol gas)

Hf
(Kcal/
mole)

PHI RHOc
(g/cc)

FEFO 5.0 6.0 4.0 10.0 282.0 .030 31.1 -177.5 5.70 1.61HNAB 12.0 4.0 8.0 12.0 452.0 .024 33.5 57.8 5.31 1.61LX01-0 1.5 3.7 1.7 3.4 99.9 .035 26.1 -27.5 6.93 1.23LX02-1 2.8 4.9 .9 3.0 99.0 .032 21.8 -49.1 5.16 1.44LX 08 1.9 4.4 .8 3.0 86.1 .035 22.7 -44.0 6.10 1.44LX09-1 1.4 2.7 2.6 2.7 99.6 .034 27.2 2.0 6.65 1.87LX10-0 1.4 2.7 2.6 2.6 97.0 .033 27.0 -3.1 6.38 1.90LX11-0 1.6 2.5 2.2 2.2 86.7 .032 26.0 -30.7 . 5.13 1.87MEN-II 2.1 7.1 1.3 3.1 100.0 .040 18.3 -74.3 • 5.63 1.02NC12%N 6.0 7.0 2.3 9.5 262.5 .029 29.7 -216.0 5.06 1.58NC13%N 6.0 7.0 2.5 10.0 274.0 .029 30.1 -200.0 5.37 1.58NG 3.0 5.0 3.0 9.0 227.0 .032 31.7 -90.8 7.16 1.59OCTOL 1.8 2.6 2.4 2.7 100.0 .032 27.5 2.6 6.28 1.81PB9007 2.0 3.2 2.4 2.4 99.9 .032 25.1 7.1 6.06 1.66PB9010 1.4 2.4 2.4 2.4 92.0 .033 27.2 -7.9 6.20 1.79PB9205 1.8 3.1 2.5 2.5 100.1 .033 25.5 5.8 6.21 1.68PB9407 1.4 2.7 2.5 2.5 95.8 .033 26.9 11.6 6.76 1.61PB9501 1.5 2.9 2.6 2.7 99.9 .034 26.7 2.3 6.60 1.84PB9502 1.5 2.9 2.6 2.7 99.9 .034 26.7 2.3 6.60 1.84PENTLT 2.3 2.4 1.3 3.2 99.9 .029 29.6 -24.3 5.80 1.67TNM 1.0 0.0 4.0 8.0 196.0 .031 38.7 13.0 8.48 1.65TACOT 12.0 4.0 8.0 8.0 388.0 .023 31.1 128.0 4.76 1.61BTF 6.0 0.0 6.0 6.0 252.0 .024 36.0 144.5 5.88 1.87EL506A 2.4 4.3 1.1 3.3 100.7 .032 24.2 -39.9 5.85 1.48EL506C 3.3 5.9 .9 2.7 100.0 .033 18.2 -42.5 4.72 1.48RX08EL 9.0 14.0 12.0 18.0 578.0 .032 29.p -81.6 6.57 1.80CH-6 .2 0.0 .4 .4 14.1 .029 35.7 14.7 8.49 1.64LX-14 1.5 2.9 2.6 2.7 100.0 .034 26.5 0.0 6.48 1.85
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TABLE IV. CHNO EXPLOSIVE DETONATION PARAMETERS

H.E.
NAME

RHOC
(g/cc)

RHOcj
(g/cc)

OMB
(%>

D
(cm/us)

Pcj
(GPa) Q •(cal/

g)
(2E)A.5
(cm/us)

•

Ganuna

TNT 1.64 2.17 -74.0 .698 20.43 1295.2 .243 2.92
TNT 1.00 1.37 -74.0 .513 7.59 1295.2 .203 2.46
HNS 1.69 2.23 -67.6 .712 21.66 1356.2 .246 2.96
HNS 1.65 2.18 -67.6 .700 20.64 1356.2 .244 2.93
HNS 1.60 2.12 -67.6 .686 19.41 1356.2 .241 2.88
HNS 1.40 1.87 -67.6 .628 14.86 1356.2 .229 2.72
TATB 1.88 2.46 -55.8 .776 27.42 1075.8 .258 3.13
TATB 1.40 1.87 -55.8 .635 15.20 1075.8 .231 - 2.72
DATB 1.79 2.35 -56.0 .753 25.13 1151.4 .254 3.05
DATB 1.40 1.87 -56.0 .639 15.37 1151.4 .232 2.72
TETRYL 1.71 2.25 -47.4 .771 25.62 1420.5 .261 2.98
TETRYL 1.40 1.87 -47.4 .675 17.17 1420.5 .242 2.72
NM 1.13 1.53 -39.3 .638 13.04 1363.4 .236 2.53
NM 1.14 1.54 -39.3 .640 13.16 1363.4 .237 2.54
NQ 1.72 2.27 -30.8 .766 25.32 884.6 .259 2.99
NQ 1.55 2.05 -30.8 .713 20.56 884.6 .249 2.84
RDX 1.80 2.36 -21.6 .879 34.29 1482.5 .286 3.06
RDX 1.76 2.31 -21.6 .865 32.78 1482.5 .284 3.02
RDX 1.71 2.25 -21.6 .848 30.95 1482.5 .281 2.98
RDX 1.36 1.82 -21.6 .728 19.57 1482.5 .257 2.69
RDX 1.00 1.37 -21.6 .605 10.58 1482.5 '.229 2.46
HMX 1.89 2.48 -21.6 .909 37.73 1476.8 .292 3.14
HMX 1.40 1.87 -21.6 .741 20.70 1476.8 .260 2.72
PETN 1.77 2.32 -10.1 .867 33.00 1514.2 .284 3.03
PETN .99 1.36 -10.1 .602 10.38 1514.2 .228 2.46
LX-13 1.53 2.03 -36.6 .762 23.28 1416.8 .262 2.82
PB9404 1.84 2.41 -24.1 .882 35.00 1434.1 .286 3.09
LX04-1 1.87 2.45 -37.1 .820 30.54 1114.8 .270 3.12
COMP B 1.72 2.27 -43.3 .802 27.77 1404.1 .268 2.99
LX07-2 1.87 2.45 -31.6 .850 32.86 1244.2 .277 3.12
PB9011 1.77 2.33 -39.0 .831 30.34 1357.9 .275 3.03
CYCLTL 1.75 2.30 -34.6 .829 30.04 1433.4 .275 3.01
LX09 1.84 2.41 -24.2 .883 35.09 1449.2 .287 3.09
BARATL 2.55 3.29 16.9 .954 48.57 730.9 .286 3.78
COMP C 1.59 2.10 -46.9 .773 24.57 1401.1 .264 2.87
COMP B 1.72 2.27 -43.0 .799 27.57 1399.8 .268 2.99
DIPAM 1.79 2.35 -52.9 .757 25.38 1269.6 .255 3.05
DNPA 1.47 1.96 -78.4 .636 15.78 1054.9 .230 2.77
EDNP 1.28 1.72 -101.8 .558 10.99 940.0 .212 2.63
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TABLE IV. CHNO EXPLOSIVE DETONATION PARAMETERS(CONTINUED)

H.E.
NAME

RHOC
(g/cc)

RHOcj
(g/CC)

OMB
(%)

D
(cm/us)

Pcj
(GPa) Q *(cal/

g)
(2E)A.5
(cm/us)

•

Gamma

FEFO 1.61 2.13 -17.0 .746 23.06 1152.1 .256 2.89
HNAB 1.61 2.13 -49.6 .720 21.47 1423.5 .249 2.89
LX01-0 1.23 1.66 -24.3 .691 16.37 1521.7 .249 2.60
LX02-1 1.44 1.92 -80.5 .659 16.69 1189.1 .237 2.75
LX 08 1.44 1.92 -57.7 .717 19.75 1374.8 .252 2.75
LX09-1 1.87 2.45 -24.0 .894 36.29 1451.1 .289 3.12
LX10-0 1.90 2.49 -27.0 .886 35.95 1360.4 .286 3.15
LX11-0 1.87 2.45 -42.9 .785 28.00 974.6 .261 3.12
MEN-II 1.02 1.40 -72.8 .556 9.08 1095.2 .215 2.47
NC12%N 1.58 2.09 -36.6 .694 19.71 1022.1 .243 2.87
NC13%N 1.58 2.09 -32.1 .715 20.92 1123.4 .249 2.87
NG 1.59 2.10 3.5 .829 28.22 1582.4 .279 2.87
OCTOL 1.81 2.38 -34.6 .849 32.09 1429.0 .278 3.07
PB9007 1.66 2.19 -49.8 .785 26.05 1393.1 .266 2.93
PB9010 1.79 2.35 -27.2 .837 31.01 1298.4 .276 3.05
PB9205 1.68 2.22 -43.5 .802 27.36 1405.7 .269 2.95
PB9407 1.61 2.13 -26.9 .812 27.32 1517.5 .274 2.89
PB9501 1.84 2.41 -26.9 .880 34.88 1442.6 .286 3.09
PB9502 1.84 2.41 -26.9 .880 34.88 1442.6 .286 3.09
PENTLT 1.67 2.20 -42.0 .771 25.22 1399.6 .262 2.94
TNM 1.65 2.18 49.0 .925 36.02 1984.7 *.302 2.93
TACOT 1.61 2.13 -74.2 .682 19.26 1354.6 .239 2.89
BTF 1.87 2.45 -38.1 .840 32.06 1692.5 .275 3.12
EL506A 1.48 1.97 -58.7 .714 19.99 1360.6 .251 2.78
EL506C 1.48 1.97 -108.6 .642 16.14 1155.1 .231 2.78
RX08EL 1.80 2.36 -19.4 .865 33.20 1453.3 .283 3.06
CH-6 1.64 2.17 5.9 .922 35.61 2464.3 .302 2.92
LX-14 1.85 2.43 -29.4 .875 34.58 1408.2 .284 3.10
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FIGURE 1. BARREL-TAMPED EXPLOSIVELY DRIVEN FLYER PLATE CONFIGURATION(L > Lm)

TA0067.07.02
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FIGURE 2. BARREL-TAMPED EXPLOSIVELY DRIVEN FLYER PLATE CONFIGURATION(L < Lm)
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APPENDIX A

Analytical Equations for Barrel-Tamped Flyers

I. Barrel-Tamping to Explosive Weight Ratio (N/C)

(N/C) = (pn/pc)[(Do/Di)2 - 1] (Al)

II. Barrel-Tamping Maximum Velocity (Vt)- Reference 8

Vx = (2E)°-5/[(N/C) + 0.5]05 (A2)

where,
(2E)°5 = Gurney Velocity of explosive 

N/C = Barrel-tamping to explosiv weight ratio

III. Detonation Product Gas Velocity (VA (untamped case). Reference 1

for N = 0 in Equation A2,
V0 = 1.414 (2E)0-5 (A3)

IV. Explosive Discount Angle (g). Reference 1

e = 30/{1.414[(N/C) + 0.5]0-5} (A4)

V. Maximum Explosive Length (Lml

(Lm/d) = l/[2 TAN (e)] (A5)

VI. Explosive Discount Factor (ALFAl for L > Lm

ALPHA = Vc/Va = (d/L){l/[6 TAN (e)]} (A6)

VII. Explosive Discount Factor (ALFA1 for L < Lm

ALPHA = Vc/Va = 1 - 2(L/d) TAN {e) + (4/3)[TAN(^)]2(L/d)2 (A7)
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VIII. Actual Explosive to flyer weight ratio (C/MI 

(C/M) = (*/ft)(L/t)

IX. Effective Explosive to flyer weight ratio (Ce/MI

(Ce/M) = ALFA (C/M) (A8)

X. Maximum flyer to detonation velocity ratio ('Vf/Dl

(Vf/D) = A[(B-1)/(B + 1)] (A9)

where
A = [8/(G2 - l)]o-« (A10)
B = [1 + (32/27)(Ce/M)]0-5 (All)

XI. Explosive Volume (V.l of frustrum of cone as 
function of discount angle (fllfor L < Lm

Vc = (nL/12)(df + ddi + d2), Reference 14 (A12)
Vc = (nL/12){[d - 2L TAN(^)]2 + d[d - 2L TAN(tf) + d2]} (A13)
Vc = (nL/12){4L2[TAN(fl)]2 - 2(2 - d)L TAN(fl) + 3d2} (A14)

XII. Explosive Volume (V.l for right angle cone for L > Lm

Vc = nd2L/12 (A15)

XIII. Actual explosive volume (V?l

Va = nd2L/4 (A16)

XIV. Explosive Discount Factor (ALFA1

ALFA = Vc/Va (A17)
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XV. Barrel-tamping weight (N)

N = nLT pN(d + T) (A18)

XVI. Fiver plate weight (M)

M = np|d*t/4 (A19)

XVII. Actual explosive weight (Cl

C = npcd2L/4 (A20)



APPENDIX B

The graphical solution for the maximum flyer velocity of barrel-tamped 
configurations is illustrated by two examples in this appendix.

I. Example 1. Configuration per Figure 2 for L < Lm

The actual explosive length (L) is less than the theoretical maximum 
length (Lm) for a right circular cone as shown in Figure 2.

A. Given: (Reference 9, Test MC3644 of Table I)

1. Do = 0.5"
2. d = Di = 0.128"
3. RHOn = 7.86 g/cc
4. RHOc = 1.60 g/cc
5. D = 0.621 cm//iS
6. Gamma = 2.8
7. L = 0.128", L/d = 1.0, d/L = 1.0
8. RHOf = 7.86 g/cc
9. t = 0.005", L/t = 25.6

B. From Figure 3, for Do/Di = 3.9 and RHOn/RHOc = 4.91 

1. Obtain: N/C = 70

C. From Figure 4, for N/C = 70

1. Obtain: THETA ~ 3 degrees

D. From Figure 5, for THETA = 3 DEGREES

1. Obtain: Lm/d = 9.8

a. Lm = 1.25"
b. L = 0.128"

2. Therefore: L < Lm

a. Obtain ALFA from Figure 7.
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E. From Figure 7, for THETA = 3 degrees and L/d = 1.0 

1. Obtain: ALFA = 0.90

F. From Figure 8, for L/t = 25.6 and RHOc/RHOf = 0.20 

1. Obtain: C/M = 5.1

G. From Figure 9, for C/M = 5.1 and ALFA = 0.9 

1. Obtain: Ce/M = 4.9

H. From Figure 10, for Ce/M = 4.9 and Gamma = 2.8

1. Obtain: Vf/D = 0.48

I. Maximum flyer velocity, given D = .621 cm/

Vf = 0.3 cm/us

II. Example 2. configuration per Figure 1 for L > Lm

The actual explosive length (L) is greater than the theoretical maximum 
length (Lm) for a right circular cone as shown in Figure 1.

A. Given: (Reference 1, Test 26 of Table I)

1. N/C = 0.06"

2. L = 2.0"

3. d = Di = 2.0"

4. t = 0.267"

5. RHOc = 1.6 g/cc

6. RHOf = 2.7 g/cc

B. Skip Figure 3 since N/C is already known.
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C. From Figure 4, for N/C = 0.06

1. Obtain: THETA = 28.0 degrees

D. From Figure 5, for THETA = 28.0 degrees

1. Obtain: Lm/d = 0.97

a. Lm = 1.94"
b. L = 2.0"

2. Therefore: L > Lm

a. Obtain ALFA from Figure 6.

E. From Figure 6, for d/L = 1.0 and THETA - 28.0 degrees, 

1. Obtain: ALFA = 0.295

F. From Figure 8, for L/t = 7.5 and RHOc/RHOf = 0.59 

1. Obtain: C/M = 4.6

G. From Figure 9, for C/M = 4.6 and ALFA = .295 

1. Obtain: Ce/M = 1.5

H. From Figure 10, for Ce/M = 1.5 and Gamma = 3.0

1. Obtain: Vf/D = 0.28

I. Maximum flyer velocity given D = 0.804 cm/ps.

Vf = 0.225 cm/us

i
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