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Synopsis

In this paper, we discuss some recent theoretical results we have obtained on
the propagation of plane longitudinal waves in granular materials. Using a one-
dimensional formulation of the continuum theory of granular materials proposed by
Goodman and Cowin [1], we model the longitudinal response of two classes of materials:
materials with compressible granules, such as pressed powders and sands at high con-
fining pressures, and flowing materials with incompressible granules, such as sands
at low confining pressures. We then consider the speed and the amplitude of the var-
ious types of acceleration waves possible in each class. In materials with compres-
sible granules, two waves are shown to exist, an elastic wave followed by a compac-
tion wave. However, in flowing materials with incompressible granules, the only wave
possible is a wave of dilatancy. In each case, we discuss the influence of the ini-
tial material non-uniformity on the wave behavior and cite some experimental observa-
tions which correlate with the results of the analysis.

1. Introduction

The subject of wave propagation in granular media has been one of continual in-
terest over the years, especially in the fields of geophysics and civil engineering.
However, the subject has recently gained even greater attention due to increasing de-
mands for energy and the renewed general interest in applications involving pressed
powders and porous materials. As a result, a considerable amount of research on wave
propagation in these materials is currently in progress and many new and important
results are being reported.

In this paper, I would like to describe some of the recent theoretical results we
have obtained in this area and discuss how these results correlate with experimental
observations. In particular, we will consider the propagation of plane longitudinal
waves both in materials with compressible granules, such as pressed powders and sands
at high confining pressures, and in materials with incompressible granules, such as
sands at low confining pressures where flow is possible. Recognizing that longitudi-
nal waves can be represented in teérms of a.one-dimensional motion, we employ a one-
dimensional formulation of the continuum theory of granular materials proposed by
Goodman end Cowin [1] as a model and then examine the various types of waves possible
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in each class of materials. 1In the case of materials with compressible granules, we
show that in general there exists two possible longitudinal acceleration waves, the
first wave being the well-known elastic (or compressional) wave and the second being
the compaction wave. The effects of the initial porosity and material non-uniformity .
are considered in terms of the material's stress-strain curve and they are shown to
have a significant influence on the attenuation or amplification of these waves. Fur-
thermore, these effects determine the possible existence of shock waves in these mate-
rials, In general, we find the predictions of the theory to be consistent with experi-
mental observations.

In the case of flowing granular materials with incompressible granules, the only
wave possible is shown to be a longitudinal expansive wave at which there is a dis-
continuity in the gradient of porosity, and which propagates at a speed near the com-
paction wave speed calculated for materials with compressible granules. These waves
are called waves of dilatancy and we note again;that the wave's behavior is strongly
influenced by the initial porosity and material non-uniformity. In particular, for
uniformly distributed materials, we find that for most materials the wave will propa-
gate faster and have a greater amplitude in looser-packed material. These results also
appear to be supported by experimental observations.

2. Kinematics and Balance Laws of Granular Materials

Here we consider plane longitudinal motions of granular materials in which the
interstices are void of material. Following the approach proposed by Goodman and
Cowin [1], we assume that the material can be represented as a continuum and assign
to the continuum the mathematical structure of a distributed body. In such a body,
only one type of material point need be considered., Hence, for longitudinal motions,
the body can be identified with an interval of the real line R in its reference con-
figuration and each material point with its position X in R, The motion of the mate-
rial is then described in terms of the displacement u of the material point X at time

t: v
u = u(X,t) . ‘ ' (1)

For suitably smooth motions,

e = -ﬁX(X,t) , vV

8,068) 5 T=ugy(ut) (2)

define the strain ¢, the particle velocity v, and velocity gradient L of X at time t.
As a matter of convenience, we have taken the strain ¢ (and hence the stress o) to be
positive in- compre351on.

An important consequence of the notion of a distributed body is that the bulk den-
sity p at any point X and time t has the decomposition

p =W : (3)
in terms of the density of the granules v = (X,t) and the volume fraction of the gran-
uleb v = V(X t), 0 <'v £ 1. The volume fraction Vv is related to the porosity n by

= 1 - n and is a measure of the dilatancy of the material which results from void
compaction or distention.t It should be noted that (3) also holds in the reference
configuration, i.e., pg = VoYo. In many materials, the initial distribution of gran-
ules may be non-uniform on a large scale and thus, Vo may be a function of X.

Goodman and Cowin [1] have discussed in some detail the balance laws for granular
miaterials and, in one dimension, the balance of mass and the balance of linear momen-
tum become

TThis notion of dilatancy is consistent with the definition put forth by Reynolds (2].
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respectively, where 0 is the stress and b is the body force. Now, it should be evi-
dent from (4) that in order to calculate the density of the granules Y, both the strain
€ and the volume fraction v must be specified. Thus, € and v are kinematically inde-
pendent variables and this fact necessitates the introduction of an additional force
balance equation governing the void collapse. Goodman and Cowin [17] proposed such an
equation based on self-equilibrated, spatially isotropic force systems and, in one
dimension, it takes the form

PV =hy +pg 5 k=0, (6)

where k is called the equilibrated inertia, h the equilibrated stress, and g the in-
trinsic equilibrated body force. This equation can also be motivated by a variational
analysis outlined by Cowin and Goodman [3].

The quantities k, h, and g are difficult to interpret physically and this has pro-
voked a considerable amount of discussion. However, comparison of (6) with the recent
work of Carroll and Holt [4] on porous materials suggests that k is related to the ini-
tial surface area. of the voids. . It is also evident from (6) that the body force g
provides the coupling between the total deformation of the material and changes in
the void volume. In granular media, this force would be associated with the Hertzian-
type of contact forces acting on the granules and would also include the frictional
effects associated with these forces. However, if the void distribution is non-
uniform, the granules are non-spherical, or the granules are of different sizes, there
will be other contact forces acting on the surface of the granules which will tend to
change the packing or the fabric of the material. We associate the equilibrated stress
h with these forces and suggest that it is this quantity which controls the dilatancy
of the material.

3. Kinematics of Acceleration Waves

By a wave, we mean a propagating disturbance across which certain kinematical
fields undergo jump discontinuities.¥ The intrinsic velocity U of such a discontinu-
ity is defined by ‘

u(t) = d% Y(t) >0 (7)

where Y(t) is the material point at which the front is to be found at time t. Thus,
U expresses the rate of advance of the front with respect to the material in the ref-
erence configuration and Y(t) gives the material trajectory of the front. The jump
(f] in a function f(X,t) across the wave front at time t is defined by

[£1(t) = £7(¢) - £7(¢) o (®)

where £ and f are the limiting values of f(X,t) immediately ahead of and behind the
wave front, _ o A

fThe fact that this coupling must be defined in terms of a constitutive equation was
Tirst suggested by Herrmann [5] in a study of porous materials.

tSuch waves are often called propagating singular surfaces and are discussed in more
detail by Truesdell and Toupin [6].
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12 ~ An acceleration wave is a wave
T across which the volume fraction v,
. the strain ¢, and the particle velo-
2 .10 o city v are continuous but their
E derivatives are not. Thus, at the
E wave '
.08 9 .
; (= -l = -w'led s
r . | (9)
g .06 (vl = -U0wd -
2 _ .
: . Furthermore, the balance of linear
a 0 momentum (5) (with b = 0) implies
= that at X = Y(t)
E 02 - . X
[0l=0 , p[v]=-[o,] 5 (10)
0 and the balance of equilibrated force
(6) implies that (cf. [7])
pULY] = ~[n]
TIME AFTER ARRIVAL (us) i (11) .
. ryl =
poktyl prl.+ poLgl *
Figure 1. A compressive wave profile observed The jump in the particle accelera-

in a pressed granular material, PBX- tion [v](t) is called the amplitude
ool [8]. The discontinuity in ac-  a(t) Of the wave. For a compres-
celeration occurs at the foot of the sive wave, a(t) > O; while for an

wave, expansive wave, a(t) < 0. A com-
pressive acceleration wave is shown
in Figure 1.

L4, Constitutive Assumptions

First, let us consider the one-dimensional counterpart of the general theory of
granular materials studied by Goodman and Cowin [1]. Motivated by physical observa-
tions, tlhey assumed that the material response was a function of the initial distri-
bution of granules, the spatial and temporal changes in this distribution, the com-
pressibility of the granules, and the fluid-like properties of the material. Hence,
the stress 0, the equilibrated stress h, and the equilibrated body force g were de-
fined by constitutive equations of the form

¥, at .
0= G (v sVsVys€) + G (v sVsvysVs€5L) - (12)
h = h(\)o,\),\) ,6) s . ’ (13)
. ~¥ ‘ ~t . ,
g=8 (VO’\)’\)X’C) + g (VO:V-’VX,VaS,L) > _ ‘ (lh’)

,\* [od ¥ ~
‘where the functions ¢ , h, and g are derivable from a stored energy function e, i.e.,

* A A
o =8 , h=g8 ., g =-8§, , (15)
and the functions 0+ andg+ satisfy the dissipation ineguality °

gv+oLs0O . : (16)

=L
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Th}s inequality is a consequence of energy losses due to the local (g+b) and global
(0'L) effects of grain friction.

We should note that if the initial distribution of granules is uniform and, in a
three-dimensional context, the material has a center of symmetry, then there are some.
additional restrictions on these constitutive equations. In particular, ¢ and g must
be even functions of vy and h must be an odd function of wvy.

This constitutive formulation encompasses the two special classes of materials
which are of interest to us here.

Solid materials with compressible granules. Materials such as pressed powders and
sands at high confining pressure do not, in general, exhibit fluid-like behavior.
Thus, the constitutive equations (12)-(1l4) must be independent of the velocity gradl-
ent L. It follows then from (16) that (12)- (1h) reduce to

g = 6 (Vd,V,sze) s h= h(Vo>stx’€) s (17)

A* a4 .
g = g-(V09V9VX:€) + g (V°3V:VX:V:€) ’ - (18)

~

* ~ A% . 4 o
where 0 , h, and g are given by (15), and g' v < O...

Flowing materials with incompressible granules. On the other hand, sands at low con-
fining pressure will exhibit fluid-like behavior and the granules will be essentially
incompressible. In view of (4) and (2), this condition of incompressibility asserts
that

Y 2

€=l_.30_, \.) "':')}—L . | (19)

Thus, the constitutive equations (12)-(1L) reduce to

=p+0(\),\)\),L) ,h_h(v,vv) R (20)

g(v,vv)+g(v,v wl) - (21)

where p is an indetérminate hydrostatic‘pressure, h and g are .given by (15)2 3 and
[o% - v2gf/v 1L < O. >

5. Wave Propagation in Solid Materials with Compressible Granules

In order to properly interpret the behavior of longitudinal waves in granular mate-
rials with compressible granules, we need to initially consider some of the distin-
guishing features of the uniaxial stress-strain curves for these materials. It should
be apparent from (17); that, in fact, granular materials of this type have two stress-
strain curves of interest. The curve defined by

Ad A* . ..

a =05 (e,X) =& (vyrvg () se) (22)
is called the dynamic stress-strain curve since it charactefizes very rapid changes
in stress with virtually no change in porosity. Thus, this curve is related to the -
stress-strain curve of the granules, properly corrected, however, for the initial

porosity and its spatial variations. The other stress-strain curve of interest is
the static curve defined by ‘

6 = 55(e,X) = & (v, 9(esX)5 (v ) se) (23)
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where the function C(e,x) represents the final equilibrium value of the volume frac-
tion for a given value of strain and is the solution of the equation

& (vysvs(v)s€) = 0 . | () -

Clearly, this curve reflects the effects of void compaction. Hence, in any loading
process, the loading path will lie somewhere between the two curves (22) and (23) and
any hysteresis upon unload;ni will result from local frictional effects represented
by the dependence of g on v. ’ :

In discussing wave behavior, it is the dynamic curve which is of importance. Ex-
perimental evidence on pressed granular materials [11] and sands at high confining
pressures [12-1h47] indicate that the shape of this curve can vary greatly, depending
upon the material, the porosity and the confinement. However, in general, the slope E,

~4d A ,
E =8y = 8_(V,svg (V) oo€) (25)

is positive for all ¢; while, the curvature E,

L~ A A% . v
B =50 =8 (vovo(v)gse) (26)

may vary in sign with the value of ¢. It is also important to note that the curve may
depend on the position X due to the initial non-uniformity of the packing (i.e., de-
pendence on VO(X)) Consequently, the shape of the curve may vary from point to point
in the material. This certainly can occur in large billets of pressed powders which
were subjected initially to a non-uniform pressure [11] or in a column of sand where
the porosity can depend on depth due to the overburden [12]. All of these factors
can have an influence on wave behavior.

Speed and amplitude of acceleration waves. Having considerea some of the properties
of the dynamic stress-strain curve of granular materials, we now review some recent
results on the behavior of acceleration waves obtained by Nunziato and Walsh [7].

First, we note that the continuity of the stress across an acceleration wave (lO)l
requires that the discontinuity in the volume fraction v be second—order, i.e..

Dl=Inl=0 , [¥]=-Ulvyl#oO . - (er)

Then, it can be shown that in general there exists two waves with non-zero amplitude
a: the "fast" wave propagates at a speed

1 2 2\2
=5 %(cl+02) + \[(cl-cz) + MB} (28)
and the "slow" wave has the speed ‘
o .
0 = 3 {5 - V(cE-cd)® + 2 8} (29)
~ A* .
where % hv (OV )2
2 € 2 X ‘ X
C = - s C = B = em— . (30)
k )
1 Po 2 Po pgk .
With k > O, UF and Us will be real and p051t1ve if C 2 > B 2 0 and, furthermore,

Hysteretlc effects are an extremely 1mportant part of granular materlal response;
see, for example, Stoll [9] and Krizek [10]. :
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Up2C 5 Ug=.C, _ (31)

with the equalities holding when B = O. For the "fast" wave propagating into un-
strained material at rest, C, is the speed one would calculate from the initial slope
of the dynamic stress-strain curve, E,, and thus, (31) suggests that the "fast" wave
is predominately associated with the elasticity of the material. The fact that Up
may exceed C; is a direct consequence of non-linear coupling effects (i.e., B) which
result from the stress-strain curve changing with propagation distance. On the other
hand, the "slow" wave always propagates into deforming material behind the "fast" wave
and, since h plays an important role in void collapse through (6), (30)2 and (31) sug-
gest that this wave is associated with the compaction process in the material.

Nunziato and Walsh [7] also considered the amplitude behavior of the waves and
showed that the growth and decay of the amplltude a(t) of each wave obeys a differen-
tial equation of the form

L at) = (e + w02 . (32)

For the "fast" wave, the coefficient u(t) is a result of dispersive effects arising
from the initially non-uniform distribution of granules. This coefficient is gen-
erally positive and tends to dampen the wave amplitude. The coefficient »(t) depends
on the curvature of the dynamic stress-strain curve, E,, as well as several other
parameters reflecting non-linear effects resulting from changes in the stress-strain
curve with propagation distance. It is this coefficient which determines whether the

wave simply attenuates or is amplified to form a shock wave (i.e., a - w) In par-
ticular, if %
J(t) = I n(s)ds <0 ,
o

then the amplitude a(t) of a compressive wave is bounded for all time t. However, if
J(t) > 0, then the amplitude will grow and a shock wave will form in a finite time,
For expansive waves, the conditions for growth and decay are reversed.

Nunziato, et al. [8] have used the results for the "fast" wave to predict the at-
tenuation of acceleration waves observed in a pressed granular material, PBX-9LOkL,
This material is 98% dense and consists of a bimodal distribution of HMX granules with
a small amount of binding compound. The waves were generated in a light-gas gun and
the particle velocity histories observed in the material by laser interferometry (cf.,
Fig. 1). Knowing the properties of the granules, the initial density distribution,
and how the wave speed Up varied with propagation distance, Nunziato, et al. were able
to construct a model for the material in the context of the present theory and cal-
culate the amplitude as a function of propagation distance for two initial input
amplitudes. The comparison of their analysis with the experimental measurements is
fairly good. It is of interest to note that for this material, the shape of the dy-
namic stress-strain varies periodically with propagation .distance and the curvature
at low stresses is predominately negative.

Waves in uniformly distributed materials. In this case, Vo is constant and the beha-
vior of acceleration waves simplifies considerably. In particular, there are again
two waves, but at the 'fast" wave, the discontinuity in the volume fraction becomes

third-order. Furthermore, the wave speed UF and the amplitude a(t) reduce simply to

¥

Across a shock wave, the particle velocity v is discontinuous.
This speed corresponds to the ultrasonic speed of acoustlc waves in the same mate-
rial, cf. Nunziato and Walsh [15] i

+
¥
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Thus, the behavior of the "fast" wave is determined entirely by the initial slope and
curvature of the dynamic stress-strain curve. 1In particular, E < O = wave attenua- -
tion, and E > 0 =» wave growth and shock formation (a - «) at °

2E C

t = —221
a(o)Eo

Such shock formation has been observed in sands by Baker and Triandafilidis [11], who
also correlated the wave's behavior with the shape of the dynamic stress-strain curve.

The subsequent behavior of a shock wave in uniformly distributed granular materials
is determined by the shape of the dynamic curve and the nature of the boundary condi-
tions. Nunziato and Walsh [16] have considered the growth and decay of shock waves
in the context of the present theory and, in particular, have established the condi-
tions for steady waves and for precursor decay. These conditions are consistent with
the experimental observations of steady waves [11] and of precursor decay [8] in sand
at high confining pressure.

6. Wave Propagation in Flowing Materials with Incompressible Granules

In this section, we wish to examine the properties of waves in granular materials
where flow is possible. Experiments have shown that when these materials begin to
flow through a constriction, a wave is initiated at the constriction and propagates
outward into the material carrying an increase in porosity. This wave is called a
wave of dilatancy. Cowin and Nunziato [17] have studied these waves in some detail
using a singular surface analysis and a three-dimensional model of the type (20)-(21).
Here we shall review their results in a one-dimensional context and assume that con-
stitutive equations (20) have the specific form

=p+ B+2(1\))2( - (#2u)L , n= ale s - (33)

where a, 8, ), and y are functions of the volume fraction v and its reference value vg.
It is of interest to note that for situations of limiting equilibrium, the three-
dimensional counterpart of the stress-deformation relation (33) requires that the

state of stress in the material satisfy exactly a generalized Mohr-Coulomb criterion
in which b = a(w )™+ is the coefficient of friction. If, as experiment suggests, b
is a function of v only, then o depends on Vv and vV, accordlng to

Cexpgf m} | @

where ¢ > O is a constant and ¢ = s1n'1b is called the angle of internal friction.
We call a the modulus of dilatancy.

Using (10); and (11)7, it can be shown that in these materials, only one wave
exists. Furthermore, this wave propagates with the speed

U2 -gg;

= : 35
. pok (35)
and the amplitude a is given by

~8-
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. (36)

R eT T )
A 2avk o}
Since the speed of the wave is determined entirely by equation (6) which governs
changes in porosity, the wave can clearly be identified as a wave of dilatancy.?
The mechanical properties X and y only influence the amplitude of the wave. Notice
that the wave may be either compressive of expansive depending upon the magnitude of
the volume fraction gradient ahead of the wave. Of course, if the distribution of

granules is initially uniform, then (vx)o venishes and (36) becomes

vl U2 A+2
a=->[v ——7$——Jil- . (37)
\)O~X—- BQ/EEY_- .

Assuming (X+2u) p031t1ve, then the wave is always expansive and carries an increase
in porosity ([v > 0), as expected.

It is also interesting to note the dependence of the speed U and the amplitude a
on the initial volume fraction Vo. In particular, by (34), (35), and (37), it is evi-
dent that if the angle of internal friction ¢ is a function of v only, and k, ), and
u are constants, then the speed and the magnitude of the amplitude of a wave of dila-
tancy will be greater in loosely packed material than in densely packed material. The
first of these conclusions is supported by some experimental observations reported by
Cowin and Nunziato [17] on a dilatant wave in a column of sand.

Finally, we should note that Cowin and Nunziato [17] were able to establish several
other results which can only be obtained in the three-dimensional theory. In parti-
cular, they found that there were no transverse waves possible and that the passage
of the longitudinal wave resulted in a reduction in the transverse compressive stress.
Both of these results also appear to be consistent with experimental observations.
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