National Uranium Resource Evaluation

MARFA QUADRANGLE TEXAS

MASTER

DO NOT WICROFILM
COVER

Bureau of Economic Geology The University of Texas at Austin Austin, Texas

and

Bendix Field Engineering Corporation Grand Junction, Colorado

950 7148

Issue Date September 1982

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY
Assistant Secretary for Nuclear Energy
Grand Junction Area Office, Colorado

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed in this report, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report is a result of work performed by the Bureau of Economic Geology, through a Bendix Field Engineering Corporation subcontract, as part of the National Uranium Resource Evaluation. NURE was a program of the U.S. Department of Energy's Grand Junction, Colorado, Office to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

Available from: Technical Library

Bendix Field Engineering Corporation

P.O. Box 1569

Grand Junction, CO 81502-1569

Telephone: (303) 242-8621, Ext. 278

Price per Microfiche Copy: \$6.00

- DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal tiability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade trame, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect this best of the United States Government or any agency thereof.

NATIONAL URANIUM RESOURCE EVALUATION:
MARFA QUADRANGLE,
TEXAS

PGJ/F-001(82)

PGJ/F--001-82

DE82 021096

Christopher D. Henry,* Timoth W. Duex,* and W. P. Wilbert†

*Bureau of Economic Geology

The University of Texas at Austin University Station, Box X Austin, Texas 78712

†Bendix Field Engineering Corporation Grand Junction Operations Grand Junction, Colorado 81502

Work performed under Bendix Field Engineering Corporation, Grand Junction Operations, Subcontract No. 78-215-E, and Bendix Contract No. DE-ACO/-76GJ01664

MOTICE

PORTIONS OF THIS REPORT ARE ILLEGIBLE.

It has been reproduced from the hard available copy to permit the broadest possible availability.

September 1982

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY GRAND JUNCTION AREA OFFICE GRAND JUNCTION, COLORADO 81502

This is the final version of the subject-quadrangle evaluation report to be placed on open file. This report has not been edited. In some instances, reductions in the size of favorable areas on Plate 1 are not reflected in the text.

CONTENTS

<u>Pa</u>	ge
Abstract	1
Introduction	3
Purpose and scope	3
Acknowledgments	3
Procedures	3
Geologic setting	4
Precambrian rocks	4
Paleozoic rocks	6
Cretaceous rocks	6
Tertiary rocks	9
Quaternary rocks	5
Environments favorable for uranium deposits	5
Summary	5
Area A (El PicachoSan Carlos sequence)	6
Area B (Buckshot Ignimbrite and Mammoth Mine)	7
Regional setting	7
Uranium mineralization at the Mammoth Mine	9
Origin of mineralization	9
Area C (Allen Intrusions)	0
Environments unfavorable for uranium deposits	2
Summary	2
Precambrian rocks	2
Paleozoic rocks	2
Mesozoic rocks	3
Tertiary rocks	3

CONTENTS (Continued)

					Page
Mafic rocks	•	•	•	•	. 23
Silicic and intermediate rocks	•	•		•	. 24
Plutonic rocks	•	•	•	•	. 24
Tuffaceous sediments	•	•	•	•	. 24
Fluorite of the Eagle Mountains	•	•		•	. 25
Unevaluated environments	•		•	•	. 25
Bolson-fill deposits	•			•	. 25
Geologic setting	•			•	. 25
Uranium favorability	•	•		•	. 26
Source rocks	•			•	. 26
Migration	•	•		•	. 27
Entrapment	•	•		•	. 27
Information to improve evaluation of bolson fill	•			•	. 28
Selected references		•	•	•	. 29
Appendix A. Uranium-occurrence table	•			In	pocket
Appendix B-1. Locations and analyses of samples from the Marfa Quadrangle (Bureau of Economic Geology).	•			In	pocket
Appendix B-2. Locations and analyses of samples from the Marfa Quadrangle (Bendix Field Engineering Corporation)	•		•	In	pocket
Appendix C. Uranium-occurrence reports (microfiche)	•		•	In	pocket
Appendix D. Petrographic description (microfiche)	•	•	•	Ιp	pocket
ILLUSTRATIONS					
Figure 1. Marfa Quadrangle location map	•	•	•	•	. 5
2. Cross section location map		•			. 7

			rage
	3.	Geochemical (rock) sample locations in Van Horn Quadrangle	8
	4.	Generalized regional stratigraphic column	10
	5.	Stratigraphic column, Tertiary rocks of the Davis Mountains area	-11
	6.	Stratigraphic column, Tertiary and Quaternary rocks of the Chinati Mountains area	12
	7.	Stratigraphic column, Tertiary and Quaternary rocks of the Sierra Vieja	14
Plate	1.	Areas favorable for uranium deposits	
	2.	Uranium occurrences	
	3.	Preferred equivalent uranium anomalies identified by LKB Resources, 1979	
	4.	Culture	
	5.	Location map of geochemical samples	
	6.	Drainage	
	7.	Geologic map (Published)	
	8.	Regional Tertiary cross section, Trans-Pecos Texas	
	9.	Regional Tertiary cross sections, Trans-Pecos Texas	•
	10.	Geologic-map index	
	11.	Generalized land status	

Plates in accompanying packet

ABSTRACT

The uranium favorability of the Marfa 1° by 2° Quadrangle, Texas, was evaluated in accordance with criteria established for the National Uranium Resource Evaluation. Surface and subsurface studies, to a 1500 m (5,000 ft) depth, and chemical, petrologic, hydrogeochemical, and airborne radiometric data were employed. The entire quadrangle is in the Basin and Range Province and is characterized by Tertiary silicic volcanic rocks overlying mainly Cretaceous carbonate rocks and sandstones.

Strand-plain sandstones of the Upper Cretaceous San Carlos Formation and El Picacho Formation possess many favorable characteristics and are tentatively judged as favorable for sandstone-type deposits.

The Tertiary Buckshot Ignimbrite contains uranium mineralization at the Mammoth Mine. This deposit may be an example of the hydroauthigenic class; alternatively, it may have formed by reduction of uranium-bearing ground water produced during diagenesis of tuffaceous sediments of the Vieja Group. Although the presence of the deposit indicates favorability, the uncertainty in the process that formed the mineralization makes delineation of a favorable environment or area difficult. The Allen Intrusions are favorable for authigenic deposits. Basin fill in several bolsons possesses characteristics that suggest favorability but which are classified as unevaluated because of insufficient data. All Precambrian, Paleozoic, other Mesozoic, and other Cenozoic environments are unfavorable.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

INTRODUCTION

PURPOSE AND SCOPE

The Marfa Quadrangle, Texas, was evaluated to identify and delineate geologic units and areas exhibiting characteristics favorable for the occurrence of uranium deposits. Surface and subsurface data were used to evaluate all environments to a depth of 1500 m (1,500 ft). Because subsurface data in the area are sparse, evaluation of the subsurface was based primarily on extrapolation from surface data. All geologic environments within the quadrangle were classified as favorable, unfavorable, or unevaluated in accordance with the recognition criteria of Mickle and Mathews (eds., 1978). A favorable environment in this study is defined as one that could contain at least 100 tons U₃O₈ in rocks with an average grade of at least 100 ppm U₃O₈.

Evaluation of this quadrangle was a joint effort of Bendix Field Engineering Corporation (BFEC) and the University of Texas at Austin, Bureau of Economic Geology (BEG) for the National Uranium Resource Evaluation (NURE) program. NURE is managed by the Grand Junction, Colorado, office of the Department of Energy. BFEC was responsible for evaluation of pre-Tertiary, rocks, which are predominantly sedimentary rocks, and BEG was responsible for evaluation of Tertiary rocks; which are predominantly igneous or igneousderived sedimentary rocks.

ACKNOWLEDGMENTS

Discussions with other geologists, particularly A. W. Walton (University of Kansas), J. A. Wilson (The University of Texas at Austin), Pat Kenney of Marfa, Texas, W. E. Bourbon of Alpine, Texas, James A. Wolleben, formerly head of the Geology Department at Sul Ross State University, Alpine, Texas, students at Sul Ross State University, and students at the University of Texas at El Paso helped the authors clarify their ideas on regional geology.

The staff of the Bureau of Economic Geology, Austin, was very helpful and cooperative during all phases of the investigation. Of particular assistance were Drs. L. F. Brown, Jr., and V. E. Barnes.

Many landowners in the Marfa Quadrangle are thanked for allowing access to their property to examine geologic relationships, to examine uranium occurrences or radiometric anomalies, and to collect geochemical samples. Without their cooperation this study could not have been done.

PROCEDURES

During Phase I, previously published literature was reviewed, and a compilation was made of maps and information on uranium occurrences. During Phase II, literature research continued and field work was performed. Field work consisted of (1) examination known uranium occurrences and areas of anomalously high radioactivity, as reported in Preliminary Reconnaissance Reports (PRR's) of the U.S. Atomic Energy Commission (AEC); and, (2) identification and examination, on the basis of geologic inference and the

literature, of other areas of potential mineralization. Rock samples (App. B) and scintillometer readings were taken at each accessible occurrence and also randomly throughout the quadrangle. A Scintrex GAD-6 gamma-ray spectrometer with a 3-inch sodium iodide crystal was used locally. After initial reconnaissance, scintillometer traverses were run and samples were collected for geochemical analysis.

Fluorometric determination of chemical U_3O_8 content and emission spectrography for 29 elements were obtained for all rock samples. Analyses were performed at three laboratories: Skyline Labs (Tucson, Arizona); Core Laboratories (Albuquerque, New Mexico); and the BFEC laboratory in Grand Junction performed emission spectrographic analysis and U_3O_8 determination. Eight samples were analyzed using the gamma spectroscopy method.

Subsurface data consisted almost entirely of electric logs from widely spaced hydrocarbon tests.

Integral parts of the evaluation consisted of incorporation of airborne radiometric data (LKB Resources, 1979), hydrogeochemical and stream-sediment reconnaissance (Union Carbide, 1978a and b; Butz and others, 1979), and detailed studies into a geologic framework.

Some of the samples collected were analyzed at Mineral Studies Laboratory under the supervision of Dr. Clara Ho. Uranium analysis was by a total-fusion fluorometric procedure. Multi-element analysis for 30 elements was by inductively coupled argon plasma spectrometer. In addition, some samples were sent to Uranium West Laboratory for analysis of uranium and thorium by neutron activation. Splits of all samples were sent to Grand Junction for analysis by gamma-ray spectroscopy.

GEOLOGIC SETTING

The Marfa Quadrangle, an area of 11,000 km² (4,200 mi²), is located in the southern Basin and Range Province of Trans-Pecos Texas (Fig. 1). The area is bounded on the east by long 104°W. and on the north and south, respectively, by lat 31°N. and 30°N. The Rio Grande River, which forms the western boundary, roughly follows the boundary between the Basin and Range Province and the Chihuahua Tectonic Belt. This belt is a Mesozoic depocenter complexly deformed during Laramide time. Physiographically, the western half of the quadrangle consists of a series of mountain ranges separated by fault-bounded basins. The northeastern half is occupied by the Davis Mountains, which are largely unaffected by Basin and Range faulting. Rocks in the quadrangle range in age from Precambrian to Recent.

Precambrian Rocks

Precambrian rocks crop out only in the north-central part of the quadrangle. The largest exposures are in the Carrizo Mountains, which is one of the structurally highest parts of Trans-Pecos Texas. Smaller outcrop areas occur in the Wylie Mountains to the east, the Van Horn Mountains to the south, and the Eagle Mountains to the west of the Carrizo Mountains. Precambrian

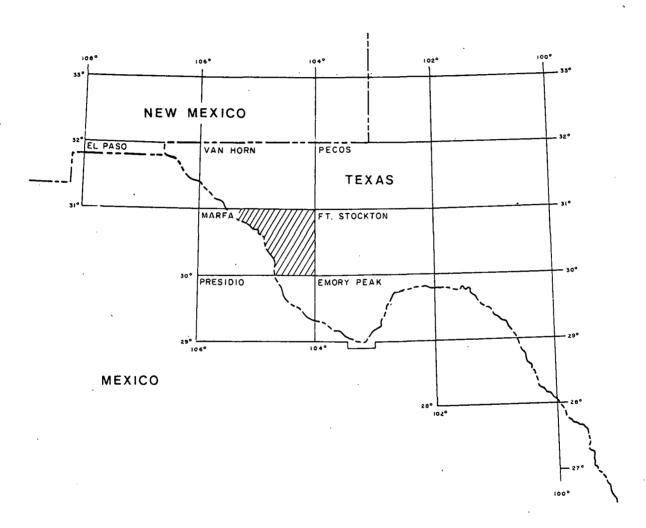


Figure I. Marfa Quadrangle location map.

rocks consist of a thick sequence of metamorphosed sedimentary rocks (limestone, phyllites, schists, and quartzites), that are intruded by metamorphosed rhyolite and diorite. This sequence is thrust to the north over a thick sequence of limestone, volcanic rocks, and sandstone that has also undergone extreme deformation. The age of the rocks is late Precambrian; although, there is evidence of previous deformation. Alluvium, now designated Van Horn Sandstone (McGowen and Groat, 1971), was deposited after Carrizo Mountain deposition. Thickness of the formation in the Marfa Quadrangle is undetermined (Fig. 2). Precambrian rocks occur in the subsurface throughout much of the quadrangle. Details of Precambrian geology are summarized by King and Flawn (1953), Hay-Roe (1957), Twiss (1959), and Underwood (1963).

Paleozoic rocks

The Permian System is represented by two distinct facies. The first facies is composed chiefly of pure to slightly silty shelf carbonates; these crop out in the Delaware Basin, Guadalupe Mountains, and the extreme northwestern portion of the Marfa Quadrangle. This facies is represented by the Hueco and Victorio Peak Limestones and the Seven Rivers Formation. The second facies consists of the Cibolo, Pinto Canyon, Ross Mine, and Mina Grande Formation. The "dirty" (sandy, cherty, shaly, and, at places, conglomeratic carbonate) facies is present to the south of the "clean" facies and crops out chiefly in Pinto Canyon and in the Presidio Quadrangle to the south (Fig. 3). The "dirty" facies represents marine environments of varying subsea depth. The increased volume of terrigenous admixture, reflecting increased detrital influx to the south, may be associated with local uplifts of sedimentary rocks originally deposited in the early Paleozoic Ouachita Geosyncline.

Approximately 1800 m (6,000 ft) of Permian rocks are preserved in the quadrangle. About 1000 m (3,300 ft) of sandstone, shale, and conglomerate in the south part of Pinto Canyon are thought to be of Late Pennsylvanian age (Amsbury, 1958) and are designated the Cieneguita Formation (Jones and Reaser, 1970).

The "dirty" Permian facies is host for the silver and base-metal deposits at Shafter, Texas, in the Presidio Quadrangle. There are no known silver, base-metal, or uranium occurrences in Permian rocks of the Marfa Quadrangle.

Cretaceous Rocks

Cretaceous sedimentary rocks are divided into two megafacies: (1) an Early Cretaceous, Bahama-like, complex of carbonates; and, (2) a Late Cretaceous sequence of fluvial and strand-plain sandstone, prodelta clay, and minor, very shallow water carbonates. In contrast to the Permian, this division is temporal, not geographic. Cretaceous rocks of equivalent age are similar throughout the quadrangle. The lithology differs slightly but not significantly.

Early Cretaceous carbonate deposition was interrupted only occasionally by influx of sand, mud, and gravel. Clastics become finer grained and less abundant higher in the sequence. Early Cretaceous time tectonically was the

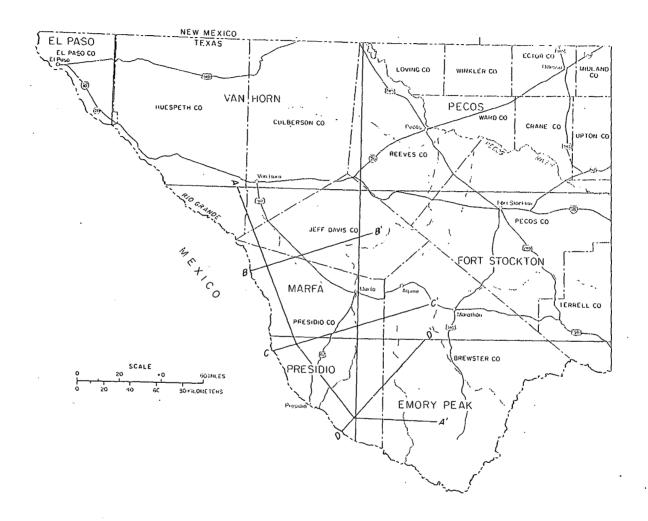


Figure 2. Cross section location map.

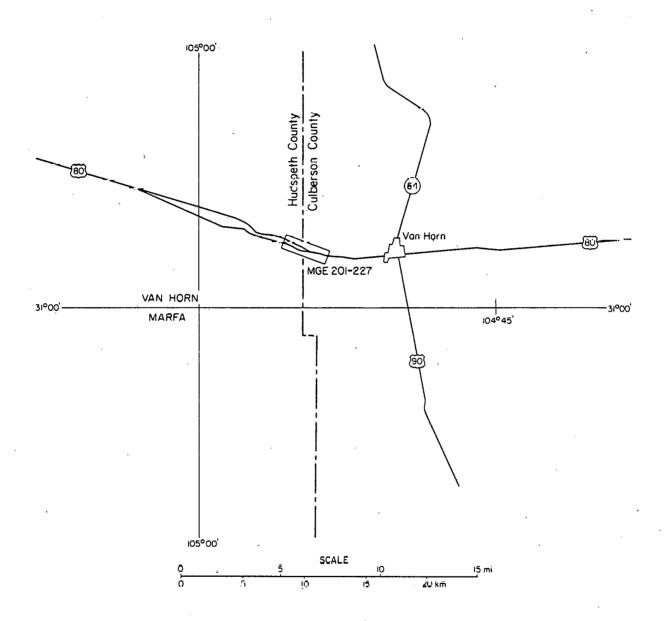


Figure 3. Geochemical (rock) sample locations in Van Horn Quadrangle.

most stable period and is represented by sedimentary rocks in the Marfa Quadrangle. Total thickness of the Early Cretaceous is several thousand meters.

Deposition of the Ojinaga Formation, which is a prodelta black shale, marked the beginning of the Late Cretaceous regression. Progradation, chiefly from the west (Weidie and others, 1972), culminated in the mainly continental El Picacho Formation. Continental depositional environments existed earlier in the Cretaceous, mainly at the time of deposition of the Cox Sandstone; but, these environments were relatively short-lived and were intertongued with thicker marine carbonates.

Total thickness of the progradational unit, from the base of the Ojinaga Formation to the base of the overlying Tertiary volcanic pile, is about 1000 m (3,300 ft; Fig. 4).

Tertiary Rocks

The Tertiary rocks are predominantly volcanic rocks or volcaniclastic sediments. Intrusive rocks occur almost exclusively in a few volcanic centers in the Davis, Wylie, and Eagle Mountains and near the southwest corner of the quadrangle. In general, several volcanic centers (both within and outside the quadrangle) produced thick sequences of lava flows and ash-flow tuffs. Thick sequences of water-laid and minor air-fall tuffs, separated by a few, thin ash-flow tuffs and lava flows, accumulated in basins between eruptive centers. The Davis Mountains are the major volcanic center in the area, but the Chinati Mountains in the Presidio Quadrangle immediately to the south probably provided much of the volcaniclastic sediment within the quadrangle. Smaller volcanic centers occur in the Eagle Mountains and the Wylie Mountains; another center, which provided some volcanic material to the quadrangle, occurs in the northern Quitman Mountains just off the northwest edge of the quadrangle.

The Davis Mountains consist of a series of alkalic, silicic flows and pyroclastic units with subordinate mafic flows (Fig. 5). Major activity was limited to a period between 38 m.y. and 35 m.y. ago (Parker and McDowell, 1979), but other volcanic units are of late Eocene to Oligocene age. The volcanic rocks were intruded by stocks, sills, and dikes of the same compositional range during the latter part of the eruptive period. No calderas have been positively identified in the Davis Mountains within the Marfa Quadrangle; however, the presence of numerous major ash-flow tuffs suggests that calderas must occur there.

The Chinati Mountains and an area around them, including parts within the Marfa Quadrangle, were volcanic centers through much of the Tertiary (Fig. 6). Documented volcanic activity in the Chinati is, for the most part, around 31 m.y. old (Cepeda, 1979); but reconnaissance by the authors showed the presence of an older resurgent caldera, partly truncated by the Chinati Caldera, along the south-central border of the quadrangle. Also several small rhyolite-porphyry intrusions occur along the south border of the quadrangle.

The Eagle Mountains appear to be a resurgent caldera, which have a thick sequence of caldera-filling ash-flow tuff. Volcanic rocks derived from this caldera have been largely eroded in the Eagle Mountains vicinity. The Wylie

SYS- TEM	SERIES	FORMATION OR GROUP	MEMBER	LITHOLOGY	DESCRIPTION
		El Picacho Formation			Claystone, sandstone, and lignite
HODED	UPPER	San Carlos Sandstone			Sandstone; some clay and coal
	Grren	Boquillas Ojinaga Limestone Formation			Boquillas: Limestone, marl, and shale Ojinaga: Black shale
		Buda Limestone			Limestone
		Oel Ria Eagla Ciay Mountein Sándátana	,		Del Rio. Interbedded marl and limeatone Eagle Mountain: Fine-grained, calcareous sandstone
CRETACEOUS		tepy Limestone Loma Plata Limestone Bóráchó Limestone			Espy: Flaggy to thick-bedded limestone Loma Plata: Thin- to thick-bedded limestone Bersoho: Thick bedded limostone
CRE	LOWER	Benevides Formation	,		Shale; thin limestone beds
		Finlay Limestone			Thick-bedded to massive limestone
		Cox Sandstone			Sandstone; some shale
-		Bluff Mesa Formation			Fine-grained, thin-bedded to massive limestone; some sandgrang and chalg
		Yucca Formation		10 10 10	Microgranular limestone: some sandstone and shale
		Mina Grande Formation			Massive, dolomitic limestone
	GUADALUPIAN	Ross Seven Mine Rivers			Sandstone, limestone, shale, chert
		Pinto Canyon Formation		1	Siltstone, limestone, bituminous shale; some chert an pyrite
PERMIAN	LEONARDIAN	Cibalo Victorio Peak Formation		- 0 o d	Limestone and dolomitic limestone
		Hueco Limestone			Thin-bedded limestone
	WOLFCAMPIAN		Powwow Canalomerata	a. a.e.	Conglomerate sandstone siltstone limestone
		Alia Emmatina			Mudsione and sangsione
BRIAN		Van Horn Sandstone		300 S	Feldspathic sandstone and arkose
PRECAMBRIAN		Carrizo Mountain Group			Interbedded metaigneous and metasedimentary rocks

Figure 4. Generalized regional stratigraphic column.

SYSTEM	SERIES	FORMATION	MEMBER	LITHOLOGY	DESCRIPTION
		Petan Basalt (Tpe)		1	Trachyandesite porphyry, up to 500 feet thick
		Brooks Mountain (Tbm)			Fine-grained to aphanitic porphyritic trachyte, up to 985 feet thick
		Goat Canyon (Tgc)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Porphyritic - aphanitic trachyte, up to 515 feet thick
		Wild Cherry (Twc)		Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Densely to poorly welded ash-flow tuff, porphyritic rhyolite, up to 355 feet thick
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Mount Locke (Tml)		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Quartz trachyte and rhyolite porphyry, up to 580 feet thick
	OLIGOCENE	Barrell Springs (Tbs)	-	XY, Y, Y	Densely to poorly welded ash-flow tuff, porphyritic rhyolite, up to 250 feet thick
TERTIARY	5	Wild Cherry & Barrell Springs undivided		Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	The Mount Lake Formation is absent and the remaining formations become similar in Locke appearance, up to 600 feet thick
TER		Merriil (Tmer)		4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Latite porphyry, up to 130 feet thick
		Sheep Pasture (Tsp)		1	Slightly porphyritic rhyolite, indurated to friable up to 510 feet thick
	i			1 7 7 1 2 2	Rhyglite and trachyte lava flows, up to 1,000 feet thick
	;	Adobe Canyon (Tac)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
				Y Y Y Y Y Y	Peralkaline, densely to poorly welded, ash-flow tuff, abundant xenoliths, up to
		Gomez Tuff (Tg)		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1,200 feet thick
	?			X	
,	EOCENE	Huelstar (Th)		A A A A A A A A A A A A A A A A A A A	Densely to poorly welded ash-flow tuff, tuffaceous sandstone, sultstone and conglomerates, up to 490 feet thick

Figure 5. Stratigraphic column Tertiary rocks of the Davis Mountains area.

SYSTEM	SERIES	FORMATION	MEMBER	LITHOLOGY	DISCRIPTION
	PLEISTOCENE				Conglomerate, sandstone, and mudstone, filling
QUATERNARY	PLIOCENE	Bolson Fill QTb		000	fault-bounded basins, up to 4,000 feet thick
	MIOCENE			0.000000	
-		Perdiz Conglomerate Tpc		0.00.000000	Atternating conglomerate and tuffaceous sandstone up to 500 feet thick
		Petan Basalt Tpe		1 × 2 × × × × ×	Trachyandesite porphyry, possibly correlative with Tcm5, up to 300 feet thick
			Tcm 6	X X X X X X X X X X X X X X X X X X X	Upper rhyolite, peralkaline ash-flow tuff, greater than 500 feet thick
		OUP (Tcm)	Tcm 5	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Upper trachyte, lava flows, up to 900 feet thick
		TAINS GRO	Tcm 4	7	Lower rhyolite, lavo flows, up to 500 feet thick
		CHINATI MOUNTAINS GROUP (Tcm)	Tcm 3	V	Middle trachyte, lava flows, up to 1,000 feet thick
			Tcm 2	1 4 1 1 2 4 1	Lower trachyte, lava flows, up to 500 feet thick
	133		Tem I	0.000	Limestone conglamerate, up to IOO feet thick
	OLIGOCENE	Mitchell Mesa (Tmm)		X X X X X X X	Densely to poorly welded ash-flow tuff, up to 300 feet thick
) JC		Tsh8	Y , Y , Y , Y , Y	Knyolitic ash-flow luff, up to 250 feet thick
			Tsh 6	XYXYXYXYXXX	Rhyolitic ash-flow tuff, up to 250 feet thick
TERTIARY			Tsh 5	0 1 0 7 - Y	Tuffaceous sandstone, siltstone, and conglomerate rhyolitic lavo flows; up to 300 feet thick
FR		_	Tsh 4	100 00 000 00 0 6 40 0	Mud-flow breccia, up to 50 feet thick
•	j	ļ <u> </u>	Tsh 3	YAYAYAYAYAY	Rhyolite ash-flow tuff, up to 70 feet thick
		OUP (Tsh 2	115 44 4 4	Trachyte lava flows, up to 400 feet thick
		SHE_Y GROUP (~sh)	Tsh I ·	OYO O _A O O O	Tuffaceous sandstone, siltstone, and conglumerate up to 1,500 feet thick, correlative with Capote Mountain Luft (Tea)
	EN EN	OIPPER ** (Tdip)		Y	Rhyolitic to intermediate lava flows, Rhyolitic ash-flow tuffs, mudflow breccias; thickness greater than 2,000 faot, tills Dipper Caldera * Age relations between Trlip and Trm are unknown; both directly overlie Cretaceous rocks but do not contact each other
	EOCENE	MORITA * RANCH (Tm)		A A A A A A A A A A A A A A A A A A A	Rhyalite and basalt lava flows and rhyalitic ash - flow tuffs, up to 800 feet thick

Figure 6. Stratigraphic column, Tertiary and Quaternary rocks of the Chinati Mountains area.

Mountains may also be a caldera; but, now they are so highly dissected that only a central intrusion, possibly a resurgent dome, remains. Volcanic rocks of the Garren Group, south of the Wylie Mountains, may have been erupted from this area.

Much of the volcanic material in the quadrangle consists of tuffaceous sediment of the Vieja Group in the Sierra Vieja and various equivalents in the south and southeast parts of the quadrangle. The Vieja Group is divided into three sedimentary formations that are separated by an ash-flow tuff and a major rhyolitic lava flow. Probably all of the volcanic centers discussed above contributed material to the sediments at various times. The major sources were in the Davis and Chinati Mountains; lesser amounts were added from the Eagle and Wylie Mountains.

The Mitchell Mesa Welded Tuff was erupted from the Chinati Caldera about 31 m.y. ago. It caps the Vieja Group throughout much of the Sierra Vieja and is the major ash-flow tuff of Trans-Pecos Texas. It also caps the undifferentiated Pruett-Duff Formations in the southeastern part of the quadrangle. The Pruett and Duff Formations are time-equivalent to the Vieja Group sediments; continuity of the two sequences beneath younger rocks in the south-central part of the area is uncertain.

The Tascotal Formation overlies the Mitchell Mesa in the southern part of the area. It was deposited as an alluvial fan of tuffaceous sediment derived from the Chinati Mountains during waning stages of pyroclastic activity (Walton, 1979).

Total thickness of the tuffaceous sedimentary sequence ranges up to 1000 m (3,300 ft) in the central part of the Sierra Vieja (Fig. 7). Open-hydrologic-system diagenesis has converted the initially glass-rich tuffaceous sediments to a zoned assemblage of montmorillonite, opal, calcite, and zeolites. Glass was preserved only in upper parts of the Vieja Group in the southern Sierra Vieja and in the upper part of the Tascotal Formation. Diagenesis probably occurred penecontemporaneously with deposition of the sediments.

The Petan Basalt caps the Mitchell Mesa or the Tascotal Formation in the southern part of the quadrangle. Several similar basalts, for instance those at the western edge of the Davis Mountains and north to the Wylie Mountains, have been correlated with the Petan.

The Perdiz conglomerate is a thick alluvial fan composed of volcanic debris shed from the Chinati Mountains following cessation of pyroclastic activity (Walton, 1978; Jordan, 1978). Perdiz caps the Tascotal Formation or Petan Basalt throughout much of the southern part of the quadrangle. It consists of a boulder conglomerate in proximal areas grading to finer sediment in distal areas. The Perdiz is diagenetically altered, has calcite in proximal areas, and a combination of opal clinoptilolite and montmorillonite in distal areas. Diagenesis occurred in a hydrologic system apparently unrelated to the system that affected the underlying tuffaceous sediments.

Basin and Range faulting began about 23 m.y. ago and followed the cessation of almost all igneous activity (Dasch and others, 1969; McDowell and Henry, unpublished data). Faulting divides the western two-thirds of the

SYSTEM	SERIES	FORMATION	MEMBER	LITHOLOGY	DESCRIPTION
QUATERNARY	PLEISTOCENE PLIOCENE	Bolson Fill (Qtb)		0.00000	Conglomerate, sandstone, and mudstone filling fault-bounded basins, up to 1,000 feet thick
	MIOCENE	(410)		000000	
		Perdiz Conglomerate (Tpc)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Alternating conglomerate and tuffaceous sandstone, up to 300 feet thick
		Petan Basait (Tp#)		V	Tough, vesicular, porphyritic, fine - grained plagioclase trachyte, up to 500 feet thick
	,	Mitchell Meso Tuff (Tmm)		X	Densely to poorly welded ash-flow tuff, up to 100 fact thick
FERTIARY	OLIGOCENE	Capote Mountain Tutt (Tco)		Y 0000 Y 0000 Y 0000 Y 0000 Y 0000 X 7 00	Noncalcareous, rhyolitic, glassy or zeolitic tuttaceous sandstone, siltstone, and conglomerate, up to 2,100 feet thick
		Bracks Rhyolite (Tbr)	,	V V V V V V V V V V V V V V V V V V V	Greenish rhyolitic lava flow, up to 300 feet thick
		Chambers Tuff (Tch)		ογο ο γ ογο ο γ ο .	Tuffaccous sandstone, siltstone, and conglomerate, zeolitic, up to 250 toot thick
		Buckshot (Tbu) Ignimbrite		X	Densely to moderately welded, peralkaline ash-flow tuff, up to 75 feet thick
	??	Colmena Tuff (Tca)			Tuffaceous sandstone, siltstone, and conglomerate, zeolitic, up to 450 feet thick
	EOCENE	Gill Breccia (Tgi)		W. 0. 1. 0.	Trachyandesitic to basaltic flow breccia
		Jeff (Tj) Conglomerate		000000000	Interbedded sandstone and conglomerate, up to 25 feet thick

Figure 7. Stratigraphic column, Tertiary and Quaternary racks of the Sierra Vieja.

quadrangle into a series of north— or northwest—trending mountain ranges, which are separated by basins (bolsons) largely filled with debris shed from the ranges. Major basins are Lobo Valley—Ryan Flat, Eagle Flat, Red Light Bolson, Presidio Bolson, and Hueco Bolson. Most of the latter two areas occurs in the Presidio Quadrangle and Van Horn Quadrangle, respectively. Basin fill is as thick as 1250 m (4,000 ft) in Lobo Valley and in Presidio Bolson, but it generally is thinner in the other bolsons in the Marfa Quadrangle. Basin—fill deposits grade from boulder conglomerate to fine mud. Playa—lake and evaporite deposits occur in Presidio Bolson and probably in other basins, but the others are relatively undissected, so basin—center facies are not exposed. Integration of the Rio Grande drainage system has destroyed the closed—basin nature of the bolsons along the Rio Grande. Lobo Valley and Eagle Flat are still part of a closed basin that drains into Salt Basin to the north in the Van Horn Quadrangle. However, both surface and ground water drain out of Lobo Valley and Eagle Flat at present.

Igneous activity during basin filling was neglible. Numerous dikes along Basin and Range faults in the Sierra Vieja may have fed the basalt flows that interbed with basin-fill deposits. Rhyolitic volcanism and ash deposition were not active after about 26 m.y. ago.

Quaternary Rocks

The Quaternary Period was characterized by valley filling. Lithology of the fill consists of mud, sand, and gravel, which are mainly volcanic debris derived from the Tertiary volcanic piles. Degree of induration varies with caliche content.

ENVIRONMENTS FAVORABLE FOR URANIUM DEPOSITS

SUMMARY

Three environments in the Marfa Quadrangle are favorable for uranium deposits. Area A (Pl. 1), 16 km (10 mi) north of Candelaria, meets some of the criteria for both non-channel-controlled peneconcordant sandstone-type deposits and roll fronts (Subclasses 244 and 242, respectively; Austin and D'Andrea, 1978). Potential host rocks are the El Picacho--San Carlos sequence and include strand-plain and fluvio-deltaic Upper Cretaceous sandstones.

Area B, the Buckshot Ignimbrite, contains significant uranium mineralization of uncertain origin (Class 730; Mathews, 1978b) at the Mammoth Mine. Although the area around the Mammoth Mine is considered favorable, the uncertain origin makes precise delineation of a favorable area difficult.

The Allen intrusions (Area C, Pl. 1) are favorble for authigenic deposits (Class 360; Mathews, 1978a).

AREA A

Porous and permeable sandstones of the Upper Cretaceous (Gulfian) El Picacho and San Carlos Formations are favorable for sandstone-type uranium deposits in an area that extends along the Rio Grande from 24 km (15 mi) north of the Candelaria, Texas, to about 56 km (35 mi) north of Candelaria (Area A, Pl. 1). The favorable area is entirely west of the Buckshot Rim. Because the boundary between the formations is paleontologic, no attempt was made in this study to differentiate between them; the entire section, from the top of the Ojinaga to the base of the overlying Tertiary volcanic pile, is referred to as the El Picacho--San Carlos sequence. Tuffaceous sediments and ash-flow and air-fall tuffs of the Tertiary Vieja Group are likely sources of uranium-bearing fluids.

The El Picacho--San Carlos sequence meets important criteria for roll-front uranium deposits. Host-rock lithology, uranium source, sandstone geometry, local structures, associated rocks, and inferred depositional environments are very similar to regions where roll-front deposits are found.

Sandstone beds in the sequence are 3-5 m (10-17 ft) thick. They consist of cross-bedded, fine- to medium-grained, fairly well sorted, quartzose to feldspathic arenites. The beds are generally blanket-like, but a few are lenticular. Marine and brackish-water fossils (mostly pelecypods) and Ophiomorpha burrows are common in the blanket sandstone beds, but they are found very infrequently in the slightly coarser grained channels. Mudstones, coal beds, and lignite interfinger with the sandstone. These interbeds are interpreted as lagoonal in the lower part of the sequence and as interdistributary or bay deposits in the upper part. A sequence of strand-plain barrier-bar depositional environments, which graded upward as progradation continued into fluvio-delta depositional environments, is inferred.

The sequence is broken into areally small fault blocks by both Basin and Range faulting and Rio Grande rifting. The faults that bound the blocks may have served as conduits for descending uranium-bearing waters and also as conduits for ascending sour gas from Lower Cretaceous limestones.

Faulting, both by producing clay gouge and by juxtaposing permeable and relatively impermeable beds, furnished aquacludes that may have helped localize deposits. Because coal beds and interbedded shales are present, disseminated organic trash is likely. Many sandstones that host large uranium deposits, such as the Westwater Member of the Morrison Formation in the Grants Mineral Belt, show no organic debris on weathered outcrops; although, it is abundant in the non-oxidized subsurface. Another likely reductant is sour gas ascending along faults. This mechanism has been used to explain the South Texas Tertiary deposits (Galloway, 1977; Goldhaber and others, 1978). The coal beds may serve as local reductants.

There are no known uranium occurrences in the El Pacacho--San Carlos sequence. However, near the Capote Mountain graben, Reeves and others (1979) reported "anomalously high" radioactivity, which they attributed to escaping radon. If this is so, a likely source of the radon might be uranium deposits in the Upper Cretaceous sequence.

HSSR ground-water data (Butz and others, 1979) are sparse, but they reveal slightly elevated molybdenum, arsenic, vanadium, and uranium in a well on the McCutcheon Ranch 15 mi north of Candelaria. This is the only groundwater data point in the favorable area. Stream sediments (Butz and others, 1979), as expected, show high uranium values. Uranium in the stream sediments is mostly derived from the overlying Vieja Group tuffs and tuffaceous sediments. Radiometric data (LKB Resources, 1979) reveal one major anomaly (anomaly 120) over the favorable area. This anomaly is "distinguished by strong equivalent uranium/equivalent thorium and equivalent uranium/potassium rations", which indicates a concentration of uranium relative to other radioactive elements. Scintillometer readings taken over the El Picacho--San Carlos sequence (250-300 counts per second) are uniformly 5-6 times those taken over the dense Lower Cretaceous limestones. Radioactivity in the favorable area is about twice that of the lithologically similar Aguja Formation 130 km (80 mi) southeast in the Emory Peak Quadrangle. The radioactivity is about the same as that of the Marfa Basin, which is an intermontane basin filled largely with volcanic detritus.

Favorable lithology, together with proximity to a possible source and favorable, although scant, HSSR and radioactivity data, lead us to conclude that the Upper Cretaceous continental and marginal marine sandstones in Area A are favorable.

There is little information regarding subsurface extent or thickness of the favorable sequence. Thicknesses of 1000 m (3,300 ft) were reported by Barnes (1979b); but because of erosion and a presumed irregular lower contact, an average thickness of 500-700 m (1,650-2,300 ft) is reasonable.

AREA B

The Mammoth Mine in the Buckshot Ignimbrite is one of the most significant uranium prospects in Trans-Pecos Texas. Selection of a favorable environment on the basis of the Mammoth Mine is entirely dependent upon its presumed mechanism of formation. For this reason, it is necessary to discuss the regional setting and possible mechanisms of mineralization in some detail.

Regional Setting

The Buckshot Ignimbrite is one formation of the Vieja Group, which consists of 1100 m (3,500 ft) or turtaceous sediments, lava flows, and airfall and ash-flow tuffs. The Vieja Group is discussed in more detail by Bilbrey (1957), DeFord (1958), Wilson and others (1968), Twiss (1970), Anderson (1975), and Walton (1975). The Vieja Group overlies Upper Cretaceous sedimentary rocks. Two basal units occur irregularly throughout the Sierra Vieja. A limestone conglomerate, the Jeff Conglomerate, fills channels cut into the Cretaceous rock. In the southern part of the Sierra Vieja, the Jeff or Cretaceous rocks are overlain by the Gill Breccia, which is a flow-breccia complex composed mainly of trachcybasalt porphyry (DeFord, 1958).

Most of the Vieja Group is composed of diagenetically altered tuffaceous sediments and air-fall tuff. Three sedimentary sequences are distinguished,

primarily on the basis of interveining ash-flow tuffs or lava flows. From the oldest to the youngest, they are composed of the Colmena Tuff: 10-135 m (30 to 450 ft) thick; the Chambers Tuff: 30-250 m (100-800 ft) thick; and the Capote Mountain Tuff: 400-550 m (1,300-1,800 ft) thick. All include fluvially deposited tuffaceous siltstone, sandstone, and conglomerate, as well as subordinate air-fall tuff. The sediments are composed of glass shards, pumice, and rock fragments. Glass shards predominate in fine-grained sediment; whereas, rock fragments are predominant in coarser deposits. The Colmena Tuff is separated in most places from the Chambers Tuff by the Buckshot Ignimbrite; the Chambers is, in turn, separated from the Capote Mountain Tuff by the Bracks Rhyolite. The Capote Mountain Tuff is capped by the Mitchell Mesa Welded Tuff. The age of the Vieja Group ranges from Eocene (40 m.y. at the Gill Breccia) to Oligocene (31 m.y. at Mitchell Mesa) (McDowell, 1979; Wilson and others, 1968).

The tuffaceous sediments have been diagenetically altered in an open hydrologic system to a sub-horizontally zoned assemblage of zeolite, montmorillonite, and silica minerals (Walton, 1975). Diagenetic mineral zones described by Walton "from top to bottom, are (1) montmorillonite-opal-glass, (2A) montmorillonite-opal-clinoptilolite, (2B) montmorillonite-quartz." Diagenesis occurred during deposition after a sufficent thickness of sediment had accumulated. In addition to diagenesis, pedogenic alteration produced paleosoil horizons that exhibited calcite concretions and root mottling, particularly in the Chambers Tuff.

The entire Sierra Vieja is extensively cut by north—and northwest—trending normal faults with displacement up to (1000 m) 3,300 ft. Faulting, which was postdiagentic (Walton, 1975), began approximately 23 m.y. ago (Dasch and others, 1969) and has continued to the present (Muehlberger and others, 1978). The Vieja Group and underlying rocks are broken into numerous individual fault blocks that are tilted as much as 20°.

All of the volcanic and volcaniclastic rocks contain high background concentrations of uranium. For example, hydrated vitrophyres of the Buckshot Ignimbrite contain approximately 12 ppm U₃O₈. Concentrations in glassy and altered tuffaceous sediments range from approximately 3 ppm to 15 ppm. Fission-track mapping shows that the uranium occurs predominantly in glassy rocks and in various secondary minerals in devitrified or diagenetically altered rocks. Thus, all the rocks constitute potentially good sources of uranium.

The Buckshot Ignimbrite, a peralkaline ash-flow tuff emplaced as a single cooling unit, is densely to moderately welded throughout its occurrence. Its maximum thickness is about 30 m (100 ft), but average thickness is only about 20 m (70 ft). A basal vitrophyre is preserved in many places, but it is invariably hydrated. An upper, nonwelded air-fall tuff (Anderson, 1975) is believed by us to be mostly the result of laminar flowage of the ash flow after deposition and partial consolidation. The Buckshot shows abundant evidence of a high volatile content and extensive vapor-phase activity. Anderson (1975) cites laminar-flow features, tumuli (resulting from a form of fumarolic activity), and the presence of abundant cavities in devitrification spheres up to 15 cm in diameter.

Uranium Mineralization at the Mammoth Mine

The Buckshot is 11.5 m (35 ft) thick at the Mammoth Mine and crops out along the middle of a steep slope above Quinn Creek. Mineralization extends for a distance of about 50 m (170 ft) along the cliff face. Vitrophyre is not exposed right at the prospect, but it does occur at several locations around the prospect usually within 100-200 m (300-700 ft) of the mine. The rock is densely to partly welded and exhibits a well-developed lithophysal zone.

Uranium mineralization is predominantly found in the densely welded zone, but minor amounts occur throughout the entire thickness. The only uranium mineral positively identified is beta-uranophane. However, Nye (1957) and Anderson (1975) found another yellow uranium mineral, which Nye speculated could be a barium analog of uranophane. Uranophane occurs in cavities in devitrification spheres, in fractures in rock fragments, and fractures. Uranophane also occurs in minor amounts along fractures in the underlying Colmena Tuff. Uranium concentrations found in this study range up to 2750 ppm U_3O_8 ; Nye reported an average assay of 0.27% U_3O_8 .

Associated minerals found in cavities include secondary silica (quartz, chalcedony, and opal), calcite, and iron oxides. Limonite pseudomorphs after pyrite are common. The host rock is devitrified ash-flow tuff composed of quartz and feldspar. The rock is strongly bleached when compared to typical red-brown Buckshot outcrops. The bleaching apparently has not significantly altered the host rock mineralogy. Minor amounts of a soft, white mineral, possibly kaolinite, occur in some cavities. The bleaching might have resulted from acidic leaching, which in turn is the result of oxidation of pyrite; in that case, greater alteration of feldspar and more development of kaolinite might be expected.

Bilbrey (1957) stated that no mineralization was observed at the McSpadden Prospect and that radiation levels were typical of the Buckshot.

Origin of Mineralization

Nye's theories are (1) concentration of uranium in vesicles by late-stage volatile components of the uranium-rich parent magma, (2) ground-water leaching from the Buckshot and overlying tuffaceous sediments and reconcentration in the Buckshot, and (3) introduction of uranium by a hydrothermal source.

Our postulated general mechanism for formation of the Mammoth Mine deposit involves (1) introduction of pyrite in the Buckshot by upward leakage of H_2S -bearing gas or water coming from underlying Cretaceous sedimentary rocks, (2) mobilization of uranium in glass in tuffaceous sediments by openhydrologic-system diagenesis, and (3) precipitation of reduced uranium minerals (probably coffinite) by reaction with pyrite and subsequent recent oxidation to form uranophane. Both good evidence and several problems are involved in this proposed mechanism.

l) Leakage of H_2S -bearing fluids from underlying Cretaceous rocks has not been documented in Trans-Pecos Texas, and the area is not a producer of hydrocarbons. However, several deep wells have been drilled along buried

Cretaceous structures to explore for hydrocarbons in the Mammoth Mine area (Bilbrey, 1957). Several of the wells encountered minor amounts of oil or gas. Two of the wells now produce hot water (approximately 80° C) that contains H_2S and several hot springs in the area also produce H_2S (Henry, 1979a). A boulder of massive Lower Cretaceous limestone occurs in Quinn Creek near the mine; it is highly petroliferous. Its occurrence here is unusual because Cretaceous rocks that crop out in the area are all Upper Cretaceous. Nevertheless, the petroliferous boulder implies that underlying Lower Cretaceous rocks could be a source of H_2S . This mechanism of pyritification and entrapment of uranium in major deposits is well documented in the Texas Coastal Plain uranium district (Goldhaber and others, 1978; Galloway and Kaiser, in press).

- 2) During diagenesis, glass shards and pumice in the tuffaceous sediments were dissolved; and all constituents of the glass, including uranium, went into solution. Thus, diagenesis ought to be an ideal mechanism for releasing uranium and allowing it to migrate to form deposits.
- 3) Uranophane is reported from fractures withing the underlying Colmena Tuff at the Mammoth Mine (Nye, 1957), and one sample (MGE-523) collected from an adit in the Colmena contained 19 ppm U_3O_8 . Molybdenum occurs in moderately high concentrations (20-70 ppm) at the Mammoth Mine and shows some correlation with uranium (R = 0.44). Molybdenum concentrations in unmineralized Buckshot samples from throughout its outcrop area show a similar range. The high concentrations in both mineralized and unmineralized samples are probably primary.

The Buckshot is highly fractured in all outcrops observed in this study; these fractures should provide sufficient permeability. That permeability existed following consolidation and welding of the Buckshot is deomonstrated by the presence of secondary silica and calcite in fractures and vesicles at the mine.

As a compromise, we have designated almost the entire area of outcrop of the Vieja Group is favorable (Area B, Pl. 1). Only intensely faulted areas, where the Vieja Group overlies Cretaceous rocks at shallow depths, are included. Unfaulted areas and the Vieja Group above the Bracks Rhyolite are not included. Also, those parts of the Vieja Group buried beneath bolson fill are not included even though the favorable environment may extend beneath fill. Clearly not all of this area is truly favorable; the map should be interpreted accordingly.

AREA C

Fracture zones in the Allen Intrusions, a group of rhyolite porphyry domes of probable Oligocene age, constitute a favorable environment for authigenic class deposits (Class 360 of Mathews, 1978). The Allen Intrusions occur along the southern border of the quadrangle and extend slightly into the Presidio Quadrangle. Additional discussions of uranium mineralization in the Allen Intrusions are given by Amsbury (1958), Henry and Tyner (1978), and Reeves and others (1979).

The area of outcrop of the Allen Intrusions is only a few square miles. As the favorable environment consists of fracture zones within the intrusions, only a fraction of the total outcrop area is favorable. The fracture zones are probably a result of cooling of the intrusion. They dip steeply but irregularly and have irregular thicknesses up to approximately 4 m (15 ft). Mineralization was originally discovered at the surface, and drilling by Wyoming Minerals and Meeker & Co. found mineralized fractures to depths of at least 200 ft (60 m).

The Allen Intrusions are a group of shallow rhyolite domes with associated flows and breccias. They are contemporaneous with rhyolite lava flows, ash-flow tuffs, and diagenetically altered tuffaceous sediments of the Shely Group. Both groups of rocks are older than the rocks of the Chinati Caldera cycle but may be related to it or to an older caldera immediately east of the intrusions. All the major domes are rhyolte porphyries with quartz and alkali feldspar phenocrysts; plagioclase phenocrysts occur in some of the domes. The rocks are weathered or altered so that all ferromagnesian minerals and most feldspars are converted to oxides or clays. Vitrophyres associated with the porphyritic intrusions are rare, but two were found in this study (MGE-810 and MGE-811).

A second group of rocks associated with the domes includes nonporphyritic or sparsely porphyritic vitrophyres and perlites. They are probably remnants of flows associated with the domes.

Both groups of rocks are chemically similar. They are alkali-rich, high silica rhyolites with low Ca, Mg, and Fe concentrations. Aluminum is also low, but the rocks are not peralkaline, as shown by both the chemical analyses and by the presence of biotite in the two vitrophyre samples from the porphyritic group.

Evidence of favorability includes (1) abundant areas of uranium mineralization in fractures, and (2) geologic characteristics similar to those of the authigneic class (Class 360; Mathews, 1978a). Mineralization occurs as uraniferous Fe-Mn oxyhydroxides and as secondary uranium minerals. Reeves and others (1979) reported autunite, metatorbernite, and tyuyamunite. Anomalous uranium concentrations occur in many fracture zones throughout the porphyritic domes. Amsbury (1958) reported that 200 tons of ore averaging 0.34% U308 were extracted in the 1950s. The highest grade found in this study was 1430 ppm U308 in a sample recovered from clay gouge (MGE-568). An Fe-Mn or Fe-Ti-Mn oxyhydroxide from the same area contained 825 ppm U308 (MGE-545). Slightly lower concentrations were found associated with oxyhydroxides from several other fracture zones at the surface and were encountered in drill cores. Other elements enriched in the hydroxides are Cd, Be, Co, Cr, Cu, Ni, and V.

The fracture zones are generally smaller and of lower uranium grade at depth. This suggests that the presence of pitchblende veins is unlikely.

Probable sources of the uranium are the rhyolite porphyries themselves or the associated glassy rocks of the Allen Intrusions. Diagenetically altered tuffaceous sediments of the Shely Group are a third possible source. Primary uranium concentrations of the rhyolite porphyries may be as high as 23 ppm U₃O₈, the concentration found in the two vitrophyres (MGE-810 and

MGE-811). All unmineralized surface samples contain lower concentrations, which range from approximately 5 ppm to 15 ppm. Relatively unweathered and unfractured samples from drill cores contain variable concentrations closer to those of the vitorphyres.

Glassy samples of the non-porphyritic rocks contain 7-9 ppm U_30_8 ; this content is lower than the concentrations of the porphyritic vitrophyres, but it still makes them adequate source rocks.

Geologic setting, alteration, and type of deposit agree well with the authigenic class (Mathews, 1978a). The rhyolite porphyry intrusions occur in a mobile belt and are postorogenic and epizonal. They are greatly differentiated with high silica, alkali, and uranium concentrations and low calcium, magnesium, and iron concentrations. Mineralization occurs in fracture zones where uranium released by devitrification or weathering could be concentrated. Alteration is minor and consists primarily of the alteration of feldspar and mafic phenocrysts, argillic alteration along the fracture zones, and abundant limonitic staining and Fe-Mn hydroxides along the fractures.

ENVIRONMENTS UNFAVORABLE FOR URANIUM DEPOSITS

SUMMARY

Many environments in the Marfa Quadrangle are considered unfavorable for uranium deposits. They are (1) Precambrian rocks, (2) Paleozoic rocks, (3) most Mesozoic rocks, (4) mafic rocks, including lava flows and small intrusive bodies, (5) most silicic and intermediate lava flows, ash-flow tuffs, and intrusions, (6) plutonic rocks, (7) most tuffaceous sediments, and (8) fluorite deposits in the Eagle Mountains. Most of these environments are considered unfavorable because they contain no mechanisms to trap uranium. However, some could serve as source rocks for uranium deposits in other units where trapping mechanisms are present.

PRECAMBRIAN ROCKS

Although the Precambrian rocks in the Marfa Quadrangle include a wide variety of meta-igneous and meta-sedimentary rocks, they have uniformly low uranium concentrations (highest uranium content was 6.5 ppm in sample MGE-206, App. B). Furthermore, they lack the physical conditions for trapping or concentrating uranium and did not reveal any radiometric anomalies. Therefore, these rocks are considered unfavorable environments for uranium deposits.

PALEOZOIC ROCKS

Permian rocks (for nomenclature, see Fig. 3) directly overlie the Precambrian at the surface and in the shallow subsurface. Although there is some uranium mineralization associated with Tertiary instrusions near the Chinati Caldera (Dietrich, 1965), there is no uranium mineralization in

Paleozoic rocks in the area. Permian rocks are, however, age equivalent to argentiferous limestones at Shafter (Presidio Quadrangle). Several samples from Permian units in Pinto Canyon occurring in the Presidio Quadrangle (MGF-362 and MGF-363) yield low concentrations of U₃O₈ and exhibit few characteristics judged favorable for uranium deposits. There are no HSSR or radiometric anomalies over the Paleozoic outcrop. Subsurface Paleozoic rocks are either unfavorable by analogy to outcrops or are too deep to be evaluated here.

MESOZOIC ROCKS

No Triassic or Jurassic rocks crop out within the quadrangle. No Triassic rocks and only thin, possible Jurassic rocks were recognized on well logs. The Malone Mountains, where the only known Jurassic rocks in Texas crop out, are 30 miles north in the Van Horn Quadrangle. There is no reason to believe that the Jurassic rocks, even if present in the shallow subsurface of the Marfa Quadrangle, would be favorable for uranium. Mesozoic rocks that do crop out in the Malone Mountains are marine limestones; and, extensive studies of outcropping and subsurface Mesozoic rocks to the south in Chihuahua (Haenggi, 1966) have not revealed Triassic or Jurassic rocks, except for a thick sequence of evaporites, which is commonly considered Cretaceous. Triassic and Jurassic rocks, even if present in the shallow subsurface, would very likely be unfavorable.

The Cretaceous Yucca, Bluff Mesa, Finlay, Espy, Loma Plata, and Borracho and Buda Formations are unfavorable for uranium deposits; these units are chiefly dense marine limestones that do not contain a suitable reductant and which exhibit no radiometric (airborne or ground) or chemical anomalies.

The Cox, Bienvenides, and Del Rio Formations, chiefly siliciclastic units, are unfavorable because they lack reductants. Their radiometric signature (average 50-70 counts per second) hardly warrants further study.

Upper Cretaceous rocks have largely been eroded from the Marfa Quadrangle. They are preserved in two places: (1) Chispa Summit, the pass between the Sierra Vieja and the Van Horn Mountains; here, an extensive area of Boquillas Formation crops out, and (2) the area west of the Vieja Rim; here, Upper Cretaceous sandstones are favorable. The Boquillas in the first area has a radiometric signature (150 counts per second) that is about three times that of the dense Lower Cretaceous limestone. The elevated radiometrics are due to bentonite beds in the Boquillas that, while slightly uraniferous, do not approach favorability because they lack a concentrating mechanism.

TERTIARY ROCKS

Mafic Rocks

Mafic lava flows in the Marfa Quadrangle considered unfavorable for uranium deposits include: (1) the Petan Basalt (MGE-921, 0.5 ppm U_3O_8); (2) mafic units in the Garren Group (MGE-968, 2.5 ppm U_3O_8); (3) the Pantera Trachyite (MGE-997, 7.3 ppm U_3O_8); (4) the basalt lentil of the Hogeye Tuff (MGE-992, 1.3 ppm U_3O_8); and (5) mafic rocks in the Davis

Mountains. These units are judged unfavorable on the basis of surface rock sampling; they have generally low uranium concentrations and contain neither evidence of uranium enrichment nor known mechanisms for trapping uranium.

Silicic and Intermediate Rocks

Numerous rhyolitic to intermediate lava flows, ash-flow tuffs, and small intrusive bodies in the Marfa Quadrangle are judged to be unfavorable for uranium deposits. These units include lava flows and ash-flow tuffs in the Shely, Garren, and Vieja Groups, and most units in the Davis Mountains. Geochemical analyses and inspection of the radiometric data indicte that these units have low to moderate uranium and total-radioelement concentrations. Inspection of a known radiometric anomaly in the Davis Mountains (Mt. Livermore anomaly; Reeves and others, 1979) revealed low to moderate concentrations of uranium in the rocks sampled (highest uranium value was 21.0 ppm U₃O₈ in sample MGE-938; App. B). No process or mechanism capable of concentrating uranium was observed in these units. However, they are potentially favorable sources for uranium to form epigenetic deposits elsewhere.

Plutonic Rocks

Large intrusive masses of generally felsic composition are considered to be unfavorable environments because of low uranium content and a lack of any indication of primary magmatic deposition. These plutons are the Eagle Peak Syenite (highest uranium content was 5.5 ppm in sample MGE-812; App. B) in the Eagle Mountains, quartz microsyenite and quartz trachyte in the Davis Mountains (highest uranium content was 9.7 ppm, MGE-733; App. B), the quartz monzonite of Canning Ridge (uranium content 2.8 ppm, MGE-867; App. B), and the Ojo Bonito "Laccolith" north of the Chinati Mountains (uranium content 3.8 ppm, MGE-794; App. B). In addition, no radiometric or geochemical anomalies are associated with these rocks. As with to the silicic flow rocks, these plutons could be potential sources of uranium.

Tuffaceous Sediments

Most tuffaceous sediments of the Vieja Group, Garren Group, Shely Group, Buck Hill Group, and Davis Mountains are unfavorable for uranium deposits because they lack reductants or other trapping mechanisms. Channel sandstones containing organic debris, or lacustrine deposits containing lignites, are not known to occur in any of these rocks in the Marfa Quadrangle. Reducing environments, which occur in the basal Pruett Formation of the Emory Peak Quadrangle, may also occur in that part of the Pruett Foramtion in the subsurface in the Marfa Quadrangle. However, the formation is not exposed in the Marfa Quadrangle and cannot be evaluated. Epigenetic reductants, such as those postulated for the Mammoth Mine uranium occurrence, may exist in lower parts of the tuffaceous sedimentary sequence, especially in the Vieja Group. This environment is considered along with the Buckshot Ignimbrite. Nevertheless, no trapping mechanisms have been identified in tuffaceous sediments of the above formations. Therefore, these are considered unfavorable.

Although the tuffaceous sediments are considered unfavorable, since they lack environments suitable to concentrate uranium, they are potentially excellent uranium sources. All tuffaceous sediments examined in the Marfa Quadrangle have been diagenetically altered. Diagenesis may have released uranium to solution to be concentrated elsewhere.

Fluorite of the Eagle Mountains

Fluorite deposits associated with rhyolitic intrusive bodies in the Eagle Mountains have low uranium concentrations; the highest uranium content in fluorite from the Eagle Mountain fluorospar district is 4.5 ppm (MGE-850, App. B). This is in contrast to fluorite deposits in the Christmas Mountains (Emory Peak Quadrangle), which have anomalously high uranium (Daugherty and Fandrich, 1979). The variable uranium content of fluorite from these two areas can be attributed to a difference in composition of the associated rocks. The igneous rocks of the Eagle Mountains are less alkalic than those of the Christmas Mountains (Barker, 1977). The mechanism for concentrating uranium in fluorite deposits in the Eagle Mountains is adequate because of low uranium content and association with unfavorable rock types.

UNEVALUATED ENVIRONMENTS

BOLSON-FILL SEDIMENTS

Bolson-fill sediments within Presidio, Hueco, and Red Light Bolsons, Eagle Flat, and Lobo Valley--Ryan Flat are classifed as unevaluated. Although several lines of evidence suggest that the fill, especially in Presidio Bolson, could be favorable, other evidence suggests that it is unfavorable. Information to draw a final conclusion is not available.

Geologic Setting

The bolsons are filled with detritus that was shed from adjacent highlands and composed of either Tertiary volcanic and intrusive rocks or Cretaceous or older sedimentary rocks. Deposition began about 23 m.y. ago with initiation of faulting (Dasch and others, 1969). Deposition continued in closed basins until the Pleistocene; at that time, integration of the Rio Grande drainage system allowed through-going drainage of the several basins along the Rio Grande. Bolson fill there is now being dissected, and several different terrace levels are developing as the Rio Grande cuts downward. Lobo Valley and Eagle Flat are not part of this drainage system but drain into a closed system to the north in the Van Horn Quadrangle called Salt Basin.

On the basis of the dominant lithology, Groat (1972) divided basin fill in Presidio Bolson into conglomerate, sandstone, and mudstone lithosomes. Although his model is probably appropriate to the other basins, because most are not as dissected as is the Presidio Bolson, basin fill deposits are either poorly exposed or not exposed at all. The fill is zoned, and the coarsest material is adjacent to major basin-bounding faults along the mountain fronts. Fill adjacent to the mountain front was deposited in alluvial fans. The

material fines basinward into the mudstone lithosome; although, conglomerate and sandstone lenses compose as much as 10% of the mudstone lithosome. During closed basin sedimentation, the center was occupied by a playa lake; evaporite beds containing gypsum occur within the mudstone lithosome in several locations. Groat considered the alluvial fan, gypsum, and playa deposits as being similar to deposits associated with playas in the Mojave Desert.

Thickness of the fill ranges from greater than 4,000 ft (1200 m), in several locations along the center of Presidio Bolson, down to areas of pinchout along the margins of the basin. However, thickness changes abruptly at faulted margins where basin fill is displaced aganist older rocks. Thickness of fill in the other basins is comparable to that in Presidio Bolson.

Faulting has continued to the present; recent fault scarps cut several terraces developed since integration of the Rio Grande drainage. Recent fault scarps also occur along the west side of Lobo Valley (Muehlberger and others, 1978). Although the largest faults are along basin margins, numerous additional faults occur within the basins, especially in the northern part of the dissected Présidio Bolson. Faults within the other basins are also likely, but most are probably buried beneath recent sediments.

Uranium Favorability

Epigenetic uranium deposits, the most likely type to form in the bolsons, require the appropriate interaction of three factors: (1) a source rock that has released uranium, (2) a transporting medium, and (3) trapping and concentrating mechanisms and locations. All three factors may exist within the bolsons, but the actual existence or effectiveness of them has not been completely evaluated.

Source Rocks. Much of the detritus composing the basin fill and much of the adjacent highlands that drain into the basins are composed of Tertiary volcanic, volcaniclastic, or intrusive rocks that have relatively high primary uranium conentrations. In highland areas, where non-volcanic Cretaceous or older sediments are now exposed (for example the Quitman Mountains, and parts of the Eagle Mountains, Van Horn Mountains, and Wylie Mountains), volcanic rocks initially capped the sediments but have since been eroded. Thus, basin fill in these areas may be at least partly composed of igneous or igneousderived rocks. Uranium concentrations in basin fill and in volcanic rocks of the highlands typically range from a few ppm to about 15 ppm, which makes them more than adequate sources of uranium. Analyses of stream sediments within Presidio Bolson show similar concentrations (Union Carbide, 1978b). Uranium mineralization within the Allen Intrusions could also be a potential source of uranium for basin fill in the northern Presidio Bolson.

Less certain is whether or not significant amounts of uranium have been released from any of these rocks. Release would have to be by weathering rather than by any process of devitrification or diagenesis. High-temperature devitrification would have occurred before basin formation; open-hydrologic-system diagenesis of tuffaceous sediments would also have occurred before basin formation because diagenesis occurred soon after initial deposition of

the sediments (Walton, 1975). Also, tuffaceous sediments do not occur within basin fill because tuff-producing volcanism ceased before formation of the basins.

Nevertheless, weathering may be an effective mechanism of uranium mobilization from volcanic rocks. Results from this study, from evaluation of the Emory Peak and Presidio Quadrangles, and from previous work in the Chinati Mountains that border Presidio Bolson (Henry and Tyner, 1978), indicate that weathering can release 50% or more of the primary uranium content of some rocks. Probably sufficient amounts of uranium have been released from potential source rocks to form significant deposits if a concentrating mechanism exists.

Migration. Surface and ground-water flow, both during basin filling and since integration of the Rio Grande, was from high areas along basin margins towards the basin center. While the basin was closed, all water and any dissolved uranium was trapped within the basin. After integration, uranium-bearing waters could reach the Rio Grande and be removed from the system. Permeability of the basin fill varies from very high permeability in the basin-margin conglomerate lithosome to very low permeability in the basin-center mudstone lithosome (Groat, 1972). Sandstone lenses do occur even within the mudstone lithosomes; therefore, beds with sufficient permeability to enable transport of ground water to the basin center do exist.

Entrapment. A possible mechanism of entrapment is the most poorly evaluated of the three factors needed for uranium deposits. The most likely entrapment mechanism is reduction of either by organic material (or pyrite generated from the organic material) deposited in channels in conglomerate or sandstone lithosomes or as lignite beds in the basin center, or by pyrite generated by post-depositonal reduction by discharge of H_2S -bearing waters from underlying Cretaceous or Permian sedimentary rocks. The first mechanism is unlikely; evidence for or against the second is meager.

Neither lignitic beds nor organic material of any kind has been found in the basin fill. Although lignite is common in closed basins formed during early Tertiary time (for example, the Pruett Formation of the Emory Peak Quadrangle), the climate may have been considerably drier during deposition; therefore, any organic material that did form may have been oxidized immediately. Playa-lake deposits of the Mojave Desert are commonly highly oxidized (W. E. Galloway, pers. comm., 1979)

Post-depositional reduction by H_2S leaking along faults that cut basin fill is entirely theoretical. The general mechanism and evidence for such reduction are discussed above in the Buckshot Ignimbrite section. Faults cutting through basin fill provide conduits for the rise of thermal water from hot springs, particularly along the Rio Grande. A similar process conceivably could lead to reduction of sediments in basin fill adjacent to fault zones.

If neither reduction mechanism exists, other concentrating processes are still less likely. Formation of calcrete deposits by adsorption of uranium on secondary amorphous silica or hydroxides is a possible process. However, it is more likely that, without reduction, uranium in water entering the playa

would simply be dispersed throughout playa sediments without being concentrated. Reeves and others (1979) reported uranium mineralization associated with the Quebec Siding anomaly. Radiometric data do show a radioactivity anomaly in that area (LKB Resources, 1979), but our investigation suggests that this results from the presence of detritus moderately rich in U, Th, and K, rather than from mineralization.

Information to Improve Evaluation of Bolson Fill

Factors 1 and 2, required for the formation of epigenetic uranium deposits, have probably been operative; therefore, the limiting factor (factor 3) is the existence of reducing environments to concentrate uranium. With this uncertainty, the environment is classified as unevaluated. Ground-water analyses of basin fill are sparse because wells are sparse in the relatively unpopulated bolsons. The few reported concentrations (Union Carbide, 1978b) are relatively low (less than 10 ppb). However, because there are so few analyses, characterization of present day ground-water concentrations is not possible. Also, no measurements of oxidation-reduction status were made; therefore, the existence of reducing environments within basin fill cannot be established. More complete sampling, which emphasizes oxidation-reduction status of existing wells or of wells drilled expressly for uranium exploration in basin fill could resolve this uncertainty.

SELECTED REFERENCES

- Amsbury, D. L., 1958, Geology of the Pinto Canyon area, Presidio County, Texas: University of Texas at Austin, Bureau of Economic Geology Geologic Quadrangle Map No. 22 (with text).
- Anderson, W. B., 1975, Cooling history and uranium mineralization of the Buckshot Ignimbrite, Presidio and Jeff Davis Counties, Texas: The University of Texas at Austin, M.S. thesis, 135 p.
- Austin, S. R., and D'Andrea, R. F., 1978, Sandstone-type uranium deposits, in Mickle, D. G., and Mathews, G. W., eds., Geologic characteristics of enviornments favorable for uranium deposits: U.S. Department of Energy Open-File Report GJBX-67(78), p. 87-119.
- Barker, D. S., 1977, Northern Trans-Pecos magmatic province; introduction and comparison with the Kenya Rift: Geological Society of America Bulletin, v. 88, p. 1421-1427.
- Barnes, V. E., project director, 1979a, Emory Peak Presidio sheet: The University of Texas at Austin, Bureau of Economic Geology Geologic Atlas of Texas, scale 1:250,000.
- ----1979b, Marfa sheet: The University of Texas at Austin, Bureau of Economic Geology Geologic Atlas of Texas, scale 1:250,000.
- Basinski, P. M., and Larson, L. T., 1979, Uranium potential of zeolites in volcanically derived sediments, northern Reese River Valley, Nevada [abs.]: American Institute of Mining Engineers, Annual Meeting, 1979, p. 60.
- Bilbrey, D. G., 1957, Economic geology of Rim Rock Country, Presidio County, Trans-Pecos Texas: University of Texas at Austin, M.S. thesis, 114 p.
- Bostros, E., 1976, Diagenetic alteration in the tuffaceous sediments of the Duff Formation, Trans-Pecos Texas: The University of Texas at Arlington, M.S. thesis, 104 p.
- Butz, T. R., Payne, A. G., Grimes, J. G., Helgerson, R. N., and Bard, C. S., 1979, Hydrogeochemical and stream-sediment detailed survey for Trans-Pecos Texas; Sierra Vieja survey area: U.S. Department of Energy, Open-File Report GJBX-29(80), 4 vol., 437 p.
- Cepeda, J. C., 1979, The Chinati Mountains Caldera, Presidio County, Texas, in Walton, A. W., and Henry, C. D., eds., Cenozoic geology of the Trans-Pecos volcanic field of Texas: The University of Texas at Austin, Bureau of Economic Geology Guidebook 19, p. 106-125.
- Dasch, E. J., Armstrong, R. L., and Clabaugh, S. E., 1969, Age of Rim Rock dike swarm, Trans-Pecos Texas: Geological Society of America Bulletin, v. 80, p. 1819-1823.

- Daugherty, F. W., and Fandrich, J. W., 1979, Geology of the Christmas Mountains fluorspar district, Brewster County, Texas, in Walton, A. W., and Henry, C. D., eds., Cenozoic geology of the Trans-Pecos volcanic field of Texas: The University of Texas at Austin, Bureau of Economic Geology Guidebook 19, p. 126.
- DeFord, R. K., 1958, Tertiary formations of Rim Rock Country, Presidio County, Trans-Pecos Texas: Texas Journal of Science, v. 10, no. 1, p. 1-37.
- DeFord, R. K., and Haenggi, W. T., 1970, Stratigraphic nomenclature of Cretaceous rocks in northeastern Chihuahua, in Seewald, Ken, and Sundeen, Dan, eds., The geologic framework of the Chihuahua Tectonic Belt: West Texas Geological Society Symposium, Midland, Texas, 1970, p. 3-14.
- Dietrich, J. W., 1965, Geology of Presidio area, Presidio County, Texas: The University of Texas at Austin, Bureau of Economic Geology Geologic Quadrangle Map 28 (with text).
- Ferguson, J. D., 1959, Structure of the Porvenir area, Trans-Pecos Texas: The University of Texas at Austin, M.S. thesis, 46 p.
- Flawn, P. T., 1956, Basement rocks of Texas and southeast New Mexico: The University of Texas at Austin, Bureau of Economic Geology Publication 5605, 261 p.
- Freeman, V. L., 1964, Geologic map of the Indian Wells Quadrangle, Terrell and Brewster Counties, Texas: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-395.
- Galloway, W. E., 1977, Catahoula Formation of the Texas Coastal Plain: depositional systems, composition, structural development, ground-water flow history, and uranium distribution: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations 87, 59 p.
- Galloway, W. E., and Kaiser, W. R., 1979, Catahoula Formation of the Texas Coastal Plain; origin, geochemical evolution, and charactrisites of uranium deposits: U.S. Department of Energy, Open-File Report GJBX-131(79), 148 p.
- Golhaber, M. B., Reynolds, R. L., and Rye, R. D., 1978, Origin of a South Texas roll-type uranium deposit; Part II, Petrology and sulfur isotope studies: Economic Geology, v. 73, p. 1690-1705.
- Gries, J. C., and Hanenggi, W. T., 1972, Structural evolution of the eastern Chihuahua Tectonic Belt, in Seewald, Ken, and Sundeen, Dan, eds., The geologic framework of the Chihuahua Tectonic Belt: West Texas Geological Society Symposium, Midland, Texas, 1970, p. 119-137.
- Groat, C. G., 1972, Presidio Bolson, Trans-Pecos Texas and adjacent Mexico; geology of a desert basin aquifer system: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations 76, 46 p.
- Haenggi, W. T., 1966, Geology of El Cuervo area, northeastern Chihuahua, Mexico: The University of Texas at Austin, Ph.D. dissertation, 402 p.

- Hart, O. M., 1958, Uranium deposits in the Pryor-Bighorn Mountains, Carbon County, Montana, and Bighorn County, Wyoming: 2nd United Nations Conference on the Peaceful Uses of Atomic Energy, Proceedings, v. 2, p. 523-526.
- Hay, R. L., and Sheppard, R. A., 1977, Zeolites in open-hydrologic systems in Mumpton, F. A., 'ed., Mineralogy and geology of natural zeolites:
 Mineralogical Society of America Short Course Notes, v. 4, p. 93-102.
- Hay-Roe, Hugh, 1957, Geology of the Wylie Mountains and vicinity: The University of Texas at Austin, Bureau of Economic Geology Geologic Quadrangle Map 21 (with text).
- Henry, C. D., 1979a, Geologic setting and geochemistry of thermal water and geothermal assessment, Trans-Pecos Texas: The University of Texas at Austin, Bureau of Economic Goelogy Report of Investigations 96, 48 p.
- ----1979b, Crustal structure deduced from geothermal studies, Trans-Pecos Texas, in Walton, A. W., and Henry, C. d., eds., Cenozoic geology of the Trans-Pecos volcanic field of Texas: The University of Texas at Austin, Bureau of Economic Geology Guidebook 19, p. 39-47.
- Henry, C. D., and Bockhoven, N. T., 1978, Tectonic map of the Rio Grande area, Trans-Pecos Texas and adjacent Mexico: The University of Texas at Austin, Bureau of Economic Geology.
- Henry, C. D., and Duex, T. W., 1980, Uranium in diagenesis of the Pruett, Duff, and Tascotal Formations, Trans-Pecos Texas [abs.]: American Association of Petroleum Geologists, Southwest Section Annual Meeting, p. 33-34
- Henry, C. D., and Tyner, G. N., 1978, Alteration and uranium release from rhyolitic igneous rocks; examples from the Mitchell Mesa Rhyolite, Santana Tuff, Chinati Mountain Group, and Allen complex, Trans-Pecos Texas, in Henry, C. D., and Walton, A. W., eds., Formation of uranium ores by diagenesis of volcanic sediments: U.S. Department of Energy, Open-File Report GJBX-22(79), pages VII-1 to VII-109.
- Hively, R. E., 1976, Stratigraphy and petrology of tuffaceous sedimentary rocks of the Duff Formation, Trans-Pecos Texas: The University of Texas at Arlington, M.S. thesis, 109 p.
- Jones, B. R., and Reaser, D. F., 1970, Geology of southern Quitman Mountains, Hudspeth County, Texas: The University of Texas at Austin, Bureau of Economic Geology Geologic Quadrangle Map 39 (with text).
- Jones, C. A., 1978, Uranium occurrences in sedimentary rocks exclusive of sandstone, <u>in</u> Mickle, D. G., and Mathews, G. W., eds., Geologic characteristics of environments favorable for uranium deposits: U.S. Department of Energy, Open-File Report GJBX-67(78), p. 1-85.
- Jordan, J. M., 1978, Perdiz conglomerate, in Henry, C. D., and Walton, A. W., eds., Formation of uranium ores by diagenesis of volcanic sediments: U.S. Department of Energy, Open-File Report GJBX-22(79), pages IV-1 to IV-26.

- Katayama, N., Kubo, K., and Hirono, S., 1974, Genesis of uranium deposits of the Tono Mine, Japan, in Formation of uranium ore deposits: International Atomic Energy Agency, Report STI/PUB/374, p. 437-451.
- King, P. B., 1937, Geology of the Marathon region, Texas: U.S. Geological Survey Professional Paper 187, 148 p.
- King, P. B., and Flawn, P. T., 1953, Goelogy and mineral deposits of Precambrian rocks of the Van Horn area, Texas: The University of Texas at Austin, Bureau of Economic Geology Publication 5301, 218 p.
- Kopp, R. A., 1977, Geothermal exploration of Presidio County, Texas: The University of Texas at El Paso, M.S. thesis, 70 p.
- LKB Resources, 1979, NURE aerial gamma-ray and magnetic reconnaissance survey, Big Bend area (Marfa, Presidio, Fort Stockton, Emory Peak Quadrangle): U.S. Department of Energy, Open-File Report GJBX-88(79), 2 vol., 578 p.
- Lozo, F. E., and Smith, C. I., 1964, Revision of Comanche Cretaceous stratigraphic nomenclature, southern Edwards Plateau, southwest Texas, in Transactions of the 14th Annual Convention, Corpus Christi, 1964: Gulf Coast Association of Geological Societies, p. 285-306.
- Mathews, G. W., 1978a, Uranium occurrences in and related to plutonic igneous rocks, in Mickle, D. G., and Mathews, G. W., eds., Geologic characteristics of environments favorable for uranium deposits: U.S. Department of Energy, Open-File Report GJBX-67(78), p. 121-180.
- Mathews, G. W., 19/8b, Uranium occurrences of uncertain genesis, in Mickle, D. G., and Mathews, G. W., eds., Geologic characteristics of environments favorable for uranium deposits: U.S. Department of Energy, Open-File Report GJBX-67(78) p. 181-220.
- Maxwell, R. A., and Dietrich, J. W., 1972, Goelogy of the Big Bend area, Texas: West Texas Geological Society, Publication 72-59, 248 p.
- Maxwell, R. A., Lonsdale, J. T., Hazzard, R. T., and Wilson, J. A., 1967, Geology of Big Bend National Park, Brewster County, Texas: The University of Texas at Austin, Bureau of Economic Geology Publication 6711, 320 p.
- McAnulty, W. N., Sr., 1972, The mineral potential of the Chihuahua Tectonic Belt, in Seewald, Ken, and Sundeen, Dan, eds., The geologic framework of the Chihuahua Tectonic Belt: West Texas Geological Society Symposium, Midland, Texas, 1970, p. 203-205.
- McBride, E. F., Lindemann, W. L., and Freeman, P. S., 1968, Lithology and petrology of the Gueydan (Catahoula) formation in south Texas: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations 63, 122 p., illustrations, tables.
- McDowell, F. W., 1979, Potassium-argon dating in the Trans-Pecos Texas volcanic field, in Walton, A. W., and Henry, C. D., eds., Cenozoic geology of the Trans-Pecos volcanic field of Texas: The University of Texas at Austin, Bureau of Economic Geology Guidebook 19, p. 10-18.

- McGowen, J. H., and Groat, C. G., 1971, Van Horn sandstone, West Texas; an alluvial fan model for mineral exploration: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations 72, 57 p.
- McKnight, J. F., 1970, Geology of Bofecillos Mountains area, Trans-Pecos Texas: The University of Texas at Austin, Bureau of Economic Geology Geologic Quadrangle Map 37 (with text).
- Mickle, D. G., and Mathews, G. W., eds., 1978, Geologic characteristics of environments favorable for uranium deposits: U.S. Department of Energy, Open-File Report GJBX-67(78), 250 p.
- Muehlberger, W. R., 1979, The areal extent of Cenozoic faulting in Trans-Pecos Texas, in Walton, A. W., and Henry, C. D., eds., Cenozoic geology of the Trans-Pecos volcanic field of Texas: The University of Texas at Austin, Bureau of Economic Geology Guidebook 19, p. 19-21.
- Muehlberger, W. R., Belcher, R. C., and Goetz, L. K., 1978, Quaternary faulting in Trans-Pecos Texas: Geology, v. 6, p. 337-340.
- Nye, T. S., 1957, The Mammoth Mine, Tierra Vieja Mountains, Presidio County, Texas: U.S. Atomic Energy Commission, Technical Memorandum Report DAO-4-TM-10, 9 p.
- Parker, D. F., and McDowell, F. W., 1979, K-Ar geochronology of Oligocene volcanic rocks, Davis and Barrilla Mountains, Texas: Geological Society of America Bulletin, v. 90, p. 1100-1110.
- Pilcher, R. C., 1978, Volcanogenic uranium occurrences, in Mickle, D. G., and Mathews, G. W., eds., Geologic characteristics of environments favorable for uranium deposits: U.S. Department of Energy, Open-File Report GJBX-67(78), p. 181-220.
- Reeves, C. C., Jr., Kenney, Pat, Jr., and Wright, Elwood, 1979, Known radioactive anomalies and uranium potential of Cenozoic sediments, Trans-Pecos Texas, in Volcanic field of Texas: The University of Texas at Austin, Bureau of Economic Geology Guidebook 19, p. 126-136.
- Ross, C. P., 1943, Geology and ore deposits of the Shafter Mining District, Presidio County, Texas: U.S. Geological Survey Bulletin 928-B, 125 p.
- Sharp, J. A., 1964, Geologic map of the Dryden Crossing Quadrangle, Terrell County, Texas: U.S. Coological Survey Miscellaneous Geologic Investigations Map I-386.
- Smith, C. I., 1972, Lower Cretaceous sedimentation and tectonics of the Coahuila and West Texas Platforms, in Seewald, Ken, and Sundeen, Dan, eds., The geologic framework of the Chihuahua Tectonic Belt: West Texas Geological Society Symposium, Midland, Texas, 1970, p. 75-82.
- Southern Interstate Nuclear Board, 1969, Uranium in the southern United States: U.S. Atomic Energy Commission, Division of Raw Materials Report WASH-1128, p. 94-147, Pl. III (insets A & B).

St. John, B. E., 1966, Geology of Black Gap area, Brewster County, Texas: The University of Texas at Austin, Bureau of Economic Geology Quadrangle Map 30 (with text).

Thomson, Dan, and McBride, E. F., 1964, Summary of the geologic history of the Marathon Geosyncline, <u>in</u> The filling of the Marathon Geosyncline, Permian Basin Section: Society of Economic Paleontologists and Mineralogists, Symposium and Guidebook, Publication 64-9, p. 52-60.

Twiss, P. C., 1959, Geology of the Van Horn Mountains, Texas: The University of Texas at Austin, Bureau of Economic Geology Geologic Quadrangle Map 23 (with text).

-----1970, Cenozoic history of Rim Rock Country, Trans-Pecos Texas, in Seewald, Ken, and Sundeen, Dan, eds., The geologic framework of the Chihuahua Tectonic Belt: West Texas Geological Society Symposium, Midland, Texas, 1970, p. 139-156.

Underwood, J. R., 1963, Geology of Eagle Mountains and vicinity, Judspeth County, Texas: The University of Texas at Austin, Bureau of Economic Geology Geologic Quadrangle Map 26 (with text).

Union Carbide, 1978a, Hydrogeochemical and stream-sediment reconnaissance, basic data for Emory Peak NTMS Quadrangle, Texas: U.S. Department of Energy, Open-File Report GJBX-6(79), 1,061 p.

----1978b, Hydrogeochemical and stream-sediment reconnaissance, basic data for Presidio NTMS Quadrangle, Texas: U.S. Department of Energy, Open-File Report GJBX-12(79), 88 p.

Walton, A. W., 1975, Zeolitic diagenesis in Oligocene volcanic sediments, Trans-Pecos Texas: Geological Society of America Bulletin, v. 86, p. 615-624.

-----1978, Kelease of uranium during alteration of volcanic glass, in Henry, C. D., and Walton, A. W., eds., Formation of uranium ores by diagenesis of volcanic sediments: U.S. Department of Energy, Open-File Report GJBX-22(79), p. VI-1 to VI-51.

----1979, Sedimentology and diagenesis of the Tascotal Formation; a brief summary, in Walton, A. W., and Henry, C. D., eds., Cenozoic geology of the Trans-Pecos volcanic field of Texas: The University of Texas at Austin, Bureau of Economic Geology Guidebook 19. p. 157-176.

Walton, A. W., Galloway, W. E., and Kaiser, W. R., 1979, Release of uranium from volcanic glass, in sedimentary sequences; an analysis of two systems: Economic Geology, v. 76, no. 1, p. 69-88.

Weidie, A. E., Wolleben, J. A., and McBride, E. F., 1972, Late Crctaceous depositional systems in northeastern Mexico: Gulf Coast Association of Geological Societies, Transactions, v. 22, p. 323-328.

West Texas Geological Society, 1958, Geological road log along U.S. Highways 90 and 80 between Del Rio and El Paso, Texas: Highway logging committee, John A. Burleson, chairman, 48 p.

Wiley, M. A., 1972, Gravity, magnetic and generalized geologic map of the Van Horn - Sierra Blanca region, Trans-Pecos Texas: The University of Texas at Austin, Bureau of Economic Geology Geologic Quadrangle Map 40 (with text).

Wilson, J. A., 1954, Ordovician stratigraphy in Marathon folded belt: American Association of Petroleum Geologists Bulletin, v. 38, p. 2455-2475.

----1965, Older Paleozoic stratigraphy in the Solitario, in Maxwell, R. A., and Dietrich, J. W., eds., 1972, Geology of the Big Bend Area, Texas: West Texas Geological Survey Publication 72-59, p. 37-38.

Wilson, J. A., Twiss, P. C., DeFord, R. K., and Clabaugh, S., 1968, Startigraphic succession, potassium-argon dates, and vertebrate faunas, Vieja Group, Rim Rock Country, Trans-Pecos Texas: American Journal of Science, v. 266, p. 590-604.

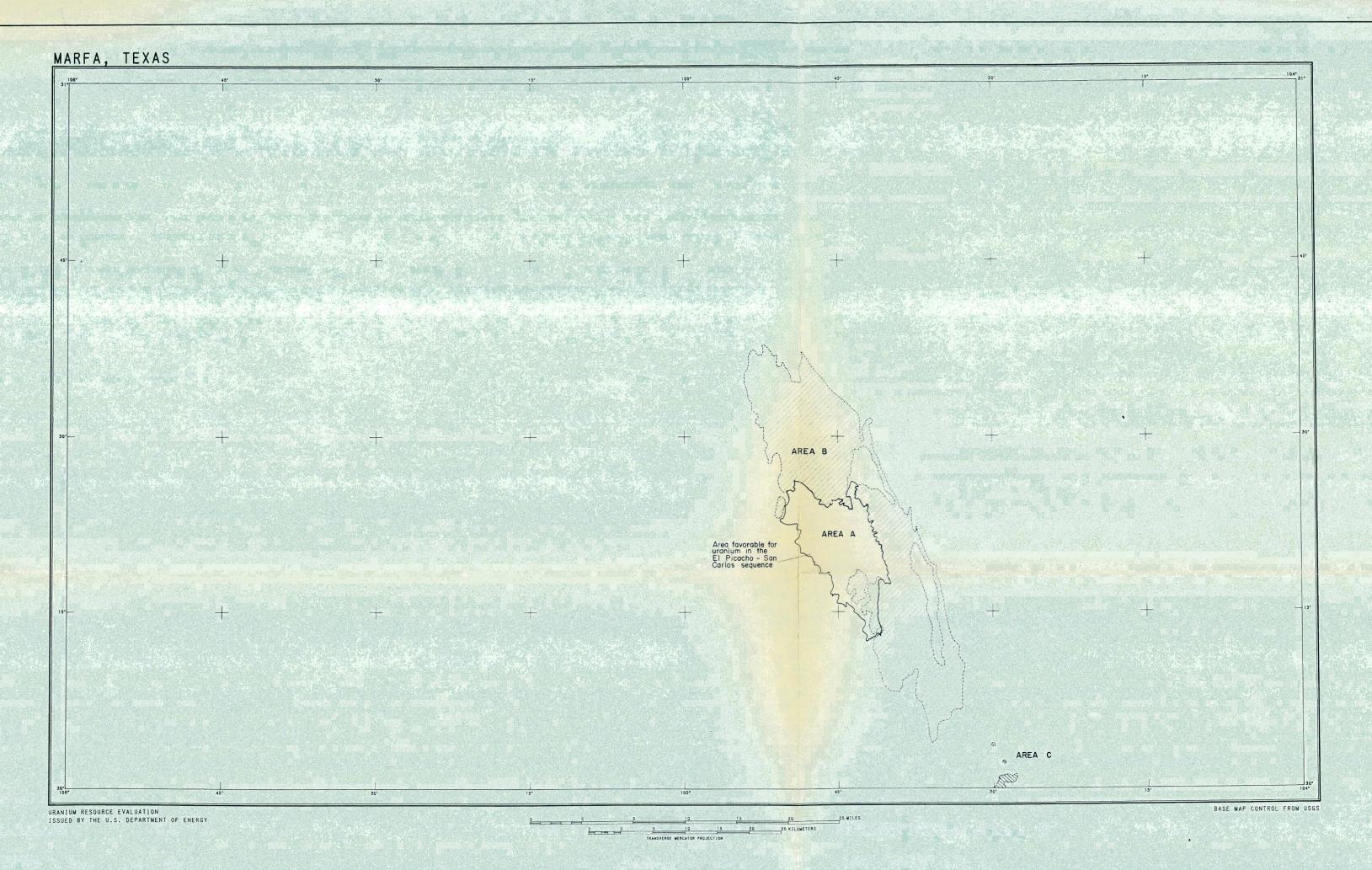


Plate I. AREAS FAVORABLE FOR URANIUM DEPOSITS

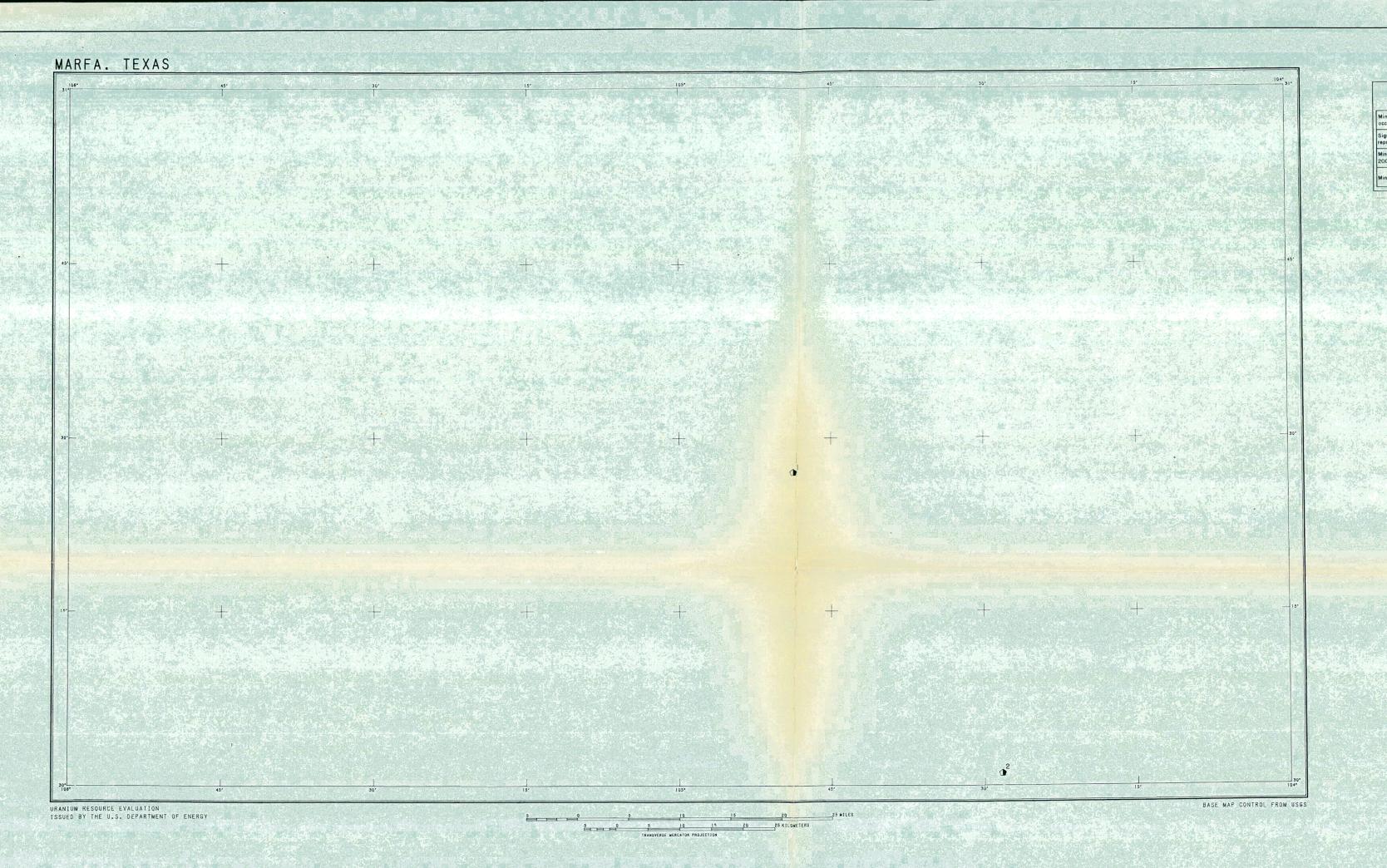


Plate 2. URANIUM OCCURRENCES

EXPLANATION

URANIUM OCCURRENCES

Ο Δ Ο

1 A 0 *

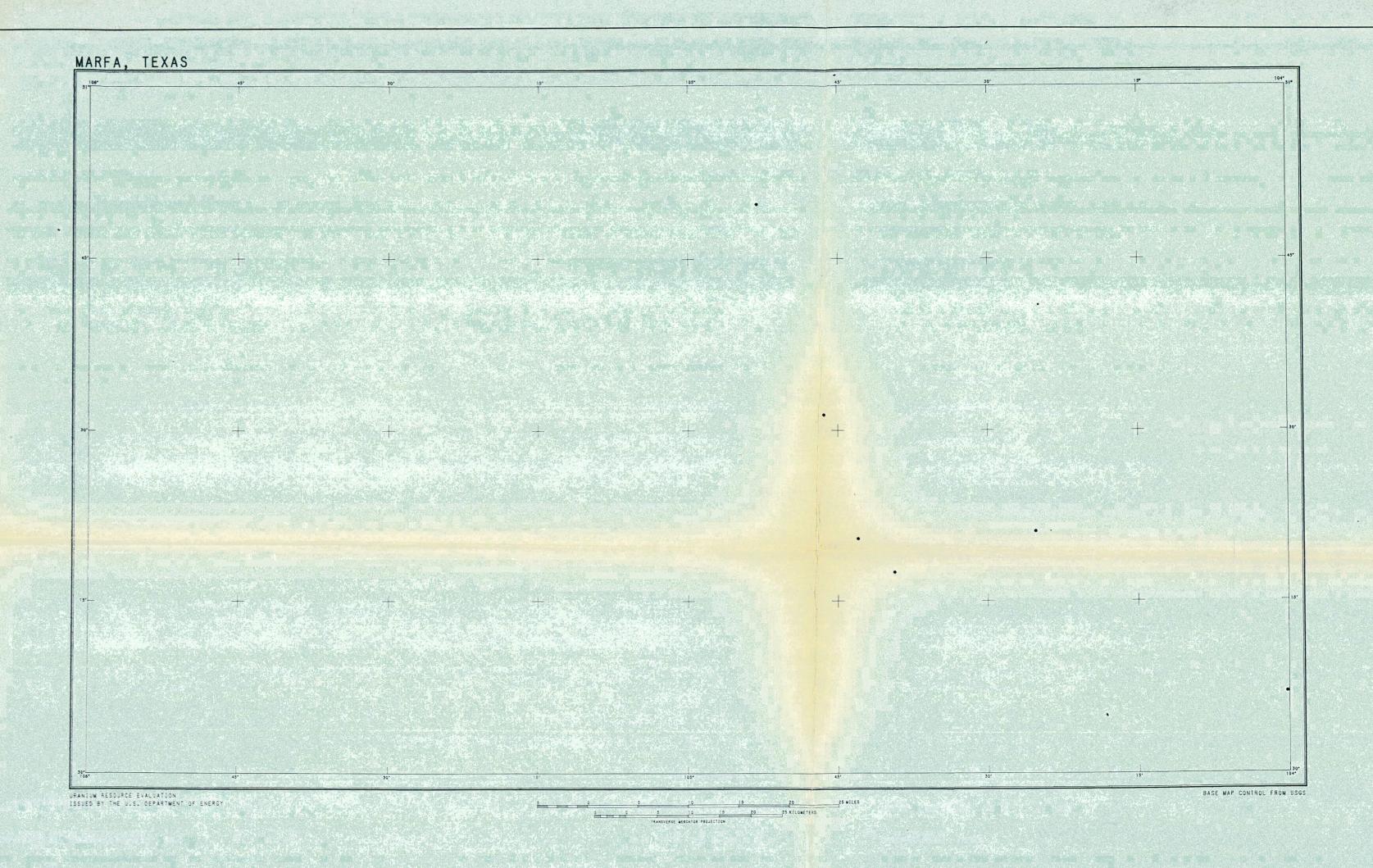


Plate 3. PREFERRED EQUIVALENT URANIUM ANOMALIES IDENTIFIED BY LKB RESOURCES, 1979

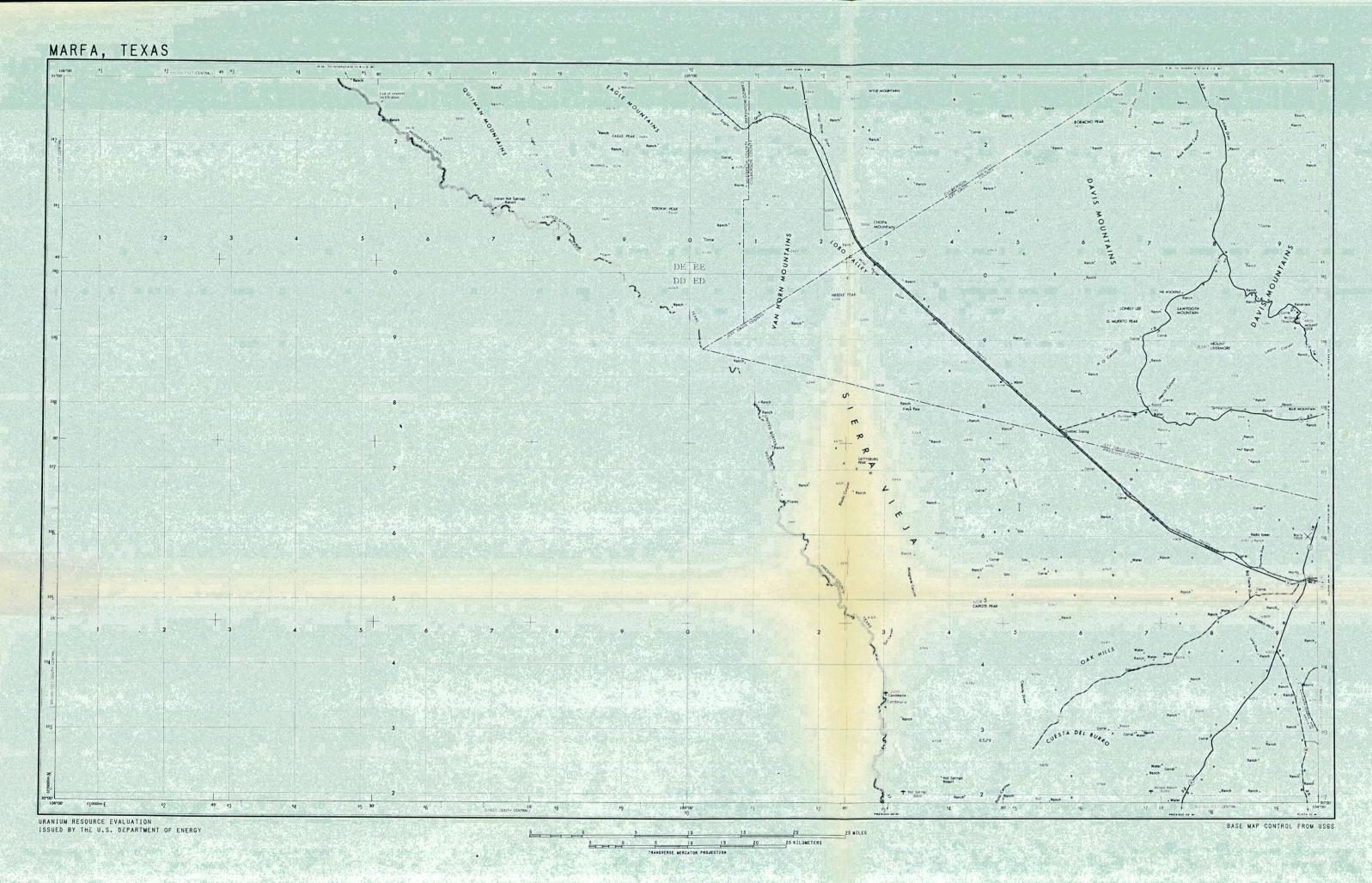


Plate 4. CULTURE

Plate 5. LOCATION MAP OF GEOCHEMICAL SAMPLES

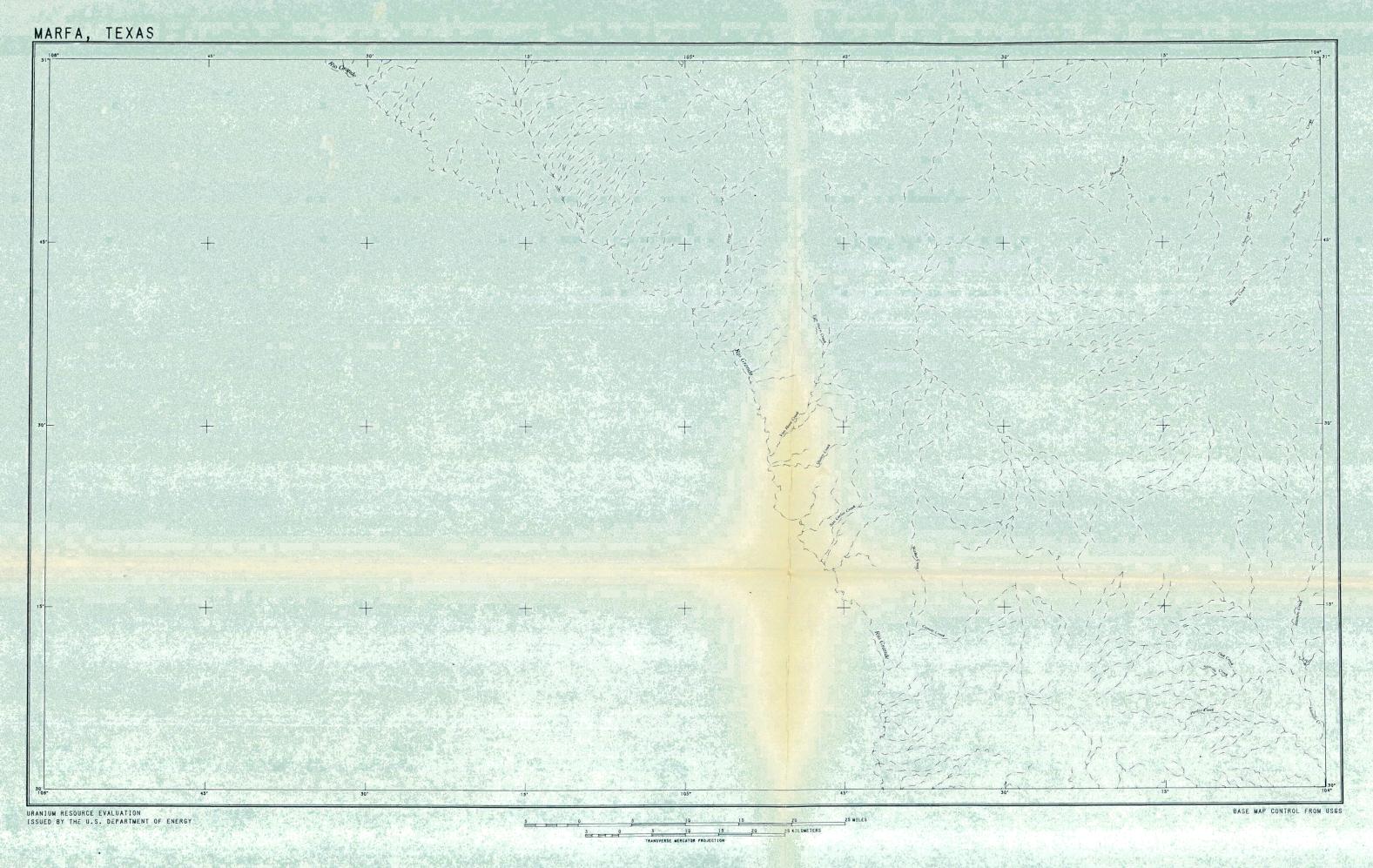


Plate 6. DRAINAGE

THIS PAGE WAS INTENTIONALLY LEFT BLANK

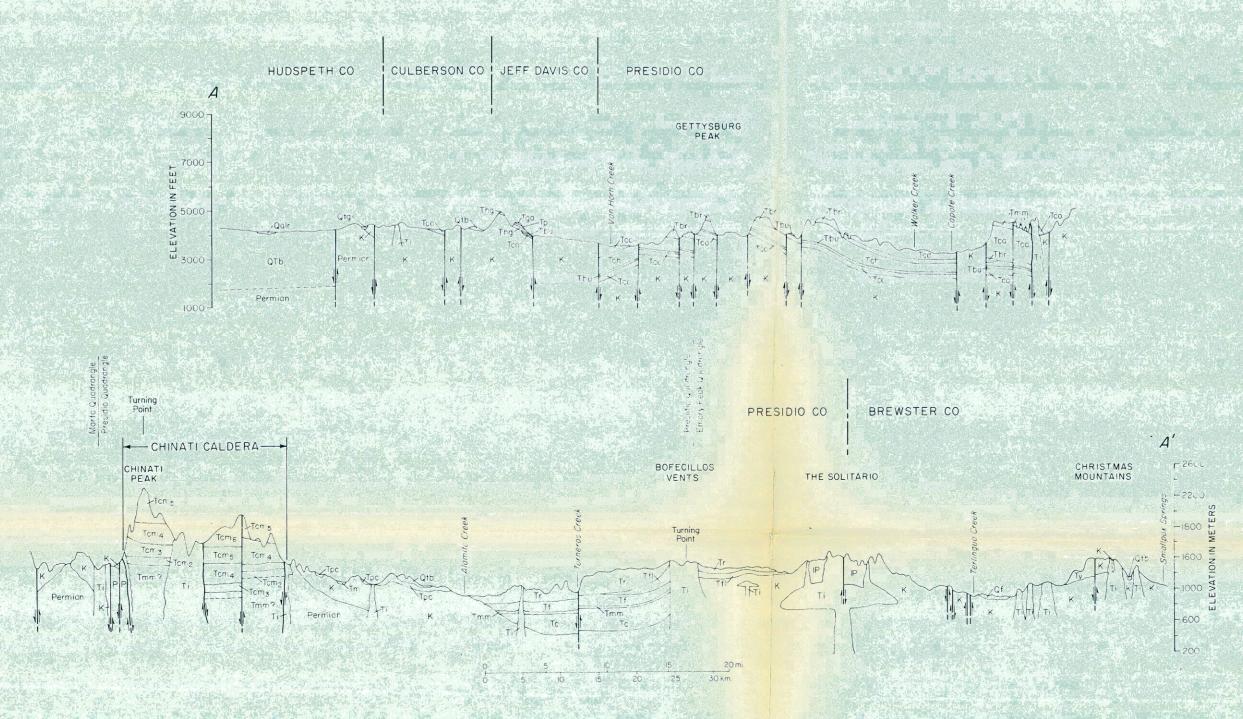
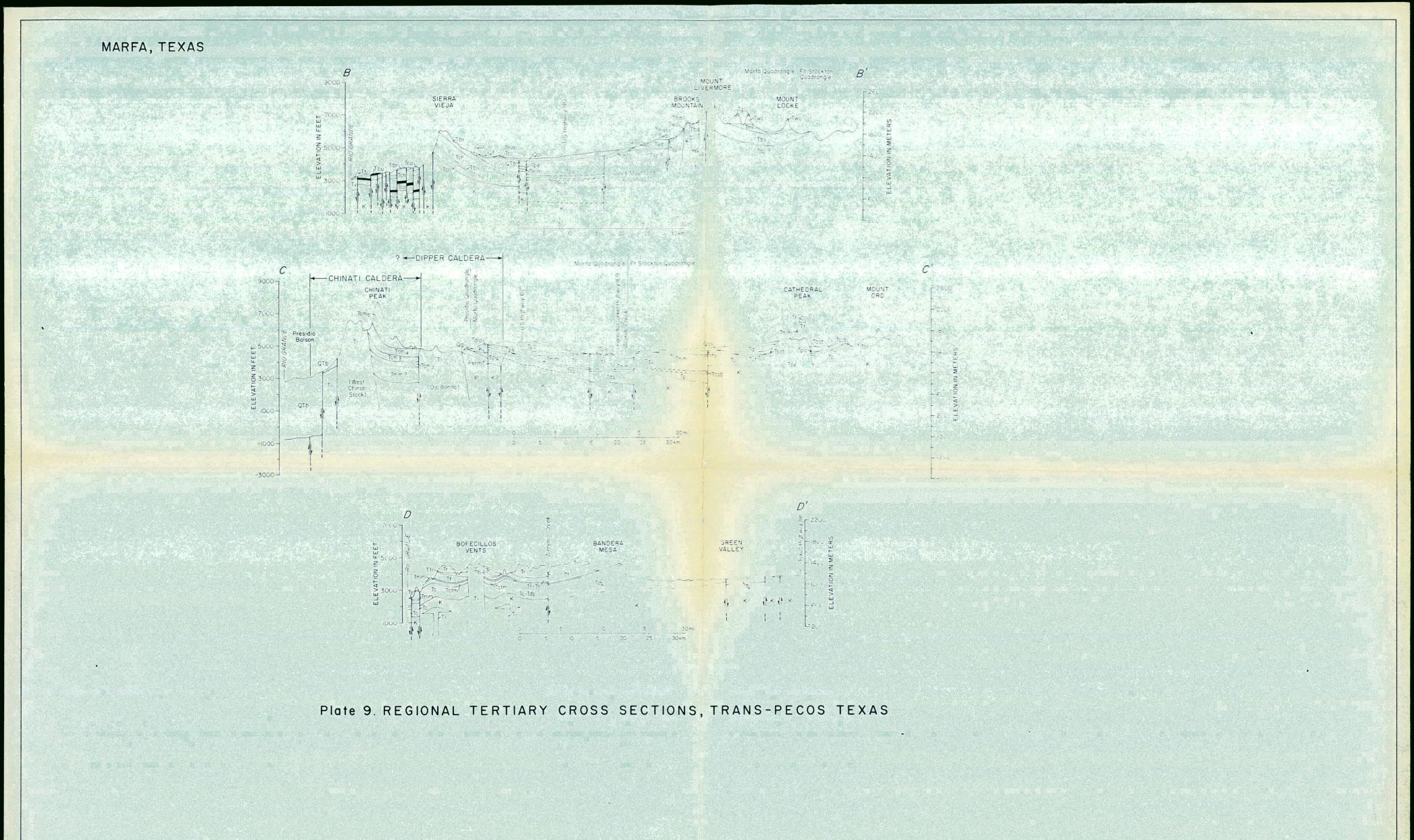



Plate 8. REGIONAL TERTIARY CROSS SECTION, TRANS-PECOS TEXAS

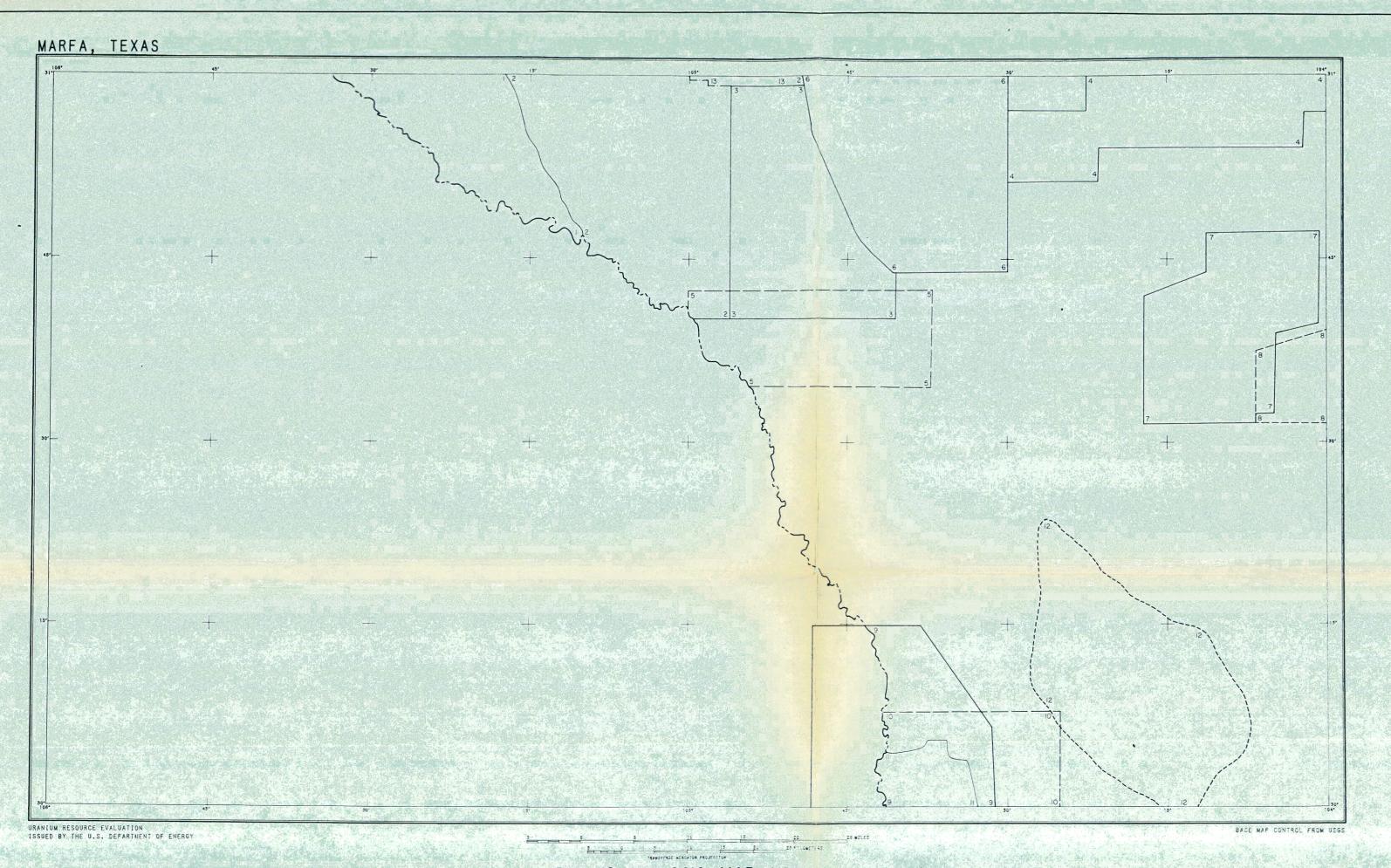
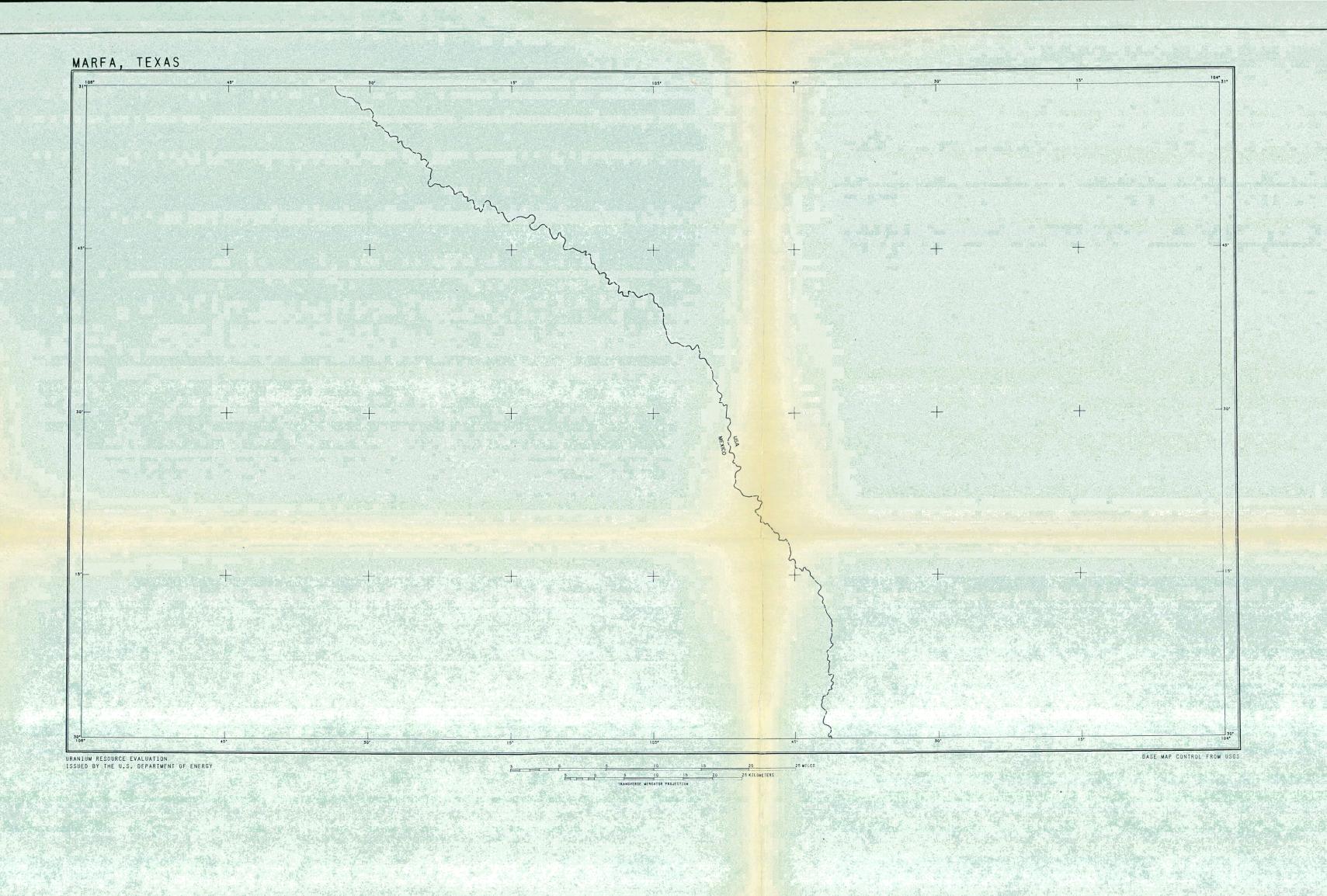



Plate IO. GEOLOGIC MAP INDEX

INDEX

- I Jones, B. R., and Reaser, D. F., 1970, scale 1:48,000
- 2 Underwood, J. R., 1963, scale 1: 48,000
- 3 Twiss, P. C., 1959, scale 1:48,000
- 4 Rix, C.C. and Zabriskie, W.E., 1951, scale 1:33,792
- 5 Braithwaite, P. and Frantzen, D. R., 1958, scale 1:32,120
- 6 Hay Roe, H., 1957, scale 1:62,500
- 7 Anderson, J.E., 1968, scale 1:62,500
- 8 Smith, M A., 1975, scale 1:48,000
- 9 Groat, C. G., 1972, scale 1:126,720
- 10 Amsbury, D. L., 1958, scale 1:63,360
- II Dickerson, E. J., 1966, scale 1:30,000
- 12 Ramsey, J. W., 1961, scale 1:63,360
- 13 King, P.B., and Flawn, P. T., 1953, scale 1:24,000

July 80 Plate 11.