

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

Physics Division

Ref. 9120839-39

DEC 21 1992

Presented at the XXVI International Conference on High Energy Physics, Dallas, TX, August 6-12, 1992, and to be published in the Proceedings

Complementarity of Resonant and Nonresonant Strong WW Scattering at SSC and LHC

M.S. Chanowitz

August 1992

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

DISTRIBUTION STATEMENT: THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. Neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California and shall not be used for advertising or product endorsement purposes.

Lawrence Berkeley Laboratory is an equal opportunity employer.

This report has been reproduced directly from the
best available copy.

LBL--32938

DE93 004707

August, 1992

Complementarity of Resonant and Nonresonant Strong WW Scattering at SSC and LHC*

Michael S. Chanowitz

*Theoretical Physics Group
Physics Division
Lawrence Berkeley Laboratory
1 Cyclotron Road
Berkeley, California 94720*

Presented at the XXVI International Conference on High Energy Physics
August 6-12, 1992
Dallas, Texas

To be published in the proceedings.

MASTER

*This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098.

COMPLEMENTARITY OF RESONANT AND NONRESONANT STRONG WW SCATTERING AT SSC AND LHC *

Michael S. Chanowitz
Physics Division
Lawrence Berkeley Laboratory
Berkeley CA 94720

Abstract

Signals and backgrounds for strong WW scattering at the SSC and LHC are considered. Complementarity of resonant signals in the $I = 1$ WZ channel and nonresonant signals in the $I = 2$ W^+W^+ channel is illustrated using a chiral lagrangian with a $J = 1$ " ρ " resonance. Results are presented for purely leptonic final states in the $W^\pm Z$, $W^+W^+ + W^-W^-$, and ZZ channels.

INTRODUCTION

High energy physics today is in an extraordinary situation. The Standard Model (SM) is reliable but incomplete. For its completion it *predicts* 1) that a fifth force exists, 2) the mass range of the associated quanta, and 3) neither the precise mass nor the interaction strength but the relation between them. These properties are sufficient to guide the search. Like any prediction in science, this one too may fail. If so we will make an equally important discovery: a deeper theory hidden until now behind the SM, which will emerge by the same experimental program that we will follow to find the fifth force if it does exist. In this paper I assume the SM is correct. This presentation is necessarily brief; a more complete review and bibliography will appear elsewhere.¹

The Higgs mechanism is the feature of the SM that requires a fifth force and implies its general properties. The Higgs mechanism requires a new sector of quanta with dynamics

specified by an unknown Lagrangian \mathcal{L}_5 that spontaneously breaks $SU(2)_L \times U(1)_Y$, giving rise to Goldstone bosons w^+, w^-, z that become the longitudinal gauge bosons W_L^+, W_L^-, Z_L . By measuring $W_L W_L$ scattering at $E \gg M_W$, we are effectively measuring ww scattering (i.e., the equivalence theorem) and are therefore probing the dynamics of \mathcal{L}_5 .

Let M_5 be the typical mass scale of the quanta of \mathcal{L}_5 . Then the $W_L W_L$ scattering amplitudes are determined by low energy theorems,^{2,3} e.g., for the $J = 0$ partial wave

$$a_0(W_L^+ W_L^- \rightarrow Z_L Z_L) = \frac{1}{\rho} \frac{s}{16\pi v^2} \quad (1)$$

(with $v = 0.247$ TeV) in the energy domain

$$M_W^2 \ll s \ll \text{minimum}\{M_5^2, (4\pi v)^2\} \quad (2)$$

which may or may not exist in nature, depending on whether $M_5 \gg M_W$.

Partial wave unitarity requires the linear growth of $|a_0|$ to be damped before it exceeds unity at a "cutoff" scale $\Lambda_5 \leq 4\pi\sqrt{v} = 1.8$ TeV. The cutoff is enforced by the Higgs mechanism with $\Lambda_5 \simeq M_5$ where more precisely M_5

*This work was supported by the Division of High Energy Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098.

is the mass scale of the quanta of \mathcal{L}_5 that make the $SU(2)_L \times U(1)_Y$ breaking condensate that engenders M_w . If $M_5 \ll 1.8$ TeV then \mathcal{L}_5 is weak and its quanta include one or more Higgs bosons with M_5 equal to the average Higgs boson mass (weighted by contribution to v). If $M_5 \geq 1$ TeV then \mathcal{L}_5 is strong, there is strong WW scattering for $s > 1$ TeV², and rather than Higgs bosons we expect a complex spectrum of quanta. Resonance formation then occurs in attractive channels at the energy scale of unitarity saturation, $a_J(M^2) \sim O(1)$, implying $M \sim 1 - 3$ TeV.

We detect a strong \mathcal{L}_5 by observing strong WW resonances and/or strong nonresonant WW scattering. Fortunately the two approaches are complementary: if the resonances are very heavy and difficult to observe there will be large signals in nonresonant channels.

COMPLEMENTARITY

If \mathcal{L}_5 contains no light quanta $\ll 1$ TeV such as Higgs bosons or pseudo Goldstone bosons, then in the absence of strong WW resonances the leading partial wave amplitudes, $a_{IJ} = a_{00}, a_{11}, a_{20}$, will smoothly saturate unitarity. Strong scattering cross sections are then estimated by extrapolating the low energy theorems. (The index I refers to the diagonal $SU(2)_{L+R}$ subgroup that is necessarily³ a good symmetry of the Goldstone boson sector at low energy because $\rho \simeq 1$.)

Models illustrating the smooth approach to the unitarity limit include the “linear” model², the K-matrix unitarization model⁴, scaled $\pi\pi$ data in nonresonant channels^{2,4,5}, and effective Lagrangians incorporating dimension 6 operators and/or one loop corrections⁶. These models provide large signals in nonresonant channels but are conservative in that they apply when more dramatic signals from light quanta or strong resonances are absent.

It is instructive to compare the linear

model with $\pi\pi$ scattering data.⁷ The model agrees well in the $I, J = 0, 0$ channel, probably a fortuitous result of the attractive dynamics in that channel. The model underestimates $|a_{11}|$ and overestimates $|a_{20}|$, both because of the $\rho(770)$: s-channel ρ exchange enhances $|a_{11}|$ while t - and u -channel exchanges suppress $|a_{20}|$, implying a complementary relationship between the two channels.

The effects of ρ exchange can be studied using a chiral Lagrangian with chiral invariant $\rho\pi\pi$ interaction.⁸ Figure 1 shows that the model fits $\pi\pi$ data for $|a_{11}|$ and $|a_{20}|$ very well.

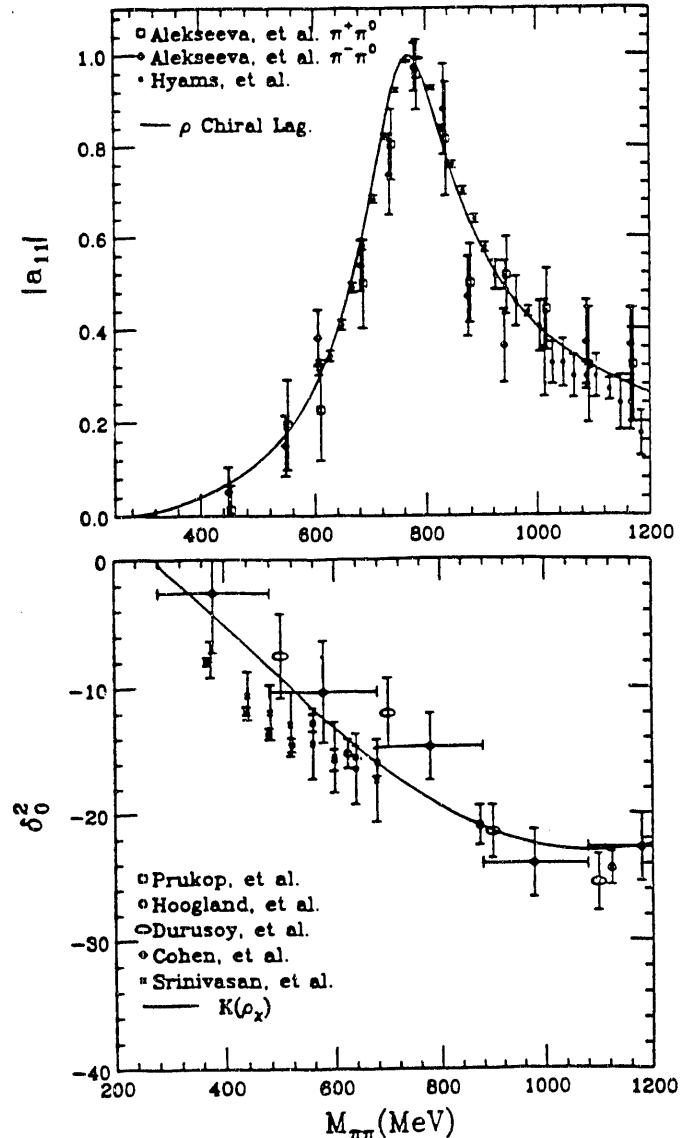


Figure 1. The ρ chiral Lagrangian model compared with $\pi\pi$ scattering data for $|a_{11}|$ and δ_{20} (W. Kilgore).

We will use the model to explore the effect of an analogous “ ρ ” resonance on $W_L W_L$ scattering.

Consider for instance minimal technicolor with one techniquark doublet. (Nonminimal models have lighter resonances which are more easily observed.) For $N_{TC} = 4$, large N scaling implies $(m_\rho, \Gamma_\rho) = (1.78, 0.33)$ TeV, while the heaviest ρ_{TC} , for $N_{TC} = 2$, has $(m_\rho, \Gamma_\rho) = (2.52, 0.92)$ TeV. Though unlikely according to popular prejudice, strong WW resonances could be even heavier. To explore

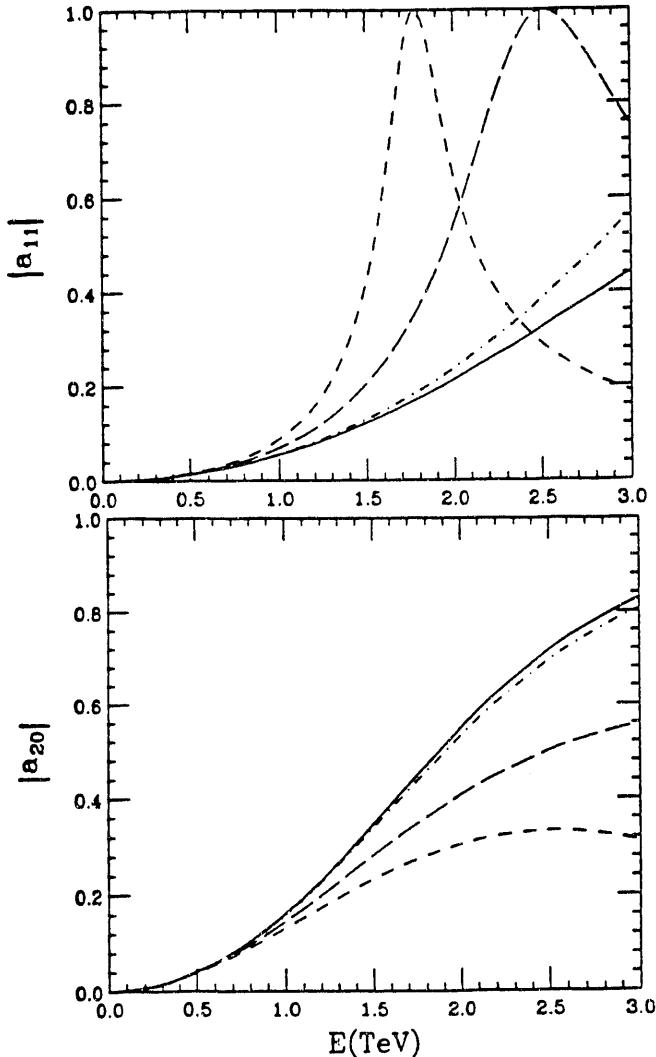


Figure 2. $|a_{11}|$ and $|a_{20}|$ for the chiral invariant ρ exchange model with $m_\rho = 1.78$ (dashes), $m_\rho = 2.52$ (long dashes) and $m_\rho = 4.0$ (dot-dash). The nonresonant K -LET model is indicated by the solid line.

that possibility I also consider a “ ρ ” of mass 4 TeV, with a width of 0.98 TeV determined assuming a “ ρ ” WW coupling equal to $f_{\rho\pi\pi}$ from hadronic physics. To ensure elastic unitarity the real parts are computed with $\Gamma_\rho = 0$ and the K -matrix prescription is then used to compute the imaginary parts.⁹ For resonance dominance this prescription is equivalent to the usual broad-resonance Breit-Wigner prescription, in which the term $m_\rho \Gamma_\rho$ in the B-W denominator is replaced by $\sqrt{s} \Gamma_\rho(\sqrt{s})$.

Figure 2 displays $|a_{11}|$ and $|a_{20}|$ for the three “ ρ ” cases and for the nonresonant K -matrix unitarization of the low energy theorem amplitudes (K-LET). The 4 TeV “ ρ ” is nearly indistinguishable from the nonresonant K-LET model below 3 TeV. The complementarity of the two channels is evident: the $\rho_{TC}(1.78)$ provides a spectacular signal in a_{11} but suppresses the signal in a_{20} , while the “ ρ ”(4.0) provides a minimal signal in a_{11} but allows a large signal to emerge in a_{20} .

The sign of the interference between the LET amplitude and resonance exchange contributions depends on the resonance quantum numbers, but it is generally true that the amplitude approaches a smooth unitarization of the LET (e.g., the K-LET) as $M_5 \rightarrow \infty$. This is the limit in which the “conservative” nonresonant models apply. A heavy “ ρ ” is a worst case example since “ ρ ” exchange interferes destructively with the a_{20} threshold amplitude so that the limiting behavior is approached from below as the “ ρ ” mass is increased. Resonances that interfere constructively in the channel would provide bigger signals.

SIGNALS

In this section I will briefly review signals and backgrounds at the SSC and LHC, in the $W^\pm Z$, $W^+W^+ + W^-W^-$, and ZZ final states. Signals are computed using the ET-EWA approximation (i.e., the combined

equivalence theorem-effective W approximation) with HMRSB structure functions evaluated at $Q^2 = M_W^2$. Only final states with both gauge bosons decaying leptonically are considered. Except for the central jet veto⁴ (CJV) considered in the W^+W^+ channel, the cuts apply only to leptonic variables.

My criterion for a significant signal is

$$\sigma^1 = S/\sqrt{B} \geq 5 \quad (3)$$

$$\sigma^1 = S/\sqrt{S+B} \geq 3, \quad (4)$$

respectively the standard deviations for the background to fluctuate up to a false signal or for the signal plus background to fluctuate down to the level of the background alone. The criterion is corrected below for the acceptance in each channel. In addition $S \geq B$ is required because of the theoretical uncertainty in the backgrounds, expected to be known to within $\leq \pm 30\%$ after "calibration" studies at the SSC and LHC.

" ρ " \rightarrow WZ

Consider " ρ " $\rightarrow WZ \rightarrow l\nu + \bar{l}l$ with $l = e, \mu$ ($BR = 0.014$). Production mechanisms are $\bar{q}q$ annihilation¹⁰ and WZ fusion³, the latter computed using the chiral Lagrangian with contributions from a_{11} and a_{20} . Elastic unitarity is imposed with the K-matrix prescription described above. The dominant background (and the only one considered here) is $\bar{q}q \rightarrow WZ$. A simple cut on the WZ invariant mass and the gauge boson rapidities ($|y_{WZ}| \leq 1.5$) suffices to demonstrate the observability of the signal. (The WZ mass is measurable only up to a twofold ambiguity; a more realistic and effective procedure is to cut on the charged lepton transverse momenta.)

The acceptance estimate¹¹ is $0.85 \times 0.95 \simeq 0.8$ so the significance criterion for the uncorrected cross sections is $\sigma^1 \geq 5.5$ and $\sigma^1 \geq 3.3$. The results are shown in figure 3 and table 1.

Table 1. Yields of ρ^\pm signal and background events per 10 fb^{-1} at the SSC and LHC. Cuts are $|y_W| < 1.5$, $|y_Z| < 1.5$, and M_{WZ} as indicated.

\sqrt{s}	M_ρ	M_{WZ}	S	B	σ^1, σ^1
40 TeV	1.78	>1.0	30	9.3	10, 4.8
	2.52	> 1.2	15	5.3	6.3, 3.3
	4.0	> 1.0	10	5.3	4.4, 2.6
16 TeV	1.78	> 1.0	5.5	3.2	3.0, 1.9
	2.52	> 1.2	1.7	1.6	1.4, 0.9
	4.0	> 1.6	0.5	0.5	0.7, 0.5

With 10 fb^{-1} at the SSC the $\rho_{TC}(1.78)$ signal far exceeds the criterion, the $\rho_{TC}(2.52)$ signal just meets it, and the " ρ "(4.0) requires 17 fb^{-1} . To just meet the criterion at the LHC, 33, 160, and 570 fb^{-1} are needed for the three cases respectively.

$W^+W^+ + W^-W^-$

The W^+W^+ channel has the largest leptonic branching ratio, $\simeq 0.05$ to e 's and/or μ 's, and no $\bar{q}q$ annihilation background. The signature is striking: two isolated, high p_T , like-sign leptons in an event with no other significant activity (jet or lepton) in the central region. The dominant backgrounds are

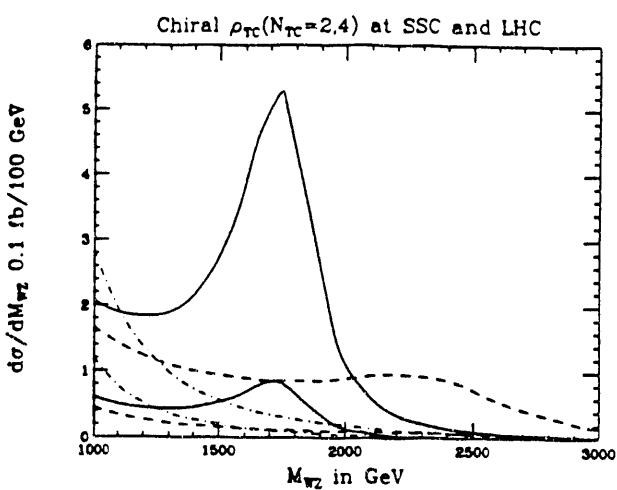


Figure 3. WZ cross section at SSC and LHC with $|y_{WZ}| < 1.5$ for $\rho(1.78)$ (solid), $\rho(2.52)$ (dashes), and $\bar{q}q$ background (dot-dash).

Table 2. Cumulative effect of cuts on linear model signal and background for W^+W^+ only at the SSC. Entries are events per 10 fb^{-1} .

Cut	Signal	Bkgd.
$ y_l < 2$	71	560
$p_{Tl} > 0.1 \text{ TeV}$	44	49
$\cos \phi_{ll} < -0.975$	32	9.1
CJV	27	2.4

the $\mathcal{O}(\alpha_W^2)^{12}$ and $\mathcal{O}(\alpha_w \alpha_S)^{13}$ amplitudes for $qq \rightarrow qqWW$. The former is essentially the W^+W^+ pair cross section from $SU(2)_L \times U(1)_Y$ gauge interactions, computed using the standard model with a light Higgs boson, e.g., $m_H \leq 0.1 \text{ TeV}$. Other backgrounds, from W^+W^- with lepton charge mismeasured and from $t\bar{t}$ production, require detector simulation. Studies presented in the SDC TDR¹¹ show that they can be controlled.

A powerful set of cuts that efficiently though indirectly exploits the longitudinal polarization of the signal has emerged from the efforts of three collaborations.^{4,5,14} The most useful variables are the lepton transverse momentum p_{Tl} and the azimuthal angle between the two leptons ϕ_{ll}^{14} . The CJV⁴ also effectively exploits the W polarization; since the CJV signal efficiency may be affected by QCD corrections I present results with and without it. The truth probably lies closer to the results with CJV, but the necessary calculations have not been done. The successive effect of these cuts is illustrated in table 2. Even without the CJV they reduce the background by $\simeq \mathcal{O}(10^2)$ while decreasing the signal by little more than a factor 2.

Assuming 85% detection efficiency for a single isolated lepton,¹¹ eqs. (3-4) applied to the uncorrected yields become $\sigma^1 > 6$ and $\sigma^1 > 3.5$. Typical results for the linear, K-LET, and scaled $\pi\pi$ data models are shown in table 3. In addition to $y_l < 2$ the cuts are $p_{Tl} > 0.2 \text{ TeV}$ and $\cos \phi_{ll} < -0.975$ for the

linear and K-LET models and $p_{Tl} > 0.1 \text{ TeV}$ and $\cos \phi_{ll} < -0.90$ for the $\pi\pi$ model. The observability criterion is exceeded by a large margin at the SSC in all cases but one — the $\pi\pi$ model without CJV for which the criterion is just satisfied. At the LHC both the signals and signal:background ratios are less favorable, and about 70 fb^{-1} would be needed just to meet the minimum criterion for σ^1 .

Results for the chiral invariant ρ exchange model are given in table 4. The cuts optimize the signal without CJV. For the SSC they are $p_{Tl} > 0.1 \text{ TeV}$ and $\cos \phi_{ll} < -0.925$ for $\rho(1.78)$ and $\rho(2.52)$, and $p_{Tl} > 0.2 \text{ TeV}$ and $\cos \phi_{ll} < -0.975$ for $\rho(4.0)$. Each case meets the minimum criterion with 10 fb^{-1} except $\rho(1.78)$ without CJV which would require 17 fb^{-1} but is readily observable with a big signal in the WZ channel (table 1). As expected from figure 2, the SSC yields for $\rho(4.0)$ (table 4) are within 5% of the K-LET yields (table 3). Comparing with the WZ yields in table 1, we see that 10 fb^{-1} suffices to detect the signal for any value of m_ρ in at least one of the two (complementary) channels.

The LHC cuts in table 4 are $p_{Tl} > 0.15 \text{ TeV}$ and $\cos \phi_{ll} < -0.95$ for all three models. The $\rho(1.78)$ signal would require 160 fb^{-1} just to meet the minimum criterion, while the $\rho(4.0)$ signal would require 55 fb^{-1} . With $\simeq 100 \text{ fb}^{-1}$ the LHC could meet the minimum criterion for each model in at least one of the WZ or W^+W^+ channels,¹ assuming the relevant measurements can really be carried out at $10^{34} \text{ cm}^{-2} \text{ sec}^{-1}$ (and with the efficiencies assumed here). In addition to instrumentation issues, the $t\bar{t}$ backgrounds that have been studied at $10^{33} \text{ cm}^{-2} \text{ sec}^{-1}$ have yet to be simulated at 10^{34} .

ZZ

Very heavy Higgs bosons and strong scattering into the ZZ final state are best detected

Table 3. Signal (S) and background (B) $W^+W^+ + W^-W^-$ events per 10 fb^{-1} at SSC and LHC for the indicated models. Cuts are specified in the text.

\sqrt{s} TeV	Model	No CJV			CJV		
		S	B	σ^1, σ^1	S	B	σ^1, σ^1
40	Linear	30	3.5	16, 5.2	26	0.8	29, 5
	K	23	3.5	12, 4.4	20	0.8	23, 4.4
	$\pi\pi$	33	26	6.5, 4.3	27	6.5	11, 4.7
16	Linear	2.5	0.5	3.5, 1.4	2.1	0.09	6.9, 1.4
	K	2.0	0.5	2.8, 1.3	1.7	0.09	5.5, 1.3
	$\pi\pi$	5.0	5.4	2.2, 1.6	3.9	1.0	3.9, 1.8

Table 4. Signal (S) and background (B) $W^+W^+ + W^-W^-$ events per 10 fb^{-1} at SSC and LHC for the ρ exchange model. Cuts are specified in the text.

\sqrt{s} TeV	M_ρ TeV	No CJV			CJV		
		S	B	σ^1, σ^1	S	B	σ^1, σ^1
40	1.78	22	23	4.6, 3.3	18	5.7	7.6, 3.7
	2.52	31	23	6.4, 4.2	25	5.7	11, 4.5
	4.0	22	3.5	11, 4.3	20	0.8	21, 4.4
16	1.78	1.8	1.5	1.5, 1.0	1.4	0.3	2.8, 1.1
	2.52	2.4	1.5	2.0, 1.2	1.9	0.3	3.7, 1.3
	4.0	3.3	1.5	2.7, 1.5	2.6	0.3	5.1, 1.5

Table 5. Linear model signals and background ZZ events per 10 fb^{-1} at SSC and LHC for various values of m_t . Cuts are $|y_t| < 2$ and $p_{Tt} > 75 \text{ GeV}$. For the SSC $M_{TZ} > 700 \text{ GeV}$ and for the LHC $M_{TZ} > 600 \text{ GeV}$.

\sqrt{s} TeV	m_t GeV	Signal		Bkgd	σ^1	σ^1
		gg	WW			
40	100	4.1	17.3	29.4	4.0	3.0
	150	10.1	17.3	30.3	5.0	3.6
	200	16.7	17.3	32.2	6.0	4.2
16	100	0.75	1.83	8.98	0.9	0.8
	150	1.72	1.83	9.11	1.2	1.0
	200	2.41	1.83	9.49	1.4	1.2

in the “neutrino” mode, $ZZ \rightarrow l^+l^- + \bar{\nu}\nu$ with $l = e$ or μ . The net branching ratio from the ZZ initial state is 0.025, 6 times larger than the $l^+l^- + l^+l^-$ final state. The signature — a high p_T Z boson recoiling against missing p_T with no other significant jet activity in the central rapidity region — is experimentally clean. Backgrounds from $Z + \text{jets}$ and from mismeasurement of the missing E_T have been carefully studied and found to be controllable at $10^{33} \text{ cm}^{-2} \text{ sec}^{-1}$ for the SDC.¹¹ For the 1 TeV Standard Model Higgs boson with $m_t = 150 \text{ GeV}$, a cut of $y_l < 2$, $p_{Tl} > 75 \text{ GeV}$ and transverse mass $M_T > 600 \text{ GeV}$ provides a 14σ signal with 96 signal events and 44 background events for 10 fb^{-1} at the SSC.

If \mathcal{L}_5 is strongly interacting and if a single symmetry breaking condensate gives mass to both the weak gauge bosons and to the top quark, then the ZZ signal has two components.¹⁵ Just as WW fusion probes the mass scale of the quanta which generate the condensate that gives mass to W and Z , gg fusion via a $\bar{t}t$ loop probes the quanta which generate the t quark mass. If only one condensate does both jobs, the gg fusion contribution enhances the strong scattering signal in the ZZ final state. This generalizes the two familiar Higgs boson production mechanisms, $gg \rightarrow H$ and $WW \rightarrow H$, to dynamical symmetry breaking with strong \mathcal{L}_5 .

Results¹⁵ are given in table 5. Backgrounds considered are $\bar{q}q$ annihilation, gg fusion, and the $\mathcal{O}(\alpha_W^2)$ amplitude for $q\bar{q} \rightarrow q\bar{q}ZZ$, the latter two computed in the Standard Model with a light ($\leq 100 \text{ GeV}$) Higgs boson. The efficiency correction is offset by the additional contribution from $ZZ \rightarrow l^+l^- + l^+l^-$ that is not included in table 5, so eqs. (3-4) apply directly. For $m_t \geq 150 \text{ GeV}$ there are significant signals at the SSC with 10 fb^{-1} thanks to the big enhancement from gg fusion.

The LHC signals with 10 fb^{-1} are not significant. To enforce $S \geq B$ the p_{Tl} cut must be

raised to 200 GeV, and 350 fb^{-1} are then required to satisfy eqs. (3-4). E.g., for $m_t = 150 \text{ GeV}$ the LHC with 350 fb^{-1} yields 28 signal and 31 background events, virtually identical to the SSC values in table 5 for 10 fb^{-1} . In addition the $Z + \text{jets}$ background requires study at such high luminosity.

With luminosity above 10^{33} at the SSC it becomes possible to probe for multiple condensates. E.g., if m_t is generated by a light Higgs boson while M_W is generated dynamically^{1,15} then only WW fusion contributes to the ZZ signal. For $m_t = 150 \text{ GeV}$ and 50 fb^{-1} the signal exceeds eqs. (3-4) ($\sigma^1 = 7$ and $\sigma^1 = 6$) and differs by 3σ from the one condensate model. We do not satisfy $S > B$ since $S/B = 0.6$, but that may suffice given the years of experience likely to precede such measurements.

It is unlikely that this measurement could be done at the LHC. To satisfy $\sigma^1 \geq 5$ for the two condensate model with $S/B = 0.6$ would require more than 1000 fb^{-1} at the LHC.¹

CONCLUSION

The fifth force predicted by the Standard Model must begin to emerge at $\leq 2 \text{ TeV}$ in WW scattering. If that prediction fails, the Standard Model will be supplanted by a deeper theory that will begin to emerge in the same energy region. With 10 fb^{-1} the SSC has capability for the full range of possible signals: strong WW scattering above 1 TeV or new quanta from \mathcal{L}_5 below 1 TeV. The strong scattering signals can occur in complementary resonant and/or nonresonant channels.

The practicability of measurements with $\geq 10^{34} \text{ cm}^{-2} \text{ sec}^{-1}$ is beyond the scope of this paper. In addition to accelerator and detector hardware questions there are backgrounds — some mentioned above — which have been studied for $10^{33} \text{ cm}^{-2} \text{ sec}^{-1}$ but require study at 10^{34} . It may take years of experience to learn to do physics in the 10^{34} environment. If

100 fb^{-1} data samples are eventually achieved and the relevant backgrounds are overcome, the LHC could meet the minimum observability criterion for the models discussed here in at least one of the W^+W^+ and WZ channels, while $\simeq 350 \text{ fb}^{-1}$ would be needed in the ZZ channel. Luminosity $\geq 10^{34}$ at the SSC would enable the detailed studies of \mathcal{L}_5 that will be needed after the initial discovery whether \mathcal{L}_5 is weak or strong. That program could extend productively for several decades into the next century.

Acknowledgements: I wish to thank Bill Kilgore for helping me to understand the ρ exchange model, for suggesting a sensible unitarization method, and for preparing the data compilations.

REFERENCES

1. A more complete presentation of these results may be found in M.S. Chanowitz, LBL-32846, 1992 (to be published in *Perspectives on Higgs Physics*, N.Y.: World Sci.)
2. M.S. Chanowitz and M.K. Gaillard, *Nucl. Phys.* B261, 379 (1985).
3. M.S. Chanowitz, M. Golden, and H.M. Georgi, *Phys. Rev.* D36, 1490 (1987); *Phys. Rev. Lett.* 57, 2344 (1986).
4. V. Barger et al., *Phys. Rev.* D42, 3052 (1990).
5. M. Berger and M.S. Chanowitz, *Phys. Lett.* 263B, 509 (1991).
6. T. Appelquist and C. Bernard, *Phys. Rev.* D22, 200 (1980); A. Longhitano, *Phys. Rev.* D22, 1166 (1980); J.F. Donoghue and C. Ramirez, *Phys. Lett.* 234B, 361 (1990); A. Dobado, M.J. Herrero, and J. Terron, *Z. Phys.* C50, 205 (1991); S. Dawson and G. Valencia, *Nucl. Phys.* B352, 27 (1991).
7. See fit *a* in figure 4 of J. Donoghue, C. Ramirez, and G. Valencia, *Phys. Rev.* D38, 2195 (1988).
8. S. Weinberg, *Phys. Rev.* 166, 1568 (1968).
9. This prescription is due to W. Kilgore.
10. J. Eichten et al., *Rev. Mod. Phys.* 56, 579 (1984).
11. Solenoidal Detector Collaboration, E.L. Berger et al., *Technical Design Report*, SDC-92-201, 1992.
12. D. Dicus and R. Vega, *Nucl. Phys.* B329, 533 (1990).
13. M.S. Chanowitz and M. Golden, *Phys. Rev. Lett.* 61, 1053 (1985); *E* 63, 466 (1989); D. Dicus and R. Vega, *Phys. Lett.* 217B, 194 (1989).
14. D. Dicus, J. Gunion, and R. Vega, *Phys. Lett.* 258B, 475 (1991); D. Dicus, J. Gunion, L. Orr, and R. Vega, UCD-91-10, 1991.
15. M. Berger and M.S. Chanowitz, *Phys. Rev. Lett.* 68, 757 (1992).

END

DATE
FILMED

21/12/93

