

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract DE-AC52-06-NA-2000

LA-UR-92-3334

DE93 003737

TITLE Neutron-Proton Incoherent Structure Experiments

AUTHORS: J. E. Konter, R. O. Nelson, M. R. Schillaci, S. A. Wender,
D. Mayo, F. P. Brady, J. Romero, D. Kroscheck, M. Blann,
P. Anthony, V. R. Brown, L. Hansen, B. Pohl, T. C. Sangster,
H. Nilsenacker, and J. A. Pineton

SUBMITTED TO International Conference on the Application of Accelerators,
to be held at the University of North Texas, Denton, TX,
November 2-5, 1991. To be published in the Proceedings.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute a recommendation, endorsement, or license for the use or sale of that product, process, or service by that name, trademark, manufacturer, or writer. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

By acceptance of this report the user agrees that the U.S. Government retains a nonexclusive, irrevocable, paid-up license in and to the copyright of the report, or any revised version of the report, to the extent of the copyright, to do and make copies of the report, for U.S. Government purposes.

The Los Alamos National Laboratory retains the authority to apply the terms of non-patented inventions under the jurisdiction of the U.S. Department of Energy.

MISTER

Los Alamos Los Alamos National Laboratory
Los Alamos, New Mexico 87545

NEUTRON-PROTON BREMSSTRAHLUNG EXPERIMENTS

J. E. KOSTER, R. O. NELSON, M. E. SCHILLACI, and S. A. WENDER
Los Alamos National Laboratory, Los Alamos, NM 87545

D. MAYO, F. P. BRADY, and J. ROMERO
University of California at Davis, Davis, CA 95616

D. KROFCHECK, M. BLANN, P. ANTHONY, V. R. BROWN, L. HANSEN, B. POHL,
and T. C. SANGSTER
Lawrence Livermore National Laboratory, Livermore, CA 94550

H. NIFENECKER and J. A. Pinson
Institut des Sciences Nucléaires, Grenoble, France

It is well known that charged particles emit bremsstrahlung radiation when they are accelerated. Classical electron bremsstrahlung occurs when a photon is emitted by an electron accelerated in the field of a nucleus. The bremsstrahlung process also occurs in the scattering of nucleons, for which it is the lowest energy inelastic process that can occur. Like electron bremsstrahlung, nucleon-nucleon bremsstrahlung also requires the exchange of a virtual particle to conserve energy and momentum. In electron bremsstrahlung a virtual photon is exchanged but with two nucleons a meson can be exchanged. Unlike electron bremsstrahlung, in nucleon-nucleon bremsstrahlung the photon can originate from the exchanged meson. This exchange contribution has been shown in calculations to be a significant fraction of bremsstrahlung events. Thus bremsstrahlung serves as a probe of exchange currents in the nucleon-nucleon interaction. Because of a lack of a free neutron target or an intense neutron beam, few measurements of neutron-proton bremsstrahlung exist, each having poor statistical accuracy and poor energy resolution. The white neutron source at the Weapons Neutron Research (WNR) target area at the Los Alamos Meson Physics Facility (LAMPF) produces neutrons with energies from below 50 to above 100 MeV. Using time-of-flight techniques and a liquid hydrogen target, we are measuring the outgoing photons of energies up to 250 MeV at gamma-ray angles of around 90° relative to the incident beam. Protons scattered at very forward angles are also detected in coincidence with the gamma rays.

1. INTRODUCTION

Nucleon-nucleon bremsstrahlung is a fundamental process that involves the emission of a gamma ray during the nucleon-nucleon strong interaction. In an inelastic collision of two nucleons, a photon is the only particle which can be produced at the lowest incident energies. The photon may originate from the accelerated proton. It can also originate from the meson exchanged between the nucleons – particularly if the meson is charged. Neutron-proton bremsstrahlung (NPB) is more probable than proton-proton bremsstrahlung (PPB). PPB in lowest order does not allow E/T radiation and the contribution from meson exchange is small. NPB is predominantly dipole, and meson exchange is calculated to contribute significantly to

Scattered protons are detected in an array of 16 phoswich detectors, 8° in the plane of the gamma-ray telescopes. The detectors are arranged in 2 rows of 4 on either side of the beam, spanning angles from 8° to 40° degrees. Each is 60 cm from the target and subtends an angle of 8°. Each phoswich detector is an $E - \Delta E$ telescope: a 3 mm thick ΔE scintillator optically coupled to a 26.7 cm thick scintillator with a photomultiplier tube mounted on the back side. The thin plastic has a fast response while the thick scintillator has a large decay constant. Short and long gates are set on the output signal to permit particle identification.

A hardware event trigger consists of simultaneous signals from a BaF_2 , a plastic scintillator, and a Vul element in a gamma ray telescope. These must occur within a resolving time of 100 nsec and within a 225 nsec gate after the beam burst. Sharp coincidences (~ 10 nsec) between elements are determined in off line analysis. The time of flight and pulse height signals from all proton and gamma ray elements are stored in memories and read into the VAX computer only after each macropulse. Deadtime is approximately 3%.

3. RESULTS

At present we are still taking data and the results presented here must be considered preliminary. Relative gamma ray production rates for neutrons of incident energies 138, 203, 274, 331, and 401 MeV are plotted as a function of gamma ray energy in figure 3. These rates are for just one of the telescopes at 90° and represent 21 hours of running, including target in and target out, and are less than 5% of the total inclusive data taken. Time independent background has been subtracted, as well as empty target data. Target out rates are in general 50% of the target-in rates. The resulting statistical errors are approximately 8% for the neutron bins and gamma-ray energy bins. Count rates have been normalized to the same number of incident neutrons per neutron bin.

These count rates can be converted to NPB cross sections using the measured neutron flux, target thickness, and detector efficiency and solid angle. We have calculated the efficiency of the gamma ray telescopes using the code *EGS4* [10] but plan to measure it for confirmation.

The rate of gamma ray production clearly rises for neutrons above the π^0 production threshold due to both π^0 decay into two photons and the high ratio of π^0 production to NPB cross section.

Measurements of differential cross sections for outgoing photons and protons in coincidence will provide more stringent tests of NPB calculations than will inclusive cross sections. These measurements will also reduce background due to π^0 production at the higher incident energies, because for a given proton energy only a certain gamma ray energy is kinematically permissible for NPB. We have only a few days of preliminary data on $\gamma - p$ coincidences. These results will be treated in a subsequent paper.

ACKNOWLEDGEMENT

This work was supported by Laboratory Directed Research and Development funds from both Los Alamos and Livermore. We thank the LAMPF cryogenics staff for support of the hydrogen target.

References

1. V. R. Brown and J. Franklin, *Physical Review C* 8 (1973) 1406.

[2] H. Nifenecker and J. A. Pinston, in "Annual Review of Nuclear and Particle Science" 40 (1990) 113.

[3] F. P. Brady and J. C. Young, *Physical Review C* 2 (1970) 1579.

[4] J. A. Edgington, V. J. Howard, L. M. Blair, B. E. Bonner, F. P. Brady, and M. W. McNaughton, *Nuclear Physics A* 218 (1974) 151.

[5] C. Dupont, C. Deom, P. Leleux, P. Lipnik, P. Macq, A. Ninane, J. Pestieau, S. W. Kitwanga, and P. Wauters, *Nuclear Physics A* 481 (1988) 124.

[6] F. Malek, H. Nifenecker, J. A. Pinston, F. Schussler, S. Drissi, and J. Julien, *Physics Letters B* 266 (1991) 255.

[7] P. W. Lisowski, C. D. Bowman, G. J. Russell, and S. A. Wender, *Nucl. Sci. and Eng.* 106 (1990) 208.

[8] M. M. Fowler et al., *Nucl. Instr. Meth.* A281 (1989) 517.

[9] V. Herrmann, J. Speth, and K. Nakayama, *Physical Review C* 43 (1991) 394.

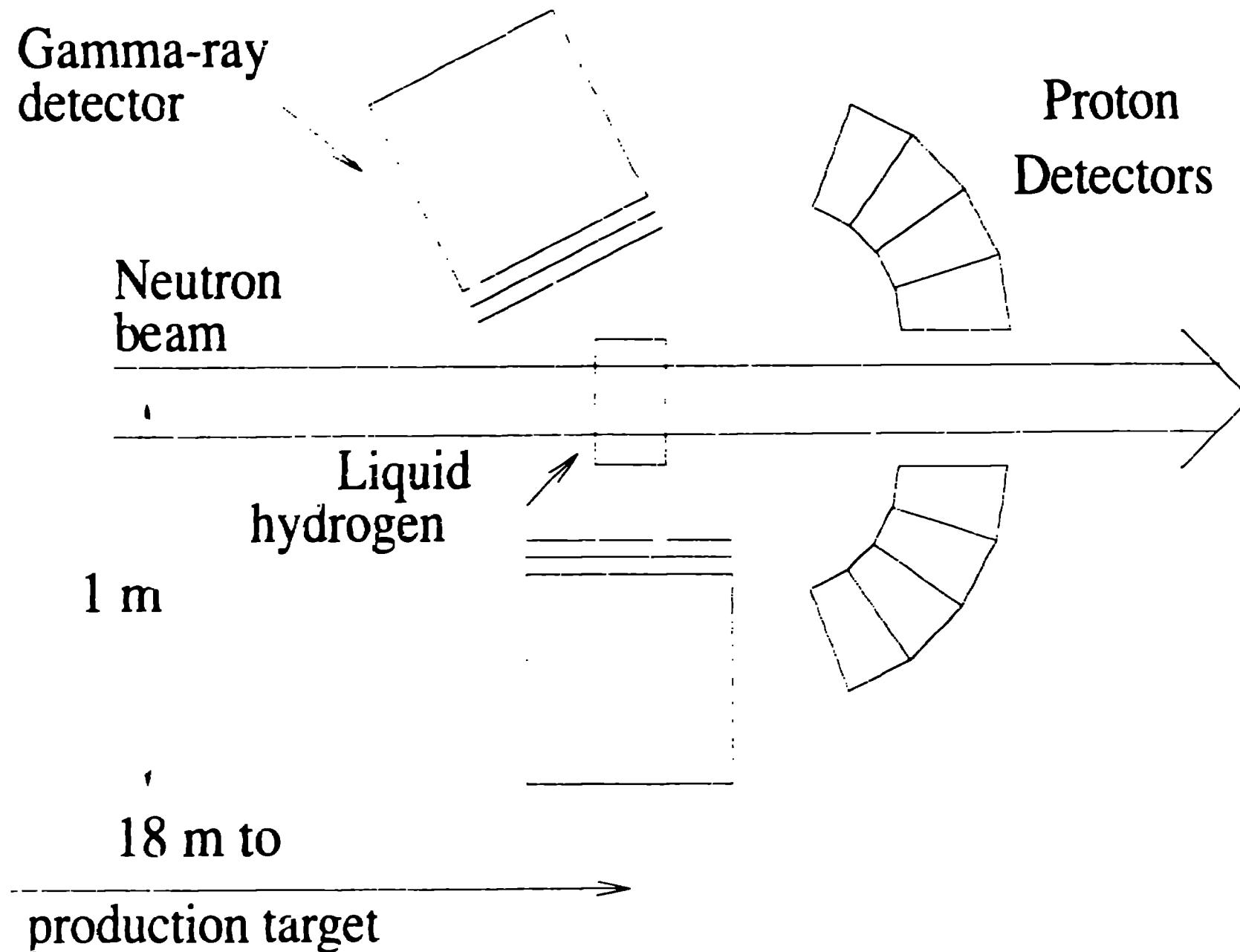

[10] W. R. Nelson, H. Hirayama, and D. W. O. Rogers, *SLAC Report* 265 (1985).

Figure 1. Neutron-proton bremsstrahlung experimental apparatus.

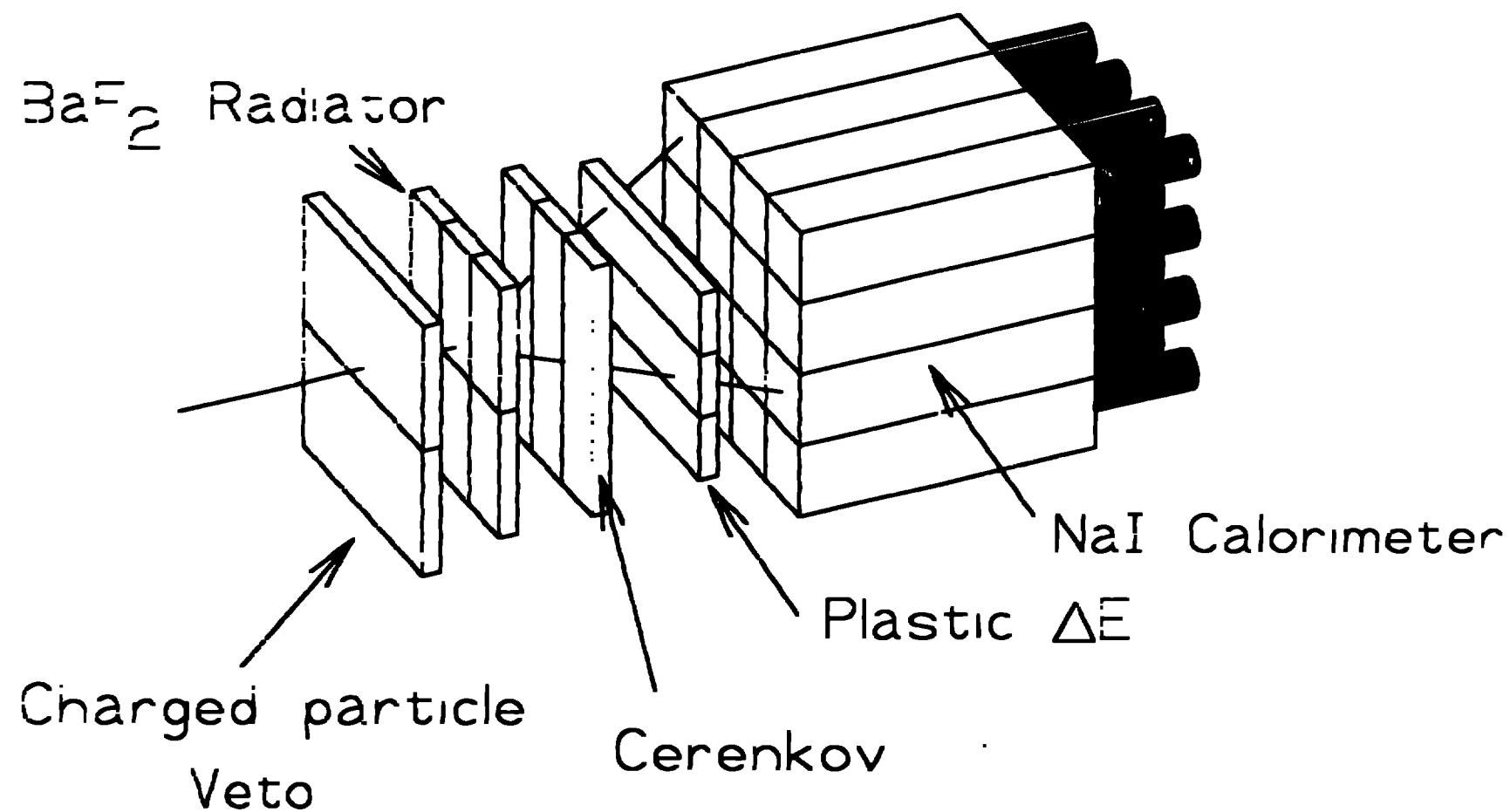
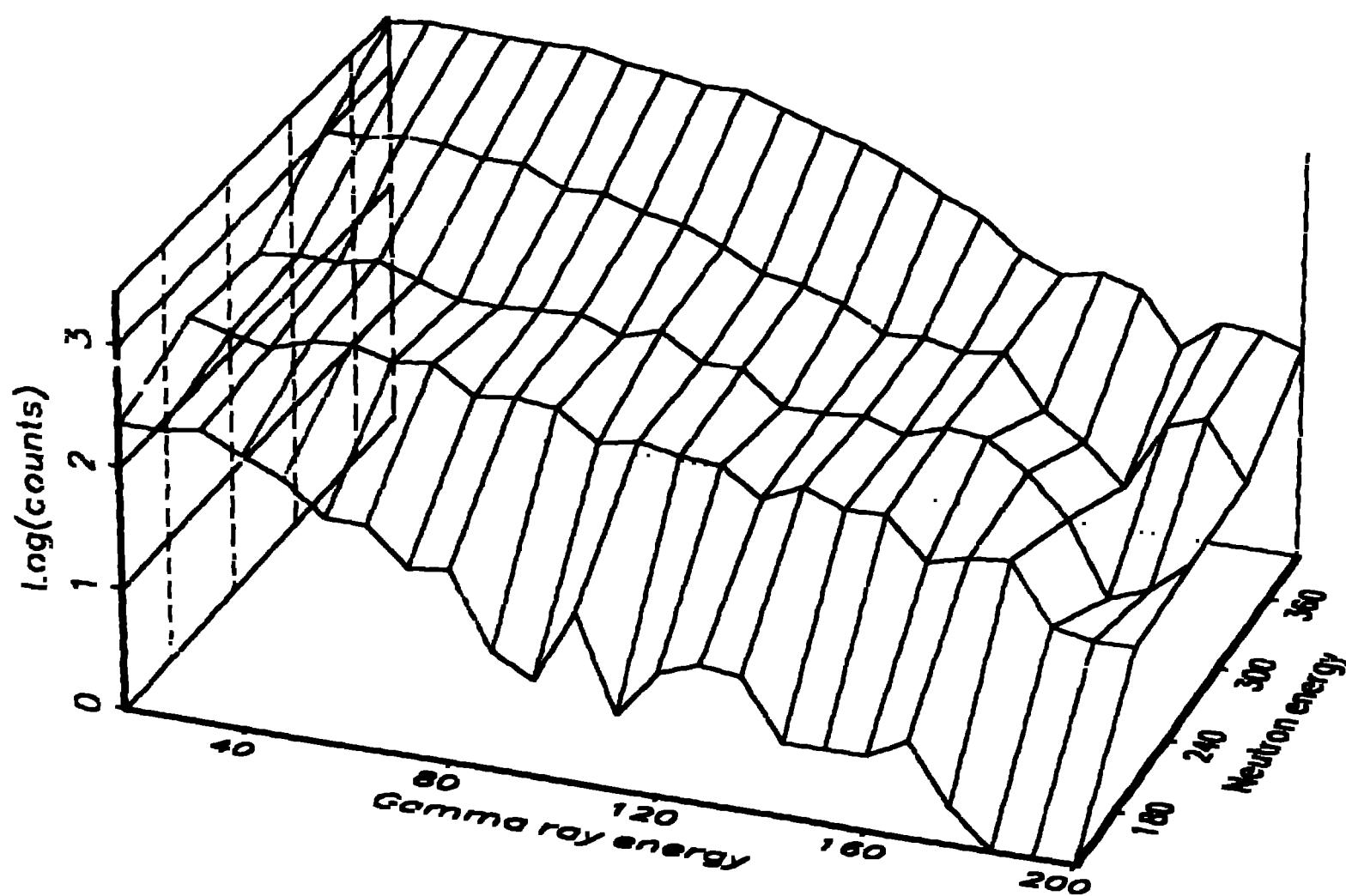

Figure 2. An NPB gamma-ray telescope.

Figure 3. Count rate of gamma rays at 90° as a function of gamma ray and incident neutron energy. Counts per neutron bin are normalized to 2.5×10^{20} incident neutrons. The logarithm of the resulting number is plotted.


NPB Experimental Apparatus

NEUTRON-PROTON BREMSSTRAHLUNG DETECTOR

Gamma ray production at 90 degrees

