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We apply Wick's three-body helicity formalism, to covariantly 

reduce the relativistic Faddeev equations that describe pion-deuteron 

elastic scattering, obtaining a set of equations that satisfy two and 

three-body unitarity and are Lorentz invariant with regard to both 

the space and the spin variables. We use all the pion-nucleon S and 

P-wave channels and the two nucleon-nucleon S-wave channels as input, 

to give a good description of the data for pion kinetic energies in the 

region from 142 MeV up to 512 MeV. 
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1. Introduction O 

I 

The non-relativistic three-body problem can be solved exactly 

through the use of Faddeev equations.') In the relativistic case, the 

analog of Faddeev equations can bd obtained, by restricting the inter- 
Y 

mediate states to contain allways three particles. 2-4) The equations 
I 

that 'one obtains however, are harder to solve since one now has to deal 

with fo'ur-component variables instead of the usual three-component - 
variables of the non-relativ$,stic theory. ~hese extra variables can be 

''\ 

eliminated in a covariant way, by putting the particles on their mass 

''shells and performing a dispersion integral in the total energy squared 
' 

of the system, as shown by Blankenvecler and sugar. 3 ,   he . Blankenbe- 
+ w o  and  

cler-Sugar prescription leads to equations which satisfyAthree-body 

unitarity, and which are amenable to numerical solution by the same 

methods used for the non-relativistic theory. One problem that remains 

however, is the reduction of the equations in terms of angular mornenturn 

states, in such a way that the resulting partial-wave equations remain 

i relativistically invariant; This is particularly important when one 

L deals with particles with spin, since a spin wave function in one :: 
reference frame, appears as a different combination of spinors in 

- 
another reference frame. 

As has been.shovm by Jacob and wick,') the simplest way to deal 

7, with relativistic particles that have spin, is by means of helicity 

amplitudes, since thehelicity quantum number is invariant under 
, 

rotations and under Lorente transformations along the direction of; 

motion of the particle. Moreover, the helicity formalism has been 

extended by Wick to the case of three  particle^,^) so that it provides 
a natural basis for the relativistic three-body problem. t 



We should po in t  out  t h a t  t h e  h e l i c i t y  expansion i s  not  t h e  only 

way to. perform a .par t ia l -wave decomposition of t h e  r e l a t i v i s t i c  Fa.ddeev 

equzt ions .  I n  p r inc ip le . ,  i f  one knows t h e  form of t h e  v e r t i c e s  and t h e  

f u l l  s t r u c t u r e  of t h e  two-body amplitudes i n  terms of Dirac V m a t r i c e s ,  

one can perform f i rs t  t h e  Dirac a l g e b r z  ob ta in ing  a  s e t  of s p i n  quantum 

. numbers, while  t h e  space v a r i a b l e s  can be p ro jec ted  out  s e p a r a t e l y  i n  

terms of o r b i t a l  angu la r  momentum quantum numbers. The s p i n  and o r S i t a l  

angu lz r  momentum quantum numbers can t h e n  be combined by means of . 

Clebsch-Gordan coef f i c i en t ' s  t o  o b t a i n  amplitudes of t o t a l  angu la r  momentum. 

Th i s  procedure w a s  u s e d  by Aaron, Amado and ~ o u n ~ ~ )  i n  t h e i r  t r ea tmen t  
. . 

of th2  coupled trPT and VVN systems us ing  t h e  pseudoscalar  coupl ing f o r  

t h e  N-nN v e r t e x .  The advantage of t h e  h e l i c i t y  formalism however, i s  

t h a t  one does no t  need t o  s p e c i f y  t h e  form of t h e  v e r t i c e s ,  but  one can 

o b t a i n  d i r e c t l y  t h e  three-body part ia l -wave equat ions i n  terms of t h e  

tvro-body part ia l -wave arn?litudes. This i s  p a r t i c u l a r l y  u s e f u l  i f  one . , 

does not  know t h e  form of t h e  v a r i o u s  v e r t i c e s ,  such a s  in the..pion-. . 

deuteron  system, where i n  a d d i t i o n  t o  t h e  N-+Vl'.I v e r t e x ,  one would have 

t o  s p e c i f y  t h e  A-WN v e r t e x ,  where A i s  any i s o b a r  with quantum numbers 

o t h e r  than  thePl1;. as w e l l  as t h e  d--+PIN v e r t e x ,  where d i s  n o t  onlyi: 

t h e  deuteron channel b u t  any nucleon-nucleon s t a t e .  A s  far  as we know, . . - 

nobody has a p g l i e d  t h e  Aaron,   ma do an& Young method t o  t h e  pion- 

deuteron  system. I n s t e a d ,  a l l  previous t r ea tmen t s  of pion-deuteron 

s c a t t e r i n g  8-14) have made. the approximation of neg lec t ing  t h e  s m a l l  

components of t h e  D i r a c . s p i n o r s  t r e a t i n g  . them as ordinary  two- 

component s p i n o r s , ? s o  t h a t  s t andard  angular  momenturn techniques can rkhen 

be used t o  o b t a i n  t h e  par t ia l -wave equat ions .  

Pion-deuteron e l a s t i c . s c a t t e r i n g  has  been s t u d i e d  cons iderably  

i n  r ecen t  y e a r s ,  s i n c e  it o f f e r s  t h e  p o s s i b i l i t y  of an exact  t r ea tmen t  

. 



1 

within the formalism of the relativistic three-body problem. The first 

serious attempt to describe this system including all the complications' 

df spin and isospin variables, was $hat of Mandelzweig et a ~ . ~ )  which 

included only the pion-nucleon P * resonant channel. Subsequent works 33 
by Rinat and ~honns~) and by Rivera and ~arcilazo:') included both the 

i 
pion-nucleon resonant channel and the S-wave nucleon-nucleon channels. 

Later studies by Myhrer and Thomas, 11) and by Rinat et al., 12) have 

investigated the effect of other nucleon-nucleon channels, as well as 

the contribution of pion absorption and' the exchznge of rho mesons. 

. Finally, in two recent works by Rinat et al. 13) and Giraud et al., 14 

the effect of the small pion-nucleon partial waves.has been included 

by.means of perturbation theory. 

In this work, we will formulate the pion-deuteron problem using 

a set of linear equations similar to those used in previous works, but 

dealing'with the spin variables in a relativistic way, by first of all 

doing the reduction from eight to six continuous variables, taking 

into account the fermion propagators for the nucleons, and secondly, 

by performing the ;partial-wave. decompositipn of the equations using 

Wick's three-body helicity states which are constructed by performing 
- 

A the Lorentz transformations of the spinor$from the three-body center 

: of mass frame. to the two-body frames. As we will show in section three, 
- - . . . . . . - * - - -. . - . - - . -. . . . 

the use of Fermion propagators for the nucleons.in the Blankenbecher- 

Sugar reduction; leads in a natural way to the inclussion of only 

positive energy s lutions of the Dirnc equation for the nucleon spinors. 

Thus, the introduction of Fermion propagators is equivalent to the 

prescription of Aaron, Amado and who took a scalar propagator 

for the nucleon bllt introduced a complete set of Dirac spinors, of.which 

they kept- only the positive energy states. . 



Our theory  d i f f e r s  from those  of previous  works, 12-14) not  only, 

i n  t h e  r e l a t i v i s t i c  t r ea tmen t  t h a t  we g ive  t o  t h e  s p i n ,  but  a l s o , i n  t h e  

t rea tment  of t h e  smal l  pion-nucleon p a r t i a l  waves, s i n c e  we do n o t  

use, p e r t u r b a t i o n  t h e o r y ,  but  inc lude  a l l  t h e  pion-nucleon channels 

e x a c t l y .  while t h e  use of p e r t u r b a t i o n  theory  may be j u s t i f i e d  i n  t h e  

resonancz reg ion  where t h e  pion-nucleon P channel i s  dominant, such 33 
an  approach can no t  be expected t o  work a t  ene rg ies  f z r  from t h s  3 , 3  

resonance such as t h e  measurements of t h e  V i r g i n i a  group, 15) which 

cover  t h e  energy r e g i o n  from 230 t o  512 MeV. 

We do n o t  inc lude  i n  our  c a l c u l a t i o n s  t h e  e f f e c t  o f . t r u e  p ion  

' absorp t ion ,  s i n c e  t h i s  r e q u i r e s  a theory  of t h e  coupled NX and -rrXN 

systems t h a t  has  become a v a i l a b l e  u n t i l  ve ry  r e c e n t l y  wi th  t h e  deve- 

lopement of t h e  Avishai-Mizzutani equa t ions ,  which have been 

shown r i g o r o u s l y  t o  s a t i s f y  two and three-body u n i t a r i t y .  A s  has  been 

poin ted  out b e f o r e ,  16) t h e  only  e x i s t i n g  c a l c u l a t i o n s  i n  which t h e  

e f f e c t  of t r u e  p ion  absorp t ion  h a s . b e e n  inc luded,  l2*l3) were based i n  

a theory  18 ,19)  f o r  which no proof e x i s t s  t h a t  three-body u n i t a r i t y  i s  

s a t i s f i e d .  

.- i .. 8.. - .. I n  sec t ion .$wo of  t h i s  paper ,  we w i l l  review b r i e f l y  t h e  threJe- 

body h e l i c i t y  formalism of Wick, and i n  s e c t i o n  t h r e e  apply it t o  :: - 

perform t h e  part ia l -wave decomposition of t h e  i n t e g r a l  equat ions  t h a t  

d e s c r i b e  pion-deutercn s c a t t e r i n g .  We w i 1 l : t h e n  use t h e s e  par t ia l -wave 

equat ions  i n  s e c t i o n  f o u r  t o  o b t a i n  our  r e s u l t s ,  and f i n a l l y  g ive  our  

conclusions i n  s e c t i o n  f i v e .  



2. The h e l i c i t y  b a s i s  s t a t e s  
8 

I ,  ' 

The three-body h e l i c i t y  s t a t e s  of ~ i c l c , ~ )  a r e  of the  form 

where pi i s  t h e  magnitude of t h e  r e l a t i v e  momentum between p a r t i c l e s  

j and k  measured i n  t h e  c e n t e r  of mass frame frame of the  p a i r ,  and qi 

is  t h e  sagni tude  of t h e  r e l a t i v e  momentum between t h e  p a i r  j , k  and 

p a r t i c l e  i measured i n  t h e  three-body c e n t e r  of mass frame. The 

d i s c r e t e  quantum numbers Mi are t h e  h e l i c i t i e s  and A k ,  and the  
j 

angular  momentum ji and i t s  2-component mi, which a r e  a l l  measured i n  

t h e  two-body c e n t e r  of mass frame, and t h e  h e l i c i t y  Xi as w e l l  as t h e  

t o t a l  angu la r  momentum J and i t s  Z-component M ,  which a r e  measured i n  

t h e  three-body c e n t e r  of mass frame. 

The s t a t e s  (1) a r e  co;istructed as superpos i t ions  of h e l i c j - t y  

s t a t e s  i n  which t h e  t h r e e  h e l i c i t i e s  and t h e  t h r e e  momenta of t h e  

p a r t i c l e s  a r e  measured i n  t h e  three-body c e n t e r  of mass frame. 2s 

. . 
M 

where si is  t h e  s p i n  of p a r t i c l e  i t  and Ei and Vi i t s  mornentum and Y 

h e l i c i t y  i n  t h e  three-body c e n t e r  of mass frame. t h e t  i s  gl+ kc+ k, = 0 .  -2 

The angles  Q' and c)' s p e c i f y  t h e  d i r e c t i o n  of p i n  t h e  two-body c e n t e r  , i 

o f  mass frzme,  while  t h e  angles  e and $ s p e c i f y  t h e  d i r e c t i o n  of q .  i n  
,. dl 



I .  

. . S 
the three-body center of mass frame. The functions d j ( p j )  and 

vj  ~j 
dsk (ak), "re the matrix elements of the unitary transformation that 

, 'kA!c 
transforms the helicity spinors from the three-bo2y center of mass 

. . 

frame to the tv~o -body frzme. 

The Jacobian transformation between the relative.momenta .. pi,qi 

and the momenta of the three particles Iclpk2,k3 + - in the three-body 

center of mass frame, is 

2 2 1 '  
with w. (k. ) = (lr . + mi ) 2 ,  and 

1  1 .  1 

2 2 : i -  . . 
ur(p.q. ) =PI. (p-q. ) + (mi +qi)' . .  

1 1  1 1 1  

From Xqs. ( , 4 )  and ( 5 ) ,  we see that+if the one-particle states 
- ' . . are normalized invariantly as - . . 

J. 

then the partial-wave states ( 2 ) ,  will be normalized as 

and will form a complete set such that 



A s t a t e  of type  i can be e x p r e s s e d i n  terms of s t a t e s  of type j ,  
D 

by means of Wick's recoupl ing  c o e f f i c i e n t s  , 6 )  which i n  our  normal iza t ion  

t ake  t h e  form 

where H i s  t h e  s t e p  f u n c t i o n ,  and t h e  arguments of t h e  r o t a t i o n  
. - --- ... 

' .  matr ices  i n  Eq.  ( 1 2 ) .  a r e  t h e  angles  of 

t h e  Wick t r i a n g l e  which a r e  c a l c u l a t e d  by performing t h e  va r ious  

Lorentz t r ans fo rmat ions  between t h e  three-body c e n t e r  of mass frame,  

t h e  c e n t e r  of '  mass frame of each p a i r ,  and t h e  r e s t  frames of t h e  t h r e e  

p a r t i c l e s ,  as shown i n  t h e  appendix of Ref. 6. 

I Using t h e  symmetry p r o p e r t i e s  of: the .  r o t a t i o n  matr ices  t h a t  .i 

appear  i n  Eq.  (12) .  it i s  easy  to show t h a t  

where we use -q. t o  i n d i c a t e  t h a t  t h e  magnetic quantum numbers a r e  t o  
1. 

be t aken  wi th  oppos i te  s i g n .  
' 

. . 
If ti i s  t h e  T-matrix of t h e  p a i r  j , k  with p a r t i c l e  i a c t i n g  a s  

s p e c t a t o r ,  t h e  m a t r i x  elements of ti between t h e  s t a t e s  ( 2 ) ,  a r e  of 

' . t h e  f o r n  



where WO is the invariant mass of the three-body system, and u0(qi) 

that of the two-body subsystem which is related to as 

A form for the two-body amplitudes which has been used extensively 
40-m 

in three-body problems, is the one-term separable in the LS representation A 
L.S. j 
I 1 i LiSi ji LiSi ji LiSi ji <2! It. 

1 . 1  (uo 1 I = gi (PI 1-5 .(wO )gi (pi 1, 

which in thz helicity basis becomes. 

(17) 

with . . 
. . .  . _ -- . . .-. _ _.__ 

Corresponding expressions analogous to X q s .  (16 1- (18), can be. written 

in the case of coupled orbital -angular momentum states. Using Eqs. 

(16)-(1.9) into ~ c l . ' ,  (lb), it is easy to prove the symmetry relation 



3. The Integral Equations for Pion-Deuteron Scattering 

:The amplitude for pion-deuteron elastic scattering, is given'by 
I 

where 4; and +,, are the initial and final wave functions of the system 

- in which the pion and the deuteron are in a .relative plane-wave state 

with the deuteron helicity beingP and p1 respectively, and Ti are the 

solutions of the Faddeev equations 

In Eqs. (21). Go is the propagator for three free particles, and vre 

have taken the pion as particle 1, and the nucleons'as particles 2 and 

3 .  Eqs. (21), can be derived in the relativistic case, starting with 

the Bethe-Salpeter equation, and sunning all the ladder diagrams in 

which only two particles interact, as shown by several authors. 2-14, ) 

These equations are of course integral equations depending on eight 

continuous variables, since the total four-momentum is conserved at 

every stage, that is, the kernel of Eqs. (21) is given by 
- .  

f 

where we have introduced fermion propagators for particles 2 and 3 

vrhich are the nucleons. In order to eliminate two of the variables of 
+*o anh 

integration in Eq. (22), while still mantainingAthree-body unitarity, 

we use the Blankenbecler-Sugar prescription in which we replace the 

denominltors of t h e  propagator3 of the three particlco by thcir dclta- 

function parts and:, perform a dispersion inteeal in the total energy 



. . .  

squared of the system, that is 

where K = ( O , G s  ). The integration over the fourth components of the 
cr 

, momenta in Eq. (23), can b e  carried out in a straightforward way, to get 

in the three-body center of mass frame 

2 zl: where w = (ki+mi)2, and .. i - 

are projection operators for positive energy spinors, which obey the 

relation 2 0 

where the sum goes only over the two positive energy solutions of the 

Dirac equation. In, the .case' when one chooses the axis of quantization 

I! along the direction of motion of the partic.les, one 'can use helicity 

spinors in Eq. (26), where the sum now goes over the two possible com- 

ponents of the helicity. Substituting Eqs. ( 24) and ( 26) into Eq. ( 21) 

and multiplying from the left and right by-positive energy spinors; we 

get the covariantly reduced Faddeev equations 



, ( g ; ) ~  , ( k ; ; ) . < ~ i ~ ; k ; l ~ ~ l  kwku~rfl)u (kj)uV;.  (1~:) = (1- 6 . ( 1 ~ i ) G  * ( k j )  
v2 

" -1-2'3 ,,; -- 
3 

11 v;. 3 3 . -  "3 

'If vre in t roduce  a dummy quantum number V1 t o  r ep resen t  t h e  h e l i c i t y  of 

t h e  pion which i s  of course z e r o ,  we can w r i t e  Eq. ( 2 7 )  as 

vrhere t h e  s t a t e s  ( g1k2k3 ;v1v2y3>, et ' c  . , are" plane-wave s t a t e s  i n  which 

t h e  t h r e e  momenta and t h e  t h r e e  h e l i c i t i e s  a r e  measured i n  t h e  t h r e e -  

body c e n t e r  of mass frame. . . 

Now t h a t  we h a v e  reduced, t h e  i n t e g r a l  equat ions from e i g h t  t o  s i x  

- s continuous v a r i a b a e s ,  t h e  next  s t e p  is  to'fpartial-wave decompose tsem 

such t h a t  Lorentz- invariance i s  mantained. There a r e  two important  .. 

e f f e c t s  t h a t  must be considered while  performing t h e  par t ia l -wave decom- 

p o s i t i o n .  The f i r s t  one, i s  t h e  f a c t  that . ,- the two-body opera to r s  ti 
appear  between plane-wave s t a t e s  which a r e  def ined i n  t h e  three-body 



center of mass frame, so that we must expand these states in terms of 

the partial-wave states of the previous section, where the quantum 

numbers of the pair j,k are measured in the center of mass frame of the 

pair, so that the mztrix eiements -of the operators ti take the simple 

form exibited by Eq. (14). The second 'effect, is due to the fact 

that the amplitudes Ti are coupled to amplitudes T with j#i, so that 
j 

after one has performed the partial-wave decomposition with the basis 

states of type i which are appropiate for -the amplitudes Ti, one has to 

reexpand in terms of the states of type j which are appropiate for the 

amplitude T and this can be achieved by means of Wick's three-body 
j ' 

recoupling .coefficients (12). 

We can expand the plane-wave states in the three-body center of 

mass frame _k 5 ;V v ) that appear in Eq. (28), in terms of the 1 2  3 1 zL13 
basis states of the previous section, by using the inverse of the 

transformation (2) , that is 

4 

where according to the conventions of the previous section,. the angles 

and.+' specify the direction of the momentum pi in the two-body 
. . .  4. 

center of mass frame, and the angles 8 and specify the direction of 

the momentum q. in the three-body center of mass frame. In order to, 
-1 

csrry out the partial-wave decomposition of Eq. (28), we first apply . . 

the Jacobian transformation (4) to change the element of integration 

from db dls dk to,dqidpi, and expand the two intermediate states by -1 -2  -3 LI - 
means of Eq. (29). Next, we use the completeness relation 



as well as the orthogonality relations of the rotation matrices 

9 

~ ~ 7 ,  d+' dcose* d0 dcose sJ 
J ji I,mi-~i (9,9,4,')645' M' (9,9, cp' 

and'finally expand the external states on the right and'left of Eq. 

(28) by means of Eq. (29), to get the partial-wave equations 

Since: Eqs (32 ) are integral equations only for the variables of the 

-- left-hand side, we .can integrate ove,r the variables of the right-hand 

" .  side introducing the initial-state wave function of the system with 
- P 

total anguler momentum J and helicity of the deuteron p, to get 
.4 

Since in this last equation we have the amplitudes T as functions :of 
j 

tho variables of type i, we now introduce a complete set of states (of 

type j given by Eq . (111, to get finally 



where (q .  p. ;qi\q jp ;wj) are Wick's three-body recoupling coefficients ' 
,1 1 

given by Eq. (12). Although'there are four variables of integration in 

Eq. (34), we n~tice~that Wick's recoupling coefficients (12) contain a 

, .  ,delta'functioh for the.conservation of total energy, while the matrix 

elements of ti given by Bq. '(14), obntain a delta function for the 

conservation of momentum of the spectator particle, so that Eqs. (34) 

are integral equations in only two continuous variables. If we assume 

in addition that the two-body amplitudes ti are of separable form as 

given by Eq. (171, then Eqs. (311.) reduce to integral equations in only 

one continuous variable. The equations can be further reduced, by taking 

advantage of the identity of the two nucleons and performing the anti- 
- .  

t... symmetrization of the equations 16,21) (including isospin), which reduces 

the number of coupled amplitudes to about one half. . 
- 

7 -  One problem that still remains with ~ 4 .  (34), is the separatidn 

- .  into states of definite parity which allows .to decouple them even further. 

In order to do this, it is easy to show using the symmetry properties 

(13) and (lg), that the solutions of Eq. (34) satisfy 

so that if we define the even and odd combinations of Ti 
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calcula t . ions  . Since our  goal  i s  t o  cover an energy region'  w h i c h : s t a r t s  .. :.. 

a t l l l .2  .MeV and.goes  up t o  512 MeV, it would be very  d i f f i c u l t  t o  f i n d  

separab le  p o t e n t i a l s  t h a t  f i t  t h e  phase s h i f t s  over such a wide' range 

of ene rg ies .  

I n  t h e  case of t h e  two S-wave nucle,on-nucleon T ma t r i ces ,  we ..took 

t h e  form f a c t o r s  i n  Eq.  ( 1 6 ) ,  a s  

wi th  t h e  energy dependence Ti(%) i n  Eq. (16)  determine& by t h e  phase 
2 .  

, . s h i f t s  and mixing parameters.  . . 

. ... ' We. used t h e  exper imenta l  

phase s h i f t s  2nd mixing parameters  of Ref. 24, and extended t h e  T ma t r i ces  

t o  t h e  unphysical  r eg ion  woJO(2m2, by s o l v i n g  t h e  Blankenbecler-Sugar 

equa t ion  us ing  separab le  p o t e n t i a l s  with t h e  form f a c t o r s  g iven  by Eq .  

(43.), and f i t t i n g  the.  s c a t t e r i n g  l e n g t h s ,  e . fec t ive  ranges and deuteron  

po le .  For  equal  mass p a r t i c l e s ,  t h e  form f a c t o r s  (43) t ransform t h e  

Blankenbecler-Sugar equa t ion  i n t o  t h e  n o n - r e l a t i v i s t i c  Lippmann- 

Schwinger equat ion  wi th  Yarnaguchi p o t e n t i a l s ,  s o  t h a t  we can use t h e  
- 

p o t e n t i a l s  t h a t  were cons t ruc ted  i n  a previous  work ;lo i n  p a r t i c u l a r ,  

L t h e  ranges a r e  '21.153- f m - I ,  and wl = 1.443 f m - l .  We should p o i n t  o u t  

t h a t  if one t r i e s  t o  use separab le  p o t e n t i a l s  t o  r ep resen t  t h e  energy 

dependence of t h e  T ma t r ix  i n  t h e  phys ica l  r eg ion  w072m2, one imme- 

d i a t e l y  runs i n t o  problems, s i n c e  t h e  experimental  phase s h i f t s  change 

., .. s i g n  a t  a k i n e t i c  energy i n  t h e  c e n t e r  of rnassof  about 150 M ~ V ,  while  
f : 

t h e  phase s h i f t s  produced 'by sepa rab le  p o t e n t i a l s  a r e  p o s i t i v e  f o r : a l l  

ene rg ies .  
J We represented  t h e  i n i t i a l  and f i n a l  s t a t e s  of t h e  system ($ , 
P 

using  .I;l~t! deu.Lerori wav.e f u n c t i o n  o f  l'doravcsilc 25 which has a D-state . 
admixture of 6.7 %; and solved t h e  i n t e g r a l  equat ions along t h e  r e a l  



/ 

a x i s  by mezns of Pade approximants,  26) f o r  a l l  p a r t i a l  waves wi th  t o t a l  

angu la r  momentum J < 6 ,  and took the. impulse approximation f o r  t h e  o t h e r  

p a r t i a l  waves up t o  J = 1 4 .  

We show i n  Fig .  1 o u r . r e s u l t s  f o r  t h e  t o t a l  and i n t e g r a t e d  e l a s t i c  

c r o s s  s e c t i o n s ,  and compare them with t h e  t o t a l  c r o s s - s e c t i o n . d a t a  pf 

Pedroni  e t  a l .  27 We s e e  t h a t  t h e  theory  and experiment a r e  i n  good 

agreement wi th  each o t h e r  except  by t h e  f a c t  t h a t  t h e y  a r e  s h i f t e d '  by 

approximately 10  MeV throughout t h e  energy reg ion  considered.  This  

ener,gy s h i f t  i s  a ve ry  puzzl ing  r e s u l t a n d  we have no explanat ion  f o r  

i t  a t  t h e  p r e s e n t  t ime.  

W e  show i n  F igs .  2-4, our  r e s u l t s  f o r  t h e  d i f f e r e n t i a l  c r o s s  s e c  - 
t i o n s  i n  t h e  ener,g r e g i o n  between 142 and 512 MeV. As. we can s e e ,  t h e  

agreement between theory  and experiment i s  very good a t  142 and 152 

MeV, a-lthough it becomes somewhat worse as we move t o  230 MeV, and t h e n  

a t  256 MeV t h e r e  is  a  d iscrepancy by a f a c t o r  of between 3  and 4 i n  t h e  

la rge-angle  r eg ion ,  a l though i n  t h e  forward d i r e c t i o n  t h e  agreement i s  
0 

s t i l l ' v e r y  good up t o  e - -70  . I n  t h e  las t  t h r e e  e n e r g i e s ,  t h e  s i t u a t i o n  

i s  somewhat b e t t e r ,  s i n c e  a s  we move t o  h i g h e r  ene rg ies  t h e  discrepancy 

a t  l a r g e  ang les  tends  t o  d i s sappear  and w e . a r e , a b l e  t o  p r e d i c t  q u i t e  

. w e l l  t h e  p o s i t i o n  of t h e  minimum-at 100 degrees.  

h Our r e s u l t s  i n  F igs .  2 and 3 f o r  the.*lowest f o u r  e n e r g i e s ,  a r e  i n  

good agreement with those  of Giraud e t  al .14)and of Rinat e t  a l .  13 ) '  

(without  a b s o r p t i o n ) ,  who use comparable i n p u t  but  t r e a t  t h e  smal l  

p a r t i a l  waves i n  p e r t u r b a t i o n  t h e o r y ,  s o  t h a t  t h i s  confirms t h e  claim 

e made i n  Refs.  13 and 14 t h a t  t h e  use of p e r t u r b a t i o n  theory  i s  adequate 

i n  t h e  resonance region .  The e f f e c t  of t h e  small  pion-nucleon p a r t i a l  

wzves as w e l l  as t h e  r e l a t i v i s t i c  t rea tment  of t h e  s p i n ,  become.more 

i n p o r t a n t  as we move t o  h igher  e n e r g i e s ,  s'uch as those  shown i n  Fig.  



4. These, results are the first full three-body calculations performed 

for these high'energies, so that it is satisfying to see that the theory 

does such a good job. 

5. Conclusions 

I w ~  have incorporated Wiclt's three-body helicity formalism, to the 
integral equations that describe pion-deuteron elastic scattering, so as 

to obtain equations which are relativistically invariant.with respect to 

both the space and the spin variables. Using the six S and P-wave pion- 

nucleon channels and the two nucleon-nucleon S-wave channels as input, 

we are able to give a good description of the data covering the energy 

region from 14,2 MeV to 512 MeV. Our results f.or the total cross sections, 

are in good agreement with.the data of Pedroni et al., 27 except that 

they are shifted by approximately 10 MeV throughout the energy range. 
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Figure  Captions 

Fig.  I. Tota l  and i n t e g r a t e d  e l a s t i c  c r o s s  s e c t i o n s  a s  a  f u n c t i o n  of  t h e  
. . 

l a b o r a t o r y  k i n e t i c  energy of t h e  pion.  Th.e experimental  p o i n t s  

a r e  from Ref. 27. 

Fig .  2 .  D i f f e r e n t i a l  c r o s s  s e c t i o n s ' i n  t h e  c e n t e r  of mass system, f.or 

pion l a b o r a t o r y  k i n e t i c  ene rg ies  of 142 and 182 MeV. The dashed 

l i n e s  a r e  t h e  r e s u l t  of t h e  f u l l  c a l c u l a t i o n  and t h e  s o l i d  l i n e s  

t h e  r e s u l t  cons ide r ing  only t h e  P channel f o r  t h e  pion-nucleon 
33 

i n t e r a c t i o n .  The experimental  d a t a  a r e  from Iiefs. 28 and 29. 

Fig.  3. D i f f e r e n t i a l  c r o s s  s e c t i o n s  i n  t h e  c e n t e r  of mass system, f o r  

pion l a b o r a t o r y  k i n e t i c  ene rg ies  of 230 and 256 MeV. The dashed 

l i n e s  a r e  t h e  r e s u l t  o f ' t h e  f u l l  c a l c u l z t i o n  and t h e  s o l i d  l i n e s  

t h e  r e s u l t  cons ide r ing  only t h e  P channel f o r  t h e  pion-nucleon 
33. 

i n t e r a c t i o n .  The exper imsnta l  d a t a  a r e  from Refs. 15 and 30. 

F i z .  L:. ~ i f f e r e n t i a l  c r o s s  s e c t i o n s  i n . t h e  c e n t e r  of mass system, f o r  

pion l a b o r a t o r y  k i n e t i c  ene rg ies  of 323, 417 and 512 MeV. The 

dashed l i n e s  a r e  t h e  r e s u l t  of t h e  f u l l  c a l c u l a t i o n  and t h e  s o l i d  

l i n e s  t h e  r e s u l t  cons ide r ing  only t h e  P channel f o r  t h e  pion- 
33 

' nucleon i n t e r a c t i o n .  The experimerlkal d a t a  a r e  from.Ref.  15: 
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