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We apply Wick's three-body helicity formalism, to covariantly
reduce the-relativistic Faddeev equations that describe pion-deuteron
elastic scattering, obtaining a set of equations that satisfy two and
three-body unitarity and are Lorentz invariant with regard to both
the space and the spin variables. We use all the pion-nucleon S and
P-wave channels and the two nucleon-nucleon S-wave channels as input,

to give a good description of the data for pion kinetic energies in the

region from 142 MeV up to 512 MeV.
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. 1. Introduction °

!

The non-relativistic three-body problem can be solved exactly
through the use of Faddeev equations.l) In the relativistic case, the
'analog of Faddeev equations can be obtained, by restricting the inter-

L s

medi%te states to contain allways three particles.z-u) The equatiqns
thet?one obtains however, are harder to solve since one now has to deal-
with fdﬁr-component variables instead of fhe usual three;coﬁponegt

| variables of the(non-relativ%stic theory. These extra variables can be

Aeliminated in a covariant way, by putting the particles on their mass

. shells and performing a dispersion integral in the total energy squared
| " of the system, as shown by Blankenﬁeclef and Sugar.B) The' Blankenbe-
cler-Sugar prescrlptlon leads to equations which satls;QX}h;eg-body
unitarity, and which are amenable to numerical solution by the same
methods used for the non-relativistic theory. One problem that remains
however, is the reduction of the equafions in terms of angular momentum
states, in such a way that the resulting partial-wave equations remain
relativistically invariant. This is particularly.important when one
deals with particles'with spin, since a spin wave function in one

reference frame, appears as a different combination of spinors .in -

another reference frame. L _

As has been -shown by Jacob and W1ck,5) the simplest way to deal
with relativistic particles that have spin, is by means of helicity
amplitudes, since the helicity quantum number is invariant under
rotations and under Lorentz transformatioﬁs along the direction of':
motion of the particle. Moreover, the helicity formalism has been

6)

extended by Wick to the case of three particles, so that it provides

a natural basis for the relativistic three-body problem. ‘



=3 -

We should point out that the helicity eipansion is not the only
way to perform a partial-wave decompositibn of the reiativistic Faddeev
'equations. In principle, if one knows the form of‘the vértices and the
full structure of the two-body amplitudes in terms of Dirac ¥ matrices,
one can perform first the Dirac algébfa obtaining a set of spin quantum
numbers, while the space variables can be projected ouf separately in
terms of orbital angular momentum quantum numbers. The spin and orbital
angular momentum quantum numbers can then be combined by means of |
Clebsch-Gordan coefficients to obtain amplitudes of total anguiar momentum.

7)

This procedure was uséd_by Aaron, Amado and Young in their treatment
of the coupled =N and wxN systemé using the pseudoscalar COupiiﬁg fof
the N-»uN vertéx. Thé édvantage of the helicity formalism however, is
that one does not need to specify the form of the vertices; but one can
obtain directly thé fhree-body partial-wave'equations in terms of the
two-Yody partial-wave amplitudes. This is particulérly useful if one
does nbt‘know the form of the various vertices, such as in the pion-. -~

" deuteron systemn, Where in addition to the N-—»%N vertéx, one would have
to specify the A;F“N vertex, where 4 is any isobar with gquantum numbers
other than the,Pllf as wéll as the d—»NN vertex, where d is nof-onlyc
the deuteron channéi but any huclgpn-nucleon state. As far as we know,
nobody has apﬁlied the Aaron, Amado'ané~Young method to the pion-
‘deuteron system. Instead, all prévious treatments of pion-deuteron
scattering8'14> have made the approximation of neglecting the small
components of the Dirac. spinors treafing .~ them as ordinary two-
comﬁonent sbinors,lso that standard angular momentum techniques can rthen
bé_used to obtain the partial-wave equations. |

Pion-deuteron elastic scattering has been studied considerably

in recent years, since it offers the possibility of an exact treatment

-




within the formalism of the relativistic three-body problem. The first
seﬁious attempt to describe this system including all the complications
of spin and isospin variables, was that of Mandelzweig et a1.8) which

included only the pion-nucleon P33 resonant channel. Subsequent works

by Rinat and Thomas?) and by Rivera and Garcilazo}o) included both the
S :
pioninucleon resonant channel and the S-wave nucleon-nucleon channels.

11) and by Rinat et al.,lz) have

Later studies by Myhrer and Thomas,
inveSfigated the effect of other nucleon-nucleon channels, as well as
the contribution of pion absorption and the exchange of rho mesons.

. Finally,Ain'tWO recent works by Rinat et a1.13) 14)

and Giraud et al.,
the effect of the small pion-nucleon partial waves has been included
by means of.perturbation theory.

In this work, we will formulate the pion-deuteron problem using
.a set of linear equations similar to those used in previous works, but
" dealing with the spin variables in a relativistic way,‘by first of all
doing the reduction from eight to six continuous variables, taking
into account the fermion propagators for the nucleons, and secondly, .
- by performing the;paftial-wave.decomposition of the equations using
Wick's three-~body he11c1ty states which are constructed by performlng

the Lorentz transformations of the splnorsAfrom the three-body center

" of mass frame to the two-body frames. As we will show 1n section three.

the ‘use of Fermion propagators for the nucleons in the Blankcnbecler-
Sugar reduction, leads in a natural way to the inclussion of only
positive energy solutlons of the Dirac quatlon for the nucleon spinors.
| Thus, the introduction of Fermion propagators is equivalent to the
prescription of Aaroﬁ, Amado and Young,7) who took a scalar propagator
for the nucleon but introduced a complete set of Dirac spinors, of which

they. kept only the p031t1ve energy states
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~ Our theory differs from those of previous works,lz‘lu)

not only
iﬁ the relativistic treatment that we give to the spin, but also in the
treafment of the small pion-nucleon parfial waves, since we do not
use perturbation theory, but include.all the pion-nucleon channels
exactly. While the use of perturbétion theory may be juétified in the
resonance region where the pion-nucleon P33 channel is dominant, such
an approach can not be éxpected to work at energies far from the 3,3
resonance such as the measuréments of the Virginia group,l5) which
cover the energy region from 230 to 512 MeV.

'We do not include in our calculations the effect of true pion
’ absbfption, since this requires a theory of the coupled NN and #NN
systems that has become available until very recently with the deve--

16,17) which have béen

lopement of the Avishai-MiTZzutani equations,
shown rigorously to satisfy two and three-body unitarity. As has been
pointed out before,lé) the only existing calculations in which the

12,13)

effect of true pion absorption has been included, were based in

18,19) for which no prbof exists that three-body unitarity is

a theory
satisfied. '

In section two of this paper, we will review briefly the three-
body helicity formalism of Wick, and in section three apply it to ::
perform the partial-wave decomposition of.%he integral equations that

describe pion-deuteroh scattering. We will then use these partial-wave

equatibns in section four to obtain our results, and finally give our

conclusions in section five.

L o i B e SN YTy



2. The helicity basis states;

6)

The three—body'helicity states of Wick, are of the form

\a3Py 5> = |ay 05 sTMIimixg A S5 i=1,2,3, ()

where p. is the magnitude of the relative momentum between particles
h| an& k measured in the center of mass frame frame qf the pair, and a3
'i5 the magnitude of the relative momentum between the paif J.k and
particle 1 measuréd in the three-body center of.mass frame. The
discrete quantum numbers *; are the helicities kj and Xk’ and the
’ angular momentum ji and its'Z-gomponent ms which afe.all measured in
| the twp—body center of mass frame, and the helicity Xi as well as the
total angular momentum J and its Z-component M, which are measured in
thé three-body center of mass frame. |
The states (1) are constructed as superpositions of helicity
states in which the .three helicities and the three momenta of the

particles are measured in the three-body center of mass frame, as
- : *

: . ' J
|a; Py s IMI; m1>‘1>‘3)‘k> "l M. l"l‘usk fdcose' d¢' dcose d¢ ,5,1 My =N (‘b ©,%')

dei’kJ_xk@) v g\, xl (p )vd"kkk(ek)
L .
X Vg kol Vi v V5> - G
= ?J+l)‘ ' | o C(3)
vhere s; is the spln of particle i, and k ks and Vi its hom°nfum and
helicity in the threo—body center of mass frame, that is kl+ k2 §3=.O.

The angles &' and ¢' specify the direction of P; in the two-body center

~

of mass frame, while the angles ® and $ specify the direction of q3 in
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the threeQbody center of mass-fréme The functlons d J (@ ) and

S J

dvk) (?k), are the matrix elements of the unltary transformatlon that
1 1{

‘trunoforms the helicity svpinors from the three-bocy center of mass
frame to the two ~body frame. \

The Jacobian transformation 5etween the relative momeénta pl,gl
and the momenta of the three particles 51,52,53 in the three-body

center of mass frame, is

ak.  ak dig, |
2 -2 , = . .q. . <, L
Za k) 2, (y )2w3(k;5’3( kj+ Ko+ kq) = J;(pja5) dg;d.?l' (4)

1
2

"with uﬁ(ki)_:.uc ¥ my 22, angd

‘ ‘ “ip;) | (5)
I3(p3e3) = B, Tplq Joos (a3 Yo 5 (P Joy (pg) 7

w(pi):(m§+b )2+ (m + D} )% . | (6)
Wy (pya;)= [f(pinqir , - (7)
W(psa;) =" (pyaz) + (m;{)*q?)%ﬂ - (8

From Egs. (4 ) and ( 5), we see thatrlf the one-partlcle states

are normallzed 1nvar1antly as -
A s> = 2w () 8(xY - 508 0 (9)

then the partial-wave states (2), will be riormalized as

[ Y] . -1 1 . . ) =
£aiPii%i|aypyimgd = T3 (Piqi)‘qzx(,qi - qi)—""é'}l)‘ 8} - Piléa, + (10)
) . i 3 i o

and will form a cqmplete set such that

1_=Zgadopdp J(pQ>lClp-°<><qp “| - | (11)



A'staté of type 1 can be expressed in terms of states of type j,
by means of Wick's recoupling coefficients,é) which in our normalization

take the form

(quJ o('\al* o<l>_ 8 811 I‘/’S[ (p (1 ) - W(plol)] H(l - cos x )

. | | 8V’l(biqi)w(pj)w(pi) . 1
! | X Aqu'jpiqi [(ZJJ.+ l)(?gi+ 1)]
PSS IS D SN .
‘x(>33kkd3..<->dl °)
| mys MM S 1'* )‘k(
J R
x dma"‘ﬁ'm oY (x)dx. (f’k)dk AJ(f? )d '>~1( -B;).(12)

where H is the step function, and the arguments of the rotation
- R matrices in Eq. (12), are the angles of
fhe Wick triangle which are calculated by performing the various
Lorentz'transformatibns between the three-body center of mass frame,
the center of mass frame of each pair, and the rest frames of the three
particles, as shown inAthe'appendix of Ref. 6.

Using the symmetry properties of the rotation matrices that

appear in Eq. (12), it is easy tg show that

{aypyies|asPyix = Laypyi-glasPyi-=y | - (13)

where we use - to indicate that the magnetic quantum numbers are to

be taken with opposite sign,

if‘ti is the T-matrix of the pair j,k with particle i acting as
. spectator, the matrix elements of ti between the states (2), are of

the form .



¢aip) g |5 (Wg)|ayp; i > = §u g s | 20 (q; )L 8(a? - q,
iP ' ’ J JUMIMOG 8 Jlgmlmlghlxi 143 qi i - a3)

. : is , o .
x <p5_=xggl;)til<wo.<qi>)]_pi;xjx}g : (14)

where WO is the invariant mass of the three-body system, and w (q:)

that of the two-body éubsystem which is related to Wo as
. 1
2

| 2 2 2 2,4 |
“b(qi)='[wb + my - 2W,(mY + qi)z} . (15)

A form for the two-body amplltudes which has been used exten51vely
So<xwm
in three-body problems, is the one-term seoarablgﬂln the LS representation

L.S: js : L.S. 3. L:S. 3. L.S. 3.
. 1 11 1 1%1 1 1%1 1 171
SHEA @)od =g (p§)T; (g4 (p; ) (16)

which in the2 helicity basis becomes.

| i L.S.: LS, §,
l idi itidi i¥idi :
i xk\‘c e O)\p A >k> Z ny TP T e Dy
LiS; % J7E
(17)
with
| 3 ; b. L S - +
hLiSiJl = EEE:;E lelal ®3%°1 lJl(n.). (18)
Pi7 =275+ 1 o,AJ ;K Ajr =Ry N

Corresponding expressions analogouS'to Fos. (16)-(18), can be. written
in the case of coupled orbital angular momentum states. Using Eags.

(16)-(18) into Eq. (1), it is easy to prove the symmeiry relation

<qipi;«i|ti(wo)Iqipir§>=(qipi;-ui]ti(wb)jqipi;-qi> : (19)
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3. The Integral Equétions for Pion-Deuteron Scattering

:The amplitude for pion-deuteron elastic scattering, is given by

Tpop = < | T+ 15[ (20)

where ﬁw and ¢, are the initial aﬁd final wave functions of the system
in which the pion and the deuteron are in a relative plane-wéve state
with the deuteron helicity being‘ﬂ.andjﬂ! respectively, and T, are the
solutions of the Faddeev equations

o= (- 650t v 2 56T i,§=1,2,3. . (21)

J#1 ‘ _

"In Egs. (21), Gy is the propagator for three free particles, and we
have taken the pion as particle 1, and the nucleons‘aé particles 2 and
3. Eqs. (21), can be derived in the relativistic casé, starting with
the Bethe-Salpeter equation, and summing all the ladder diagrams in
which only two particles interact, as shown by several authors.z"u)
These equations are of course integral equations depending on eight

continuous variables, since the total four-momentum is conserved at

every stage, that is, the kernel of Egs. (21) is given by

1 L L L
t.G.T. = —————————.fg k.d k.d k “t.1k.k > (k‘*k + k -K)
1%0T; (570 2mm 14 ko 11Kk 3 5
3 .
] k
Y-k ot m ¥-k.+m S .
1 2 3 < .
k. k k. \T.. , - (22)
ki-m§+i€ kg-m2+1i kg-m§+1e 172 3\ J '

where we have introduced fermionwpropagators for particles 2 and 3
which are the nucleons. In order to eliminate two of the variables of
ihfegration in Eq. (22), while still mantaln;;gh;giee-body unitarity,
we use the Blankenbecler-Sugar prescription in which we replace the

denominatorz of the propagatofs of the three particlcs by their delta-

function parts and; perform a dispersion integtral in the total energy



-ll-
T, > umsz fﬁ G2 I/d k dtk,at ks ‘k 3> § " (et ky-K)

« 7 ad-n) g 0 n2) 1) 050 (81 prm )(x-k3+m3)

squared of the system; that is

| ><<1“1k2k3."1'j . . | (23),

where K;=(9,J§1), The integration over the foﬁrth components of the
. momenta in Eq. (23), can be carried out in a straightforward way, to get

in the three-body center of mass frame

, | 1 dk, dk, - dk.,
tiGOTj,_ hm2m3 2W (547  2u&(52) Zu:(kB) &(51+52+§3) til51§2§3>
: ' 2(w F W ) :
x g N2 ) NP sy) Qi) 0 (2w
,@J+u%+ub) -8 - e/ + J
1
where«» ..(k2 2 )é, and
(i) B . . . - )
N, (k;) =¥k, + ¥gw; +my | (25).
‘ are projection operators for positive energy spinors, which obey the
relationzo) |
/Nfl)(ki)= 2my < 49 (Ei)av.(ki) 2 o (28

where the sum goes only over the two positive energy solutions of the
Dirac equation. In_thé.casé when one chooses the axis of quanﬁization
- along the direction of motion of the particles, one can use helicity
spinors in Eq. (26), where the sum now goes over the two possible com-
ponents of the heliéity. Substituting Egs. (2&)_and (26) into Eq. (21)
-and multiplying from the left and right by positive energy spinors, we

get the covariantly reduced Faddeev equétions
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Gy (68 (5 ) Bl | T | KT U o (3006 (65) = (1-by3 )08 06T (c3)

X Lduskt ]ty |k1k§k§>u o (K5 )u .3.(}«:") * X;t— 2 s 5 dizl = dl;ii . dl(ﬁ? .
i v,V w_ (k w, (k,) .
. . 3 1 3

X § (k * ko ko) ﬁv:)(l,gé)ﬁyé(lgé')<},gil_§élﬁé|ti] kikokdu,, G )u%( 2)
. 2(&\) +w2+"‘ ))-' . )_ ( )( ( ) ( )
X u (k,)u (ks ){k-k,k,]T. k"k"k“)u . k5 )u o Kk
' (w *w +u3) - S - ig W ~2 vy 2 ~l~2~3' 1=2=37 V3 ~3

(27)

“If we introduce a dummy guantum number vy to represent the helicity of

the pion which is of course zero, we can write Eq. (27) as

1

{1}

lr\"

ﬁ.leZVB)TI]-<"1<"k3;v3v5v'3'> = (18 )Qeykaky s v v vy | B KBRS v vE V)

31VivavE)
+Z Z‘_ ]' dkl qu dk

e ek
L Vivovy | 29T 29 (k) 2 (%) § ey korles)

2 (w +w?+w3 )

x (X! k'k3.vlv_2v3]’C ]klkzk3 V1YoV (w+w+w3) -5 - ig

XLk Kok s vy Vavs| T 5 |k"k"k§'\'3\'§v§> - ~ (28)

where the states ‘515253‘V1V2>5>; ete., aré»plane-wgve states in wﬂich
the three momenta and the three helicities are measured in the three-
body center of mass frame; |

Now that we have reduced. the integral equations from eight to six
continuous variables, the next step is topartial-wave decompose them
éuch that Lorentz-invariance is mantained. There are two important .
effects that must be considered while performing the partial-wave decom-

position. The first one, is the fact that the two-body operators't;

appear between plane-w ve states which are defined in the three-body
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center of mass frame, so that we must expand these states in terms of
the partial-wéve states of the previous section, where the quantum
numbers of the pair j,k are measured in the.center of mass’frame'of the
pair, S0 thét the matrix eiements.of the 6perators ti take the simple'
form exibited by Eq. (14). The second effect, is due to the fact

that the amplitudes Ti are coupled to amplitudes Tj with j#1i, so that
after one has performed the partial-wave decomposition with the basis
states of type i which are appropiate for the amplitudes Ti’ one has to
reexpand in terms of the states of type j which are appropiate for the
: amplitqde Tj' and this can be achieved by means of Wick's three-body
recoupling coefficients (12)..

We can expand the plane-wave states in the three-body center of
mass frame |515253;vlv2y5> that appear in Eq. (28), in terms of the
basis states of the previous section, by using the inverse of the
transformation (2), that is

| kqkok 3,V1V2V3> "'IJ"IJ ISy Z 5 (b,0, ¢ )d (o)

Mg Momymg i NN
3 ;M5 JM
x §, L 9] xJ(Pa)d (?k))'Piqi=§MJimi>\iAj%k> » o (29)
n
where according to the conventions of the previous section, the angles
e' and ¢ spe01fy the direction of the momentum pi in'the two-body

center of mass frame, and the anvles © and ¢ specify the dlrectlon of

the momentum Q3 in the three-body_center of mass frame. In order tg
carry out the partial-wave decomposition of Eq. (28), we first apply
the Jacobian transfofmation (k) to change .the element of integration -
from dgld§2d§3 to‘dgidgi, and expand the two interhediate states by

means of Eq. (29)t Next, we use the completeness relation
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2§ £, o (p)dj.(e) (ekm NIGRER FINE WRT

’

. (30)
as well as the orthogonality relations of the rotation matrices
mom, | d¢' dcose! d1> dcose 7 (q> o, ¢' )g (¢,0,')
| Jl Momg =g "omj -)‘1 .
. .
ol (o )dJ o (e) = §b 6 e o
*Omg a0y miy A=A JIUOMM Of; Jidmymi (31)

and finally expand the external states on the right and left of Eq.

"(28) by means of Eq. (29), to get the partial-wave equations
<afpii=i|T; \qlpl’ 1> = (- Si1)<q1pl’“'|t 'ql*l’“"> +‘§;i2;'.[q dqlpldp

2W(p;a;)

Wz(piqi) -5 - ig

' rut . .
XJ:(pya;)4aipd st |t a ;5%

x<a3py sl Tylaypy it - | - (32)

Since-Eqs (32) are integral-equatidns only for the variables of the
left-hand side, we can integrate over the variables of the right-hand
side introducing the 1n1t1al state wave function of the system ¢ with

total anguler momentum J and he11c1ty of the deuteron S to get

{QiPp§ i 'lTl J> = (- Xh)(q iH .°<'|th> >+22 Sq dq; Py dpJ (pq )

N 2W(piqi)

L I .
x<qlpl’°‘i\til qlpl ’Nl wz(p a ) s i€
: %3/ -5 - 1€

x<qipi$°‘i\leq)/i> . . ' | (33)

Since in this last equation we have the amplitudes Tj as functions of

the variables of type i, we now introduce & complete set of states'of'

type j given by Eq. (11), to get finally
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CH .«ll |4> Y = (1-§) 5 Kalpdsed |ts M> > ‘JZ;IZZ adq, pidp, qiqu
I Sk | _

5 ‘
X P3AP;375 (P33 )9 5(p3a 5)<aip] st |t |a;ps %>

2W(p.q.)
X 11 D 1%, 10 D, 3. ..'.T.J’
wz(piqi.) s Cae SuPiiglagPyingdagpyiegl T
(34)

where <q 5Py 5% \q p o<> are Wick's three-body recoupling coeffibients'
given by Eq. (12). Although there are four variables of integration in

Eq. (34), we notice . that Wick's pecoupling coefficients (12) contain é

'délta'functioh for the conservation of total energy, while the matrix

elémenté Qf'ti given by Eq.ﬁ(lh), contain1a delta function for the
conservation'of momentum of the spectator particle, sd that Eqs. (34)
are integral equations in only two continuous variables. if we assume
in addition that the two-body amplitudes ti are of separable form as
given by Eq. (17), then Egs. (34) reduce to integral equations in only
one continuous variable. The equations can be further reduced, by taking
advantage of the identity bf the two nucleons and performing the anti-
symmetrization of the.éduationslé'ZI) (ihcluding iéospin), which reduces
the number of coupled amplitudes‘to about one half. |

. One probiem that still remains with EqQA(3u), is the separation
into states of definite parity which'allowsfto decoupie them even further.
In order to do this,.it‘is eésy to show using the'symmétry properties

(13) and (19), that the solutions. of Eq. (34) satisfy

<qipi:«i|Ti\¢fg>:<qip- LN \) | o (‘_35)

so that if we define the even and odd combinations of Ti

Cagpysgl 81005 = gl 00> T aagpisgl Tl > . (36)
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they are also solutions of Eq. (34), and we,See‘from Eq. (35) that they
obey‘the parity relation | A

<a3Pyi- ilTi(-)l¢,{> *<a;Pss IT( iy > (37)

so that only about half of the amplitudés that enter into Eq. (34) will
be coupled together, with the remaining amplitudes being given by Eq. (37).
The transition amplitude for going from a state in which the

deutoron has hellc1ty‘f-to a state in which it has helicity f" is

#=<4>I.|T2 > . 8

and from Eq. (35) we see that

r, =17 (39)

P
Since in addition the Faddeev equations (21) are time-reversal invariant,

the amplitudes (38) satisfy also

Jd _pJd , ‘
T/*/A T/“/A' ’ (4o)

so that there are only four 1ndependent plon—deuteron helicity amnlltudes

TJ TJ \/TJ

.whlch can be chosen to be TOO’ 10° 11, -1 _ -




L, Results

gAslan application of our formalism, we solved the,infegral eqﬁa-
tions (34) usingAseparable T matrices as given by Eq. (17), with fhe
pion—nucieon interaction being represented by the six S and P-wave
channels, and the nucleon-nucleoﬁ interaction by the two S-wave channels.,

'In‘the-case of the pion-nucleon T matrices, we took‘the form
factors ih Eq. (16), to depeﬁd only on the orbital angular momentum Ly,

as . ( )Ll
L:S:j:1. o :
gt Tt My = = L;=0,1, .- (41)

14 (py/eg P 1

where I. is the isospin of the pair.'The energy dependence of the T ma-
trices.?&(ub) in Eq. (16), is determined by the experimental phase
shifts, - ST . We used the CERN phase shifts and inela-
22) '

ticities. and extended these T matrices to the unphysical region

Wy < My +m,, by using the extrapolation formula

L.S.3.1. nopos.5.1.
T‘l J_Jl l(wo) = (wO ) T.l 1J,1 l(ml*mz) , - (42)

m1+m2 1

- with n=2. We checked that the results are rather insensitive to the-
extrapolation useéd.in the unphysical region, by performing some calcu-
lations with n=1 and n=3, and seeing that the differential cross

sections differed in all cases by less than half of a percent. We

1 1

choosed the ranges %; in Eq. (41), to be =, =3,5 fm™~ and *;=1.8 fm™ ",

which were obtained i;'Refs. 13 and 23 for the Syq and P33 channels
respectively, by solvinglthe‘Blankenbeclerhsugar équation with separable
potentials. Our separable T métrices of7c§ursé, do not require the use
of separable potentialé, since théy'are'constructed'directly from the-

experimental phase shifts, but we use these ranges so as to be able to

" compare our results in the resonance region with those of previous




'calculatiens. Since our goal is to cover an energy(;egiohﬁWhiehfstarts
at'iMZ‘MeV and goes up to 512 MeV, it would be véfy difficult to find
separable potentials that fit the phase shifts o&er such a‘wide range
of energies. |

In the case of the two S-wave nucleon-nucleon T matrices, we .took

the form factors in Eq. (16), as

L3S33;T5 21" 1 .
84 .(Pi) = l+(pi/m2) > Ji=0,l, (43)
: 1+ (p. /e, '

_ i3,
. . i
with the energy dependence W‘@u ) in Eq. (16) determined by the phase
,shlfts and mixing parameters. .

~ We. used the experimental

phase shifts-and mixing parameters of Ref. 24, and extended the T matrices
to the unphysical regioncuo<.2m2, by solving the Blankenbecler-Sugar
e@uation usiﬁg separable potentials with the form factors given by Eq.
(43), and fitting the scattering lengths, efective ranges and deuteron
pole. For equal mass particles, the form factors (43) transform the
Blankenbecler-Sugar equation into the non-relativistic Lippmann-
Schw1nver equatlon w1th Yamaﬁuchl potentials, so that we can use the

potentials that were constructed in a previous workl )

-1 -1

in partlcular,

the ranges are «n=al.153 fm”~ ,.and . =1.44%9 fm™~, We should point-out

1
that if one tries to use separable potentials fo represent the energy
dependenee'of the T matrix in the physical regiont»o>'2m2, one imme-

diaiely runs into problems; since the experimental phase shifts chahtm
sign at a kinetic energy in the center of mass - of about 150 MeV, wh}le

the phase shifts produced by separable potentlals are p051t1ve for:all

energies.
We represented the initial and final states of the system ¢
using the deuleron wave functlon of Horav051k 25) which has a D- state

admixture of 6.7 %#; and solved the integral equations along the real
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26)

axis by means of Padé approximants, for all partial waves with total
angular momentum J< 6, and took the impulse approximation for the other
partial waves up to J =14,

We show in Fig. 1 our results for the total and integrated elastic
cross sections, and compare them wifh the total cross-section data of
Pedroni et al.27) Vie see that tﬁe theory and experiment are in good
agreement with eéch other except by the fact that they are shifted by
approximately 10 MeV throughout the energy region considered. This
energy‘shift is a very puzzling result and we have no explanation for
it at the present time.

We show in Figs. 2-4, our results for the differential cross sec -
tions in the energy region between 142 and 512 MeV. As we can see, the.
agreement between theory and experiment is very good at 142 and 182
MeV, although it becomes somewhat Qorse as we move to 230 MeV, and then
at 256 KMeV there is a discrepancy by a factor of Between 3 and 4 in the
large-ahgle region, although in the forward direction the agreement is
still very good up to e’~70°. In the last three energies, the situation
is somewhat better, since as we move to higher energies the discrepancy
at large angles tends to dissappear and we are . able to predict quite
. well the position of the minimum_at 100 degrees.

Our results in Figs. 2 and 3 for thefﬂowest four energies, aré in

good agreement with those of Giraud et al.lu)

and of Rinat et al.lB)a
(without absorption), who use comparable input but treat the small
partial waves in perturbation theory, so that this confirms the claim
made in Refs. 13 and 14 that the use of perturbation theory is adequate
in the resonance region. The effect of the small pion-nucleon partial

waves as well as the relativistic treatment of the spin, become more

important as we move to higher energies, such as those shown in Fig.
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L, These results are the first full three-body calculations performed
for these high energies, so that it is satisfying to see that the theory

does such a good job.

5. Conclusions

EWe have incorporated Wick's three-body helicity formalism, to the
integral equations that describe pion-deuteron elastic scattering, so as
to obtain equations which are relativiétically invafiant~with respect to
both thé space and the spin.variables. Using the six S and P-wave pion-
nucleon channels and the two nucleon-nucleon S—wéve channels as input,
:we are able to give a good description of the data covering the energy
region from 142 MeV to 512 MeV. Our results for the total cross sections,
are'in good agreement with the data of Pedroni et al.,27) except that

they are shifted by approximately 10 MeV throughout the energy range.
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Figure Captions
Total and integrated elastic cross sections as a function of the

iaboratory kinetic energy of the pion. The experimental points

are from Ref. 27.

Differential cross sections in the center of mass system, for
pion laboratory kinetic energies of 142 and 182 MeV. The dashed
lines are the result of the full calculation and the so0lid lines
the result considering only the P33 channel for the pion-nucleon
interaction. The experimental data are from Refs. 28 and.29.

Differential cross sections in the center of mass system, for

.pion laboratory kinefic energies of 230 and 256 MeV. The dashed

lines are the result of the full calculation and the solid lines
the result coﬁsidering only the P33‘channel for the pion-nucleon

interaction. The experimental data are from Refs. 15 and 30.

. Differential cross sections in the center of mass system, for

pion laboratory kinetic energies of 323, 417 and 512 MeV. The

dashed lines are the result of the full calculation and the solid -

"lines the result considering only the P33 channel for the pion-

nucleon interaction. The experimental data are from Ref. 15%
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