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Abstract

A recent non-perturbative kinetic analysis of the toroidicity induced Alfvén eigen-
mode (TAE) has shown that electron parallel dynamics can strongly influence their
character and damping.! The TAE was demonstrated fo have a large damping, for -
a large range of parameters, because of a merging of the mode structure with the
kinetic Alfvén wave (KAW) within the gap region. In this non-perturbative regime,
the damping is relatively insensitive to the dissipative mechanisms because the KAW
carries the mode energy away {rom the gap region. The theory also predicted a new
mode, a kinetic TAE (KTAE), which is formed by the toroidal coupling of two KAW’s.
In the present study, we extend the analysis to the ellipticity induced Alfvén eigen-
mode (EAE). We find that the parameter which measures the kinetic character of the
EAE is significantly smaller than it is for the TAE for elongate-d plasmas like DIII-D.
Consequently, the parameter is rather small for the lower mode number EAE’s but it
becomes of order unity or larger for the higher mode numbers because the parameter
scales as the square of the mode number. It is therefore highly desirable to have an
analytic description of the transition from the perturbative to the non-perturbative

regimes. The present study presents such a theory and also examines the kinetic EAE



(KEAE) in further detail. Quite significantly, the transition to the non-perturbative

regime can begin for very small values of the kinetic parameter.
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I. Introduction

Toroidicity-induced Alfvén eigenmodes (TAE) and ellipticity-induced Alfvén eigenmodes
(EAE) are currently of great interest because they may destroy the confinement of fast

ions in a burning tokamak plasma.?!3

Their excitation depends on the difference between
the growth rate due to the fast ions and the damping rate, mainly due to electrons. Initial
theories have predicted very low intrinsic damping for TAE, and a significant fast ion drive.®*
However, experiments with beam-driven TAE®7 suggest an excitation threshold at least an
order of magnitude higher than these initial theorics predicted. More recent theoretical
studies have indicated that alternate damping mechanisms, such as continuum damping,8-!!
trapped electron effects,'? and kinetic effects,! are important. The present study focuses on
the latter, extending the non-pert.irbative kinetic analysis of the TAE to the EAE.

We find that the parameter which measures the kinetic character of the EAE is signif-
icantly smaller than it is for the TAE for elongated plasmas like DIII-D. The parameter
is rather small for the lower mode numbers but attains values of order unity or larger for
the higher mode numbers, since the parameter scales as the square of the mode number.
Consequently, one expects the lower mode number EAE’s to have a strongly magnetohydro-
dynamic (MHD) character, and to suffer only perturbative damping that depends linearly on
the dissipative mechanisms. However, while the former is true, the latter is not necessarily
the case. Quite significantly, the transition to the non-perturbative regime can begin for
very small values of the kinetic parameter. In the non-perturbative regime, the damping is
enhanced because of a merging of the mode structure with the kinetic Alfvén wave (KAW)
within the gap region. The damping is relatively insensitive to the dissipative mechanisms

because the KAW carries the mode energy away from the gap region. In addition to altering

the mode structure, kinetic effects introduce a countable infinity of new modes, formed by



the coupling between two erstwhile KAW’s. These kinetic T/EAE (KT/EAE) have eigen-
frequencies which lie just above the gap. The lowest KT/EAE may actually have a lower
damping rate than the corresponding T/EAE due to non-perturbative effects. This makes
the KT/EAE potentially more important than the T/EAE under some conditions. The

present work examines these kinetic T/EAE (KT/EAE) in further detail.

II. Basic Equations

Betti and Freidberg® have studied the EAE in ideal MHD when ellipticity can be treated as
a perturbation and the effect of toroidicity can be neglected with respect to the ellipticity. In
this limit, the flux coordinates (r’, ') are expressed as perturbations of cylindrical coordinates
(r,0),

r'"=r—£(r)cos28 , (la)

9’ =0+ f(r)sin20 . (1b)

Here, £(r) represents the elliptical distortion and f(r) is related to £(r) through the particular
choice of flux coordinates. Betti and Freidberg show that £(r) is governed by a perturbed
Grad-Shafranov equation. To a good approximation, £ = —r(X — 1)/2, where X is the
elongation of the plasma (X ~ 1.6 for DIII-D). For symmetry coordinates, it is possible to

prove that
f(r)=(§/r +d¢§/dr)/2, (2)

because the safety factor ¢ is a flux function and therefore independent of ¢'. For a general
discussion of symmetry coordinates, see e.g. Hazeltine and Meiss."® [We point out that
Betti and Freidberg incorrectly use f(r) = €/r. Despite this, their final equation, Eq. (23),
is correct because they keep only the coupling terms with the highest radial derivatives.]
The simplified gap mode equation is derived from an equation for Alfvén waves in general

geometry [e.g. Eq. (10) of Betti and Freidberg] by expressing the differential operators



in terms of (r',6’). One can see from Egs. (la) and (1b) that ellipticity couples poloidal
harmonics that differ by 2.
With electron parallel dynamics, the simplified gap mode equation may be written (drop-

ping the primes from the flux coordinates),

{ d 1 d
Kk (‘_r__mz)-“ ( d Kf) B,

dr " dr Kk \rdr &
1 d Wt d w?
=2 ~—cr——+ K, Kye—=|rE
(r dr rvf, (lr+ bt vf,)r 2 (3)

where the subscripts 1 and 2 designate quantities associated with the poloidal harmonics m,
and mg, respectively. In this equation, the poloidal electric field E(r) ~ e!mé-né-wt) the
poloidal wavenumber K = m/r, the parallel wavenumber k = (m/q — n)/R, the coupling
strength e(r) = —dé(r)/dr, while A = w?/vy — k* G = (dk*/dr)/(rK?) is proportional
to the shear and contains the effect of equilibrium current, and r measures the effect of
electron parallel dynamics (parallel electric field). It is related to the parallel conductivity
oas 7 = —iw/(opovy). We point out that all shear-dependent and 7-dependent coupling
terms have been dropped from Eq. (3) for simplicity. Unlike many other authors, we retain
the K-dependent coupling terms.

One may notice that the simplified gap mode equation for the TAE (neglecting elliptical
distortion) is very similar,! with only a minor change in the coupling term. For the TAE,
¢ in Eq. (3) is replaced by the inverse aspect ratio r/R (1.25r/R if a Shafranov shift in
the equilibrium is included) and A’} K, is replaced by —K?Z. The coupling terms for the
TAE are generated by the operator B - V| from the variation of B and R with 8 through
R = Ro(l + ccosf). For the EAE, the coupling terms are generated by V2.

Without electron inertia or coupling, Eq. (3) is singular where A(r) = 0, which defines
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the location of the Alfvén continuum. Here, E ~ ¢n(A). Coupling introduces gaps in the
continuum near the radial position where A, = A,, or equivalently k; = —k,. The continua

are defined by

[ %)
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Whereas for the TAE |k| = 1/(2¢R), for the EAE |k| = 1/(¢R). Electron inertia (and FLR),
by making system higher order, resolves the continuum and introduces the kinetic Alfvén
wave (KAW). "5 The KAW is radially propagating and is usually strongly damped.

Our parallel conductivity model includes collisionless (Landau) damping on passing elec-
trons and collisional damping on both trapped and passing electrons. We find r = k% p?/F,
where p, = ¢,/ws and F' is a complicated function whose details are given in Ref. 1. Typ-
ically, F' is near unity. For the collisionless case, the trapped particles tend to decrease
the imaginary part of /' to a small fraction of the real part, which remains nearly unity.
Collisions have their largest effect on the imaginary part of F, increasing it to a significant
fraction of the real part for typical plasma parameters.

We focus on the mode structure near a single gap and assume that the mode energy falls
off rapidly outside this region. The coupled system is then completed with the equation
formed by exchanging the subscripts 1 « 2. Following the analysis of Ref. 1, we take
Eq. (3) and its counterpart and make the same expansion in slab geometry [¢(r) = rE(r),
r=ro+ &, A = A= oqr, By = A+ ayz, where ay = —dA,/dr|, , a; = dAz/drlro], take
the Fourier transform [¢(x) = [ dpd(p)e'*], and symmetrize [y, = d1lare(p? + K2)]1/2,

br = Galaae(p? + K|V where y = (7' — a3') x (Ap — §7p* (K2 /e — K3/an)p -



K, Gia7t atan (p/K,) + K, G, a7 atan (p/ K3)]. This leads to the coupled system

d
[d_y + ih(!/)} b = —1i€y, f(y) , (5a)
d . o~ :
{l— - zh(y)} Yy = i€ f(y) (5b)
dy

where the normalized Fourier coordinate y = p/&, the normalized inverse aspect ratio & =
2ek(aq az) 72wt /v}, while the functions h(y) = A = G(y) — 7(y* + 1), and f(y) = (y* -
v y2)/[(y* + v2) (2 + y2)]'/2 Here, the normalized eigenvalue A = 3 £A/a, the normalized
“shear” parameter G/(y) = %[(A}l/(l +92/y?) + Gu/(1 + y*/y2)], and the normalized inverse
parallel conductivity 7 = % 7x%/a, where & = [a(K?/a; + K2/a2)]'?, a = (a]' + a3')"!,
(:'1 = kGq/ay, @2 = kG /aq, y1 = K /K, and y2 = K;/k. The quantities A, 7, €, va, K},
K,, (i, GGy are all evaluated at r = r, and are therefore constants. The problem is reduced
to a coupled pair of linear, first order, ordinary differential equations with the eigenvalue w
entering through A(w), 7(w), and &(w). We put 7(w) = 7(kv,s) and E(w) = E(kvy) and treat
A as the eigenvalue.

The analogous equations for the TAE [Eqgs. (11a) and (11b) of Ref. 1] read

d
[3— + m(y)] by = ~iEaf(y) (62)
Y
d . 1€
— —th(y)| Yy = — b
{dy “)] h =) (o)

where now f(y) = [(y% + y2)/(y* + y?)]"/2. Aside from the definition of ¢, the only difference
between these and Eqs. (5a) and (5b) is the form of f(y) and the way in which it enters the

problem.

In terms of the normalized variables, the eigenfrequency is given by

mymg)t/? 2
w=hvg|l +45'(———-1—-——-2—)——(A/5) , (7)
my + my
and so the damping is, to leading order in ¢,
my my)t/? S~ ;
Ry (my ma) & Im(A/E), (8)
my 4+ msy
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and the gap boundary is determined by

my -+ m,

,"a =4 9
Agap = £E (a2 (9)

ITI. Analytic Dispersion Relations

Significant simplification of Eqs. (5a) and (5b) can be made by transforming to a new coor-
dinate z = €y. Then

Fh(z) = A~ G(2), (10)
where A = A/E, G = n(Gyy + G2 y2)/2, and we have approximated 76(z) = &y,/[z% +

(Ey1)?*] = Eya/[2* + (Ey2)?]. In a similar manner, we can write

where H = 27&(y; y2)'/%. Substituting these into Eqgs. (5a) and (5b), we find

H‘ +i(A = 72%)| %1 = —ivy + 1[G (0) + Hip(0))6(2) | (12a)
[31" —HA - )} b2 = ity — i[Gua(0) + Hur (0)]6() , (12b)

where 7 = 7 /3. For the TAE problem, it is a good approximation to put H = 0, because of
the way f(z) appears in Egs. (6a) and (6b).! Consequently, Eqs. (12a) and (12b) apply to
both TAE and EAE.

We point out that Eqs. (12a) and (12b) are very similar to ones reported by M. N.
Rosenbluth, J. Candy, H.L. Berk, J.W. Van Dam, and D.M. Lindberg, poster 3C38, at
the 1992 International Sherwood Theory Conference, Santa Fe, NM, April 1992. Their
equations are reproduced with the replacements A — g¢,,, 7 — a, Y3 — Ym, V1 = Ym-1,
[G2(0) + Hy1(0)] — ', and [Gvy(0) + H1po(0)] —» —Cra-y, where the C’s represent the
“fluxes,” originally defined in Ref. 11 used in Refs. 9 and 10. Their theory can connect

multiple gaps and the (s represent asymptotic boundary conditions on the wave functions
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far away from the gap. The C’s determine how the modes at each gap interact with one
another. Since our problem is local, with the particular purpose of demonstrating the critical
role of kinetics, we do not account for such interaction. Ours is a self-contained eigenvalue
problem.

Due to symmetry, Eqs. ‘(1‘2a) and (12b) admit only solutions of the form
Ya(z) = Pi(~2) (13a)
or
ba(2) = —y(-2) (13b)
We call solutions satisfying Eq. (13a) Type | solutions and those satisfying Eq. (13b) Type 2
solutions. Such symmetry suggests the construction of the symmetric and antisymmetric
wave functions, ¥,(z) = ¥1(z) + ¥1(—2) and ¥.(z) = ¥1(z) — ¥1(~2). Equations (12a) and

(12b) may be combined, for Type 1 solutions, into

d 1 dy,
dz |1 = A+ 7122 dz

] ~ L+ A= 72%p, = —(G + H)é(2)¥,(0) . (14)

For Type 2 solutions, we obtain Eq. (14) with the replacements (A, 7,G) — (A, -1, -G)
and H unchanged.

Equation (14) may be handled in several ways. A variational analysis with the trial
function v, = e ***/? is found to reproduce the results of Ref. | [Eqs. (33), (37), and
(39)] with the replacement &G + H — 7Go. This replacement gives better agreement with
numerical solutions of Eqgs. (6a) and (6b) than the definition of Go in Ref. 1. However,
the variational results are still rather crude, and not accurate to more than a factor of two
because e=**'/2 falls off much too rapidly to capture the contributions from the tail of the
actual wave function for small 7. In this paper, we make a more careful analytical attempt to
approximately solve the eigenvalue problem. Equation (14) may be cast into an equivalent
Schrodinger equation

' -Vy =0, (15)



where V = —(1 -=A)(G+H)6(z)+ 1= (A=72*) 2 =1 /(1 = A+722)+37%22 /(1 = A+ 72%)% and
¥(2) = ¥, (1—A+7:2)"12 Type | solutions generally have —1 < Re(A) < 0. Consequently,
(G'+ H) produces a confining delta function potential at the origin with the mode evanescent
for small finite z. Small 7 causes the potential to decrease parabolically for small z, creating
a pair of turning points.

With 7 small, we can approximate V = —(1 - A)}(G+ H)é(2)+1 - (A—72%)2—1/(1 - A)

and further model this with a parabolic potential that preserves the turning point,

V= —(1=A)G+H)bz)+ 1 — A% — — B2, (16)

(1 - 4)
where 3 = 7{[1 — 7/(1 — A)]'/? = A}. The potential of Eq. (16) converts Eq. (15) into a

‘driven’ form of the standard parabolic cylinder equation'®
L. ,
v+ (1 ré— a) Y =—(1—A)G + H)s(x)27 237 4(0) , (17)

where % = 23Y2:% and a = [I — A? — 7/(1 — A)}/2B8"2. Decaying solutions for large 2*
are given by U(—a, £xe!™/%) [see Ref. 16]. The dispersion relation is obtained by integrating
Eq. (17) across the origin and substituting the appropriate forms of U(—:c,0) and U’'(—ic, 0).

We find
(-9 1-a
[(3=%) (A7

G+H)=4. (18)

Since |a| > | for 7 small, we can approximate

(3 e 1 ks 0y (19)
A= — i€ a , -
re-% " \a (10"

by using two terms of Stirling’s formula. The dispersion relation may then be written

1—p2+ T
R T TE A=A

(20)

where p = (G + H)(1 —ie”™)[1 + 1 /(4)*]/2. The exponential factor in p represents a non-

perturbative contribution to the damping caused by components of the wave function that
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propagate past the turning points toward infinity. These are KAW’s. The non-perturbative
damping may be thought of as tunnelling to the continuum, if one regards the propagating
KAW’s as a part of the MHD continuum. Real and imaginary parts of Eq. (20) are plotted
as a function of |7| in Fig. | for a particular case along with a direct numerical solution of
Egs. (6a) and (6b). Agreement is excellent up to |r] = 0.5. Quite significantly, the non-
perturbative effects begin abruptly for the rather small value |7| = 2 x 1072 for this choice
of parameters. The analytic solution is no longer valid for |7| > 0.5 because the parabolic
potential approximation breaks down. |
For r; < 7. we can further simplhfy Eq. (20) as

Tl
(=30

A; =

7(1 —Ag)] ’ (1)

— (1 = A})exp [——5372-7_—172——
where Ag = —[1 — (G + H)?/4]/{1 + ((/ + H)?/4] represents the ideal (7 = 0) eigenfrequency.
The first term in Eq. (21) represents the correct form for the perturbative damping. 4[We
point out that it is a factor of 2 larger than that given by Eq. (33) of Ref. 1. The discrepancy
is due to the fact that the Lrial function ¥, = e~"*/2 ysed in the variational calculation of
Ref. 1 is not adequateh for small 7. The correct perturbative form is recovered with the
trial function ¥, = e *¥/2] The second term in Eq. (21) represents the non- perturbative
component of the damping for small 7. Because of the way 7 enters the exponential term,
it is apparent that the non-perturbative effects can become significant for small values of 7,
especially for A2 near unity. In Fig. 1, Ag = —0.776. Equation (21) also agrees well with
numerical results. .

Type 2 solutions may be handled in a similar manner. With the replacements (A, 7,G) —

(=A, —7,—@G) we can approximate

~ ) ";_ . _ 2 T .2 bY
VE(4+AN)G-H§:=)+1-A +-——1+A+,3z : (22)

where 3 = r{[1l + 7/(1 + A)]"* + A}. Type 2 solutions generally have 0 < Re(A) < 1.

Thus, the delta function potential at the origin is non-confining, and 7 produces a confining

11



parabolic potential well for small finite z. Consequently, 7 creates these modes. Now the

alternative standard form of the parabolic cylinder equation applies,

1
v = (g +a) ¥ = (1+ A)(G — H)()27 757 /44(0) (23)
where 22 = 26'/222, o = [l — A® + 7/(1 + A)]/2B"%. Decaying solutions for large 2% are
given by U(a,+x). Integrating across the origin and substituting the appropriate forms of
U(a,0) and U’'(«,0) produces

I'(3 ) (14 4)

+3
rE+e) g

(G—H)=—4. (24)

Since Re(a) < —1 for small 7, we can approximate

e e K

&

PRI P
w|R IR

by using the reflection formula for the gamma functions and then two terms from Stirling’s

formula. The dispersion relation takes on a completely different form,

r ]1/2 TV2{1 +4€ 4+ 2 arctan [(G - H)(1 + A)Y/2/2%2)}

8= [1+1+A {A+[1+7/(1+ A))/2}/2 ’

(26)

where ¢ is a non-negative integer. The countable infinity of modes are associated with the
poles in the gamma functions for negative argument. These modes represent the kinetic EAE
(KEAE) or kinetic TAE (KTAE). As discussed in Ref. 1, they are caused by the coupling of
two propagating KAW in the gap region. For ¢ = 0 and (G — H) = 0, Eq. (26) reduces to
the dispersion relation Eq. (39) of Ref. 1, obtained by variational techniques. The damping
A; ~ 7i/y/7r. The MHD boundary condition (G — H) enters through the argument of the
arctangent and gives a correction of O(1). Real and imaginary parts of Eq. (26) are plotted
as a function of |r| in Fig. 2 for a particular case along with a direct numerical solution of
Egs. (6a) and (6b). Agreement is excellent up to |7| = 0.1. [Better agreement is obtained

for larger Arg(r).] For |r| > 0.1, the parabolic potential approximation breaks down and
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tunnelling, due to the quartic component of the potential, begins. We remark that Eq. (26)
gives only Type 2 KT/EAE. There are also Type | KT/EAE, which obey a dispersion
relation similar to Eq. (26) with ¢ = 1/2,3/2,... However, ¢ = 0 is the least damped, and

therefore the most interesting, KT/EAE.

IV. The Parameter 7

Kinetic effects on the T/EAE’s are determined by the magnitude of the parameter 7. For

the TAE, this parameter reads

85 Ps ¢ 1/2 -1
T = ('_),r'/—R)3 <_r‘—> (ml mg) (m1 + mg)F y (27)
while for the EAE, it reads
252 Ps 2 1/2 -1
T = (X — 1)3 (—r-) (ml mg) (ml + mg)F , (28)

where X represents the elongation of the plasma. Therefore, for the EAE, this parameter is
a factor of 2{r/[R(X — 1)]}? times that for the TAE. For DIII-D this facter is approximately
0.25(r/r,)° times smaller. Thus, for elongated plasmas, kinetic effects becorne important
for higher EAE mode numbers, e.g. m = 4 or 5 rather than 1 or 2, which is the case for
TAE. However, since the growth rate for the EAE is also reduced by an order of magnitude
because of the highef frequency and effective wavenumber, the lower damping is mitigated

by lower growth.

V. Conclusions

We have extended the non-perturbative kinetic analysis of the TAE to the EAE. Since
‘ellipticity’ for an elongated plasma like DIII-D is larger than the effective toroidicity, the
kinetic effects are in general weaker for EAE than they are for TAE. The parameter that

measures the kinetic character (of the EAE) is rather small for lower mode numbers, but
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1

can be of order unity or larger for higher mode numbers; the parameter scales as the square
of the mode number. While the lower mode number EAE’s therefore have a strongly MHD
character, they do not necessarily have a perturbatively small damping. This is because,
quite significantly, the transition to the non-perturbative regime can begin for fairly small
values of the kinetic parameter. In the non-perturbative regime, the damping is enhanced
because the KAW carries the mode energy away from the gap region. Naturally, the damping
in this regime is quite insensitive to the details of the dissipation mechanism. In addition to
altering the mode structure of this basically MHD mode, kinetic effects introduce a countable
infinity of new modes, formed by the coupling between two KAW'’s. These kinetic T/EAE
(KT/EAE) have eigenfrequencies which lie just above the gap. The lowest KT/EAE may
actually have a lower damping rate than the corresponding T/EAE due to non-perturbative
effects. This makes the KT/EAE potentially more important than the T/EAE under some

conditions: strong shear, high temperature, and moderate mode numbers.
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Figure Captions

1.

T/EAE: Comparison of analytic dispersion relation, Eq. (20), with numerical shooting
code results. Solid lines indicate real part and dashed lines the negative imaginary part
of (A +1) vs. |r]. The label “C” designates numerical solution of Eqgs. (6a) and (6b)
while the unlabeled curves correspond to Eq. (20). Here, & = 0.117, &, = 1.378,

-~

Go = —0.351, ¢, = 0.710, ¥ = 1.412.

KT/EAE: Comparison of analytic dispersion relation, Eq. (26), with numerical shoot-
ing code results. Solid lines indicate real part and dashed lines the negative imaginary
part of (A + 1) vs. |7]. The label “C” designates numerical solution of Egs. (6a) and
(6b) while the unlabeled curves correspond to Eq. (26). Here, & = 0.117, Gy = 1.378,
Gy = —0.351, ¢ = 0.710, ¥, = 1.412.
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