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Abstract

A recent non-perturbative kinetic analysis of the toroidicity induced Alfv4n eigen-

mode (TAE) has shown that electron parallel dynamics can strongly influence their

character and damping. 1 The TAE was demonstrated to have a large damping, for "

a large range of parameters, because of a merging of the mode structure with the

kinetic Alfv4n wave (KAW) within the gap region. In this non-perturbative regime,

the damping is relatively insensitive to the dissipative mechanisms because the KAW

carries the mode energy away from the gap region. The theory also predicted a new

mode, a kinetic TAE (KTAE), which is formed by the toroidal coupling of two KAW's.

In the present study, we extend the analysis to the ellipticity induced Alfv6n eigen-

mode (EAE). We find that the parameter which measures the kinetic character of the

EAE is significantly smaller than it is for the TAE for elongated plasmas like DfII-D.

Consequently, the parameter is rather small for the lower mode number EAE's but it

becomes of order unity or larger for the higher mode numbers because the parameter

scales as the square of the mode number. It is therefore highly desirable to have an

analytic description of the transition from the perturbative to the non-perturbative

regimes. The t)resent study l)resents such a theory and also examines the kinetic EAE
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(KEAE) in further detail. Quite significantly, the transition to the non-perturbative

regime can begin for very sin',di values of the kinetic parameter.

To appear in "Theory of Fusion Plasmas," Proceedings of the Joint Varenna-Lausanne In-
ternational Workshop, Var_:nT_a,Italy, 1992 (Editorie Compositori Societa ltaliana di Fisica,

Bologna, 1993). 65_, _,;/- _'_'t 1_'2_-.
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I. Introduction

Toroidicity-induced Alfv&l eigenmodes (TAE) and ellipticity-induced Alfven eigenmodes

(EAE) are currently of great interest because they may destroy the confinement of fast

ions in a burning tokamak plasma. a-ta Their excitation depends on the difference between

the growth rate due to the fast ions and the damping rate, mainly due to electrons. Initial

theories have predicted very low intrinsic damping for TAE, and a significant fast ion drive, aa

However, experiments with beam-driven TAE 6'r suggest an excitation threshold at least an
i

order of magnitude higher than these initial theorica predicted. More recent theoretical

studies have indicated that alternate damping mechanisms, such as continuum damping, s-ll

._ trapped electron effects, 12 and kinetic effects, 1 are important. The present study focuses on?

the latter, extending the non-perl,_rbative kinetic analysis of the TAg to the EAE.

We find that the parameter which measures the kinetic character of the gAg is signif-

icantly smMler than it is for the TAE for elongated plasmas like DIII-D. The parameter

is rather small for the lower mode numbers but attains values of order unity or larger for

the higher mode numbers, since the parameter scales as the square of the mode number.

Consequently, one expects the lower mode number EAE's to have a strongly magnetohydro-

dynamic (MHD) character, and to suffer only perturbative damping that depends linearly on

the dissipative mechanisms. However, while the former is true, the latter is not necessarily

the case. Quite significantly, the transition to the non-perturbative regime can begin for

very small values of the kinetic parameter. In the non-perturbative regime, the damping is

enhanced because of a merging of the mode structure with the kinetic Alfv@n wave (KAW)

within the gap region. The damping is relatively insensitive to the dissipative mechanisms

because the KAW carries the inode energy away from the gap region. In addition to altering

the mode structure, kinetic effects introduce a countable infinity of new modes, formed by
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the coupling between two erstwhile KAW's. These kinetic T/EAE (KT/EAE) have eigen-

frequencies which lie just above the gap. The lowest KT/EAE may actually have a lower

clamping rate than the corresponding T/EAE due to non-perturbative effects. This makes

the KT/EAE potentially' more important than the T/EAE under some conditions. The

present work examines these kinetic T/EAE (KT/EAE) in further detail.

II. Basic Equations

Betti and Freidberg s have studied the EAE in ideal MHD when ellipticity can be treated as

a perturbation and the effect of toroidicity can be neglected with respect to the ellipticity. In

this limit, the flux coordinates (r', 0') are expressed as perturbations of cylindrical coordinates

I

= - 20,

0'= 0 + f(r)sin20. (lh)

Here, _(r) represents the elliptical distortion and f(r) is related to {(r) through the particular

choice of flux coordinates. Betti and Freidberg show that {(r) is governed by a perturbed

" V ToGrad-Shafrano equation, a good approximation, _ = -r(X- 1)/2, where X is the

elongation of the plasma (_ .-_ 1.6 for DIII-D). For symmetry coordinates, it is possible to

prove that

f(r) = ({/r + d{/dr)/2 , (2)

because the safety factor q is a flux function and therefore independent of 0'. For a general

discussion of symmetry coordinates, see e.g. Hazeltine and Meiss. la [We point out that

Betti and Freidberg incorrectly use f(r) = {/r. Despite this, their final equation, Eq. (23),

is correct because they keep only the coupling terms with the highest radial derivatives.]

The simplified gap ino(le equation is derived from an equation for Alfvdn waves in general

geometry [e.g. Eq. (10) of th'tti aild Freidberg] by expressing the differential operators
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in terms of (r',O'). One can see from Eqs. (la) and (lh) that ellipticity couples poloidal

harmonics that differ by 2.

With electron parallel dynamics, the simplified gap mode equation may be written (drop-

ping the primes from the flllX coordinates),

rI£'_ dr rN_ dr r - 7"

+i(, ,. - ,.i( lr, k, ,. ,.- I,:

where the subscripts 1 and 2 designate quantities associated with the poloidal harmonics ml

and m2, respectively. In this equation, the poloidal electric field E(r) ,-., e i(mO-n4)-''t), the

poloidal wavenumber K = m/r, the parallel wavenumber k = (m/q- n)/R, the coupling

strength e(r) = --d_(r)/dr, while Z = ,_2/v2a - k 2, G = (dk_/dr)/(rK 2) is proportional

to the shear and contains the effect of equilibrium current, and r measures the effect of

electron parallel dynamics (parallel electric field). It is related to the parallel conductivity

a as r = -i,_/(cr#0 v_). We point out that all shear-dependent and r-dependent coupling

terms have been dropped from Eq. (3) for simplicity. Unlike many other authors, we retain

the K-dependent coupling terms.

One may notice that the simplified gap mode equation for the TAE (neglecting elliptical

distortion) is very sir_filar, 1 with only a minor change in the coupling term. For the TAE,

e in Eq. (3) is replaced by the inverse aspect ratio r/R (1.25r/R if a Shafranov shift in

the equilibrium is included) and Ni K2 is replaced by -K_. The coupling terms for the

TAE are generated by the operator B. V, from the variation of B and R with 0 through

R = Ro(l + e cosO). For the EAt!;, t,he coupling terms are generated by VI..

Without electron inertia or coupling, Eq. (3) is singular where z,_(r) = 0, which defines
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the location of the Alfv4n continuum. Here, E _ gn(A). Coupling introduces gaps in the

continuum near the radial position where A 1 = A2, or equivalently kl = -k2. The continua

are defined by
_2

( _1 2e-- 0 ...

_,2 _.32

= 0. (4)

0 2e J Aa •..
,2

/5A
/

..... , • • • ° . .

Whereas for the TAE Ikl = I/(2qR), for the EAE [k I = 1/(qR). Electron inertia (and FLR),

by making system higher order, resolves the contirmum and introduces the kinetic Alfven

wave (KAW). _'l'_'_Tile KAW is radially propagating and is usually strongly damped.

Our parallel conductivity model includes collisionless (Landau) damping on passing elec-

trons and collisional damping on both trapped and passing electrons. We find r = k2 p_/F,

where p_ = c_/co_i and F is a complicated function whose details are given in Ref. 1. Typ-

ically, F is near unity. For the collisionless case, the trapped particles tend to decrease

the imaginary pair of F to a small fraction of the real part, which remains nearly unity.

Collisions have their largest effect on the imaginary part of F, increasing it to a significant

fraction of the real part for typical plasma parameters.

We focus on the mode structure near a single gap and assume that the mode energy falls

off rapidly outside this region. The coupled system is then completed with the equation

formed by exchanging the subscripts 1 _ 2. Following the analysis of Ref. 1, we take

I_2(t. (3) and its counterpart and make the same expansion in slab geometry [_b(r) -- rE(r),

r = ro + x, A_ = A-- a_x, A_ = A + a2x, where a_ = -dA_/dr]_o, a2 = dA2/dr[_o], take

the Fourier transform [qS(z)= j"_,_._dp_(p)e'p*], and symmetrize [$_ = _[a_e"o(p _ + K_)] _/2,

"') 1

'_'2 = ¢i2[a2e"(P 2 + Ai)] '/_, where q = (ai-'-a_') x (2xp- _ rp3(K_/a, - I<_/a2)p-
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It'1 G,c_ -_ atan (p/K_)+ K2 G2c_ _ atan (p/K2)]. This leads to the coupled system

+ ih(y) _1 = -ig¢2 f(y) , (5a)

[dih(.q)l_,2=ig(_,,f(y).(_j , (Sb)

where the normalized Fc_urier coordinate 9 pixe, the normalized inverse aspect ratio :"-- _ ----

2e_(al c_2)-l/2co_ 2 = _ _/t, A, while the functions h(y) /_ (_(y)_ ?(y2 + 1), and f(y) = (y:

= 1 x_A/a the normalizedyl y2)/[(y 2 -t- y_)(y2 + y_)]_/'2 Here, the normalized eigenvalue _ 7 ,

"shear" parameter G(!I) = _[6t/(l + U2/y_) + (_2/(1 + 92/9_)], and the normalized inverse

1 _ " _parallel conductivity _ = ._r_c:_/a, where _c= [c_(If_/c_ + If22/c_2)]_/2 c_ = (c___ + c_2_) l

(1_ = x G_/c_, (;2 = _G.2/_._, !11= I(_/_, and y_ = I(_/_. The quantities A, r, e, Va, K_,

K_, G_, G_ are all evaluated at r= r,, and are therefore constants. The problem is reduced

t.o a coupled pair of linear, first order, ordinary differential equations with the eigenvalue

entering through _(a.,), _(co), and _'(co). We put ?(co) = ?(kVa) and g(co) = g(kvA) and treat

'_ as the eigenvalue.

The analogous equations for the TAE [Eqs. (lla) and (lib) of Ref. 1] read

+ ih(_) _Z,_= -igg2_f(9), (6a)

d ih(_j) (_,_= f(9) ' (6b)

where now f(u) = [(U_ + U_)/(.q_ + .q_)]_/_. Aside from the definition of e, the only difference

between these and Eqs. (5a) and (5b) is the form of f(9) and the way in which it enters the

problem.

In terms of the normalized variables, the eigenfrequency is given by

w=]<t,.4 [[ +,,_ (m_ rn2),/2 ]1/2

and so the clamping is, to leading order in _,

*_ 2e (rn_ m_) ll_- = Im(1/g), (8)

7
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and the gap boundary is determined by

rnl + rn2

2(ml m2)l/2

III. Analytic Dispersion Relations

Significant simplification of Eqs. (5a) and (5b) can be made by transforming to a new coor-

dinate z = gg. Then

_-'h(:)-_ _- a_(z), (to)

where A = ,_/g, G = 7r(5_ !Jl + 52g_)/2, and we have approximated 7rS(z) _- _yl/[z 2 +

(gyl)_] _ gy2/[z 2 + (gy_)2]. In a similar manner, we can write

f(z) "_ 1 - HS(z), (11)

where H = 27r_(yl y2) _/'2 Substituting these into Eqs. (5a) and (5b), we find

_ + i(,,,,- Tz') _, = -i_;,_+ i[G_,(0)+H_2(0)]_(z), (12a)

- i(A - rz _) _ = i_ - i[G_2(0)+ HV.,_(O)],5(z), (12b)

where r = "7/ga. For the TAE problem, it is a good approximation to put H = 0, because of

the way f(z) appears in Eqs. (6a) and (6b). _ Consequently, Eqs. (12a) and (12b) apply to

both TAE and EAE.

We point out that Eqs. (12a) and (12b) are very similar to ones reported by M. N.

Rosenbluth, J. Candy, H.L. Berk, J.W. Van Dam, and D.M. Lindberg, poster 3C38, at

the 1992 International Sherwood Theory Conference, Santa Fe, NM, April 1992. Their

equations are reproduced with the replacements A _ g,,, r _ a, _2 _ _,,,, _'1 --_ _,,,-1,

[(."'¢/_(0)+ H¢,_(0)] _ C,,, and [(;_,_(0)+ H_/22(0)] --, -Cm-_, where the C's represent the

"fluxes," originally defined in Ref. 11 used in Refs. 9 and I0. Their theory can connect

multiple gaps and the C's represent asymptotic boundary conditions on the wave functions

8
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far away from the gap. The C's determine how the modes at each gap interact with one

another. Since our problem is local, with the particular purpose of demonstrating the critical

role of kinetics, we do not account for such interaction. Ours is a self-contained eigenvalue

problem.

Due to symmetry, Eqs. (12a) and (12b) admit only solutions of the form

= , (t3 )

or

= ( 35)

We call solutions satisfying Eq. (13a) Type 1 solutions and those satisfying Eq. (13b) Type ')

solutions. Such symmetry suggests the construction of the symmetric and antisymmetric

wave functions, g,s(z) = g,l(Z)+ q;,_(-z) and _b_(z) = _l(z)- g,,(-z). Equations (12a) and

(12b) may be combined, for Type 1 solutions, into

A [

d6,_] _ [1 + A - rz2]6,s = -(G + H)6(z)_b_(O). (14)dz 1- A + rz 2 dz

For Type 2 solutions, we obtain Eq. (14) with the replacements (A,r,G) _ (-A,-r,-G)

and H unchanged.

Equation (14) m_y be handled in several ways. A variational analysis with the trial

, _.\z2/2function _/.,_= e is found to reproduce the results of Ref. I [Eqs. (33), (37), and

(39)] with the replacement G + H _ 7rGo. This replacement gives better agr_ment with

numerical solutions of Eqs. (6a) and (6b) than the definition of Go in Ref. 1. However,

the variational results are still rather crude, and not accurate to more than a factor of two

because e-_2/2 falls off much too rapidly to capture the contributions from the tail of the

actual wave function for small r. hl this paper, we make a more careful analytical attempt to

approximately solve the eigenvalue problem. Equation (14) may be cast into an equivalent

SchrSdinger equation

v¢, = o,
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where V = -([ -_)(G+ [])(5(z)+ 1 -(A- rz2) 2- r/(1 - A +rz 2)+3r2z2/(1 -_+rz2) 2 and

_i'(a) = g'_(1-A+rz_) -_/2, Type I solutions generally have-1 < Re(5) < 0. Consequently,

(G + H) produces a confining delta function potential at the origin with the mode evanescent

for small finite z. Small r causes the potential to decrease parabolically for small z, creating

a pair of turning points.

With r small, wecan approximate V _ -(1-A)(G+H)5(z)+

and further model this witll a parabolic potential that preserves the turning point,

V = -(i - .X)(G + H)b(z)+ t - A _ r l_z 2 , (t6)
(t-A)

where a = r{[1 - r/(1 - A)] 1/2 - A}. The potential of Eq. (16) converts Eq. (15)into a

'driven' form of the standard parabolic cylinder equation m

(/' + ( l ,c'_ - c, ) _i,= -( l - A )( G + H )5( x )2-'/'a,3-'/4 gL,(O) , (17)

where :r'a = 2,3_/2z 'a and ct = [1 - A 2 - r/(1 - A)]/213 _/2. Decaying solutions for large z 'a

are given by g(-ct,±xe '_/4) [see Ref. 16]. The dispersion relation is obtained by integrating

Eq. (17) across the origin and substituting the appropriate forms of U(-ia, 0) and U'(-ia, 0).

We find
1

a_ ,/4 (G+ H) -4' (18)

Since [c_l >> 1 for r small, we can approximate

r(a- 1
F( 3- T)i_'- (1-ie -'_) l+ (4c_)------_+O(c_ -4) , - (19)

by using two terms of Stirling's formula. The dispersion relation may then be written

1 - p_ r

= 1 +pa -t (l+p2)(1-A)2 ' (20)

where p = (G + H)(l-ie-'")[1 + 1/(4(_)2]/2. The exponential factor in p represents a non-

perturbative contribution to the damping caused by components of the wave function that

I0



propagate past the turning points toward !nfinity. These are KAW's. The non-perturbative

damping inay be thought of as tunnelling to the continuum, if one regards the propagating

KAW's as a part of tile MHD continuum. Real and imaginary parts of Eq. (20) are plotted

as a function of Irl in Fig. I for a particular case along with a direct numerical solution of

Eqs. (6a) and (6b). Agreement is excellent up to Irl _ O.5. Quite significantly, the non-

perturbative effects begin abruptly for the rather small value Iri _ 2 x L0-a for this choice

of parameters. The analytic solution is no longer valid for Irl > 0.5 because the parabolic

potential approximation breaks down.

For ri << rr we can further simplify Et t. (20) as

A, = '2(' . _ - (L- AS)_xp ] (21)-- _o) 23/2 rll2 '

where_0 = -[1-(6' + H)'2/4]/[L+ ((; + H)2/4] represents the ideal (r = 0) eigenfrequency.

The first term in Eq. (21) represents the correct form for the perturbative damping. [We

point out that it is a factor of 2 larger than that given by Eq. (3:3) of Ref. 1. The discrepancy

is due to the fact that the trial function _/,_= e -'\_2/2 used in the variational calculation of

Ilef. I is not adequate for snlall r. The correct perturbative form is recovered with the

trial function g,, = e-'\l_l/2.] The second term in Eq. (21) represents the non- perturbative

component of tile damping for small r. Because of the way r enters the exponential term,

it is apparent that the non-perturbative effects can become significant for small values of r,

especially for A_ near unity. Irl Fig. 1, Ao = -0.776. Equation (21) also agrees well with

numerical results.

Type 2 solutions may be handled in a similar manner. With the replacements (A, r, G) -,

(-A,-r,-G) we can approximate

7"

v _ (1+ _x)((,- H)_(:)+ 1- zx_+ 1+----X+ a_ ' (22)

where /3 = r{[1 + r/(1 + _)]_/_ + &}. Type 2 solutions generally have 0 < Re(A) < L.

Thus, the delta function poteiltial at the origin is non-confining, and r produces a confining

LI

/

a
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parabolic potential well for small finite z. Consequently, r creates these modes. Now the

alternative standard form of the parabolic cylinder equation applies,

where x 2 = 2,81/2z2, a = [1 - A2 + r/(1 + A)]/2/3 _/2. Decaying solutions for large z 2 are

given by U(a, ix). Integrating across the origin and substituting the appropriate forms of

U(a,0) and U'(a,O) produces

['(_ + _) (1 + A)
(G- H) = -4. (24)

3 c_ , /4F(_+ _) 3'

Since Re(a) << -I for small r, we can approximate

F(_ + 2) _ cot + l + O(a -4) (25)3 ex --+

by using the reflection formula for the gamma functions and then two terms from Stirling's

formula. The dispersion relation takes on a completely different form,

[ 7" ]1/2 rl/2{1 +4g + 4 arctan [(G - H)(1 + A)'/2/23/2]}A -- 1 + 1+------_ zr {A + [I+ vl(l+ g__)]1/2}1/2 '
(26)

where g is a non-negative integer. The countable infinity of modes are associated with the

poles in the gamma functions for negative argument. These modes represent the kinetic EAE

(KEAE) or kinetic TAE (KTAE). As discussed in Ref. 1, they are caused by the coupling of

two propagating KAW in the gap region. For g = 0 and (G- H) = 0, Eq, (26) reduces to

the dispersion relation Eq. (39) of Ref. I, obtained by variational techniques. The damping

Ai -,_ r_/ffT_'_. The MHD boundary condition (G- H) enters through the argument of the

arctangent and gives a correction of (,9(1). Real and imaginary parts of Eq. (26) are plotted

as a function of Irl in Fig. 2 for a particular case along with a direct numerical solution of

Eqs. (6a) and (65). Agreement is excellent up to [r I _ 0.1. [Better agreement is obtained

for larger Arg(r).] For Iri > 0.1, the parabolic potential approximation breaks down and

12
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tunnelling, due to the quartic component of the potential, begins. We remark that Eq. (26)

gives only Type 2 KT/EAE. There are also Type 1 KT/EAE, which obey a dispersion

relation similar to Eq. (26) with e = 1/2,3/2,... However, e = 0 is the least damped, and

therefore the most interesting, KT/EAE.

IV. The Parameter r

Kinetic effects on the T/EAE's are determined by the magnitude of the parameter r. For

the TAE, this parameter reads

8.s'2

"= (m, (m,+ ,

while for the EAE, it reads

r = (,,k- 1)3 (m, m2)'/2(m, + m2)F-' , (28)

where X represents the elongation of the plasma. Therefore, for the EAE, this parameter is

a factor of 2{r/[R(%- 1)]}a times that tor the TAE. For DIII-D this factor is approximately

0.25(r/rp) 3 times smaller. Thus, for elongated plasmas, kinetic effects become important

for higher EAE mode numbers, e.g. m = 4 or 5 rather than 1 or 2, which is the case for

TAE. However, since the growth rate for the EAE is also reduced by an order of magnitude

because of the higher frequency and effective wavenumber, the lower damping is mitigated

by lower growth.

V. Conclusions

We have extended the non-perturbative kinetic analysis of the TAE to the EAE. Since

'ellipticity' for an elongated plasma like DIII-D is larger than the effective toroidicity, the

kinetic effects are in general weaker for EAE than they are for TAE. The parameter that

measures the kinetic character (of the EAE) is rather small for lower mode numbers, but

13



can be of order unity or larger for higher mode numbers; the parameter scales as the square

of the mode number. While the lower mode number EAE's therefore have a strongly MHD

character, they do not necessarily have a perturbatively small damping. This is because,

quite significantly, the transition to the non-perturbative regime can begin for fairly small

values of the kinetic parameter. In the non-perturbative regime, the damping is enhanced

because the KAW carries the mode energy away from the gap L-egion. Naturally, the damping

in this regime is quite insensitive to the details of the dissipation mechanism. In addition to

altering the mode structure of this basically MHD mode, kinetic effects introduce a countable

infinity of new modes, formed by the coupling between two KAW's. These kinetic T/EAE

(KT/EAE) have eigenfrequencies which lie just above the gap. The lowest KT/EAE may

actually have a lower damping rate than the corresponding T/EAE due to non-perturbative

effects. This makes the KT/EAE potentially more important than the T/EAE under some

conditions: strong shear, high temperature, and moderate mode numbers.
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Figure Captions

1. T/EAE: Comparison of analytic dispersion relation, Eq. (20), with numerical shooting

code results. Solid lines indicate real part and dashed lines the negative imaginary part

of (A + 1) vs. Irl. The label "C" designates numerical solution of Eqs. (6a) and (6b)

while the unlabeled curves correspond to Eq. (20). Here, g = 0.117, G1 = 1.378,

C,2 =-0.351, _bl = 0.710, g'2 = 1.412.

2. KT/EAE: Comparison of analytic dispersion relation, Eq. (26), with numerical shoot-

ing code results. Solid lines indicate real part and dashed lines the negative imaginary

part of (A + 1) vs. IvI. The label "C" designates numerical solution of Eqs. (6a) and

(6b) while the unlabeled curves correspond to Eq. (26). Here, g = 0.117, (_1 = 1.378,

G2 =-0.351, $1 = 0.710, _;,_= 1.412.
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