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SUMMARY

A research program was initiated by the Sandia National Laboratories in
1982 to provide benchmark type experimental criticality data in support of
the design and safe operations of nuclear fuel transportation systems. The
overall objective of the program is to identify and provide the experimental
data needed to form a consistent, firm, and complete data base for verifying
calculational models used in the criticality analyses of nuclear transport
and related systems. The results obtained from the initial series of
experiments in this program are presented in this report along with a
complete description of the experiments.

The experimental measurements covered by this report were designed to
provide benchmark type data on water moderated LWR type fuel arrays
containing neutron flux traps. The experiments were performed at the U, S.
Department of Energy Hanford Critical Mass Laboratory, operated by Pacific
Northwest Laboratory. The experimental assemblies consisted of 2 x 2 arrays
of 4.31 wtX 233
1.891 cm square center-to-center spacing. Neutron flux traps were created

U enriched UG, fuel rods, uniformly arranged in water on a

between the fuel units using metal plates containing varying amounts of
boron. Measurements were made to determine the effect that boron loading and
distance between the fuel and flux trap had on the amount of fuel required
for criticality. Also, measurements were made, using the pulse neutron
source technique, to determine the effect of boron loading on the effective
neutron multiplication constant. On two assemblies, reaction rate
measurements were made using solid state track recorders to determine

absolute fission rates in 235U and 238U.

Benchmark type data were obtained on the :
. Effect on boron concentration on critical size
. Effect of water gap between fuel and neutron flux trap on

critical size
) Effectiveness of boron concentration to reduce keff
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In general these data indicate that the effectiveness of neutron flux traps
for criticality control is relatively insensitive to boron loadings above
about 0.1 g B/cm2 and are essentially ineffective when separated from the
fuel unit by more than 6cm of water. Also the 235U and 238U fission rates
observed indicate that the boron loading primarily affects the neutron
intensity but not the neutron spectrum in a flux trap region.
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CRITICALITY EXPERIMENTS TO PROVIDE
BENCHMARK DATA ON NEUTRON FLUX TRAPS

1.0 INTRODUCTION

A research program was initiated for the U.S. Department of Energy (DOE)
Sandia National Laboratories Transportation Systems Development Department in
1982 to provide benchmark type experimental criticality data in support of
the design and safe operations of nuclear fuel transportation system. The
overall obJective of the program is to identify and provide the experimental
data needed to form a consistent, firm, and complete data base for verifying
calculational models used in the criticality analyses of nuclear transport
and related systems.

As an initial effort under this program, the existing experimental data
suitable for validating neutronic calculations on fuel transportation and
storage systems were identified (Bferman, 1983). 1In addition to identifying
the existing data, areas in which additional data were needed to from a
complete data base were also identified by the study. One area in which the
study indicated additional data was particularly needed involved systems
containing neutron flux traps. Such flux traps are created in transportation
systems and high density fuel storage racks by the practice of using sleeves
or canisters containing strong thermal neutron absorbers around the fuel
elements for criticality control. These arrangements create very effective
neutron flux traps in which non-thermal neutrons escaping the absorber sleeve
are thermalized and thus “trapped” outside the sleeves enclosing the fuel
elements, The effectiveness of these flux traps to maintain a given degree
of subcriticality is very sensitive to the amount of water between the
absorber sleeves, the amount of absorber and the location of the flux trap.

A recently completed multi-national exercise (CSNI Working Group, 1982} by
the Organization for Economic Cooperation and Development's Nuclear Energy
Agency (OECD-NEA) revealed an inability for calculational models to

1.1



adequately agree on the effectiveness of neutron flux traps in such systems.
Consequently, the first in a series of criticality experiments to be
performed under this research program were designed to provide data on
systems containing neutron flux traps. The experiments and the results
obtained are presented in this report.

The experiments were performed at the U. S. Department of Energy Hanford
Critical Mass Laboratory, operated by Pacific Northwest Laboratory of
Battelle Memorial Institute. The experimental measurements are described in
detail in the sections that follow. Briefly, however, the experimental

assemblies consisted of 2 x 2 arrays of 4.31 wt% 235

U enriched U0, fuel rods,
uniformly arranged in water on a 1.891 cm square center-to-center spacing.
Neutron flux traps were created between the fuel units using metal plates
{Te061 Al or BoralTM) containing varying amounts of boron. A photograph of
one of the assembliies is shown in Figure 1,1, Measurements were made to
determine the effect that boron loading and distance between the fuel and
flux trap had on the amount of fuel required for criticality. Also,
measurements were made, using the pulse neutron source technique, to
determine the effect of boron loading on the effective neutron multiplication
constant. On two assemblies, reaction rate measurements were made using

solid state track recorders to determine absolute fission rates in 235U and

238U.

Boral is a trademark product of Brooks and Perkins, Inc.
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4.0 CONCLUSTONS

The nuclear criticality data obtained in this series of experiments
involving LWR type fuel rod arrays.separated by neutron flux traps indicate
that the effectiveness of such flux traps for criticality control is relatively
insensitive to boron loadings above about 0.1 g B/cmz. A decrease from 0.5 g
B/cm2 to 0.1 g B/cm2 in the boron content of the Boral plates creating the
neutron flux traps resulted in a decrease of only about 7% in the number of
fuel rods required for criticality. Below about 0.1 g B/cmz, the effectiveness
of the flux trap is very sensitive to the boron loading. Decreasing the boron
loading in the experimental assemblies from about 0.1 g B/cm2 to zero resulted
in a factor of about 3 decrease in the number of fuel rods required for
criticality. Similar variations in kor¢ With boron loading were observed. The
experimental criticality data also indicate that for maximum effectiveness the
separation between fuel and flux trap should be less than 6 cm at separations
greater than 6 cm the flux trap is essentially ineffective and isolation
between units is due to absorption in the water alone.

Although a single spectral index is only indicative of spectral change,
the measured fission rates indicate that a change in boron loading primarily
affects the neutron density but not the neutron spectrum in a flux trap region.
f 235U and 238U fissions (i.e., essentially thermal to epithermal
fissions) differed by only about 10%, which is within experimental error,
between boron loadings of 0.05 g B/cm2 and 0.45 g B/cmz. However, the absolute
fission rates differed by a factor of about 6 between the two assemblies.

The ratio o
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APPENDIX A

Density and Chemical Composition of Type 6061 and Type 1100 Aluminum

Density and American Society for Testing Materials (ASTM)} chemical
specifications for the aluminum present in the experimental assemblies are
presented in this Appendix,

Al



ASTM STANDARD B210-78 SPECIFICATIONS FOR TYPE 6061 ALUMINUM

Chemical Composition

Element Wt
Si 0.40-0.80
Fe 0.7  {Maximum)
Cu 0.15-0.40
Mn 0.15 (Maximum)
Mg 0.8-1.2
Cr 0.04-0,35
Zn 0.25 (Maximum)
Ti 0.15 {Maximum)
Al Remainder

97.36 + 96.15
Maximum Impurities

Element Wt

Each 0.05

Total 0.15

Density: 2.69 g/cm3
(not part of standard - measured by volume displacement)
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ASTM STANDARD B210-78 SPECIFICATIONS FOR TYPE 1100 ALUMINUM

Chemical Composition

Element Wt%
31 ) 1.0 (Combined Maxium)
Fe y 1. ombined Maxium
Cr 0.05-0.20
Mn 0.05 (Maximum)
in 0.10 (Maximum)
Al 99.00 (Minimum)

Maximum Impurities

Element Wt%
Each 0,05
Total 0.15

Density: 2.70 g/cm3
(not part of standard - measured by volume displacement)
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APPENDIX B

Water Sample Analysis

Samples were taken during the experiments of the water moderator-
reflector, The results of the sample analyses are presented in this Appendix.
A1l analyses were performed in accordance with Standard Methods for the
Examination of Water and Waste Water, 15th ed., American Public Health
Association, Washington, DC.

B.1



TABLE B.1 Analysis of Water Sample

Analysis

pH
Total alkalinity mg/Titer as CaCOj

Bicarbonate alkalinity mg/1iter as CaCOj

Carbonate alkalinity mg/liter as CaC0q
Total dissolved solids mg/liter
Sulfate mg/liter

Nitrate {as N) mg/liter
Fluoride mg/liter

Chloride mg/liter

Cadmium mg/liter

Copper mg/liter

Chromium mg/l1iter

Iron mg/liter

Lead mf/liter

Manganese mg/liter

Zinc mg/liter

B.2

Sample Number

T1C-1 77C-2 TTC-3
7.7 7.7 7.7
51.2 49.2 49,7
49.5 42 42
0.5 0.5 0.5
109 98 100
16 20 21
0.38 0.13 0.13
0.1 0.12 0.11
11 3.7 3.7
0.0018 0.002 0.002
0.01 £0.05 0.05
<0.01 <0.01 <0.01
0.12 0.05 0.08
0.002 0.002 <0.002
0.01 0.01 <0.01
0.05 £0.05 <0.05
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APPENDIX C

Trace Impurities Measured in Lattice Plate Material

Trace impurity levels are presented in this Appendix for the polypropylene
material used in fabricating the lattice plates for these experiments. The
analytical results are from a spark source mass spectrographic analysis of
samples taken from, and considered representative of, the polypropylene lattice
plates. The spectrographic analysis were performed by the Hanford Engineering
Development Laboratory, Richland, Washington, on QOctober 17, 1985,

c.1



TABLE C.1 Trace Impurities Present in Lattice
Plates Parts per Million by Weight

Sample Number

Element TTC-4 : T17C-5

Li 0.2 7

Be 1 1
0.04 0.04

Na {10 20

Mg < 6 10

Al 30 30

Si 8 8

P 5

Cl 1 1

K 40 60

ca  mmeme—— e

Ti <100 100

v 3 10

Cr < 10 50

Mn { 2 2

fe  mmemee- mme—ee-

Cu 100 100

Zn { 10 10

Ge  ememee— mmeee

As { 5 20

Rb  emeee—— mmmee

2

v mmemeee e

Me semmmee- —mmaa-

sn mmmmeea —mmae-

Br  mmmmm—— mmmemaee

C.2



APPENDIX D

Loading Diagrams for Critical and Subcritical Assemblies
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