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ABSTRACT

Recent interest in supersonic combustion and problems of transatmospheric 
flight has prompted renewed research efforts in laminar-turbulent free shear flow 
transition. In the present work, linear stability theory and direct numerical simu­
lations are used to study the effect of Mach number on the linear, nonlinear, and 
three-dimensional aspects of transition in a plane compressible wake. Direct numer­
ical simulations are also used to study the sensitivity of a compressible wake to (1) 
phase effects and (2) two- and three-dimensional subharmonics.

A linear stability analysis shows that the influence of increasing Mach number 
is stabilizing, resulting in reduced growth rates for both antisymmetric and symmet­
ric modes of the wake. This reduction is due to baroclinic and dilatational effects as 
revealed from the linear eigenfunctions. For both low and high Mach numbers, the 
least stable wave is a two-dimensional antisymmetric mode aligned with the stream- 
wise direction.

Direct numerical simulations of a temporally-evolving wake were performed 
using a spectral collocation method. The results of two-dimensional simulations show 
that, for high Mach numbers, the same mechanisms responsible for the reduced growth 
rates from linear stability theory are also responsible for the delay in the roll-up of 
vortices. Two-dimensional simulations were also performed to study the effect of 
phase angle between a fundamental and its subharmonic on the development of a 
subharmonic in a low Mach number wake.

Three-dimensional simulations were performed to study the effect of phase angle 
between a fundamental and a pair of oblique waves on the development of the large- 
scale structures in a wake. Depending upon the phase angle, vortex loops may or may 
not form due to the interaction of the streamwise and spanwise vortices. Staggered 
“peak-valley-splitting” vortices, which have been observed in boundary-layers and 
incompressible wakes, develop if the simulations are forced with a pair of oblique 
subharmonic waves.

Finally, the topology of the computed velocity, vorticity, and pressure gradient 
fields is determined using a generalized three-dimensional critical point theory.
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CHAPTER 1

INTRODUCTION

Recent interest in supersonic combustion and problems of transatmospheric flight 

has prompted renewed research efforts in laminar-turbulent free shear flow transition. 
The transition problem in a supersonic wake has been a subject of considerable inter­
est over the years. In the 1960s, the location of transition was obtained primarily from 
hot-wire fluctuation and mean flow measurements combined with interpretations of 
schlieren photographs and shadowgraphs. In a schlieren photograph (Kendall [1963]) 
of a Mach 3.2 wake behind a splitter plate forced at its natural frequency, the visible 
onset of transition occurs several plate lengths downstream of the trailing edge of 
the plate, suggesting that compressible wakes are more stable than incompressible 

wakes (see Figure 1-1). The initial instability results in the formation of two rows 

of staggered vortices in which the large-scale structures that develop are similar to 
those observed in incompressible wakes; this suggests that there are similarities in 
the nonlinear development of flat-plate wakes at both high and low Mach numbers. 
This photograph raises several important questions. Why are supersonic wakes more 
stable than incompressible wakes? What organized motion results from the initial in­
stability? What similarities does this motion have with incompressible wakes and are 
there ways to control it? We attempt to provide definitive answers to these questions 

by performing both a linear stability analysis and two- and three-dimensional direct 

numerical simulations of a plane compressible wake.

1.1 Background

Currently, our knowledge of the large-scale motion which results from a Kelvin- 
Helmholtz instability comes largely from experimental studies of incompressible 
wakes. In this section, some of the results for incompressible wakes are reviewed, 
along with previous theoretical and experimental results concerning linear growth 

rates in compressible wakes, and previous incompressible and compressible numerical 

simulations of free shear flows.
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1.1.1 The Incompressible Wake

Significant inroads have been made toward understanding transition in incom­
pressible wake flows over the past fifty years. There now exists considerable theoreti­
cal (e.g. Sato &; Kuriki [1961], Mattingly & Criminalie [1972]) and experimental (e.g. 
Sato & Kuriki [1961], Sato & Onda [1970], Sato &: Saito [1975]) work leading to a 
fairly comprehensive picture of the primary stage of transition. This primary stage 
consists of a Kelvin-Helmholtz instability which results in the development of strong 
spanwise vortices of alternating sign: the famous two-dimensional Karman vortex 
street. This flow pattern manifests itself as a series of vortex centres connected by 
saddle points in a frame of reference moving with the spanwise vortices (Cantwell & 
Coles [1983]).

Secondary stages of incompressible transition leading to 3D structures and tur­
bulent breakdown are not as well understood. Early measurements by Townsend 
[1956] and Grant [1958] of time-averaged velocity correlations in the far wake of a 
cylinder suggest the presence of 3D structures. These structures were thought to con­
sist of counter-rotating streamwise vortex pairs, later called the double roller eddy 
by Townsend [1979]. This description of the streamwise vortex pairs was further 
elaborated on by Payne & Lumley [1967] and Mumford [1983].

There still remains a great deal of uncertainty concerning the instantaneous nature 
of the streamwise structures and their origin. Based on Grant’s interpretation of two 
counterrotating vortices whose axes are normal to the plane of the wake, and spanwise 
vortices whose axes are parallel to the plane of the wake, Roshko [1976] conjectured 
that the 3D structures may be time-averaged superposition of vortex loops, formed 
by the “pinching off and joining together of vortices from the opposite sides of the 
street.” This formation of vortex loops is possible for wakes and jets, since their mean 
flow contains two rows of vortices of opposite sign, but not for a mixing layer which 
contains only one row of vortices of the same sign.

In a reacting flow visualization experiment examining wakes and mixing layers 
behind a three-dimensionally perturbed splitter plate, Breidenthal [1980] showed that 
there is a fundamental difference between flows which contain one sign of mean vor­
ticity (mixing layers) and those that contain two (wakes). He observed that the 
mixing layer rapidly relaxes to its usual two-dimensional structure, while the wake 
forms closed vortex loops which persist for a long distance downstream without any 
appreciable spanwise growth.
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From inviscid vortex dynamics computations and experimental interface flow visu­
alization, Meiburg &; Lasheras [1988] surmised that the inviscid mechanism of vortex 
stretching is responsible for the formation of counter-rotating pairs of streamwise 
vortices which superimpose onto the spanwise vortices resulting in the formation of 
vortex loops, in agreement with Roshko’s earlier hypothesis. They showed that if the 
initial orientation of the periodic perturbation is horizontal, the three-dimensional 
wake develops into an array of vortex loops which are staggered 180 degrees out-of­
phase in the streamwise direction. On the other hand, if the initial orientation of the 
periodic perturbation is vertical, the three-dimensional wake develops into an array 
of vortex loops which are aligned in the streamwise direction.

Cimbala, Nagib & Roshko [1988] also observed organized 3D structures in the 
wake of a cylinder. By placing a smoke wire on one side of the wake centerline, 
they were able to observe hairpin-like vortices, with successive vortices 180 degrees 
out-of-phase in the streamwise direction. They suggested that the three-dimensional 
structures may be a result of a secondary instability based on the interaction of span- 
wise oblique disturbances with the two-dimensional vortex street. They speculated 
that this secondary instability may be similar to Pierrehumbert & Widnall’s [1982] 
parametric subharmonic resonance in mixing layers, or to Herbert’s [1983] “H-type” 
instability in channel flows.

Loop-like structures also appear in photographs of forced coflowing wakes and jets 
taken by Perry, Lim &; Chong [1980]. By applying critical point theory to instanta­
neous velocity vector fields surrounding the vortex loops, they obtained a qualitative 
description of the three-dimensional flow and related it to their smoke patterns. Their 
smoke patterns for neutrally buoyant double-sided wakes are quite similar to the pho­
tographs of Breidenthal. They described the process of entrainment of irrotational 
fluid based on the deduced topology of the velocity vector field.

In spite of the volume of experimental, theoretical and numerical work that exists 

for wakes, a detailed understanding of the underlying mechanism that initiates three- 
dimensional behavior in wakes and the resultant structure is still missing. Do the 
structures consist of closed vortex loops or hairpin vortices? How are they connected? 
Are they aligned or staggered? These are among many questions which still need to 
be answered.
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1.1.2 The Compressible Wake

Early attempts at understanding transition in both incompressible and compress­
ible wakes came largely from linear stability theory. Lees & Lin [1946] determined 
that compressible wakes are inviscidly unstable due to the presence of an inflexion 
point in the profile of the density-vorticity product. Based on this result, Lees & Gold 
[1966] speculated that, at least qualitatively, compressible wake transition is similar 
to low-speed wake transition. They studied the inviscid stability characteristics of 
compressible, planar, and axisymmetric wake flows and found that a heated wake is 
more stable than a cool one if the relative Mach number (between the freestream and 
the wake centerline) is less than the critical Mach number. Their study covered a 
limited range of relative Mach numbers and temperature defects, and was restricted 
to two-dimensional disturbances. They did not consider the amplification of three- 
dimensional waves which Groppengiesser [1970] later found to be important at high 
Mach numbers for compressible mixing layers.

Experimental measurements of growth rates in the linear regime at supersonic 
speeds were obtained by Kendall [1962] for a forced wake behind a flat plate at Mach 
3.7, by Behrens [1968] for the far wake of cylinders at Mach 6, by Behrens & Lewis 
[1971] for the wake of a wedge at Mach 4, and by Behrens & Ko [1971] for the wake 
of a flat plate at Mach 6. Behrens & Ko [1971] found that at Mach 6, the amplitude 
distributions of the velocity fluctuations across the wake at the fundamental and first 
harmonic are qualitatively similar to Roshko’s [1954] incompressible cylinder far wake 
measurements. Furthermore, they compared their frequency spectra with Roshko’s 
and found that certain resemblances existed. In both cases, off the wake centerline, 
there exist peaks in the frequency spectrum where the amplitude of the fundamental 
frequency is largest, while at the wake centerline, there are peaks at the first har­
monic frequency. The main difference between their fluctuation spectra and Roshko’s 
is that the peaks for the Mach 6 wake are broadband waves whereas for Roshko’s 
incompressible wake, the peaks are discrete monochromatic waves. They speculated 
that these differences would cause the nonlinear vortical motion of the high-speed 
wake to deviate from the double row of discrete vortices seen in the incompressible 
wake.

More recently Gasperas [1989] applied viscous linear compressible stability theory 
and the e^ method to a Mach 3 and Mach 6 flat plate wake to predict the transition 
location. The method (Smith [1956] and Van Ingen [1965]) bridges the nonlinear
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processes between linear stability results and the onset of fully developed turbulence. 
It consists of using stability theory to compute the total growth of the disturbances 
up to a point where transition is observed. The ratio of the final to initial amplitudes 
at that location is . Gasperas found that the N-factors for wakes are in the same 
range as those for attached shear layers (N between 6 and 8). While he showed that 
increasing the freestream Mach number stabilizes the wake, in agreement with Lees 
& Gold, he did not consider the influence of oblique disturbance waves on the growth 
rates.

1.1.3 Direct Numerical Simulations of Free Shear Flows

Since the early 1970’s, direct numerical simulations of the time-dependent three- 
dimensional Navier-Stokes equations have been used to study transition and turbu­
lence in free shear flows. In this approach all the significant scales of turbulence are 
computed without using any turbulence models. In order to resolve the wide range 
of turbulent scales, highly accurate numerical methods are required. The main dis­
advantage with direct numerical simulations is that they are limited to low Reynolds 
numbers due to available computational resolution. The difficulty is that a large num­
ber of grid points are needed to resolve both the largest and smallest eddies in a flow. 
For example, the number of grid points required in a free shear layer is proportional 
to where Re^ is the Reynolds number of a free shear layer based on the width
and velocity difference driving the shear layer (Mansour, Ferziger & Reynolds [1978]).

The incompressible free shear flow simulations to date are primarily of mixing 
layers and jets, while wakes have received less attention. There have been even fewer 
simulations of compressible free shear flows due to their more stringent computational 
demands. In fact, prior to 1989, no literature on compressible wake simulations 
existed. Mansour et al. [1978] addressed the evolution of the incompressible time- 
developing mixing layer. They showed, in agreement with Winant &; Browand [1974], 
that the vortex pairing mechanism is responsible for growth in the mixing layer. Riley 
& Metcalfe [1980a], Patnaik, Sherman &: Corcos [1976], Metcalfe, Orszag et al. [1987] 
are among others who have simulated the mixing layer. One of few wake simulations 
performed was by Riley & Metcalfe [1980b] of a turbulent axisymmetric wake.

Compared to our knowledge of incompressible flows, an understanding of transi­
tion for compressible free shear flows is still evolving. Numerically, this is largely due
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to the added complexity of having to solve a coupled velocity-temperature field. Fur­
thermore, viscous and thermal transport coefficients depend upon the instantaneous 
local temperature. This leads to a significant increase in the number of parame­
ters which needs to be considered in comparison with incompressible flows and poses 
even greater numerical restrictions as to the range of Reynolds numbers for which 
the flow field can be adequately resolved. Current research is heavily focused on the 
effects of compressibility on mixing phenomenon in compressible free shear layers. 
Toward this end, Lele [1989] simulated a two-dimensional spatially- and temporally- 
developing mixing layer and found that compressibility effects alter the behavior of 
large-scale structures. He attributed the reduction in growth rate of the mixing layer 
to dilatational effects. He also tested and confirmed the validity of the convective 
Mach number concept which Bogdanoff [1982] and Papamoschou & Roshko [1986] 
developed for a mixing layer.

From a linear stability analysis and direct simulations of a time-developing com­
pressible mixing layer, Sandham &: Reynolds [1989a,b] showed that oblique waves are 
dominant above a convective Mach number of 0.6, leading to the formation of three- 
dimensional structures at high Mach numbers. This is contrary to low-speed mix­
ing layers, where the structure is primarily two-dimensional. Sandham & Reynolds 
[1989a] attributed the reduced growth rates at high convective Mach numbers to 
strong baroclinic and dilatational effects.

1.2 Outline of Present Work

In the present work, the influence of compressibility on the mechanisms governing 
the linear, nonlinear, and three-dimensional stages of transition in a supersonic wake is 
investigated. A description of the three-dimensional topology of a compressible wake 
from critical point theory is used to provide a concise, unambiguous representation 
of the computed flow fields. Finally, the effect of a relative phase lag between a 
fundamental and its subharmonic is investigated as a possible means of controlling 
the evolution of a wake.

In Chapter 2, results from a linear stability analysis provide physical insights for 
the observed reduction in growth rate at high Mach numbers. A newly-developed 
hybrid algorithm, which combines a direct spectral method with a shooting method, 
is used to solve the compressible inviscid linear disturbance equations. Growth rates
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for both antisymmetric and symmetric modes of two-dimensional and oblique waves 
are computed for a wide range of Mach numbers between 0.01 and 7.0. Linear eigen­
functions of the velocity components, temperature, and density are computed and are 
later employed as initial conditions in the direct simulations.

In Chapter 3, a new spectral collocation method for solving the compressible 
Navier-Stokes equations for a parallel mean free shear flow with periodic freestream 
boundary conditions is described. The method combines Fourier expansions of spatial 
derivatives of the dependent variables with an explicit time-advancement algorithm.

In Chapter 4, results obtained from two-dimensional direct simulations for two 
different problems are described. First, results concerning the elfect of compressibility 
on the linear and nonlinear evolution of the flow field are discussed. An explanation 
for the observed reduction in growth rate is offered based on the behavior of several 
compressible vorticity source terms. Second, the effect of varying the relative phase 
difference between a fundamental and its subharmonic is explored as one possible 
means of controlling the evolution of a wake.

In Chapter 5, results obtained from three-dimensional direct simulations are used 
to explore the response of a compressible plane wake to various three-dimensional dis­
turbances. The disturbances consist of unstable two-dimensional and oblique modes 
obtained from a linear stability analysis. First, the sensitivity of a low Mach num­
ber wake to (1) a phase difference imposed between a fundamental and a pair of 
oblique waves, and (2) the streamwise wavelength of the oblique waves is determined. 
Second, the effect of Mach number on the evolution of three-dimensional large-scale 
motions is determined. The vorticity dynamics of the flow are studied in detail and 
the developed temperature, density, and pressure fields are presented.

In Chapter 6, the evolution of the topology of the velocity, vorticity, and pressure 
gradient fields is presented and compared with the results of Chapter 5. Instan­
taneous streamlines, vortex lines, and pressure gradient vectors are computed from 
the three-dimensional flow fields obtained from the simulations. A generalized three- 
dimensional critical point theory is employed to classify the critical points in the 
flow. The topology of the initial three-dimensional disturbance field is determined 
and compared with the morphology of the developed wake.

In Chapter 7, conclusions are stated and possible avenues for future work are 
suggested.
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1.3 Summary of Results

Linear Stability. From a three-dimensional compressible inviscid linear stability 
analysis, the influence of increasing Mach number is found to be stabilizing, resulting 
in reduced growth rates for both antisymmetric and symmetric modes of the wake. 
The least stable wave at all Mach numbers corresponds to an antisymmetric wave 
aligned with the streamwise direction. This implies that the initial roll-up of vortices 
for both low and high Mach number wakes will be inherently two-dimensional, and 
that any subsequent three-dimensional motion must be the result of secondary in­
stabilities. Linear eigenfunctions are used to construct several compressible vorticity 
source terms in the linearized vorticity equation. Baroclinic and dilatational effects, 
which prevent the roll-up of spanwise vortices, are found to be primarily responsible 
for the reduction in growth rate at high Mach numbers.

Two-Dimensional Simulations-Nonlinear Compressibility Effects. From 
two-dimensional direct simulations, it is shown that the primary influence of increas­
ing Mach number is to delay the onset of nonlinear roll-up of vortices. The actual 
roll-up process is remarkably similar to its incompressible counterpart. The delay is 
due to the much lower linear amplification rates of these disturbances at high Mach 
numbers. Due to large density gradients present in the flow at high Mach number, 
the baroclinic torques become significant and prevent vorticity from being advected 
into the cores of the rollers. Dilatational effects are also important, particularly in 
the saddle region, assisting the baroclinic torques in inhibiting the roll-up.

Two-Dimensional Simulations-Flow Control. Using the results from two- 
dimensional simulations, one possible means of controlling the evolution of a wake is 
investigated by varying the relative phase difference between a fundamental and its 
subharmonic. The results of these simulations show the asymmetric development of 
the subharmonic on either side of the wake for relative phase angles between 0 and 
7r/2. For the limiting cases of 0 and 7r/2, pairing is observed on only one side of the 
wake, and for angles in between, on both sides. However, there is no angle for which 
pairing can occur at the same rate on both sides of the wake. This is a result of the 
staggered arrangement that the fundamental vortices assume after the fundamental 
saturates.

Three-Dimensional Simulations. The development of the three-dimensional 
motion is explained in terms of the morphology of the large-scale structures and the 
topology of velocity, vorticity, and pressure gradient vector fields.
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Three-Dimensional Morphological Description. The morphology of a com­

pressible wake is described by contour plots of vorticity components, magnitude of 

vorticity, and vorticity stretching terms at various stages in their development. These 

plots show the development of a pair of counterrotating streamwise vortices in the 

saddle point region on either side of the wake which are aligned with the diverging 

separatrix. Initially the diverging separatrix connects spanwise vortices of a similar 

sense of rotation. In other words, the initial stages of the wake appear as two sepa­

rate mixing layers. As the vorticity in the alleyway is entrained into the two layers, 

the two sides begin to behave as a single wake in which the diverging separatrix 

connects spanwise vortices of alternating sign. The intensification and stretching of 

the streamwise vorticity in the mean strain field of the spanwise vortices eventually 

leads to the development of vortex loops inclined along the principal axis of posi­

tive strain, depending upon the initial phase difference between the fundamental and 

a pair of oblique waves. From oblique subharmonic simulations, vortical structures 

develop which exhibit a staggered “peak-valley-splitting” arrangement similar to the 

“H-type” secondary instability found in boundary layers and channel flows. There is, 

however, no evidence of any oblique pairings in the simulations.

Three-Dimensional Topological Description The topology of the velocity, 

vorticity, and pressure gradient vector fields complements the interpretation of the 

three-dimensional motion provided by the morphology of the vorticity field. The 

initial topology of the wake is found to be equivalent to two staggered mixing lay­

ers. After the fluid in the alleyway is entrained into the mixing layers, the topology 

bifurcates such that the saddle points connect opposite sides of the wake. This inter­

pretation is consistent with the temporal evolution of the streamwise vorticity in the 

saddle point region. From the velocity field, the topology of a two-dimensional com­

pressible wake is found to consist of stable foci and saddle points while the topology 

of a three-dimensional compressible wake is found to consist of spanwise alternating 

stretching and contracting foci points and saddle points. Moreover, limit cycles are 

found to exist in between the focus points in the spanwise direction.
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From a critical point analysis of the vorticity field, the topology of the vorticity 
field is found to consist of no-flow through centers connected by saddle points. Vortex 
loops form as a result of the interaction of the streamwise vorticity with the spanwise 
vortices. In addition to the vorticity field, the pressure gradient field is studied because 
it indicates, neglecting viscous forces, the acceleration direction of a fluid particle. The 
pressure gradient vector field is found to consist of nodes coinciding with the spanwise 
vortex centres and saddle points connecting the centres.
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CHAPTER 2

LINEAR STABILITY THEORY

In this chapter, the response of a compressible plane wake to two-dimensional 
and three-dimensional disturbances is investigated using linear stability theory. The 
linearized compressible inviscid disturbance equations are solved, using a new hy­
brid algorithm, to find the growth rates and eigenfunctions of these disturbances for 
freestream Mach numbers ranging from the incompressible limit to a supersonic value 
of 7. From the growth rates, the least stable disturbance (mode) is determined; it 
is anticipated that this mode will initiate nonlinear roll-up of large-scale structures 
in the wake. The growth rate is found to always decrease with increasing Mach 
number and, from the eigenfunctions, terms in the linearized vorticity equation are 
constructed which offer a physical explanation of this reduction. The eigenfunctions 
also provide initial conditions for the direct simulations described in subsequent chap­
ters.

Note: In this chapter, the mean flow and disturbances are normalized by the ap­
propriate physical scales. Velocities are normalized by the freestream velocity (ui0). 
Length scales are normalized by the initial half width of the wake (&;), tempera­
ture and density are normalized by their freestream values (T0,po), and pressure is 
normalized by pQ.

2.1 Mean Flow

Consider the linear stability of a compressible parallel plane wake moving in 
the streamwise (xi) direction with variations in the transverse direction (X2). It is 
assumed that the laminar mean flow for a wake, on which the stability analysis is 
based, consists of Gaussian profiles of velocity and temperature. The Gaussian profile 
is a good approximation for the far-wake region behind a body. In this region the 
mean velocity (ui) is given by

ui = 1 — Auce ClX2 (2.1.1)
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where Auc is the velocity deficit at the wake centerline, c\ is a scaling factor, and 
X2 is the distance from the centerline (the transverse coordinate). The factor c\ is 
chosen to be 0.69 in order to make the initial wake halfwidth (&,•) equal to 1.0 *

The mean temperature (T) is obtained from the mean velocity (Iq) by assuming 
that the mean flow for a perfect gas satisfies the steady boundary-layer equations, 
that the Prandtl number of the flow is 1.0, and that the ratio of specific heats (7) 
is constant. For these conditions, irrespective of the form of the viscosity and ther­
mal conductivity, the mean temperature depends only on the mean velocity. This 
approach was first used by Crocco [1932] and Busemann [1931] to study the com­
pressible boundary layer over a flat plate. The total enthalphy equation takes on the 
following form

au an ri ,# an
(2.1.2)

dH__dH
?ui&r + ?“2a^

d V dH
v _ 'dx2 V Pr dx2 ‘

which admits the solution

— 9
H — h + = constant. (2.1.3)

Setting H = H0 and substituting h = cpT into equation (2.1.3), the relation between 
temperature and velocity is obtained

T=1+0.5M2(7-1)(1-u?). (2.1.4)

Figure 2-1 shows the mean velocity profile, which does not depend on Mach number, 
for a velocity deficit of 0.692. Figure 2-2 shows several mean temperature profiles for 
the same velocity deficit and freestream Mach numbers ranging from 1 to 7. In the 
next section, the compressible, inviscid linear disturbance equations are derived for a 
plane compressible wake.

2.2 Derivation of the Linearized Inviscid Disturbance Equations

Lees &; Lin [1946] showed that inviscid compressible free shear flows are more un­
stable than their viscous counterparts because a point of inflection exists in the profile 
of the density vorticity product. Therefore, since the growth rate of the most unstable 
mode is of interest, the inviscid compressible disturbance equations are solved. The

* Sato & Kuriki [1961] considered Auc = 0.692 in their experiments; here we consider values 
ranging from 0.692 to 1.
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starting point for a linear stability analysis is the equations of continuity, momentum, 
and energy in Cartesian coordinates for a perfect gas. Neglecting molecular diffusion, 
these equations are given in the nondimensional form

dp d{puj) _ 
dt dxj

dpuj d(pujUj)
dt dxj

1 dp 
7M2 dx{

duidT dT , 
p~di + pUj~ =dxi dx. (2.2.1)

Any inviscid flow, perturbed or unperturbed, satisfies equation (2.2.1). By rep­
resenting the total flow as the sum of its mean and fluctuating parts, the stability of 
the mean flow subjected to time-varying disturbances can be studied. Superposed on 
the mean are fluctuations in the velocity components, density, and temperature, so 
that

b = b -f b, (2.2.2)

where b = [ui,U2,U3, p,T] is the total flow vector, b = [ui,t72,U3,p, T] is its mean 
part, and b = [itj, 1x2,U3,p,T] is its fluctuating part. Substituting equation (2.2.2) 
into equation (2.2.1), subtracting the mean part from equation (2.2.1) since it satisfies 
the steady boundary layer equations, and linearizing the disturbances, the disturbance 
equations become a system of partial differential equations

dp ,dui dp + U2y^- = 0
dx2

_diii _ dp__duj___ dilj___dui___dp____dp 1 dp
p dt + Ui dt + pUidxj + Ujpdxj + Ujpdxj + UjUidxj + UjUidxj ~ 7M2 dx

'’fr+?u-''fj+'slx|| = -(7" 1)(4^- (2-2-3)

If the disturbances are further assumed to behave as travelling waves, then in 
nondimensional form they are given as

b = b3De,'(QXi+^3-wt) (2.2.4)
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where b3D = U2, «3, p,T is a vector of complex eigenfunctions dependent only on
the transverse direction (xy), a is the streamwise wave number, /? is the spanwise wave

\

number, and u> is the frequency. In the most general case, the amplitude, b3D, the 
streamwise and spanwise wave numbers, a and /?, and the frequency, u>, in equation 
(2.2.4) can be complex. Since temporal instabilities are considered, a and /? are real 
quantities, while u; = u>r + iu>i is complex. The imaginary part of u> represents the 
growth rate of the disturbance, the real part its frequency. Disturbances are amplified 
when Ui is positive, damped when u;,- is negative, and are neutrally stable when u;,- is 
zero. The angle the disturbance makes with the streamwise direction is given by

0 = tan l(/3/a). (2.2.5)

By substituting equation (2.2.4) into equation (2.2.3), the system of partial dif­
ferential equations in equation (2.2.3) is reduced to a system of ordinary differential 
equations in x? for the amplitudes of the disturbances

ZCt
p[i(aui -u)ui +U1U2] =

_ v Dplp(au\ — u>)u2 =

_

p[i(au\ - u)f + iiit1] = -(7 - l)[?(aui + /3ii^) + Du2\. (2.2.6)

Here D is the differentiation operator d/dxy and 1 denotes known derivatives of the 
mean with respect to X2- An equation for p, the pressure disturbance, is obtained 
from the linearized perfect gas equation of state

p = pT + pT. (2.2.7)

According to equation (2.2.4), disturbances can either grow or decay exponentially 
away from the shear layer as X2 —» ±00. Only the decaying disturbances are physically 
meaningful; therefore, the boundary condition

ip(au\ — a>)u3
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as X2 —* ioo b —+ 0 (2.2.8)

is imposed. With the governing amplitude equations (2.2.6) in X2, and the homoge­
neous boundary conditions (2.2.8), the following eigenvalue problem is defined: for
a given a and (3, the eigenvalues, ur and are to be determined such that the

\

eigenfunctions of equation (2.2.6), b, satisfy the boundary conditions (2.2.8).

2.3 Solution of the Eigenvalue Problem

Two possible approaches to solving equations (2.2.6) are direct spectral methods 
and shooting methods. Direct spectral methods capture all of the unstable modes, 
whereas conventional shooting methods can only solve for a single mode at a time. 
However, direct spectral methods converge slowly as weakly amplified disturbances 
approach the neutral singular point (Leibovich & Lele [1985]). Shooting methods are 
required since symmetric disturbances at all wave numbers are weakly amplified at 
high Mach numbers resulting in slow convergence in a direct method. Shooting meth­
ods, however, require a reasonable initial guess for the eigenvalues. The drawbacks 
of both methods are overcome by a hybrid approach; the inviscid linear disturbance 
equations are solved with a direct spectral method to obtain an initial estimate of the 
eigenvalues for a shooting method.

Direct Spectral Method. In the direct spectral method used here, p is elimi­
nated from the momentum equations in (2.2.6) by substituting the linearized equation 
of state (2.2.7) into equations (2.2.6). The resultant disturbance equations are then 
cast as a 5 x 5 matrix eigenvalue problem

Ab3(j = (2.3.1)

where

A =

au\
aT

pjM'1
-i(T'+fD)

pjM2
(3T

0

ap

aui

0

0
(7-^l)tt

P

-z'(p/ + pD) pP 0

—utl 0 a
7m7

cmi 0
-iCp+pD)

pjM2

0 oiu\

-f(T' + r(7-l)D) Tp(i - 1) aui
(2.3.2)
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For a temporal instability b3(j = [p,ui,U2,U3,T] are the unknown eigenfunctions, 
and u is the unknown complex eigenvalue. The matrix A contains terms involving 
derivatives of known mean quantities denoted by 1 as well as derivatives of unknown 
eigenfunctions denoted by D. The mean velocity, temperature, and density pro­
files are differentiated in X2 using a spectral mapping developed by Cain, Ferziger & 
Reynolds [1981, 1984]. This scheme maps an infinite domain onto a finite computa­
tional domain in which the mapping function for a wake is given as

X2 = h(£) = —acot(7r£) (0 < £ < 1) (—oo < X2 < oo), (2.3.3)

where a is a grid stretching parameter. The first derivative operator for a wake is 
given by

df
dx2 j

N/2—l

E
n=-N/2+l

A 2 A Z » A
infn ~ - l)/n_i - -(n + l)/n+i J2wn£j (2.3.4)

where fn is a complex Fourier coefficient

/" = v E1^'><^i2’"{,• (2-3-5>

j=0

Here, a new differentiation operator is developed, which casts the derivatives of the 
unknown eigenfunctions as a product of an x iV matrix P whose elements are given 
by pij with the unknown eigenfunctions, bsj, where N is the number of collocation 
points in X2- For instance, the derivative of a function f(x2) is expressed as

N-l
(Df)e = E ?«/«;)• (2-3-6)

j=0

Substituting equation (2.3.5) into equation (2.3.4), applying the definition for a geo­
metric series and simplifying, the matrix elements pij in equation (2.3.6) become, for

j?l

1 f [1 cos(27r£j)] e_j J7r(£-j)i sin(27r£j)
P^ = “i -------- 9-------- (_1) COt N N

sin]^^ -;)] (2.3.7a)

sin]
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and for j = l

P<7
-H sin(2n£j)(N — 1)

N
)

(2.3.76)

The linear disturbance equations are solved at N collocation points resulting in a 
5N x 5N matrix, which can be solved by a standard library routine to determine all of 
the eigenvalues and eigenvectors for a given set of parameters. The parameters include 
the freestream Mach number, the mean velocity and mean temperature profiles and 
their first derivatives, the streamwise and spanwise wave numbers, and the ratio of 
specific heats.

Shooting Method. The shooting method employed here is a generalization of 
a method developed by Groppengiesser [1970] for compressible plane mixing layers. 
Sandham [1989c] extended the method of Groppengiesser to plane compressible free 
shear flows for both temporal and spatial stability problems. The essence of the 
method is the reduction of the system of five linear disturbance equations (2.2.6) to 
one nonlinear first-order equation of the Riccati type, by introducing a new variable 
X defined as

* = + = ^ (2-3-8> 

The advantage of the x transformation is that numerically, neutral supersonic dis­
turbances remain regular in the critical layer, whereas they become singular in U2, 
which is the variable solved for normally. The first-order equation in x is

where

dx
dx2

G =

Q (^i - £) _ xfGx + V) 
T (Hi - £) ’

T(a^ + (32) M2{au\ — u)2/^77.
2 2 ckz az

(2.3.9)

(2.3.10)

In the freestream, is zero and p and U2 decay at the same exponential rate. There­
fore, x must approach a constant value in the freestream since it is formed from the 
ratio of p and ii2- Setting and u1^ to zero at infinity in equation (2.3.9) yields the 
following boundary condition for x

X(,2 = ±oo) = a(^/o). (2.3.11)

Specifying the mean flow, a and /?, and providing an initial estimate for u>, equation 
(2.3.9) is integrated from X2 = ±oo to the centerline of the flow, X2 = 0, where x from
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both sides of the integration is matched. The eigenvalue u; is iterated upon using a 
Newton-Raphson scheme until convergence to a specified tolerance (10-7) is reached. 
To approximate the freestream, integrations are started ten initial half widths away 
from the wake centerline. At this distance, the eigenfunctions have decayed to 10-^. 

For the symmetric mode of the wake, U2 = 0 at £2 = 0, and x approaches infinity 
according to equation (2.3.9). Therefore, for this mode, the variable 1/x is integrated 
from infinity to £2 = 0 rather than the variable X-

The eigenfunctions are then obtained by integrating equations for p and 112 from 
the centerline out to the freestream. The details of the method are described in 
Sandham [1989c] and Groppengiesser [1970]. Sandham & Reynolds [1989a] used this 
approach to study the effect of Mach number on the stability of a compressible plane 
mixing layer.

2.4 Verification

Linear growth rates obtained from the direct and shooting methods were checked 
against each other. These comparisons are shown in Figure 2-3 at several different 
Mach numbers. Both methods are able to capture the most unstable mode. How­
ever, the spectral method has difficulty converging at high wave numbers where the 
disturbances are weakly amplified.

Comparisons are also made between the shooting method and measurements of an 
incompressible wake (Sato & Kuriki [1961]). The phase velocity for the two methods 
is shown in Figure 2-4 where the agreement is quite good. Finally, the magnitude 
of the ui eigenfunction, obtained from the shooting method, is compared with the 
results of Sato & Kuriki [1961] in Figure 2-5.

2.5 Results

The method described in the previous section was used to compute growth rates 
for antisymmetric and symmetric modes of two-dimensional and oblique waves in a 
plane compressible wake for freestream Mach numbers ranging from 0.01 to 7. The 
centerline velocity deficit was assumed to be 0.692 for all cases to match Sato & 
Kuriki [1961].
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The influence of increasing Mach number on the growth rate of two-dimensional 
antisymmetric and symmetric modes is shown in Figures 2-6 and 2-7. Both modes are 
damped with increasing Mach number. The maximum growth rate for a given Mach 
number shifts to longer wavelength, lower frequency disturbances with increasing 
Mach number. At M = 3 the growth rate of the most unstable antisymmetric mode 
is 57% of the incompressible growth rate. In agreement with Lees &; Gold [1966], the 
antisymmetric mode is found to be considerably more amplified than the symmetric 
mode for the range of Mach numbers considered. While the antisymmetric mode 
continues to be amplified at high Mach numbers, the symmetric mode is completely 
damped for two-dimensional disturbances above M = 2. Figures 2-8 and 2-9 show the 
frequency of the most unstable two-dimensional antisymmetric and symmetric modes 
as a function of Mach number.

The effect of obliquity on the growth rate of antisymmetric and symmetric modes 
is shown in Figures 2-10 and 2-11. For nearly incompressible flow (M = 0.01), the 
most unstable wave for both antisymmetric and symmetric modes corresponds to 
a two-dimensional wave as required by Squire’s theorem (Squire [1933]). For the 
antisymmetric mode, even as the Mach number increases, the most unstable wave 
remains a two-dimensional wave, i.e. 0 = 0. The effect of increasing obliquity at 
all Mach numbers is a reduction in the growth rate. The symmetric mode behaves 
differently from the antisymmetric mode at high Mach numbers. For the symmetric 
mode, above M = 1.2, three-dimensional waves of increasing obliquity are more 
amplified than two-dimensional waves.

Figure 2-12 shows a comparison of the growth rates of the most unstable three- 
dimensional antisymmetric and symmetric modes for Mach numbers ranging from 
0.01 to 7. Note, that for both modes there is a substantial reduction in growth rate 
with increasing Mach number. As the Mach number increases from the incompress­
ible limit, the most unstable antisymmetric mode remains a two-dimensional wave 
oriented in the streamwise direction. However, for M > 1.2, the most unstable sym­
metric mode becomes more oblique at higher Mach numbers, e.g. at M = 3, the most 
unstable symmetric mode is an oblique wave at 0 = 60 degrees. (0 is indicated only 
for the symmetric mode since 0 = 0 corresponds to the most unstable antisymmetric 
mode.)

In summary, for 0.01 < M < 7, the two-dimensional antisymmetric mode is al­
ways significantly more amplified than the symmetric oblique mode. This implies that
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the first nonlinear structures to develop from the disturbances will be two-dimensional 
for both incompressible and compressible wakes. This contrasts with mixing layers, 
where the dominant waves are three-dimensional for convective Mach numbers above 
0.6 (Sandham [1989a, 1989b]).

2.6 Eigenfunctions

Since the two-dimensional antisymmetric mode initiates instability in the wake, 
it is worthwhile to examine its linear eigenfunctions iq, U2, p, and T. These eigen­
functions are shown in Figures 2-13 to 2-15, normalized by the peak value of the

\
largest eigenfunction, for M = 0.01, M = 3, and M = 7. Note that iq, p, and T 
are antisymmetric about the wake centerline, while U2 is symmetric. The shape of iq 
agrees qualitatively with measurements by Sato & Kuriki [1961] for an incompressible 
wake behind a flat plate. The shape is characterized by twin peaks centered below 
and above the wake centerline. While the shapes of the velocity, temperature, and 
density eigenfunctions are qualitatively the same for the Mach numbers considered 
(0.01 < M < 7), the temperature and density eigenfunctions become more important 
as the Mach number increases. For example, for M = 3, the temperature eigenfunc­
tion is five times larger than the streamwise velocity eigenfunction. The temperature, 
density, and pressure disturbances are proportional to M2. Therefore, for a given 
velocity fluctuation, the relative importance of the temperature and density eigen­
functions increases with increasing Mach number.

While the eigenfunctions are employed in subsequent chapters as initial conditions 
in direct simulations, they are interesting in their own right. In particular, they are 
used to construct various terms in the linearized vorticity equation which can be 
compared with the nonlinear development of these same terms computed from direct 
simulations. The inviscid vorticity equation for u>3 is

D(^z) _ _ fdu\ du<2 \
Dt ^ ydaq dx2j

1 f dp dp dp dp 
+ /92 \dxi dx2 dx\ dx2

(2.6.1)

where the two terms on the right-hand side of equation (2.6.1) are compressible vortic­
ity source terms. The first term is the product of spanwise vorticity and the divergence 
of the velocity field, representing fluid compression and expansion. The second term
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is the baroclinic torque, produced by pressure and density gradient vectors which 
have a non-zero cross product.

Contour plots of the pressure, density, spanwise vorticity, baroclinic and dilata­
tional terms formed from these linear eigenfunctions are shown in Figure 2-16. The 
vorticity and density are assumed to be composed of the mean flow plus disturbances 
which have been artificially amplified by 50%. This is to bring out the structure in the 
flow which would otherwise be dominated by the mean flow. The vorticity contour 
plot shows that in each layer two elementary vortices will rotate around each other to 
form a larger vortex. The pressure and density contour plots show that the minima 
will be located where the vortex centres will form and the maxima will be located in 
between the centres where the saddle points will form. Because the pressure vector 
forms a non-zero cross product with the density in the saddle point region, baroclinic 
torques are created. They prevent the elementary vortices from rolling up, even in 
the linear region of the flow. Baroclinic torques become more significant at higher 
Mach numbers because the density and pressure gradients are proportional to M2. 
Similarly, the product of dilatation and vorticity is negative in exactly those regions 
where the vorticity is positive, cancelling the vorticity which is trying to roll-up. We 
believe it is these compressible vorticity source terms, which originate from linear 
stability theory, that may possibly account for the reduction in growth observed by
t r i n r-t s\ f .  ___________ ___•'L1 ^Kenaan ior a cumpicooiuic
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CHAPTER 3

MATHEMATICAL FORMULATION 
AND NUMERICAL METHODOLOGY

In this chapter, a new algorithm is presented for solving the three-dimensional 
compressible Navier-Stokes equations on a domain typical for time-developing plane 
wake and jet flows. The domain is homogeneous in the streamwise (rri) and spanwise 
(£3) directions, and is doubly infinite in the normal direction (£2) where a mapped 
Fourier method is used. Motivated by a desire to study the evolution of a wake, a 
spectral collocation method combining Fourier methods with a higher-order accurate 
time integration scheme was developed. Before the details of the numerical method 
are presented, a mathematical formulation of the time-developing compressible wake 
flow is given. The equations and the numerical algorithms put forth in this chap­
ter form the basis for the 2D and 3D simulation codes used to perform the studies 
described in subsequent chapters.

Note: All equations presented in this chapter have been nondimensionalized by 
characteristic physical scales as follows:

I1 = ¥
JUf)

£2 = —
_*

*8 = 7-bi
t =

^i/u\o

Ul =

p =

U1
U\o

U2 =
«lo

u3  ^3 
u\o

P =
T*T = —
To

P

e —

Plo

po pOu\o 10 u\o
where the asterisk denotes dimensional quantities. All length scales have been normal­
ized by the initial half-width of the wake, &,•; all velocities by the freestream velocity, 
uio, pressure by p0ui0^; internal energy by ui0^; and all other quantities by their 
respective freestream values.

3.1 Governing Equations

While linear theory predicts the growth rate and frequency of disturbances when 
their amplitude is small relative to the mean flow, it does not provide information
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about nonlinear interaction between different modes when the amplitudes of the dis­
turbances become large. Therefore, to investigate the nonlinear evolution of these 
disturbances, direct numerical simulations of the compressible Navier-Stokes equa­
tions were performed. As in linear stability theory, the mean flow was assumed to 
be parallel so that the wake could develop temporally as opposed to spatially. In the 
temporal reference frame, the observer moves with the large eddies in the flow as they 
move downstream. The temporal evolution is related to the spatial evolution by the 
Taylor hypothesis

xi = Uct (3.1.1)

where Uc is the speed at which the large eddies are convected. Consider the computa­
tional domain for a temporal wake, shown in Figure 3-1, with a Cartesian coordinate 
system oriented with x\ in the mean flow direction, X2 in the major gradient direc­
tion, and X3 in the spanwise direction. The flow is homogeneous in xi and X3 so 
periodic boundary conditions can be applied in those two directions. The major gra­
dient direction (12) is doubly infinite with freestream boundary conditions applied at 
X2 = ±00. The laminar mean velocity and temperature profiles are the same as those 
employed in the linear stability analysis (equations (2.1.1) and (2.1.4)). The choice of 
the computational box size, L\ and L3, was determined from linear stability theory 
and has to be large enough to support the growth of the longest wave

L\ = 2‘Knla, L% = Zirn/fi (3.1.2)

where n is the number of multiples of the fundamental wavelength. For example, in 
the pairing simulations n = 2. The wave number of the fundamental, a, corresponds 
to the most unstable wave predicted from linear stability theory. The spanwise wave 
number (3 corresponds to an amplified oblique wave oriented between 30 and 50 
degrees with respect to the streamwise direction.

In the direct simulations of the temporally-evolving wake, the following equa­
tions governing the conservation of mass, momentum, and energy for a compressible 
Newtonian fluid were solved without incorporating any turbulence models:

dp d(puj) 
dt dx,-

= 0

djpuj) djpujUj) _ dp drjj
dt dxj dx,- dxj (i = 1,2,3)

(3.1.3)

(3.1.4)

24



(3.1.5)
dEx d(ETUj) _ d(puj) dt^umj) _ dg^ 
dt dxj dxj dxj dxj

where the dependent variables are denoted by the vector s = [p, pu\, pu2, pu^, Ej']. 
The total energy, Ej*, consists of the sum of the kinetic and internal energies of the 
flow

771 f , uiui \
et = p(‘ + —) = ^ +

pU{Ui
1) ' 2

Assuming constant specific heats, the perfect gas equation of state is

(3.1.6)

P = (l~ l)/>e (3.1.7)

or

T = (3.1.8)

The components of the shear-stress tensor which appear in the momentum and energy 
equations are

T.. = JL
tJ Re

_ 2^ dukdui du.
dxj dx{ J Z 13 dx^

= 1,2,3)
(3.1.9)

where Re is the Reynolds number

Re _ Pouiobj 
Po

The nondimensional temperature dependent dynamic viscosity was approximated by 
a power law for dilute gases (White [1974])

(3.1.10)

// = rn (3.1.11)

where n = 2/3 for air. By assuming a unity Prandtl number and constant specific 
heats, the thermal conductivity is proportional to the dynamic viscosity

(7 — l)M^RePr

and the heat flux vector is given by

Qj =

(3.1.12)

(3.1.13)
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The governing equations were solved in conservation law form to insure that 
physically conserved quantities, mass, momentum, and energy, are also numerically 
conserved. Equations (3.1.3-3.1.5) are cast in conservation law form and written in 
a compact vector notation in which spatial derivatives appear only on the right-hand 
side of each of the equations (Anderson, Tannehill &; Fletcher [1984])

where

F =

ds
dt

dE dF dG
dxi dx2 ^ 0X3 ’

P 
pu

s = pv 

pw 

E'p

E =

G =

pui
pu\+p- rn 
pu\U2 — t\2
/JUIU3 - ri3
(Et + p)ui

pu2

pu\U2 — t\2 
pu\ +p-T22 

P‘U2U3 ~ T23
+ p)u2 - uiri2

PU3
puius - Tj3
/9U2U3 “ T23 
PUZ + P ~ T33

U1T11 ~ u2r12 “ U3T13 + 91 .

U2r22 - u3r23 + 92

(3.1.14)

(3.1.15)

(3.1.16)

(3.1.17)

(3.1.18)

(Et + p)us - U1T13 - «2t23 - “3T33 + 93.
This form of the equations is useful in understanding the time advancement scheme 
described in section 3.4.3.

3.2 Boundary Conditions

Periodic boundary conditions are imposed in the streamwise (xj) and spanwise 
(X3) directions for the time-developing wake

s(xi,X2,x3) = s(xi + Ti, x2, x3) (3.2.1)

26



s(xi,a:2,X3) = s(xi,x2,xs + L3). (3.2.2)

The boundary conditions imposed in the transverse direction (X2) are that the 
disturbances must decay to zero outside of the vortical region in the freestream

ir2{xi'X2,X3)
X2=±00

= 0. (3.2.3)

3.3 Initial Conditions

The initial conditions in the time-developing wake consist of linear eigenfunctions 
obtained from the linear stability calculations described in Chapter 2 superimposed 
on the laminar mean flow. The most unstable 2D Kelvin-Helmholtz mode, together 
with its first subharmonic (used in pairing simulations described in Chapter 4), and 
a pair of equal and opposite oblique 3D modes (used in 3D simulations described in 
Chapter 5), are superimposed on the mean velocity, temperature, and density profiles 
at the beginning of a simulation

b(xi,X2,Z3>0) = b(x2) + Real

+ e2Dsb2DS(x2)e^Qfa:iy/2+,?i^

+ ^3Db3D(x2)ei(''“'+^) (3.3.1)

where b2D and b2DS are the eigenfunctions of the two-dimensional modes corre-
\

spending to the streamwise wave numbers a and a/2; b3D is the eigenfunction of the 
oblique modes corresponding to the streamwise and spanwise wave numbers, a and 
/?. The parameter a is either 1.0 and 0.5 depending on whether a three-dimensional 
fundamental instability or a three-dimensional subharmonic instability is studied, re­
spectively. The relative phase angle between the fundamental and the oblique waves, 
denoted by 0, was varied between 0 and 7t/2. The relative phase angle between the 
subharmonic and fundamental modes, denoted by <j), also was varied between 0 and 
tt/2. The amplitudes of the fluctuations, e2j), £2DS> and e3D) were chosen to be 1-2% 
of the maximum freestream value.
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3.4 Numerical Method

The details of the numerical methods used are described in this section. The 
choice of method was motivated by a need to resolve the relevant spatial scales of 
motion for an unsteady transitional flow. Therefore, it was necessary for the nu­
merical method to be spatially as well as temporally accurate. Since the domain is 
periodic in the streamwise (xi) and spanwise (X3) directions, spatial derivatives in 
those directions were approximated spectrally. It is well known that spectral methods 
give the most accurate differentiation with the fewest number of grid points. Fur­
thermore, it is relatively inexpensive to compute discrete Fast Fourier Transforms 
(using the method of Cooley, Lewis & Welch [1970]) in those directions. In the major 
gradient direction (£2), a mapping procedure was employed which allowed the use of 
a spectral method for computing derivatives in the transformed coordinate system. 
Higher-order derivatives or cross derivatives were obtained by successive first-order 
differentiation, thereby eliminating the need for complex Fourier transforms in the 
second or third direction.

An explicit time integration method was employed since the wake is an advection- 
dominated flow. Furthermore, explicit methods are easier and less expensive to im­
plement than implicit methods. Incompressible equations are usually advanced in 
Fourier space. For compressible flows, it is much more efficient to advance the solution 
in physical space, because the compressible equations contain many more products 
than the incompressible equations. The disadvantage of taking products in physical 
space is that aliasing errors occur if the spatial resolution is inadequate. Therefore, 
the simulations must be overresolved.

3.4.1 Approximation of Streamwise and Spanwise Derivatives

Since periodic boundary conditions were invoked in the streamwise (x^) and span- 
wise (X3) directions, a discrete Fourier expansion was used to represent spatial deriva­
tives in those directions. For example, in the streamwise direction, an arbitrary func­
tion f(x\) can be expressed as

Ni/2—l

/(*y)= £ fneik'"*u (3.4.1.1)
n=-Ni/2
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(3.4.1.2)

where the derivative of / is analytical

Ah/2-1
£ ikiJn**"** ■

n=-Ni/2

In equations (3.4.1.1) and (3.4.1.2), fn is the complex Fourier coefficient at a stream- 
wise wave number k\n = 2irn/L\. The grid point in the x\ direction is defined as 
x\j = jAxi, where Aaq = L\/Ni. Each derivative requires a forward transform to 
compute the Fourier coefficient, /„,

1 Ni—l
A = »r £ f(xij)e~'kinXli (3.4.i.3)

1 j=0

which is then multiplied by ikin before the inverse transform is taken. Derivatives in 
the spanwise direction were obtained in a similar manner.

Second-order derivatives and cross derivatives which appear in the viscous stress 
tensor in the momentum and energy equations were obtained by successive first-order 
differentiation.

3.4.2 Approximation of Transverse Spatial Derivatives

In the transverse direction (12), the boundary conditions are applied at infinity. 
Some means of handling boundary conditions infinitely far away is required. One 
approach is to apply freestream boundary conditions at a large but finite distance 
away from the vortical region. By so doing, the boundary conditions imply unphysical 
image solutions which can cause errors in the computation. Alternatively, the image 
flows are kept infinitely far away by employing a procedure developed by Cain et 
al. [1981, 1984]. This procedure maps the doubly infinite extent of the x^ direction 
onto an interval of finite extent in the computational coordinate £. In the transformed 
coordinate system, a spectral method is then used to compute derivatives.

Metrics appear in the transformed derivative of a function /(a^) under a mapping 
to a new coordinate system, where l/h! is the metric

df_
dx2

df d{
d£hr (3.4.2.1)

d£ dx2

In the transformed coordinate system, the derivatives are represented by a discrete 
Fourier transform in which the grids are uniformly spaced

29



(3.4.2.2)
Ar2/2-l

=-N2/2

where k2n = 2irn and —N2/2 < n < N2/2 — 1. However, if ^ is represented 

spectrally and then multiplied by an analytic metric, aliasing errors occur. This is 
especially true if the metric is also represented by a Fourier series expansion with the 

same wave number range as the function itself. Cain tried to avoid aliasing problems 
inherent in the differentiation operator by devising a mapping function whose metric 

is represented completely by only a few Fourier modes with wave numbers which are 

small in comparison with those of the function, /, itself. The cotangent function is 

a suitable mapping function for this reason, and moreover, it clusters points in the 

vortical region where higher resolution is required

X2 — h(£) = —acot(7r£) (0 < £ < 1) (—00 < X2 < 00). (3.4.2.3)

The product of the metric and ^ is carried out in Fourier space to avoid aliasing 

errors. Here we present only the first derivative operator for a wake since the details 

of the mapping are explained in Cain et al. [1981, 1984]

df_
dx2 Z2j

Ni/l-l

E
n=—7V2/2+l

. ? i{n - 1) ? i(Ti + 1) - 
m/n /n-l o Jn+l s**2"6 (3.4.2.4)

where modes with a magnitude greater than N/2 — 1 are truncated to prevent alias­

ing. The second derivative of / with respect to X2 is obtained by applying equation 

(3.4.2.4) to the first derivative of /.

In the mapped coordinate £, the boundary conditions at X2 = ±00 are periodic 

since the wake is symmetric about the centerline, 22 = 0, and since the disturbances 

are required to vanish in the freestream. The periodic boundary conditions at 22 = 

±00 are not satisfied by the metric defined by the Cain mapping. This is due to 

the truncation of terms in the Fourier series which are greater than the magnitude 

of N2/2 - 1. In order for the boundary conditions to be satisfied at the edge of the 

domain, all derivatives with respect to 22 must be zero at C- = 1, that is
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dx2 0=1
= 0

1 N2/2-l

= ; E }'n + c c-
n=0

. N2/2—2 .
1 ^ r . ITl-, z

(3.4.2.5)

n=0

+ - D + - IJlW-l + C.C.

In equation (3.4.2.5), the coefficients of /„ between 0 < n < 7^2/2 — 1 must be
A t (jjC

zero for any arbitrary value of fn in order for
0=1

= 0. In the first term on the

right-hand side of equation (3.4.2.5), the coefficients of fn for 0 < n < A^2/2 — 2 are 
zero since the Fourier coefficients of the metric cancel each other out. However, since 
the Fourier series for is truncated at ./V2/2 — 1, the metric at n = ./V2/2 — 1 is 
incomplete. Therefore, in the second term on the right-hand side of equation (3.4.2.5) 
the coefficient of /;v2/2-l ^oes n°l sum zero> and the boundary condition at infinity 
is not satisfied. The Cain mapping algorithm was modified to insure that derivatives 
of the dependent variables are zero at the edge of the domain by setting to zero the 
individual terms of the Fourier coefficient for f\r /o 1. The effect of truncatine the 
energy contained in this mode is negligible since the energy contained in the wave 
number, n = ^2/2 — 1, is very small compared with that contained in lower wave 
numbers.

Therefore, the modified first derivative operator becomes

df 1 1 V- r,„ i *(« + !)? }J2wn£<d^,2i = al E W"-—2—
N7/2-3

‘ E
n=0

V2 
2

2V 2

+ -2)/^_2 - -3)/^_Q)e V2 ,32 2
rN-y

(3.4.2.6)

-I- c.c.

The stretching parameter, a, was selected to adequately resolve the initial eigenfunc­
tions, and to allow maximum resolution in the spreading wake. Typical values of 
a are between 8.3 and 12.3 for a wake. This allocates over 50% of the collocation 
points to the vortical region of the flow. Furthermore, since the gradients in the
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dependent variables are likely to be similar in all directions after the vortices have 
rolled-up, the spatial resolution requirements will be similar in all three directions. 
Therefore, the grid spacing was taken to be the same in all three directions, i.e. 

Axi = Ax2min = Ax3.

3.4.3 Time Advancement

Numerical simulations of transition in compressible free shear flows require a 

considerable amount of spatial resolution to resolve the different scales of motion. 

Using a spectral collocation method, a large number of ODE’s needs to be solved, of 
up to 107 equations for a 128^ simulation. The large number of equations is a result 

of the coupling between the temperature and velocity fields for compressible flows. A 
total of nineteen words per grid point are needed: five for the dependent variables, 

five for the terms on the right-hand side of equations (2.1.13-2.1.18), and nine for 
forming intermediate quantities. For a 1283 simulation this amounts to 39.8 million 

words of storage. Furthermore, temporal accuracy is needed to capture the unsteady 

nature of transition characterized by unsteady vorticity and strain rate fields. Given 

these constraints, it was desirable to employ a minimal-storage, higher-order accurate 
time advancement method such as Wray’s [1988] “compact” third-order Runge-Kutta 

scheme. This scheme is compact in the sense that it requires only two storage locations 
per dependent variable at a given grid point compared with traditional third-order 
Runge-Kutta methods which require three storage locations. At a given time, the 

two storage locations contain the dependent variable, sj, and the right-hand side of 

the governing equations (2.1.13-2.1.18), Rp

A brief description of the implementation of Wray’s algorithm is given here. 

Third-order accuracy was obtained by simultaneous computation and storage overlay­

ing of Rj and sj at each of the three substeps. At each substep, a new right-hand side 

was formed in memory location SDATA (see Table 3.1). This was accomplished by 
taking a prescribed linear combination of the dependent variable and the right-hand 
side, both evaluated at the previous substep, while simultaneously overwriting the 

previous contents in memory location S2DATA with a prescribed linear combination 

of the previous dependent variable and right-hand side.
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The solution of the Navier-Stokes equations was considered in the following vector 
form

^ = R(s,0 (3.4.3.1)

where s contains the dependent variables and R contains the right-hand sides of 
equations (2.1.13-2.1.18). The contents of the two memory locations following each 
substep are shown below in Table 3.1.

TABLE 3.1 CONTENTS OF SDATA AND S2DATA FOR EACH SUBSTEP

Time SDATA storage location S2DATA storage location

tn R(sn,tn) s"
t' = tn + A At r' = aiAfR(sn,fn) -f-s" 

r" = a2AtR(r',t') + s'
s' = AAfR(sn,f”) -f sn

t" = t' + (q2 + ^i)A< s" = AAtR(s,,f/) -|- s'
t"+l = tn + At rn+1 =a3AfR(r,,,f,/) + s,/ sn+1 = AAtR(s",f") + s"

The coefficients a,-, and /?,• in Table 3.1 were chosen to obtain third-order accuracy 
and are given as follows:

oq = 2/3, 02 = 5/12, 03 = 3/5, t
A = 1/4, A = 3/20, A =3/5. ^ j

Since Runge-Kutta is an explicit method, there are stability restrictions. These 
restrictions are based on a Courant number determined by solving the following model 
advection/diffusion equation (Blaisdell [1989]):

d<l)
dt dx{ dxj dxj ’ (3.4.3.3)

where £ = ii/pdi — l)M^RePr) and summation over i from 1 to 3 is assumed. 
Taking the Fourier transform of equation (3.4.3.3), the following ordinary differential 
equation for ^ is obtained

d6
(3.4.3.4)

where the complex eigenvalue, A is given by

A = {—zfcju,- — akiki}. (3.4.3.S)

The complex eigenvalue, A, is the sum of a diffusive part

Aj — otkiki (3.4.3.6)
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and a convective part

Since |Aj + Ac| < |Aj| + |Ac|, the maximum timestep is bounded by |Aj|max+|Ac|maa.. 
Therefore the timestep, At, is obtained from

PFT
A< < tt-.-------pr-i----- , (3.4.3.8)

\Ad\max ' \Ac\max

where CFL is the numerical stability requirement by Courant, Friedrichs & Lewy 
[1928]. For linear equations, third-order Runge-Kutta methods are stable for CFL 
numbers less than The maximum eigenvalue, Aj and Ac, is obtained at the
highest wave number in each direction

Ac = —ikiui. (3.4.3.7)

ki~ Axi (l-1’2’3)

and at the maximum velocity

Ui=C + |lij | (i = 1,2,3)

(3.4.3.9)

(3.4.3.10)

where c is the sound speed. Substituting equations (3.4.3.9) and (3.4.3.10) into equa­
tions (3.4.3.6) and (3.4.3.7) and (3.4.3.8), the timestep is obtained as

CFL
At = —

\Ad\max l^dmax
where the convection-dominated terms are given by

(3.4.3.11a)

|Ac \max
_ fWl\ \ul\ |«3h , ( 1 , 1 , 1 \
(+ + j + ^ (^+A^+A^J

1/2

= TT (3.4.3.116)

and the viscous diffusion-dominated terms are given by

2 Z1
max = 7T

1 1 1 
+ T—o + (3.4.3.11c)

p(7 — l)M2i?e/5r Ax2 J
The Courant number was fixed at 1.7 and the timestep, At, was updated after each 
time step (3 substeps per time step).

3.5 Code Implementation and Data Management

If there was enough memory on the Cray-XMP, the structure of the code would 
be straightforward. It would involve time advancing the right-hand side of equations
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(3.1.14-3.1.18) according to the third-order Runge-Kutta method. The difficulty is 
that there are only 2 million 64 bit words (2 MW) of central memory available on 
the Cray-XMP while 30MW of memory are required for a 128 x 128 x 128 simula­
tion. Therefore, a data management scheme was needed to efficiently load portions 
of the data field from a secondary storage device into central memory when the data 
is used to perform a computation. The solid-state storage device (SSD), which can 
store up to 32 MW, was chosen over disk-based mass storage because of its much 
faster access times. To reduce storage requirements on the SSD, all data fields were 
packed from 64-bit words to 32-bit words. While packing reduced the precision by 
two, all computations were actually done with 64-bit precision. Some difficulties arose 
due to packing the data in which round-off error was accumulating in the terms on 
the right-hand side of equations (3.1.14-3.1.18). For all other wave numbers besides 
the “oddball” f, the round-off error was eventually dampened by viscosity. How­
ever, there is no mechanism for removing round-off error which enters the “oddball” 
wave number; this energy accumulates and aliases back into the lower wave numbers 
through the nonlinear terms. The error associated with the oddball manifests itself 
as two-delta wave oscillations in the solution which grow and affect the solution. This 
problem was overcome by zeroing out the contribution of the oddball wave number 
in the right-hand side of equations (3.1.14-3.1.18) after each substep. The algorithm

r'vl /~\t r/-\s\ uroo /"l ,oi r/ol r\y~\ 
VxVl. TV CbU VXV V/XV/^-f

,A loir Til oio/^*a11 fl QfiQl ot-»/-1 o A• -jr .«_sx«x>xuvxv^xx ^x o'wvy j ixixxvx
. . ^o/^-niriF i/on /oT 1 F o i ■mn.l zono/on F o F i/on 
VXVskJV/X X£S UXYXXX VX X X WO X XX X£S X V^XXXV^XX U CX U1'ISXX

is given in the Appendix.
The computations and database were carefully structured to use the SSD effec­

tively. The code is structured in horizontal and vertical passes through the data in 
order to optimize the manner in which Fourier transforms are taken. All the data to 
be transformed must simultaneously reside in core memory. For example, in PASS2 
where x\ and X2 derivatives are taken, all x\ — x^ planes of data for a given X3 grid 
must be loaded into core. Several X3 grid points of x\ — x% planes of information can 
fit into core at the same time. The data is arranged in “drawers” comprised of data 
for all values x^, a few values of X2 (M2), and a few values of X3 (M3). Therefore, to 
load a particular x^ — X2 plane of data into core, a column of M2 drawers of data are 
read in for a given constant X3. Likewise, for Fourier transforms taken in a xi — X3

f The oddball wave number refers to the highest wave number in each direction, where modes 
range from ;:^i- + 1,..., — 1, and ^ is the oddball. The derivatives at this wave number
are undefined since the corresponding wave number at ki = does not exist for an even transform. 
Therefore, the derivative of this wave number is set to zero.
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plane, a row of M3 drawers of data are read in for a given value of X2- Typically, 
several 12 planes (M2 = 4) of x\ —13 data or X3 planes (M3 = 4) of xi —12 data can 
fit into core together. In the time advancement subroutine the solution is advanced 
drawer-by-drawer since no spatial derivatives are taken. This concept of opening and 
closing drawers of data as they are needed in each of the the passes and in the time 
advancement module is illustrated in Figure 3-2.

Each substep of the time advancement code consists of three passes through the 
data denoted by PASSl, PASS2, and PASS3. PASS1 and PASS3 are horizontal passes 
through the data in which the computations are performed in x\ — X3 planes corre­
sponding to a given X2- Similarly, PASS2 is a vertical pass through the data in which 
the computations are performed in x\ — X2 planes corresponding to a given X3. There 
are three main databases. The primary database, SDATA, contains the right-hand 
side of equations (3.1.14-3.1.18) at each substep, the database S2DATA contains the 
dependent variables at each substep, and the database WORKDATA contains inter­
mediate quantities needed to form the right-hand side from one pass to the next. 
The information in WORKDATA is read in at the beginning of a pass, overwritten 
with new information in the course of forming the terms on the right-hand sides of 
equations (3.1.14-3.1.18), and stored for the next pass. The code was written in VEC- 
TORAL, a computing language written by Wray [1984] which facilitates vectorization 
and data management. Table 3.2 lists the order the computations are performed in 
each pass through the data.

Table 3.2 Code Structure and Data Management

PASSl

1) Unpack SDATA.
2) Filter energy in oddball wave number.
3) Compute 1/^x3, ^2/^x3, du^/dx^.
4) Compute time step.
5) Pack WORKAREA.

PASS2

1) Unpack SDATA and WORKAREA.
2) Compute pi.
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3) Compute k.
4) Compute components of stress tensor.
5) Compute dT/dxi, dT/dx2-
6) Form partial right-hand side of total energy equation

-[dEs/dxi + dF^/dx2\.

7) Form partial right-hand side of momentum equations

-[dEi/dxi + dFi/dx2]

where i = 2,3,4.
8) Form total energy flux in £3 direction G5.
9) Form momentum flux in X3 direction G2, G3, G4.

10) Form partial right-hand side for continuity equation

-[dpui/dxi -(- dpu2/dx2\.

11) Pack partial right-hand side of governing equations into SDATA. Pack G2, G3, 
G4, G5 into WORKAREA.

PASS3

1) Unpack SDATA and WORKAREA.
2) Form remainder of right-hand side for energy equation

—[^5/^x1 + dFr)/dx2 + dG^/dx^].

3) Form remainder of right-hand side for momentum equations

-[dEi/dxi + dFi/dx2 + dGi/dx^]

where i = 2,3,4.
4) Form remainder of right-hand side for continuity equation

—[dpui/dxi + dpu2/dx2 + dpu^/dx^].

5) Pack completed right-hand side into SDATA.
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3.6 Resolution Check (Aliasing Errors)

In incompressible flows, where the governing equations contain only double prod­
ucts of the dependent variables, some sort of dealiasing is always applied (Rogallo 
[1981]). However, in compressible flows, where the governing equations contain triple 
products of the dependent variables, variable fluid properties, and divisions, it is not 
practical to dealias the solution. Alternatively, for compressible flows the solution is 
overresolved to minimize aliasing errors. To ensure the solution is well-resolved, the 
energy spectra in x\ and £3 is monitored at several stages in a simulation. This was 
accomplished by computing the kinetic energy of each mode given by

£(*2) “i(a> x2>0)
2

(3.6.1)

where summation over i from 1 to 3 is implied and u,-(a, £2, (3) is the Fourier transform 
of Uj(£;[, £2, £3) in the £1 —£3 plane. Figures 3-3a and 3-3b illustrate the distribution 
of kinetic energy of the various modes for a 3D simulation performed at a Mach 
number of 3 at two different times in the simulation. The energy of each mode 
on one side of the wake, and also at the centerline was examined. The energy is 
displayed on a logarithmic scale in which only energy above a certain floor level is 
displayed (1.0 • 10-®® or 1.0 • 10-1^). Note that the distribution of energy in Figure 
3-3a is such that all the wave numbers are well-resolved, i.e. there is no build up 
of energy at the high wave numbers and there is a cascade of energy from the low 
wave numbers to high wave numbers. This spectra is representative of a well-resolved 
simulation. In contrast, Figure 3-3b illustrates a poorly-resolved simulation in which 
energy contained in the high wave number modes has aliased back into the domain, 
causing an accumulation of energy at the high wave numbers. Note the hump in the 
energy spectra at k\ = 11. The energy spectra was monitored during the course of 
a simulation and additional modes were included if the resolution became marginal. 
This was accomplished by transforming the data into wave space, adding more Fourier 
modes, and transforming back to physical space with the increased number of modes.

3.7 Code Verification

In this section, tests performed to validate the direct simulation codes are de­
scribed. One of the main difficulties with validating a compressible code is that there
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are not many analytical solutions to check the code against. The two tests avail­
able for compressible codes are (1) linear growth rate check, and (2) diffusion check. 
The structure of the two-dimensional code is identical to the three-dimensional code. 
Therefore, only the three-dimensional code was verified. In the first test, the numer­
ical simulation results were compared with the exact solution of the incompressible 
laminar wake. The purpose of this test was to make sure the time advance and dif­
fusion portions of the code were working properly. In the second test, linear growth 
rates obtained from numerical simulations at several different Reynolds numbers were 
compared with those computed from an inviscid linear stability analysis. This test 
provided the minimum Reynolds number at a given Mach number below which the 
least stable inviscid wave would be damped.

3.7.1 Incompressible Laminar Wake

For parallel flow, the governing equations for a two-dimensional, incompressible, 
time-developing far wake reduce to a diffusion equation

dud d^ud
-W = i,-a4 (3.7.1.1)

where ip = p/pRe and ud = ui0(l — ui)/Auc. The boundary conditions imposed in 
this problem are

lim u£f(a;2,f) = 0 (3.7.1.2)
Xl—KX)

u'd(0,t) = 0. (3.7.1.3)

The problem was solved for p/pRe =100 using the following number of grid points 
in each direction

Ni = 128, ^2 = 128, iV3 = 4.

The stretching parameter in the Cain mapping, a, was set to 8.3 and the initial 
temperature, density, and pressure were assumed to be uniform. The mean velocity 
is given by equation (2.1.1) where the velocity deficit at the centerline was assumed 
to be 1.0. The computation was run for 200 time steps from f = 0 to f = 1.48 at 
which time the numerical solution was compared with the analytical solution,
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Uiix^t) = JLe-*yw, (3.7.1.4)

The comparison is shown in Figure 3-4 at f = 1.48. The excellent agreement indicates 
that the time advance and diffusion portions of the code work properly.

3.7.2 Linear Growth Rate

As another test of the accuracy of the code, linear growth rates were computed 
by direct simulation of the Navier-Stokes equations and then compared against those 
computed from linear stability theory. The direct simulation was forced with the most 
unstable eigenfunctions predicted from linear stability theory. To insure the absence 
of nonlinear interactions, the initial amplitude of the fluctuations was taken as 0.01% 
of the maximum freestream value. The simulations were performed for 1 <= M <= 3 
at Re = 1500, where viscous effects are small so that comparisons could be made with 
inviscid stability calculations. Since the modes grow independently of each other in 
the linear limit, very few modes are required; the simulations were performed with 
TVi = 16, N% = 128, and = 4. The stretching parameter, a, was set to 8.3. The 
growth rate was obtained by assuming each mode in the spectral decomposition of 
the dependent variables can be represented by a travelling wave

ui(a, X2, t) = P(a, X2)e~lQct (3.7.2.1)

where c is the complex wave speed, and P is the complex mode shape.
Taking the natural log of both sides of equation (3.7.2.1) and separating the real 

and imaginary parts, the growth rate is obtained

Real[ln(tii(a,X2,t))] = In |.P| -|- ac{t (3.7.2.2)

where the growth rate, ac,-, is given by the time rate of change of the real part of the 
natural log of the Fourier coefficients of the dependent variable at a given X2 location 
in the wake.

Comparisons of the growth rates computed by the two methods are shown in 
Figure 3-5 for the most unstable two-dimensional wave at M = 1, 2, and 3 for Aitc = 
0.692. The growth rate is given by the slopes of the curves. The initial deviation 
from the correct growth rate for M = 1 is a result of the error associated with fitting 
the eigenfunctions with a spline onto the computational grid in the direct simulation.
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After the initial transient diminishes (by t = 15), the growth rate computed from 
direct numerical simulation is within 1% of the linear stability prediction.

Since the actual simulations are performed at finite Reynolds numbers, the growth 
rates will be lower than the inviscid growth rates. Below a critical Reynolds number, 
the growth rates are stable and the flow will remain laminar. Therefore, the simu­
lations must be performed above the critical Reynolds number in order for the flow 
to become unstable. In Figure 3-6, the influence of Reynolds number on the growth 
rates is shown for M = 1 and M = 3. Note the stabilizing influence of viscosity 
for both cases. Note also that the critical Reynolds number increases as the Mach 
number increases (Rec = 50 for M = 1 and Rec = 100 for M = 3).
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CHAPTER 4

RESULTS OF TWO-DIMENSIONAL SIMULATIONS

Two-dimensional direct simulations, based on the formulation and numerical 
methodology described in the previous chapter, were used to study two different 
problems. The results of these simulations are presented in this chapter. First, the 
influence of Mach number on the nonlinear development of a compressible wake is in­
vestigated. The simulations were forced initially with the eigenfunctions of the fastest 
growing mode predicted from linear stability theory. The results of the simulations 
show the same physical mechanism responsible for the reduced linear growth rates 

is also responsible for the slow nonlinear roll-up of spanwise vortices at high Mach 

numbers. Second, the effect of varying the relative phase angle between a fundamen­

tal and its subharmonic is explored as one possible means of controlling the evolution 
of a wake. The asymmetric development of the subharmonic is discussed for three 

limiting angles.

4.1 Influence of Mach number on the Evolution of Large-Scale Structures

Beyond the region of exponential growth where the disturbances are governed 

by linearized Navier-Stokes equations, the Kelvin-Helmholtz instability leads to the 

nonlinear roll-up of spanwise vortices of alternating sign, the so-called Karman vortex 
street. This vortex street consists of regions of recirculating spanwise vorticity con­
nected by saddle points. Direct simulations were performed at several Mach numbers 
to determine the effect of compressibility on the development of spanwise vortices 
in the the vortex street. In similar studies by Sandham [1989c] and Lele [1989], 
compressibility issues concerning mixing layers are addressed.

To illustrate the effect of Mach number, the results of two simulations are de­

scribed, one at Af = 1, Re = 600, and the other at M = 3, Re = 600. An explanation 
is offered for the reduction in growth rate at high Mach number based on informa­

tion drawn from contour plots of the baroclinic and dilatational source terms in the 

vorticity equation for a compressible flow.
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4.1.1 Physical and Numerical Parameters

The simulations performed at M = 1 and M = 3 are selected as representative 
cases to illustrate the effect of Mach number. A more appropriate measure of com­
pressibility is the relative Mach number, Mr, which is based on the velocity deficit at 
the wake centerline and the freestream sound speed. For an initial velocity deficit of 
0.692, the relative Mach number at M = 3 is Mr — 2.076 which is supersonic, while 
the relative Mach number at M = 1 is Mr = 0.692, which is subsonic. Note that the 
freestream Mach number remains constant as the wake evolves downstream, while 
the relative Mach number decreases since the velocity deficit decreases. Therefore, 
compressibility has its largest influence near the trailing edge of the plate and loses 
its influence as the wake develops downstream. Unlike the laboratory wake which 
develops downstream, the numerically simulated wake develops temporally. The sim­
ulations were performed at Re = 600 to insure that the disturbances predicted from 
an inviscid linear stability analysis would be amplified. The governing equations, 
boundary conditions, and numerical techniques detailed in Chapter 3 were employed 
in these simulations. The computational domain was discretized into 64 modes in 
x\, and 128 modes in x^- The Cain stretching parameter, a, was chosen to be 8.3 so 
that Aa;i = Ax2mjn. The length of the box in the streamwise direction was selected 
to support the growth of the least stable fundamental mode. The CFL number was 
taken to be 1.7.

4.1.2 Initial Conditions

For the time-developing wake, initial conditions need to be prescribed. The initial 
conditions consist of the mean flow, described in Chapter 2, forced with the least

v
stable two-dimensional eigenfunctions, b2D> °f the inviscid laminar wake

b(x!,a:2,0) = b(x2) + Real e2Db2D(a:2)etQ;Xl (4.1.2.1)

Since the eigenfunctions are complex-valued, only the real parts are retained to ensure 
that the resulting disturbances are real-valued. For these simulations, the amplitudes 
of the eigenfunctions, e2D> were assumed to be 2.0% of the maximum freestream 
value. These eigenfunctions were shown earlier in Figures 2-13 through 2-15.
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4.1.3 Evolution of the Temperature Field

The evolution of the temperature field for M = 1, Re = 300 is shown in Figure 
4-1. At low Mach numbers the temperature and velocity fields are weakly coupled 
so the temperature behaves almost like a passive scalar. Therefore, the temperature 
(or density) field can be compared to flow visualization experiments. Initially, the 
temperature field is Gaussian, with the maximum temperature located near the wake 
centerline, X2 = 0. Note that as the wake rolls-up due to the initial instability, strong 
temperature gradients develop near the saddle point region on either side of the wake. 
These gradients lie along the diverging separatrix of the saddle point which becomes 
steeper as the wake evolves. Initially, the maximum temperature is located at the 
wake centerline. As the wake rolls-up the maximum temperature shifts to the saddle 
points on either side of the wake. The temperature field at M = 3 behaves like 
the lower Mach number case with the gradients aligned along the saddle point. The 
primary difference between the two cases is that the peak temperature is much greater 
for Af = 3 even after the fundamental has saturated. The maximum temperature for 
M = 3 is 2.0To at f = 96, while for M = 1 is only 1.1T0 at f = 40.

4.1.4 Mean Velocity and Temperature Fields

The mean velocity and temperature fields are shown in Figure 4-2 at several 
times. Each curve was obtained by averaging the data in the homogeneous direction 
x\ at a given instant in time. In Figure 4-2a, note that the streamwise velocity deficit 
decreases rapidly during the linear stage of development even at Re = 600 where 
viscous effects are small. While the mean velocity profile remains nearly Gaussian 
even in the nonlinear roll-up stages, the temperature deficit shown in Figure 4-2b 
changes character at £ = 86. The initially Gaussian mean temperature profile exhibits 
two peaks on either side of the wake centerline. The location of these peaks is in 
the vicinity of the saddle points on either side of the wake shown in Figure 4-1. 
This behavior is consistent with the results of Antonia, Browne &; Bisset [1987] who 
measured the temperature variance for a heated far wake of a cylinder and found 
that the peak temperature variance lies along the diverging separatrix of the saddle 
point. Since both the velocity and temperature deficits relax very quickly, we expect 
that strong compressibility effects will appear early in the simulations. Late in the 
simulation, the wake should behave more like its incompressible counterpart.
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4.1.5 Energy spectra

The time history of the modal energy of the fundamental is shown in Figure 4-3 
for M = 3 and M = 1, where the total energy of this mode is defined by

rco .
Ea — j Ui(ot, X2)uj (a, X2)dx2- (4.1.5.1)

7—oo

Here summation over i from 1 to 2 is implied, Ui(a, a;2) denotes the Fourier transform 
of Ui(x\,X2), and f denotes the complex conjugate. For both Mach numbers, the 
fundamental initially increases exponentially, followed by a period of slower nonlinear 
growth, and finally by a period of saturation and decay. The duration of the region 
of exponential growth for M = 3 is almost twice that of M = 1. This is consistent 
with the much lower growth rate at M = 3 predicted from linear stability theory. 
Note that the spanwise vortices roll-up and saturate at < = 80 for M = 3 compared 
with = 40 for M = 1. Furthermore, for M = 3 the fundamental saturates at a lower 
level than for M = 1 since the mean flow, which supplies energy to the fundamental, 
is less energetic at later times. From the energy spectra, it is noted that except 
for an initial delay in the roll-up process due to the reduced linear growth rates 
experienced at higher Mach numbers, the nonlinear development of the compressible 
wake is similar to its incompressible counterpart.

4.1.6 Turbulence Intensities

The onset of nonlinearity in both compressible and incompressible wakes is char­
acterized by the same phenomenon. For the two cases simulated, the nonlinear in­
teraction of the disturbances produces higher harmonics, particularly at the first 
harmonic corresponding to twice the frequency of the fundamental. This can be seen 
in distributions of the r.m.s velocity fluctuation, uirmg, for Af = 3 shown in Figure 
4-4 at linear and nonlinear stages in the development. In the linear stage of develop­
ment (t = 32.4), the distribution is characterized by two peaks in the r.m.s. velocity 
fluctuation centered above and below the wake centerline. In the nonlinear stage of 
development (t = 86.0), the distribution has grown and is characterized by the ap­
pearance of higher harmonic components at the wake centerline. The first harmonic 
is primarily responsible for the large fluctuation at the wake centerline at later times 
as shown in Figure 4-5 by its distribution in the linear and nonlinear regions. At
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t = 32.4, the first harmonic is negligible compared with the fundamental mode. How­
ever, at < = 86.0, the first harmonic develops three peaks centered below, above, and 
at the wake centerline.

The emergence of the first harmonic in the nonlinear region bears qualitative 
resemblance to measurements of «irms in an incompressible wake behind a flat plate 
(Sato & Kuriki [1961]). The main difference is that, for higher Mach numbers, the 
saturation of the fundamental occurs at much later times in the development due to 
much lower linear growth rates.

4.1.7 The “Culprit” - Baroclinic and Dilatational Effects

Insights into the mechanisms causing the decreased growth rate at M = 3 were 
obtained by examining contour plots of the terms which appear in the inviscid com­
pressible vorticity equation

<9^3 , rr <9^3

dt c dx\
dus du%

= -(ui - Uc)-------«2

1
+ “2

dx\ 
dp dp

dx2
dp dp

^3

dx\ dx2 dx\ dx2

du\ du2
dx2 (4.1.7.1)

Here, the rate of change of spanwise vorticity is defined in a frame of reference moving 
with the vortex centres, Uc- The rate of change of spanwise vorticity is the net 
result of the terms on the right-hand side of equation (4.1.7.1): (1) the first two 
terms are the vorticity advected relative to the observer, (2) the third term is the 
product of dilatation and vorticity representing fluid compression or expansion, and 
(3) the fourth term is the baroclinic torque. In an incompressible two-dimensional 
flow, there is no vorticity production mechanism and advection is solely responsible 
for the roll-up of the vortices. However, in a compressible two-dimensional flow, in 
addition to advection, dilatational and baroclinic vorticity source terms exist which 
redistribute vorticity in the flow. Therefore, it is the net effect of all three terms 
which determines the rate at which the vortices roll-up. Contour plots at M = 3 
of spanwise vorticity, pressure, density, baroclinic torques, and the dilatational term 
are shown in Figures 4-6 to 4-10 for linear (t = 32), nonlinear (t = 68 and t = 86), 
and saturated (t — 96) stages in their development. Contour plots of the vorticity 
advection term in a frame of reference moving with the vortex centres are shown in
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Figure 4-11 for the nonlinear stage of development. In Figure 4-11, the solid and 
broken lines represent counterclockwise and clockwise senses of rotation, respectively.

The roll-up of vorticity is shown in Figure 4-6. As the linear disturbances grow, 
the vorticity in each layer rolls-up nonlinearly resulting in a Karman vortex street by 
t = 86. In the absence of any vorticity source terms, the roll-up is a result of advection 
of vorticity from the saddle region to the cores along the diverging separatrix of the 
saddle as shown in Figure 4-12. This is a different topology than for a mixing layer 
in which fluid is advected from both upstream and downstream of the saddle point.

The primary effect of compressibility is to delay the roll-up of vortices and to 
redistribute the vorticity in the core. At high Mach number, this arises mainly due 
to the misalignment of the pressure and density gradients in the saddle point region. 
In Figure 4-8 note that strong density gradients exist along the diverging separatrix 
in the saddle region. These gradients are perpendicular to pressure gradients which 
are positive upstream of the saddle and negative downstream of the saddle (Figure 
4-7). Therefore, baroclinic torques arise which oppose the advection of vorticity up­
stream of the saddle and enhance the advection downstream of the saddle (Figure 
4-9). Similarly, dilatational effects caused by strong temperature gradients across 
the diverging separatrix of the saddle point also annihilate vorticity upstream of the 
saddle point (Figure 4-10). The combined effect of the baroclinic and dilatational 
terms is to prevent vorticity from the opposite side of the wake from being advected 
into the vortex core (Figure 4-12). Together, the baroclinic torque and dilatational 
term represent 15-20% of the vorticity advection in a frame of reference moving with 
the vortex centres. Therefore, at high Mach numbers where density and tempera­
ture gradients are significant, the growth rate of the vortices is reduced, since fluid 
entrainment from the opposite side of the wake is inhibited. Note that these source 
terms are present even in the linear stages of development preventing the formation 
of vortices. These effects also account for the reduced linear growth rates predicted 
from linear theory at high Mach numbers.

In summary, the two-dimensional simulations show that the physical mechanism 
responsible for the observed reduction in growth rate of compressible wakes (Kendall 
[1962]) is the same in both linear and nonlinear regimes. Linear theory not only 
predicts lower growth rates at high Mach numbers; it also provides an explanation 
for why they are reduced. The eigensolutions used to produce baroclinic torques and 
dilatational terms, described in Chapter 2, contain important information about the
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physics of the flow. In particular, these terms prevent vorticity in the saddle region 
from rolling-up. Moreover, this effect is more pronounced at high Mach number where 
density gradients become larger.

4.2 Influence of Relative Phase Angle on Forced Subharmonic Perturba­
tions

As a means of controlling transition, the effect of varying the relative phase dif­
ference between a fundamental and its subharmonic is determined from 2D direct 
numerical simulations of a low Mach number wake (M = 1).

4.2.1 Initial Conditions

In two-dimensional pairing simulations, the mean profiles, b, were forced with the
eigenfunctions of the least stable two-dimensional mode, and with the eigenfunc-

\

tions of its subharmonic, b2DS

b(a;i,X2,X3,0) = b(x2) + Real e2Db2D(;c2)e,aXl 

+ e2DSb2DS(;r2)e^aXl/2+,:^
(4.2.1.1)

The phase angle of the subharmonic relative to the fundamental, (j>, was taken to be 
0, tt/4, and tt/2. Initially, the amplitudes of both modes, C2D an<^ e2DS were made 
equal to 2.0% of the maximum freestream value.

4.2.2 Background

In a mixing layer, there are two families of relative phase angles between the 
subharmonic and the fundamental mode which are of particular importance (Patnaik, 
Sherman & Corcos [1976].) These angles correspond to even and odd multiples of x/2. 
If the relative phase angle is an odd multiple of 7r/2, the subharmonic will alternately 
displace the vortices up and down while keeping their same strength. This results in 
their rotation about each other which eventually leads to their pairing. If the relative 
phase angle is an even multiple of 7t/2, the subharmonic will alternately strengthen 
and weaken the vortices without moving their centres. This leads to shredding of the 
weaker vortices in the strain field of the stronger ones.
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The wake differs from the mixing layer in that it has two layers of vorticity with 
an opposite sense of rotation. Therefore, a vortex in one layer is influenced by its 
neighboring vortices in the same row as well as by counterrotating vortices in the 
opposing layer. Meiburg [1987] considered the wake as two separate rows of vortices 
(i.e. two mixing layers of opposite sign), each subjected to separate subharmonic 
perturbations. From inviscid vortex dynamics considerations, he showed that by 
varying the relative phase angle between a fundamental and subharmonic in each 
layer an unsymmetrical development of the subharmonic can occur.

4.2.3 Results of Subharmonic Forcing

In the present work, instead of treating the wake as two mixing layers in which 
each layer is subject to its own subharmonic disturbance, the entire mean wake pro­
file was perturbed with its fundamental and subharmonic modes as determined from 
a linear stability analysis. Therefore, the relative phase angle was held constant 
throughout the wake. The time evolution of the pairing process for relative phase 
angles of 0, 7t/4, and 7t/2 is shown in contour plots of spanwise vorticity and temper­
ature in Figures 4-13 to 4-15. Initially, the fundamental mode experiences a greater 
amplification than the subharmonic mode. Then the fundamental mode rolls-up and 
saturates, forming a staggered vortex street by < = 49. Subsequently, the subhar­
monic mode dominates, and for <f) equal to 0 and tt/2 (Figures 4-13 and 4-15), two 
fundamental vortices in either the upper or lower layer rotate around each other and 
finally pair. For (j) equal to tt/4 (Figure 4-14), two vortices in both the upper and 
lower layers rotate around each other and pairing occurs in both layers. Note that 
while the spanwise vorticity contours clearly indicate the occurrence of pairing, it is 
less apparent in the accompanying temperature contour plots. Therefore, it would 
be difficult to tell from experimental visualizations based on smoke, dye, or schlieren 
methods whether increases in scale in the wake are due to hydrodynamic instabilities 
or whether they are due to pairing events such as shown here. Determining the cause 
would require additional frequency spectra.

The observed asymmetry in the subharmonic development can be explained qual­
itatively from inviscid vortex dynamics considerations. The influence of the funda­
mental mode on the mean flow is to generate two staggered rows of vortices forming 
a Karman vortex street. To first approximation, this can be thought of as a quasi­
steady state which is then perturbed by a subharmonic disturbance, since the growth
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rate of the subharmonic is initially slower than the fundamental. Three different pos­
sible routes for pairing were identified depending on the initial relative phase angle 
between the subharmonic and fundamental modes.

In the first case (Figure 4-16a), the phase angle is an odd multiple of 7t/2. The 
solid line represents the fundamental forcing which produces an alternating vortex 
street indicated by the clockwise and counterclockwise arrows. The dashed line rep­
resents the subharmonic forcing which is shifted 7r/2 from point A. In the upper layer 
the vortices are shifted up and down from their equilibrium positions (as indicated by 
the arrows) by the subharmonic, and, due to the induced differential velocity, rotate 
about each other in a clockwise manner. In the lower layer, the vortices are not dis­
placed from their original positions since the zeros of the subharmonic coincide with 
the centres of the vortices. This results in the vortices being alternately shredded and 
strengthened by the strain field. In Figure 4-16a the vortex at point B in the lower 
row is being shredded while the vortex at C is being strengthened.

In the second case (Figure 4-16b), the relative phase angle is an even multiple 
of 7r/2. By the same arguments used for the first case, this leads to vortices which 
are shredded and strengthened in the upper layer, and which rotate about each other 
in a counterclockwise manner and pair in the lower layer. Therefore, the vortices in 
Figures 4-13 and 4-15 are exact mirror images of each other.

In the third case (Figure 4-16c), the relative phase angle is between 0 and 7r/2. 
Here, both layers will rotate about each other and pair since the zeros of the sub­
harmonic do not coincide with the fundamental vortices. Thus, pairing occurs on 
both sides of the wake for angles between 0 and 7r/2. However, there is no angle for 
which the subharmonic development occurs at the same rate for both sides of the 
wake due to the staggered arrangement of the fundamental vortices. The behavior 
of the vortices described by these arguments is consistent with the observations of 
the subharmonic development for the three cases. Any relative phase angle can be 
characterized by one of these three limiting cases.

From the temperature contours shown in Figures 4-13b to 4-15b, note that the 
introduction of a subharmonic causes the width of the wake to double (20 times the 
initial half-width), compared with the width at the time of fundamental saturation 
(10 times the initial half-width). The doubling of the wake width occurs regardless 
of the relative phase angle between the fundamental and subharmonic. Also note
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that after pairing has occurred, the temperature gradients still lie along the diverging 
separatrix of the saddle point on each side of the wake.

The time-history of the streamwise kinetic energy of the disturbances of the fun­
damental and subharmonic modes is shown in Figure 4-17 for relative phase angles 
of 0, 7r/4, and tt/2. It is seen that the fundamental grows exponentially initially and 
then rolls-up, saturates, and decays. After the fundamental has saturated, the sub­
harmonic takes over until it also saturates at which time pairing occurs. Note that 
the peaks in the fundamental and subharmonic development occur at the same time 
for all three phase differences. The subharmonic for </> = tt/4 saturates at a slightly 
higher level than for </> = 0 or <^ = 7r/2. Also, note that there is no difference in the 
development of either the fundamental or subharmonic for </> = 0 and <f> = tt/2; by 
integrating the energy across the entire width of the wake, information concerning 
the asymmetry in the pairing process is removed.

In summary, it was determined that pairing does occur in a wake if the subhar­
monic is forced; this results in a doubling of the width of the wake. Relative phase 
angles of 0 and 7t/2 lead to pairings in the lower and upper halves of the wake, respec­
tively, while angles in between lead to pairings on both sides of the wake. Moreover, 
there is no angle <j) for which pairing can occur at the same rate on both sides of the 
wake due to the staggered nature of the fundamental mode. Finally, in addition to 
temperature or density fields, frequency spectra are needed to tell whether pairing or 
hydrodynamic instabilities account for the change in scale observed in the far wake.
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CHAPTER 5

THREE-DIMENSIONAL MORPHOLOGICAL DESCRIPTION

In this chapter, three-dimensional simulations based on the formulation and nu­
merical methodology described in Chapter 3 are used to study the morphology of a 
perturbed compressible plane wake. The three-dimensional perturbations consist of 
unstable two-dimensional and oblique modes obtained from the linear stability analy­
sis described in Chapter 2. Specifically, the sensitivity of the morphology of a wake to 
(1) the relative phase angle between a fundamental and a pair of oblique modes, (2) 
the streamwise wavelength of the oblique modes, and (3) Mach number is examined. 
The vorticity dynamics and energy spectra of the flow are studied in detail at various 
stages in the evolution.

5.1 Motivation and Objectives

In Chapter 4 it was determined that the Kelvin-Helmholtz instability results in 
the formation of two rows of alternating vortices for both incompressible as well as 
compressible wakes. Beyond this initial instability, however, there still remains a 
great deal of uncertainty concerning the nature of the subsequent three-dimensional 
motions which develop in a wake.

Dating back to the work of Townsend [1956] and Grant [1958], there have been 
numerous observations of three-dimensionality in a wake. Based on time-averaged 
correlations in the far wake of a cylinder, Townsend [1956] and Grant [1958] deduced 
that spanwise variations in a wake may be pairs of counter-rotating streamwise vor­
tices. However, it is difficult to extract details about a dynamically varying flow from 
time-averaged measurements made at only a few stationary points in the flow.

More recent experiments involving smoke visualization or diffusion-controlled re­
actions (Breidenthal [1980], Perry k, Lim [1978], Antonia, Browne k Bisset [1987], 
Cimbala, Nagib k Roshko [1988], and Meiburg and Lasheras [1988]) have begun to 
shed some light on detailed features of the three-dimensional flow. Although direct 
measurements of vorticity or strain rates are still unavailable, these instantaneous 
distributions of smoke or dye do indicate that there exist spanwise variations in the
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large-scale motions of a far wake of either a cylinder or plate. Two dominant types 
of motion can be inferred from photographs of these visualizations.

The first of these motions are vortex loops which appear as regions in the far wake 
of a cylinder that are marked by heavy concentrations of dye (Antonia, Browne & 
Bisset [1987]). These regions resemble three-dimensional bulges which are comprised 
of clusters of vortex loops. These vortex loops are inclined at approximately ±45 deg 
with respect to the wake centerline and the tips of the bulges have a tendency to 
curl over in the direction of the centerline. Roshko [1976] had conjectured that the 
topology of a wake may in fact be a vortex loop, with the sides of the loop consisting 
of the counter-rotating streamwise vortices which Grant [1958] had earlier alluded 
to, and the top and bottom consisting of oppositely-signed spanwise vortices. Figure 
5-1 illustrates the interaction of the streamwise vortices with the spanwise vortices to 
form closed loops. The exact manner in which these vortex loops originate, the way 
in which the streamwise and spanwise vortices interact with each other, and the way 
in which they evolve are issues which are still unresolved.

The second of these motions is a “honeycomb” structure of which an example is 
shown in Figure 5-2 which is a plan view of a far wake of a cylinder in which the 
smoke wire was placed on one side of the wake (Cimbala, Nagib & Roshko [1988]). 
Note that in the upper right-hand corner of the photograph, there are hairpin-like 
vortices similar to those observed in boundary layers. These hairpin vortices are 180 
degrees out-of-phase with the preceding vortices in the streamwise direction. This 
staggered peak-valley-splitting arrangement, also known as the “H-type” secondary 
instability in boundary layer and channel flows, may be responsible for the structures 
Cimbala observed in a wake. This secondary instability could arise from the interac­
tion of a pair of oblique subharmonic modes with a Karman vortex street in which 
the streamwise wave number associated with the oblique modes is half that of the 
fundamental.

Our objective is to determine under what set of initial conditions does the for­
mation of vortex loops or staggered hairpin vortices occur, how do they develop, 
what parameters influence their development, and what influence, if any, does Mach 
number have on the morphology of the three-dimensional structures?

To provide a definitive answer to these questions, the sensitivity of a wake sub­
jected to various three-dimensional disturbances was explored via direct numerical
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simulations. In particular, the sensitivity of the large-scale structures to (1) the rela­
tive phase angle between the fundamental and oblique modes, and (2) the streamwise 
wavelength of the oblique modes was considered. Recent mixing layer simulations 
(Riley, Mourad, Moser & Rogers [1988]) show that the resultant large-scale structure 
in an incompressible mixing layer is very sensitive to the initial relative phase angle 
between a fundamental and a pair of oblique modes. Their results show that the 
presence of vorticity in the braid region in the developed state of a mixing layer is 
largely dependent upon the initial presence of streamwise vorticity in the stagnation 

region. We also wish to determine whether relative phase angles can similarly be 
used to control the evolution of a wake. In addition to phase effects, the streamwise 
wavelength of the three-dimensional disturbances has been found to be important in 
secondary stability problems associated with channel flows (Herbert [1983]). If the 
streamwise wavelength of the three-dimensional wave is the same as for the fundamen­

tal, then “peak-valley” lambda vortices develop which are aligned in the streamwise 
direction (xi). On the other hand, if the streamwise wavelength is twice that of the 
fundamental then a staggered pattern develops. Conceptually, these two different 
patterns are illustrated in Figure 5-3. We also wish to consider whether oblique sub­

harmonic disturbances can account for the staggered vortices that Cimbala observed 
in an incompressible wake.

5.2 The Three-Dimensional Initial Forcing: Mean Flow and Disturbances

If the mean flow is excited by a low level of broadband noise, then the first 
disturbance to emerge would be the mode corresponding to (o, 0), where a is the wave 
number associated with the least stable linear stability mode. From two-dimensional 

simulations, this mode was shown to be responsible for the initial roll-up of the 
spanwise vortices and for the generation of higher harmonics. In this chapter, three- 
dimensional disturbances are considered in which a pair of oblique modes at equal 

and opposite angles are superimposed on the fundamental and the laminar mean

b(xi,X2,X3,0) = b(x2) + Real e2Dt>2D(a:2)e^a:ri+0^

+ c3Db3D(a:2)e,(/a;Cl+/?i:3) + esD^SD^)6*^*1
(5.2.1)
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In the nomenclature used here, the oblique modes are denoted by (a, ±/?) where /? 
is the spanwise wave number. Three-dimensional modes corresponding to the funda­
mental (c*,/3) and subharmonic (a/2,/3) families of disturbances are considered where 
/ = 1 corresponds to the fundamental and / = 1/2 corresponds to the subharmonic. 
The oblique subharmonic instability is analogous to the “helical pairing” mode for 
a row of Stuart vortices (Pierrehumbert & Widnall [1982]). The shapes of the dis­
turbances were provided by the complex linear eigenfunctions, b2D(:r2) and t)3£)(z2). 
Although the eigenfunctions are complex-valued, only the real parts are used to en­
sure that the resulting disturbances are real-valued. The phase difference between 
the two-dimensional and three-dimensional disturbances is denoted by 0. The two- 
dimensional disturbances are in-phase with the three-dimensional disturbances for 
0 = 0 and out-of-phase for 0 = 7r/2. In addition to the phase, the amplitudes of the 
eigenfunctions, C2D an(l e3D> need to be specified. Here, they are assumed to be 5.0% 
of the maximum freestream value.

5.3 Physical and Numerical Parameters for 3D Simulations

To illustrate the different three-dimensional motions which evolve from these pre­
scribed initial conditions, the following discussion will focus on four of the many sim­
ulations that were performed. The first two simulations were performed at Re = 300 
and M = 1. The third simulation was performed at Re = 100 and M = 1, and the 
fourth simulation was performed at Re = 300 and M = 3. The first two simulations 
address the effect of phase on the evolution of large-scale motions in a wake. In the 
first simulation, the oblique modes (a, ±/?) are in phase with the fundamental (o, 0). 
In the second simulation the oblique modes (a, ±(3) are 90 degrees out-of-phase with 
the fundamental (o:, 0). In the third simulation the influence of a three-dimensional 
subharmonic on the development of a wake is addressed in which the oblique modes 
(a/2, db^) are in-phase with the fundamental (a,0). Finally, in the fourth simula­
tion the effect of Mach number is studied in which the oblique modes (a, ±/3) are in 
phase with the fundamental. The parameters for each of these four simulations are 
summarized in Table 5.1.

In the remaining sections of this chapter, the results of these four simulations 
are presented. Cases 1 and 2 are compared in section 5.5, Case 3 is considered in 
section 5.6, and Case 4 is considered in section 5.7. To aid in the understanding of
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TABLE 5.1 SUMMARY OF PARAMETERS FOR 3D SIMULATIONS

Case a /? I 0 Re M Mr

1 0.750 0.433 1 0 300 1 0.692
2 0.750 0.433 1 90 300 1 0.692
3 0.750 0.433 0.5 0 300 1 0.692
4 0.570 0.433 1 0 300 3 2.076

the complicated three-dimensional motions which evolve from these initial conditions, 

contour plots of various quantities are presented at several stages in the evolution. 

The interaction of the two-dimensional fundamental mode with the oblique modes 

is explained by monitoring the history of their modal energies along with instanta­

neous two-dimensional energy spectra. The vorticity dynamics and temperature field 

are studied to gain some insight into the evolution of three-dimensional large-scale 

motions.

Note: In the following discussion, both three-dimensional perspective plots and 

two-dimensional contour plots of various quantities are presented. There are five 

planes in the flow field which are of particular interest and will be referred to fre­

quently. The locations of these five planes are shown in Figure 5-4 in a perspective 

plot of the vorticity norm, , at a time when the fundamental mode has sat­

urated. The first two planes correspond to spanwise slices (A-A and B-B) which 

are located midway between the peak in streamwise vorticity. In these two planes 

of symmetry, the streamwise vorticity is zero. These are the only planes of symme­

try in the spanwise direction due to the initial orientation of the oblique waves and 

to the spanwise periodic boundary conditions. The third plane also corresponds to 

a spanwise slice (C-C) which passes through the maximum streamwise vorticity in 

the saddle region. The fourth plane corresponds to a transverse slice (D-D) which 

passes through the saddle point region and the roller in the top half of the wake. 

Finally, the fifth plane corresponds to a streamwise slice (E-E) which passes through 

the streamwise location where the vorticity of the roller in the top half of the wake 

is a maximum.
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5.4 Morphology of the Initial Disturbance Field

The morphology of the initial disturbance field is worth examining since much 
of the phenomena observed later in the nonlinear stages in the development of the 
compressible three-dimensional wake can be traced back to the structure of the initial 
disturbance field comprised of linear eigenfunctions and the Gaussian mean.

Since the fastest growing modes for both low and high Mach number wakes are 
antisymmetric (Chen, Cantwell, & Mansour [1989a]), the streamwise and spanwise 
components of the velocity disturbance field along with the temperature, density, and 
pressure disturbances are all antisymmetric. The only symmetric eigenfunction is the 
transverse component of the velocity field. Therefore, the initial streamwise vorticity 
field (u;i) is symmetric about the wake centerline (x2 = 0), while the initial pressure 
(p) and spanwise vorticity (u^) fields are antisymmetric about x% = 0. The initial 
pressure and streamwise vorticity fields are shown in Figure 5-5.

From two-dimensional simulations, it is noted that the pressure maximum serves 
as a good marker of regions of high strain rates associated with the saddle points 
and the pressure minimum serves as a good marker of rotational flow associated with 
the cores of the spanwise vortices. If pressure is employed as a similar marker for 
a three-dimensional field, the high strain rates delineated by the pressure maxima, 
will stretch the streamwise vorticity initially present at that location. Therefore, 
the streamwise vorticity in the saddle region will alternate in sign in the streamwise 
direction as shown in Figure 5-6. Due to the pair of oblique disturbances imposed, the 
streamwise vorticity pattern in the spanwise direction (0:3) will also alternate in sign. 
This accounts for the counterrotating pairs of streamwise vortices in the developed 
wake.

The prescribed initial conditions offer the possibility of forming vortex loops. Due 
to the initial mean vorticity field, the spanwise vortices which develop have a clockwise 
sense of rotation in the upper half of the wake and a counterclockwise sense of rotation 
in the lower half of the wake. Moreover, since they eventually roll-up in regions 
corresponding to the minima in pressure, two staggered rows of spanwise vortices are 
created. Vortex loops can form if a pair of counterrotating streamwise vortices in 
the spanwise direction interacts with a pair of alternating spanwise vortices to form 
a continuous loop. Subsequent loops in the streamwise direction xi will be aligned 
in the spanwise direction (£3) since the initial streamwise vorticity field alternates in 
the streamwise direction. If the initial disturbances consisted of streamwise vortices
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instead of oblique waves, then successive loops in the streamwise direction would be 
staggered 180 degrees apart (Buell & Mansour [1989]).

5.5 Effect of Phase Lag

To illustrate the effect of phase on the development of three-dimensional motions, 
results from Cases 1 and 2 are compared.

The modal energy history of the fundamental and oblique modes is shown in 
Figure 5-7 for both simulations. The modal energy is defined as

£«,/?=/ Ui(a,X2,P)u\{a,X2,P)dx2 (5.5.1)
J—oo

where summation over i from 1 to 3 is implied, u,(a, £2,/?) denotes the Fourier trans­
form of u,(xi, X2, X3) in the (£1-23) plane, and f denotes the complex conjugate.

In both simulations, the fundamental first grows exponentially at the same rate 
predicted by linear stability theory, then grows more slowly as the spanwise vortices 
roll-up nonlinearly, and finally saturates at the same convective time, f = 49. The 
fundamental saturates at a higher energy level (0.1) for Case 1 compared with (0.08) 
for Case 2. In Case 1, the oblique modes first grow exponentially; this is followed 
by a period when their energies level off and actually decrease slightly during the 
fundamental roll-up and saturation, and by a second period of exponential growth on 
the newly rolled-up base state. In contrast, the oblique modes for Case 2 experience 
a longer initial exponential growth period saturating at a higher energy level than for 
Case 1. Furthermore, the oblique modes for Case 2 are not unstable to the rolled-up 
fundamental base state. The oblique modes saturate at / = 64 for both simulations. 
In Case 1, the mean flow is more efficient at feeding energy to the fundamental than 
it is for Case 2. The opposite is true for the oblique modes.

Instantaneous two-dimensional energy spectra for Case 1 is shown in Figure 5- 
8 and is representative of both simulations. Initially, only three modes are excited 
corresponding to the fundamental and the two oblique modes. The energy spectra 
corresponding to the wake centerline (£2 = 0) and to one side of the wake (£2 = 2) 
is shown in Figures 5-8b,c at a time when the fundamental has saturated. Note that 
the generation of higher harmonics occurs at approximately the same rate in both 
the streamwise and spanwise directions. This is an indication that velocity gradients
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in the streamwise and spanwise directions are of the same order of magnitude. Addi­
tionally, note that the simulation is well resolved in both the streamwise and spanwise 
directions.

The two-dimensional and three-dimensional saturated states of the vorticity field 
are shown in contour plots of the vorticity norm, y'Wju*,- (Figure 5-9). Two streamwise 
periods and one spanwise period are shown in these perspective plots. The contour 
level was chosen to bring out both the vorticity found in the saddle region as well as 
the vorticity in the vortex cores. The peak vorticity is located in the vortex cores, 
while the streamwise vorticity in the saddle region is approximately 40% of the peak 
value.

For both simulations, the initially perturbed vorticity field rolls-up into two rows 
of staggered vortices as vorticity is advected from the saddle region into the cores of 
the spanwise vortices. The spanwise vortices become progressively more deformed in 
the spanwise direction as they roll-up, due to their own self-induction caused by their 
curvature. At a time when the fundamental has saturated, note that this deformation 
occurs primarily in the (X3-X2) plane for Case 1 and in the (£1-2:3) plane for Case 2 
(Figure 5-9a,c). As the spanwise vortices evolve beyond the saturated fundamental 
state, their self-induction causes them to rotate in a direction opposite to the rotation 
of the vorticity. Note, that at a time when the oblique modes have saturated, this 
retrograde rotation has moved the plane of the deformation in each simulation by 7r/2. 
The self-induction mechanism observed here was originally suggested by Hama [1963] 
as a possible mechanism for the amplification of three-dimensional small disturbances 
in the presence of background shear.

In addition to the spanwise vortices, note that there exists counter-rotating pairs 
of streamwise vorticity downstream of the saddle region on each side of the wake. 
This vorticity is inclined along the principal axis of positive strain and, due to the 
strain field generated by the spanwise vortices, is stretched around the downstream 
spanwise roller. The streamwise vorticity is stretched around the downstream vortex 
first because the saddle points connecting oppositely-signed spanwise vorticity are 
closer to the downstream vortex. Due to intense stretching, the streamwise vorticity 
in the saddles is six times larger than its initial value of 0.06 when the fundamental 
saturates. After the fundamental saturates, the vorticity in the saddle region winds 
itself into the vortex cores for Case 1, while remaining in the saddle region for Case 
2.
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This difference in behavior of the streamwise vorticity in the saddle region can 
be explained in terms of the streamwise location of the maximum strain rate relative 
to the streamwise vorticity extrema illustrated in Figure 5-10. Again the pressure 
maximum is used to mark the regions of maximum strain rate near the saddle point 
located in between the spanwise rollers. Contour plots of the pressure and stream- 
wise vorticity fields for the two simulations are shown in Figure 5-11 early in the 
simulation (t — 30) before the 2D wave has saturated. Note, that if the streamwise 
vorticity extrema are out-of-phase with the pressure maxima (Case 1), then stream- 
wise vorticity is not fixed or “pinned-down” at the saddle point where the high strain 
rates can stretch the vorticity equally on both sides of the saddle point. Instead, the 
streamwise vorticity located downstream of the saddle point is stretched and eventu­
ally advected into the vortex cores. The streamwise vorticity upstream of the saddle 
is merely advected into the vortex core of the adjacent upstream roller. In contrast, 
if the streamwise vorticity extrema are in-phase with the pressure maxima (Case 2), 
then streamwise vorticity is stretched equally on both sides of the saddle point, and 
remains there until viscous dissipation eventually balances the vortex stretching in 
that region. To better illustrate the alignment of the pressure and streamwise vor­
ticity fields, a plan view (D-D) of the pressure and the streamwise vorticity fields is 
shown in Figure 5-12 at f = 49. Note the alignment of the pressure maxima with 
the streamwise vorticity in the saddle region, and the alignment of the the pressure 
minima with the streamwise vorticity in the vortex cores.

There are several things to note about the developed streamwise vorticity field 
in the saddle point region which are best described in a perspective view of the 
streamwise vorticity, along with the side, plan, and end views shown in Figure 5- 
13. (The streamwise vorticity for Case 1 is similar to Case 2 at a time when the 
fundamental saturates; therefore, only the streamwise vorticity for Case 2 is shown.) 
There are several things to note about the developed streamwise vorticity field in the 
saddle point region. First, at a given spanwise location (C-C), streamwise vorticity 
alternates in sign in the streamwise direction as a result of the initial conditions 
described earlier in section 5.4. Second, in a plane perpendicular to the streamwise 
direction, the velocity induced by neighboring streamwise vortices tends to rotate the 
flattened vortices about their centers as shown in Figure 5-13d. This is similar to 
the dynamics associated with the streamwise vorticity in a mixing layer originally 
studied by Lin & Corcos [1984], and more recently by Rogers & Moser [1989]. The
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vorticity in the saddle region is flattened due to the strain field of the spanwise rollers. 
The vorticity in the saddle region did not collapse, however, due to the low Reynolds 
number considered here.

For both simulations, the streamwise vorticity in the saddle region is stretched by 
the plane strain field generated by the spanwise rollers. During the early development 
of the streamwise vortices, the strain field connects spanwise rollers of the same 
sign forming two staggered mixing layers shown in Figure 5-14a. Subsequently, the 
topology changes such that the strain field connects spanwise rollers of opposite sign 
as shown in Figure 5-14b. Note that the streamwise vorticity in both topologies is 
aligned with the diverging separatrix of the saddle point.

For the three-dimensional wake simulated, the principal source of streamwise 
vorticity is due to vortex stretching terms in the vorticity equation

DM
Dt (S'liuq + 5i2^2 + ‘S'l3w3) + viscous terms (5.5.2)

where ^n, 512, and 5i3 are components of the strain rate tensor. These terms 
are concentrated in the saddle point region during the early stages of development, 
and in the cores of the spanwise rollers in the later stages of development after the 
fundamental has saturated. Contour plots of these stretching terms for Case 1 are 
shown in Figures 5-15 and 5-16 at £ = 30 and at < = 64. At i = 30, note that the 
intensification of the streamwise vorticity in the saddle point region is due to the 
plane strain generated by the rollers, and S\2^2- At f = 64, the streamwise
vorticity in the saddle region for Case 1 has largely been advected into the spanwise 
rollers and the predominant concentration of streamwise vorticity now resides inside 
the rollers. The increase in circulation of the streamwise vorticity inside the rollers is 
mainly due to the spanwise distortion of the spanwise rollers in which u>3 is converted 
to uq through the term This term is shown in Figure 5-16d. Note, that there
is very little streamwise vorticity produced in the saddle point region at f = 64 and 
that very complicated vortex stretching mechanisms occur inside the rollers.

Shown in Figure 5-17 are streamwise (£3-0:2) cuts of uq and 8%$ at t = 64. 
Note that in addition to the remainder of the streamwise vorticity in the saddle 
region, the distortion of the rollers produces a quadrupole of streamwise vorticity 
inside the rollers. This quadrupole of vorticity produces large negative strain rates 
in the spanwise cores, corresponding to vortex suppression regions in between the 
streamwise vortices (denoted by the symbol “C” in Figure 5-17b). Weaker regions
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of u>3 enhancement corresponding to positive strain rates are found on either side 
of the suppression regions. Perspective plots of the vortex stretching term, 
are shown in Figures 5-18a and 5-19a and is shown in Figures 5-18b and 5-19b. 
A spanwise cut of and u>3 is shown in Figure 5-20. As a result of the strong
negative strain rate S33, spanwise vorticity is removed in the center of the core leaving 
behind a concentration of vorticity on the perimeter of the roller resembling a “hoop” 
at £3 = 0 (Chen, Mansour & Cantwell [1989b]). Similar “hoop-like” structures have 
been predicted in simulations of time-developing 3D incompressible mixing layers 
(Rogers &: Moser [1989]), and in spatially-developing simulations of 3D incompressible 
wakes (Buell &: Mansour [1989]).

Scalar pressure, density, and temperature fields. Experimentally, heat or 
smoke is often injected into the flow to track the vorticity. At low Mach numbers, 
density behaves like a passive scalar. A spanwise cut (C-C) of the density and pressure 
fields for Case 1 is shown in Figure 5-21, and perspective plots of the vorticity norm, 
pressure minima, and density minima for Cases 1 and 2 are shown in Figures 5-22 and 
5-23, respectively. The pressure and density minima were found to consistently track 
the vortical regions in the flow located in the rollers. Note that a pressure minima 
does not exist in the saddle region since the streamwise vorticity in the saddle region 
did not collapse.

Based on the developed temperature field shown in Figure 5-24, the peak temper­
atures do not appear to track the vortical regions in the flow concentrated inside the 
rollers. Instead, the peak temperatures mark the fluid in the saddle region. Note that 
the peak temperatures are located on either side of the wake centerline downstream 
of the saddle point and are aligned along the diverging separatrix of the saddle point. 
The peak temperatures are denoted by the symbol “H”. The location of the peak 
temperatures varies in the spanwise direction with the peak at one spanwise location 
(A-A) positioned downstream of the peak at the next spanwise location (B-B). This 
variation may be the result of different advection rates along the spanwise direction.

5.6 Effect of Oblique Subharmonic Modes

In this section, the effect of a pair of oblique subharmonic modes on the large-scale 
vortical motion is determined. It is of interest whether the staggered hairpin vortices 
shown in the upper right-hand corner of Figure 5-2 can be reproduced by numerical
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simulations. Case 3 was performed at M = 1, Auc = 0.692, and at Re = 100. 
The streamwise wave number of the oblique modes was taken to be half that of the 
fundamental, and the oblique modes were assumed to be inclined at ±50 deg relative 
to the streamwise direction. The relative phase angle between the fundamental and 
subharmonic was assumed to be 0.

The spectral energy evolution for the fundamental and oblique subharmonic 
modes is shown in Figure 5-25. Note that the fundamental mode first grows ex­
ponentially, then grows more slowly as the spanwise vortices roll-up nonlinearly, and 
finally saturates at a convective time of t = 40. The oblique subharmonic modes first 
grow exponentially; this is followed by a period when their energies level off and actu­
ally decrease slightly during the fundamental roll-up and saturation, and by a second 
period of growth on the new base state. However, the oblique subharmonic modes 
are much less energetic than the fundamental mode, and unlike the two-dimensional 
subharmonic described in Chapter 4, never surpass the energy of the fundamental.

The instantaneous two-dimensional energy spectra for Case 3 is shown in Figure 
5-26. Initially, only three modes are excited corresponding to the fundamental and 
the two oblique subharmonic modes. The energy spectra corresponding to the wake 
centerline (x? = 0) and to one side of the wake (x2 = 2) are shown in Figures 5-26b,c 
at a time when the oblique modes have saturated. Note that the higher harmonics 
are produced primarily in the streamwise direction. Also note that the resolution is 
more than adequate in both the streamwise and spanwise directions.

Unlike the two-dimensional subharmonic, the oblique subharmonic instability 
does not lead to “helical” pairing as proposed by Pierrehumbert & Widnall [1982] 
for a row of Stuart vortices. The large-scale 3D vortical motions that develop are 
conceptualized in Figure 5-27. Only the vortical structures on the top side of the 
wake are shown. The structures on the opposite side of the wake are staggered by 
half a period in the streamwise direction and have an opposite sense of rotation. A 
perspective view of the computed vorticity magnitude and pressure are shown in Fig­
ure 5-28. As in Case 1 and Case 2, spanwise variations in the rollers occur due to 
their self-induced motion caused by their initial curvature. Note, however, that the 
instability develops differently on opposite sides of the wake; the curvature of the 
rollers on the upper side of the wake is greater than it is for the lower side. On the 
upper side of the wake, note that the tips of successive vortices in the streamwise 
direction are not aligned, but are 180 degrees out-of-phase with the previous vortex.
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A cut through the lifted portion of the vortices corresponding to a plan view (A-A) 
reveals structures similar to those observed by Cimbala, et al. [1988]. Contour plots 
of the spanwise vorticity, pressure, and streamwise vorticity are shown in Figure 5- 
29 at £ = 60 corresponding to the plan view (D-D). Two periods in the streamwise 
and spanwise directions are shown. Successive spanwise vortices are shifted by 180 
degrees on each side of the wake. Note that the pressure minima consistently marks 
the location of the spanwise vortices.

Similar to the two-dimensional subharmonic, the oblique subharmonic evolves 
differently on opposite sides of the wake. Evidence of this is shown in contour plots 
(Figure 5-30) of the spanwise (^3), streamwise (c^i), and transverse vorticity com­
ponents at a time when the fundamental has saturated. Note that the streamwise 
and transverse vorticity is much stronger on the top half of the wake. This is quite 
different from the behavior of the streamwise vorticity for Cases 1 and 2 for an oblique 
fundamental, where opposite sides of the wake evolve in a similar manner.

5.7 Effect of Mach Number

Comparing Cases 1 and 4 illustrates the effect of Mach number on the development 
of large-scale motions. Comparisons of the modal energy evolution between Case 1 
and Case 4 are shown in Figure 5-31. Note that qualitatively, the fundamental and 
oblique modes for the two simulations are similar. The primary difference is that 
the growth rates for Case 4 are much lower than for Case 1 leading to much longer 
saturation times. The fundamental mode for Case 4 saturates at £ = 120 compared 
to £ = 49 for Case 1. The vorticity norm is shown in Figure 5-32 at a time when 
the three-dimensional waves have saturated. Similar to the low Mach number wake, 
streamwise vorticity is stretched in the saddle region along the diverging separatrix, 
connecting alternating spanwise vortices.

Since the fundamental roll-up for this simulation is delayed as a result of the 
lower linear growth rates, the streamwise vorticity which develops is much weaker 
and more diffuse than for Case 1. The ratio of the peak streamwise vorticity to the 
peak vorticity norm is 20% for Case 4 compared with 40% for Case 1. Since the strain 
from the weak spanwise rollers is not capable of producing strong streamwise vorticity 
in between the rollers, vortex loops are less likely to form at high Mach numbers.
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CHAPTER 6

THREE-DIMENSIONAL TOPOLOGICAL DESCRIPTION

In this chapter, the topology of a low Mach number wake is determined using a 
generalized three-dimensional critical point theory applied to the velocity, vorticity, 
and pressure gradient fields. Instantaneous streamlines, vortex lines, and pressure 
gradient vectors are computed based on the three-dimensional flow fields obtained 
from direct numerical simulations. The critical points are classified and displayed in 
state diagrams in the space of the invariants of the gradient tensor of the vector field 
under consideration. Finally, the topology of the initial velocity field is compared 
with the morphology of a developed wake.

6.1 Motivation and Background

In Chapter 5, the morphology of a wake was described based on its vorticity, 
pressure, and temperature fields. In this chapter, the topology of the velocity, vortic­
ity, and pressure gradient fields is determined from instantaneous streamlines, vortex 
lines, and pressure gradient vectors. A three-dimensional generalized critical point 
theory (Chong, Perry & Cantwell [1989]) is applied to several of these fields to deter­
mine the critical points in the flow. The merits and drawbacks associated with each 
of these different fields is discussed. The critical points are then presented on P-Q 
and Q-R state diagrams in the space of invariants of the gradient tensor of the vector 
field.

A description of the three-dimensional topology from critical point theory provides 
a concise framework for interpreting the voluminous amount of numerical data that 
results from a three-dimensional simulation. The critical points are points in the flow 
where a vector field, such as velocity, vorticity, or pressure gradient, is indeterminate. 
Put another way, the norm of the vector field at the critical points is zero. Recently, 
Chong, Perry & Cantwell [1989] devised a generalized approach for the classification 
of three-dimensional flow patterns for incompressible as well as compressible flows. 
This approach is based on the determination of three matrix invariants (P, Q, and 
R) of the local gradient tensor of a continuous vector field evaluated at the critical
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points. These invariants represent topologically distinct regions of the flow and offer 
a concise way of summarizing complicated flow patterns.

Previous studies concerning the topology of wakes and jets have relied on two- 
dimensional phase plane methods applied to velocity fields obtained from hot-wire 
anemometry measurements (Perry & Lim [1978], Cantwell &; Coles [1983], Perry & 
Tan [1984], and Perry & Steiner [1987b]). Based on these methods and conjectured 
sectional streamline patterns, some of the flow patterns in a wake have been deduced. 
In Cantwell & Coles [1983] the topology of a 2D incompressible wake was found to 
consist of centres connected to saddle points on both sides of the wake in which 
the centroids of the vortices were used to define an appropriate frame of reference. 
Based on sectional streamline patterns there is some evidence that “limit cycles” 
can exist in 3D wakes (Perry & Tan [1984] and Perry & Steiner [1987a]). “Limit 
cycles” are bifurcation lines which have closed on themselves. Based on the presence 
of both focus points spiraling inward and focus points spiraling outward, Perry & 
Steiner [1987a] surmised that regions of vortex stretching and vortex compression can 
coexist in a three-dimensional wake. The vorticity and strain rate fields described 
in Chapter 5 also indicate the presence of localized regions of vortex compression 
alternating with localized regions of vortex stretching inside the spanwise rollers. The 
strong compression regions are attributed to large negative strain rates generated by 
a quadrupole of streamwise vorticity located inside the spanwise rollers. The large 
negative strain rates result in the formation of “hoop-like” vorticity structures.

In the present work, the topology of the velocity, vorticity, and pressure gradient 
fields is determined by identifying and classifying the critical points in the simulated 
flows. The derivatives of the velocity, vorticity, and pressure gradient fields are ob­
tained from spectral differentiation of the computed velocity, vorticity, and pressure 
gradient fields.

The advantage of the vorticity field over the velocity field is that vorticity is 
invariant with respect to the reference frame of the observer. Furthermore, for com­
pressible flow, the vorticity field is solenoidal whereas the velocity field is not. This 
eliminates one of the matrix invariants, P, which is zero for solenoidal fields. There­
fore, the topology of the three-dimensional vorticity field is completely determined 
by computing the two invariants, Q and R, for each critical point. Smoke patterns 
for double-sided wakes (Perry, Lim & Chong [1980] and Antonia, Browne & Bisset 
[1987]) show the presence of a series of vortex loops. Here, the evolution of vortex
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lines in a wake was computed where the vortex lines were initially aligned with the 

spanwise direction, £3. Based upon the developed vortex line pattern, the critical 

points in the flow were determined for the vorticity field and displayed on & Q — R 

state plane.

A quantity which has not received much attention is the pressure gradient field. In 
an inviscid flow, the pressure gradient is equivalent to the negative of the acceleration 

field. The pressure gradient field is unique because the gradient tensor of this field, 

d^p/dxidxj, always has real eigenvalues with orthogonal eigenvectors. The pressure 

gradient vectors were computed and the critical points of this field were identified.

6.2 Method

The instantaneous streamlines, vortex lines, and pressure gradient lines are ob­

tained by integrating the velocity, vorticity, and pressure gradient vector fields using 

a second-order Adams-Bashforth scheme (Walatka & Buning [1989]). A recently de­

veloped generalized three-dimensional method for classifying the critical points was 

employed, the details of which are given in Chong, Perry & Cantwell [1989]. The 

critical points for each vector field are located by searching for the zeros of the corre­

sponding vector field. Computationally, these zeros correspond to the minima of the 

norm of the computed quantity. Since pockets of irrotational fluid border rotational 

fluid, care must be taken in retaining only the zeros of the vorticity field inside the 

rotational region of flow. Once the grid points associated with the zeros are found, 

the vector field, denoted by v is expanded in a Taylor series about the critical point 

vc = (uf,u£,^):

dv\/dr 'an a12 013 'vi - vf
dvy/dr = a21 ^22 a23 V2 - ufj (6.2.1)
dv^/dr . a31 a32 033. _ u3 - uf

If the matrix A, whose elements are a,j, corresponds to the velocity gradient tensor, 

then t parameterizes the position of a fluid particle along an instantaneous streamline.

If v = then the coefficients are a^j = duj/dxj. If v = dp/dxj then the coefficients 

are a,-,- = d^p/dx{dxj.
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The derivatives of each of the vector fields are computed spectrally and evaluated 
at each critical point. The matrix invariants P, Q, and R o{ A are then evaluated 
where

P = -traced] = -(an + 022 + 033), (6.2.2)

Q = ^[P2 - tracefA2]] = an a12 + an 013 + 022 023
021 022 031 033 032 033

(6.2.3)

and
on 012 013

P = —det[A] = 021 022 a23
031 032 033

(6.2.4)

The following equation defines a surface in phase space which divides the real and
complex solutions of equation (6.2.1):

27P2 + (4P3 - 18PQ)P 4- (4Q3 - P2Q2) = 0. (6.2.5)

Once P, Q, and R are evaluated according to equations (6.2.2)-(6.2.4), their position 
in phase space relative to the surface defined by equation (6.2.5) is found by solving 
the following cubic equation

1 Q O'?
qz - (-p2)g2 - (-pp)q + (p3p+—p2) = 0. (6.2.6)

The roots of equation (6.2.6), Q, are determined by substituting in the invariants P 
and R at each critical point into equation (6.2.6). The location of the critical points 
relative to this surface can be displayed on a, Q — R phase diagram, and the critical 
points are then classified according to Chong, Perry & Cantwell [1989].

6.3 Velocity Field

In this section, the results of the first simulation (M = 1, Pe = 300) in Chapter 
5 are used to illustrate the topological features in a wake. First, however, the flow 
pattern for a two-dimensional wake is studied so as to provide a baseline case against 
which to compare the three-dimensional results.

6.3.1 2D streamline pattern

The two matrix invariants of the velocity gradient tensor, P and Q, were found 
at t = 0 and are displayed in a phase diagram (Figure 6-1). The critical points in the
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flow consist of two stable foci (P > 0) and two saddle points (P < 0). Note that one 
of the saddle points lies very close to the axis, P = 0, while the other saddle point 
lies well below the axis. Ideally, the saddle points on both sides of the wake should be 
identical since the wake is symmetric. However, since the critical points are evaluated 
at the grid points, there is some variation in the invariants P, Q, and R. Refining 
the mesh should minimize this problem. In fact, any prior knowledge of symmetries 
in the flow can be used to determine whether there is adequate resolution to identify 
the critical points. In an incompressible flow, the foci in Figure 6-1 would become 
centres since the velocity field is solenoidal. Centres (P = 0) can not exist in this flow 
since the velocity field is not solenoidal at M = 1 and the density field is unsteady. 
In physical space, the relation of the foci and saddle points is shown in a plot of the 
instantaneous streamlines obtained by integrating particle tracks with the velocity 
field frozen (Figure 6-2a). The initial position of the particle tracks was chosen to 
be in the vicinity of the critical points. The observer was assumed to move at the 
phase speed of the 2D linear disturbances, Cp/j = 0.71, obtained from a linear stability 
analysis. In Figure 6-2a, the saddle points, representing regions of high strain rates, 
connect foci on the same side of the wake during the early stages of development. 
This is in contrast to the topology of the developed wake where the saddle points 
connect foci on opposite sides of the wake (Figure 6-2b). To verify that there is 
no interaction between the two sides of the wake initially, the streamlines were all 
initialized in the streamwise direction in a region known as the “alleyway” near the 
centerline of the wake where fluid is moving upstream. The streamlines originating in 
the upper side of the alleyway all wound up in the upper side of the wake, whereas, 
those originating in the lower side of the alleyway, all wound up in the lower side of 
the wake. Therefore, the wake behaves initially as two independent mixing layers in 
which fluid in the spanwise rollers is entrained from both the freestream and from the 
slower moving fluid located in the alleyway. Eventually the fluid in the alleyway will 
become depleted as it is entrained into the rollers, and at this point, the topology 
must bifurcate in order for mass to be conserved.

The instantaneous streamlines at a time after the fundamental has saturated 
(t = 40) are shown in Figure 6-2b. Note that the saddle points connect both sides 
of the wake and the fluid initially in the alleyway has collapsed to a line dividing the 
two sides of the wake. Note, however, that the saddle points in Figure 6-2b appear 
distorted in the sense that the converging separatrices do not converge to the same

71



point. This type of dislocated saddle has been documented by Perry, Lim & Chong 
[1980] in coflowing wakes and jets and also by Patnaik, Sherman & Corcos [1976] 
in mixing layers. In the inviscid limit, a distorted regular saddle would become a 
dislocated saddle, comprised of two half-saddles, separating two discontinuous vortex 
sheets. However, if the saddle region is enlarged as shown in Figure 6-2c, note that 
what appears as a dislocated saddle in a global sense is really a regular saddle point. 
Finally, in the developed wake fluid in the spanwise rollers is entrained from the 
freestream and from the opposite side of the wake.

6.3.2 3D streamline pattern

The instantaneous streamline pattern for the 3D case is shown at £ = 0 in Figure 
6-3 and at t = 0 and at t = 25 in Figure 6-4. As in the 2D case, the observer is 
initially assumed to move at the phase speed of the disturbances, and then, after 
the spanwise vortices have rolled-up, to move with the centroids of the rollers. For 
the case studied here, the phase speed for the 2D and 3D disturbances is the same, 
cph = 0.71. At t = 0, the streamlines are initialized in the two spanwise planes of 
symmetry, £3 = 0 and 0:3 = L3/2. Note that in both planes, there are foci and saddle 
points connecting foci on the same side of the wake, similar to the 2D case (Figures 
6-3 and 6-4). However, the foci at X3 = 0 are spiraling in a direction opposite to 
the foci at X3 = L^/2. The direction of the foci is determined by examining velocity 
vectors projected onto these two planes shown in Figure 6-5. Note that in both planes 
the velocity vectors are moving in a clockwise direction in the top half of the wake and 
in a counterclockwise direction in the bottom half of the wake. Therefore, the foci in 
Figure 6-4 are spiraling outward at X3 = 0 and inward at X3 = L3/2 corresponding to 
unstable and stable focus points, respectively. In Figures 6-3 and 6-4, at the center 
of each focus point, there are streamlines that leave the symmetry plane and connect 
the foci at X3 = 0 and X3 = L3/2 on the same side of the wake. In Figure 6-3, these 
connections resemble a Chinese handcuff toy. In two dimensions, these connections do 
not exist and there is no flow in the spanwise direction. However, in three dimensions, 
the foci become stretching focus points alternating with compressing focus points with 
flow in between the symmetry planes in the spanwise direction.

In Figure 6-4b, the streamlines at £ = 25 are initialized in the symmetry planes, 
X3 = 0 and X3 = L3/2, and a similar pattern of oppositely spiraling foci appear. 
Note that the connections between the symmetry planes still exist. However, the
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saddle points at £3 = 0 now connect foci on opposite sides of the wake, whereas the 
saddle points at £3 = L3/2 still connect foci on the same side of the wake. This is an 
indication that the wake rolls-up at different rates along the span (£3).

If the streamlines are initialized between the planes of symmetry, then a “limit 
cycle” emerges as shown in Figure 6-6. Along the inner radius (ri) the streamlines 
are spiraling toward £3 = 0 in a helical manner; as they approach £3 = 0 they return 
toward £3 = T3/2 on the outer radius r2 where r2 > n, forming a closed cylindrical 
cell.

Based on the streamline patterns at t = 0 and t = 25, there appear to be three 
different types of critical points in the flow: 1) compressing unstable foci at £3 = 0, 
2) stretching stable foci at £3 = T3/2, and 3) saddle points connecting the foci in 
each plane. The three invariants of the velocity gradient tensor were computed, and 
the critical points classified. These critical points are displayed on a P-Q diagram 
shown in Figure 6-7. They correspond to compressing unstable foci (Figure 6-7a) and 
stretching stable foci (Figure 6-7b). The topology of the initial velocity field indicates 
that there are spanwise regions of localized vorticity compression alternating with 
regions of vortex stretching in what will eventually develop into the spanwise rollers. 
In the next section, a comparison of the vorticity and strain rate fields described in 
Chapter 5 with the initial streamline pattern indicates that some of the nonlinear 
aspects of the wake are topologically equivalent to the initial linear behavior.

6.3.3 Comparison of Vorticity and Velocity Fields

During the early stages of roll-up the behavior of the streamwise vorticity in the 
saddle region is consistent with the initial 3D streamline pattern as shown in Figure 
5-14a. Note that the streamwise vorticity is stretched by the strain field generated by 
spanwise vorticity of the same sign. The streamwise vorticity at £ = 18 resembles the 
“ribs” seen in mixing layers. At a subsequent time £ = 40 shown in Figure 5-14b, a 
comparison of the streamline pattern and the streamwise vorticity indicates that the 
strain field is between adjacent spanwise rollers of opposite sign. This indicates that 
the topology has changed such that the saddle points now connect foci on opposite 
sides of the wake.

While vortex stretching accounts for the intensification of the streamwise vorticity 
in the saddle point region, it also plays a significant role in the development of the 
spanwise rollers. Spanwise alternating regions of localized vortex compression and
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stretching were found to exist near the center of the spanwise rollers during the 
nonlinear stages. Strong negative strain rates at £3 = 0 result in vortex compression 
removing spanwise vorticity (a^) in the center of an otherwise uniform roller. The 
vortex stretching term responsible for the production of spanwise vorticity, 533u;3, 
along with were shown in Figures 5-18 and 5-19. The existence of stretching
stable foci (at £3 = T3/2) and compressing unstable foci (at £3 = 0) in the initial 
topology of the velocity field may explain the spanwise nonuniformity in the developed 
rollers.

6.4 Vorticity Field

Instantaneous vortex lines are shown in Figure 6-8 at several stages in the three- 
dimensional development of a M = 1, /?e = 100 wake in which 0 = tt/2. The 
vortex lines were obtained by integrating particle tracks for an instantaneous vorticity 
field. Initially, the particle tracks were all oriented in the spanwise direction, £3. In 
Chapter 5, it was shown that as the spanwise vorticity rolls-up it creates a strain 
field, first between spanwise vortices of the same sign, and later between spanwise 
vortices of opposite sign, which reaches a maximum at the saddle points. This strain 
field amplifies the vorticity in the saddle point region subjecting it to intense vortex 
stretching. The streamwise vorticity becomes aligned along the principal axis of 
positive strain, and eventually wraps around the spanwise rollers downstream and 
upstream of the saddle point. The interaction of the counterrotating streamwise 
vorticity in the saddle region with the oppositely-rotating spanwise vortices results 
in the formation of closed vortex loops by < = 81. These loops are in planes inclined 
along the principal axis of positive strain, and successive loops in £1 have an opposite 
sense of circulation due to the initial conditions. Similar structures of interconnected 
vortex loops have appeared in flow visualizations of forced wakes (Breidenthal [1980]) 
and of unforced wakes (Perry, Lim & Chong [1980] and Antonia, Browne &; Bisset 
[1988]). Figure 6-9 shows two views of vortex loops at a late stage in the development 
corresponding to a higher Reynolds number simulation, Re = 300 and M = 1, at 
a time when the oblique waves have saturated (t = 64). The vorticity has formed 
a series of disk-like loops similar to the lower Reynolds number case. Note that 
successive loops are connected by a helical structure resembling a “Slinky” toy.
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The critical points for the vorticity field are found by searching for the zeros of the 
vorticity norm. Critical points were found at the center of each of the vortex loops 
and, based on the invariants Q and R, were found to consist of “no-flow through 
centres”. These critical points correspond to the points plotted above the (5 = 0 
axis of the Q-R diagram shown in Figure 6-10. Numerically, the critical points are 
actually critical regions within one or two grid points of each other. Therefore, there 
is a slight amount of scatter in the values of the invariants. The remaining critical 
point located below the Q = 0 axis corresponds to a saddle point which lies outside 
of the loop and between adjacent loops where the sense of circulation changes sign 
between adjacent loops. Only one saddle point was found. This may be due to the 
nature of the vorticity field which is flat over an extended region close to the boundary 
between the rotational and irrotational fluid. Therefore, the gradient of the vorticity 
field is very small there and it is very difficult, if not impossible, to distinguish some 
of the critical points.

6.5 Pressure Gradient Field

The pressure gradient vectors corresponding to a M = 1, Re = 300 simulation 
are shown in Figure 6-11. The spanwise cut shown in Figure 6-lla corresponds to the 
location of maximum streamwise vorticity, and the spanwise cut shown in Figure 6- 
11b corresponds to a spanwise symmetry plane where the streamwise vorticity is zero. 
Aside from the variation in strength of the pressure gradients, the topology at these 
two planes is the same. The topology of this field consists of nodes and saddle points. 
The nodes exist at the centers of the spanwise rollers and are connected by saddle 
points located slightly above and below the wake centerline (xz = 0). While the 
critical points are easily identified inside the wake, near the freestream the pressure 
gradient becomes degenerate.

An attempt was made to integrate the pressure gradient vectors. However, near 
the saddle point region of the velocity field, the integration scheme encountered dif­
ficulties since the pressure gradients are very small. Therefore, any critical points 
associated with the streamwise vorticity there were not discernable. Improvements 
in the algorithm are needed so that critical points near degenerate regions in the flow 
can still be distinguished.
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CHAPTER 7

CONCLUSIONS

7.1 Concluding Remarks

In the present work it was demonstrated that linear stability theory combined 
with direct simulations in both two and three dimensions is an effective way to study 
transition in a compressible plane wake. A large portion of this work was devoted 
to the development of algorithms for solving unsteady compressible free shear flows, 
since very few direct simulations of compressible free shear flows existed at the outset 
of this work. First, a hybrid approach for solving the linearized inviscid compress­
ible disturbance equations was developed. In this approach, the inviscid disturbance 
equations are solved with a direct spectral method to obtain an initial estimate of 
the eigenvalues for a shooting method. In principle a direct method should capture 
all of the unstable modes. However, at high Mach numbers the direct method con­
verged slowly as weakly amplified disturbances approached the neutral singular point. 
Therefore, a shooting method was used in addition to the direct method. Second, a 
spectral collocation method for the solution of the compressible Navier-Stokes equa­
tions for plane temporally-evolving compressible wakes was developed. The method 
combines Fourier expansions of spatial derivatives with an explicit time advancement 
algorithm. Mapped boundary conditions at infinity prevented imaging difficulties at 
the boundaries in £2- Initial conditions for the simulations were provided by eigen­
functions of the least stable linear mode and a pair of oblique modes superimposed 
on a Gaussian laminar base flow. Third, an algorithm was developed whereby flow 
patterns computed from the simulations could be reduced to their basic elements, be. 
their critical points. These critical points were identified, and then classified using 
an existing three-dimensional critical point theory. With these tools the following 
problems concerning a compressible plane wake were investigated: (1) the effect of 
Mach number on the evolution of large-scale structures, (2) the sensitivity of the mor­
phology to various initial conditions, and (3) the topology of the velocity, vorticity, 
and pressure gradient fields.
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Effect of Mach Number. Linear stability theory not only predicts reduced 
growth rates at high Mach number, but also provides an explanation for why the 
growth rates are reduced. The reduction is caused by a misalignment of the pressure 
and density gradients in the flow as revealed by the structure of the linear eigenfunc­
tions. At high Mach numbers this misalignment creates strong baroclinic torques, 
which together with dilatational effects in the saddle region, prevent spanwise vortic­
ity from rolling-up. This explanation is supported by direct simulations which show 
that the same mechanisms present in the linear stage are also present in the nonlinear 
stage. However, it was found that once roll-up begins, the actual process of roll-up is 
similar to an incompressible wake. Linear theory also predicts that the fastest grow­
ing wave at any Mach number corresponds to a two-dimensional antisymmetric mode 
oriented in the streamwise direction. This result suggests that the first structures to 
appear from the initial instability will be predominantly two-dimensional for both low 
and high Mach numbers, with subsequent three-dimensional motions evolving from 
the strain field of the two-dimensional structures. Three-dimensional simulations of 
low and high Mach number wakes confirmed this hypothesis because the primary 
structures which emerged from the initial instability were spanwise rollers. Moreover, 
the fundamental mode is more energetic than the oblique modes in both the linear 
and nonlinear stages.

Sensitivity to Initial Conditions. Another major objective of this work was 
to determine the sensitivity of the topology of a compressible wake to various initial 
conditions. In two dimensions, by varying the phase angle between a fundamental 
and its subharmonic, pairing occurred on different sides of the wake. Regardless of 
the phase angle, the presence of a subharmonic resulted in a doubling of the width of 
the wake. Therefore, introducing a two-dimensional subharmonic in a wake may be 
an effective means of mixing fluid. From temperature contours alone, it would be very 
difficult to distinguish whether an increase in scale of the wake is due to pairing or 
to hydrodynamic instabilities. In three dimensions, an oblique subharmonic does not 
lead to pairing of the fundamental vortices, but rather leads to wavy spanwise vortices 
in a staggered “peak-valley-splitting” arrangement. The oblique subharmonic also 
develops asymmetrically on opposite sides of the wake, similar to the two-dimensional 
subharmonic.

Phase effects between a fundamental and a pair of oblique fundamental modes 
were also found to be important. The topology of the developed wake depends upon
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the initial presence of streamwise vorticity in the saddle region. If streamwise vortic­
ity in the saddle region is initially in-phase with the pressure maxima, then vortex 
stretching mechanisms cause the streamwise vorticity to interact with the spanwise 
rollers to form vortex loops inclined along the principal axis of positive strain. If, on 
the other hand, the streamwise vorticity in the saddle region is initially out-of-phase 
with the pressure maxima, then the streamwise vorticity is advected into the cores 
creating wavy spanwise vortices which are in-phase with the preceding vortices.

Three-dimensional simulations suggest that the same vortex stretching mecha­
nisms which are present in a wake may be universal to all free shear flows. For 
example, the vortex stretching mechanism in a wake near the saddle region is also 
well documented for a mixing layer (Corcos & Sherman [1984]). The vortex stretching 
in the saddle region is due to the strain field created by the spanwise rollers. The 
main distinction is that the saddle point in a wake connects vortices of opposite sign, 
while in a mixing layer it connects vortices of the same sign. The spanwise vortex 
stretching mechanism in a wake has also been documented for incompressible mixing 
layers (Rogers &: Moser [1989]). This spanwise mechanism occurs inside the span- 
wise rollers at later stages in the development resulting in localized regions of vortex 
compression and vortex stretching near the centers of the rollers. The compression 
regions in a wake are stronger than the stretching regions, resulting in “hoop-shaped” 
spanwise structures.

Topology. The similarities of the vortical structures in wakes and mixing lay­
ers led us to believe that a systematic approach for reducing complicated three- 
dimensional flow patterns to their basic elements was needed, so that common fea­
tures of different flows could be related. A recently developed three-dimensional 
critical point theory could provide such a framework. The topology of the velocity, 
vorticity, and pressure gradient fields was examined using this approach. From the 
topology of the velocity field, it was shown that the wake initially behaves as two 
independent mixing layers separated by an alleyway. As the disturbances grow, a bi­
furcation occurs wherein the saddles on opposite sides of the wake become connected. 
Saddle points and stable foci were found to be the basic elements in a two-dimensional 
compressible wake, while saddle points, contracting unstable foci, and stretching sta­
ble foci were found to be the basic elements in a three-dimensional wake. Saddle 
points are associated with regions of high strain rates and foci are associated with 
regions of rotational fluid. These critical points were found in the initial velocity field
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as well as in the developed velocity field suggesting that the developed wake is very 
sensitive to its initial disturbances. The spanwise vortex stretching mechanism in the 
rollers is topologically equivalent to the initial three-dimensional velocity field, i.e. 
contracting unstable foci are associated with regions of localized vortex compression, 
and stretching stable foci are associated with regions of localized vortex stretching.

The velocity, vorticity, and pressure gradient fields each have advantages and dis­
advantages. The critical points of the velocity field are relatively easy to find but are 
dependent upon the reference frame of the observer. In the present work, the refer­
ence frame was taken to move at the phase speed of the linear disturbances before the 
vortices have rolled up, and at the speed of the centroids of the vortices thereafter. 
The vorticity field is independent of the observer, and the critical points can be dis­
played on a Q-R phase plane since the first invariant of the vorticity gradient tensor 
is zero. However, the main disadvantage of the vorticity field is that, near pockets of 
irrotational fluid which border rotational fluid, it is impossible to distinguish critical 
points since the field is very degenerate. The pressure gradient field also is indepen­
dent of the observer, and inside the wake has easily identifiable critical points with 
orthogonal eigenvectors. But it has the problem of degeneracy near the freestream 
since the pressure gradients decay there. Improvements in the current algorithm need 
to be made if all of the critical points of the vorticity and pressure gradient fields are 
to be identified.

7.2 Recommendations for Future Work

Many of the results presented in this work have implications for flow control in 
a wake. In particular, it was determined that both compressible and incompressible 
wakes are sensitive to (1) initial phase relationships between different modes and (2) 
frequencies of different modes. Further work is needed to determine if there is a 
preferred phase relationship between different modes, or a preferred frequency range 
which would offer the greatest mixing enhancement or drag reduction. Is it possible 
to enhance or suppress the streamwise vorticity in the saddle region? How sensitive 
are the large-scale structures to the relative initial strengths of the disturbances and 
to the shape of the initial mean velocity and temperature profiles? In this work the 
mean profiles were assumed to be Gaussian and shock waves never formed. Would a 
top-hat profile result in the formation of shock waves?
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As simulations of three-dimensional flows become more common, the need for a 
systematic approach for extracting, summarizing, and relating salient features of the 
data arises. One such approach is to use a three-dimensional critical point theory 
to describe the topology of computed flow patterns. This work is a first attempt at 
using this approach to determine the topology of the velocity, vorticity, and pressure 
gradient fields for a compressible wake. Improvements need to be made if all of the 
critical points are to be identified and classified. Certain symmetry properties of the 
flow could be used as a diagnostic for resolution of the flow. For example, saddle 
points on either side of the wake should have identical invariants of the deformation 
tensor. Once the algorithm is improved, the temporal evolution of the critical points 
for the various fields could be determined and displayed in the space of invariants of 
the deformation tensor. The sensitivity of the trajectories of the critical points to 
various parameters of the initial conditions should be determined. Finally, further 
study is required to determine the extent to which linear theory can be used to deduce 
the topology of the structure in the developed wake.

The current study has concentrated on the effect of initial conditions on the evo­
lution of large-scale structures in a wake. Only selected modes were initially forced. 
Turbulent wake simulations need to be performed in which random initial forcings are 
imposed. Turbulence statistics obtained from an ensemble of runs including Reynolds 
stresses and higher-order statistics need to be obtained for compressible free shear 
flows. These statistics are readily available from direct simulation data, but may be 
impossible to measure. These statistics would assist turbulence modelers in develop­
ing phenomenological models for compressible free shear flows.

There is considerable interest in high-speed combustion problems related to mix­
ing in round jets and wakes. The numerical scheme presented here could be modified 
for such a geometry. The effect of compressibility on the large-scale structures of a 
round jet or wake should be determined and compared with the results of a plane 
wake or jet described here. Different mixing enhancement methods should also be 
tested.
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APPENDIX

Oddball Filtering Algorithm

For a well-resolved simulation, the energy at the high wave numbers is small, 
O(10-12). However, due to round-off error associated with packing 64-bit words into 
two 32-bit words, energy accumulates in the terms of the right-hand side of the gov­
erning equations (3.1.14-3.1.18). For all other wave numbers besides the oddball, the 
energy due to round-off error, is eventually reduced by viscous dissipation. However, 
since there is no mechanism for removing the round-off error which accumulates in 
the oddball wave number, it builds up and aliases back into the lower wave numbers 
through the convective terms. The presence of the oddball manifests itself as two- 
delta wave oscillations in the solution which grow and affect the solution. Therefore, 
the contribution of the oddball wave number must be set to zero in all the dependent 
variables after each substep.

The dependent variables are represented by discrete Fourier transform pairs:

Ah/2 Nz/2
4>(i,k) = £ £ ^m.nsle^'^.WKi-D+t-a/JVsKt-D) (1)

ni=-W,/2+l n3=—JV3/2+I

, Hi Na
«ni.n3)= ^EE«^)e"i2'I("‘/Ar')("1,+("3/''3)(t"1)1- <2)

We employ an algorithm written by Blaisdell [1989] which sets the contribution 
of the oddball wave number to zero:

<K-/Vl/2,rc2,n3) = 0, <£(ni, n2, A3/2) = 0. (3)

This can also be achieved by transforming the dependent variables into wave space, 
setting to zero the appropriate Fourier coefficients, and transforming back to physical 
space. However, it is more efficient to perform the filtering in physical space since the 
solution is time-advanced in physical space.

Filtering is performed in the streamwise (aq) and spanwise (0:3) directions. The 
Cain-mapped direction (a:2) is not filtered. In two dimensions, the desired filtered 
function is given by:
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Ni/2
+! = <{,- J2 <A(ni, iV3/2)c*'2irKni/^)(*--l)+(*-1)/2] 

ni=-Ni/2+l 

Na/2-l
^(^i/2,n3)e,'2,rK,'-1)/2+(n3/iV3)(fc“1^ (4)

n3=—^3/2+1

which through much algebraic manipulation is given in its final form:

/_|\/b ^3 ;
^ ixliixZk) = fa-----If— <t>(xUx3)(-l)k

3 Jb'=l

-----jTT— 2 ^(Il-I3)(-1)'
Wl itl

( 1 \iV 1 \ifc -^3+ iz^LEE^'^)(-i)i’(-i)‘'. (5)

We have omitted the details of the derivation which are given in Blaisdell [1989]. 
After each substep, each of the dependent variables is filtered according to equation 
5 at the beginning of PASSl.
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FIGURE 1-1. Schlieren of Mach 2.2 wake behind a flat plate forced at 34 kcps, reproduced 
with permission from J. Kendall.
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Figure 2-1. Gaussian mean velocity profile.

Uocti no.

i2

FIGURE 2-2. Mean temperature profile from Crocco-Busemann relation.
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(Direct(D) or Shooting(S), Antisymmetric^A) or Symmetric(S))
Mach no.

0.01 (D, A)

3.0 (D. A)

\ 0.01 (D. S)

FIGURE 2-3. Comparison of linear growth rates for direct and shooting methods.
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Soto and Kuriki

FIGURE 2-4. Comparison of phase speeds for an incompressible wake.
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FIGURE 2-5. Comparison of streamwise velocity eigenfunctions.
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Mach no. 

0.01

3 0.06

Figure 2-6. Effect of Mach number on the growth rate of the antisymmetric 2D mode.
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FIGURE 2-7. Effect of Mach number on the growth rate of the symmetric 2D mode.
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Figure 2-8. Effect of Mach number on the frequency of the antisymmetric 2D mode.
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Mach no. 
0.01

FIGURE 2-9. Effect of Mach number on the frequency of the symmetric 2D mode.
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FIGURE 2-10. Effect of obliquity on the growth rate of the antisymmetric mode.
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Figure 2-11. Effect of obliquity on the growth rate of the symmetric mode.
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most unstable for 0 = 0 deg

M
FIGURE 2-12. Most unstable three-dimensional antisymmetric and symmetric modes.
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Figure 2-13. Inviscid linear eigenfunctions corresponding to most unstable 
antisymmetric mode for M = 0.01, Auc = 0.692, (a) uj, (b) ii?, (c) p, and
(d) t.
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FIGURE 2-14. Inviscid linear eigenfunctions corresponding to most unstable 
antisymmetric mode for M = 3, Auc = 0.692, (a) tti, (b) u2, (c) p, and (d)
f.
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FIGURE 2-15. Inviscid linear eigenfunctions corresponding to most unstable 
antisymmetric mode for Af = 7, Auc = 0.692, (a) xii, (b) ti2, (c) p, and (d)
f
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FIGURE 2-16. Compressible vorticity source terms constructed from linear eigenfunctions 
for M = 3, Auc = 0.692, (a) pressure, (b) density, (c) spanwise vorticity, (d) baxoclinic 
torque, (e) dilatation, and (f) negative of product of spanwise vorticity and dilatation



FIGURE 3-1. Computational domain for temporal wake.



Horizontal Pass (Pass 1, Pass 3) 
Fourier Transforms in xl and x3

Temporal Pass

FIGURE 3-2. Data management “drawer” concept.
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(b)

FIGURE 3-3. Two-dimensional energy spectra at x* = 2.0 for M = 1.0, 
Re = 300, (a) well resolved, and (b) poorly resolved with aliasing problems.
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FIGURE 3-4. Comparison of laminar solution for far wake with direct simulation code.
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FIGURE 3-5. Comparison of linear growth rates between linear eigenvalue problem and 
direct simulation.
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FIGURE 4-1. Contour plots showing the evolution of temperature field for 
M = 1, Auc = 0.692, Rt = 600 at (a) t = 0., (b) t = 20.1, (c) t = 40.2, and 
(d) t = 50.2.
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FIGURE 4-2. Evolution of mean profiles for M = 3, Re = 600, (a) Uj, and 
(b)T.
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Moch « 3. Re « 600
Moch « 1, Re « 600

FIGURE 4-3. Effect of Mach number on the kinetic energy of 
the fundamental mode.
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0.10

FIGURE 4-4. Intensity of the streamwise velocity fluctuation in linear 
(t = 32.4) and nonlinear (t = 86.0) regimes for M = 3, Auc = 0.692, 
Re = 600.
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t • 86, n

(V

Figure 4-5. Distribution of fundamental (n = 1) and first harmonic 
(n = 2) modes in linear (f = 32.4) and nonlinear (t = 86.0) regimes for 
M = 3,'Auc = 0.692, Re = 600.
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FIGURE 4-6. Contour plots of spanwise vorticity, u>3, a.t (a) t = 32, (b)
t = 68, (c) t — 86, and (d) t = §§ for M — 3, Auc = 0.692, Re = 600.
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FIGURE 4-7. Contour plots of pressure, p, at (a) t = 32, (b) t = 68, (c)
t = 86, and (d) t = 96 for M = 3, Auc = 0.692, Re = 600.
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FIGURE 4-8. Contour plots of density, p, at (a) t = 32, (b) t = 68, (c)
t = 86, and (d) t = 96 for M = 3, Auc = 0.692, Re = 600.
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FIGURE 4-9. Contour plots of baroclinic torque at (a) t = 32, (b) t = 68,
(c) t = 86, and (d) t = 96 for M = 3, Auc = 0.692, Re = 600.
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FIGURE 4-10. Contour plots of the negative of the product of the spanwise
vorticity and dilatation at (a) t — 32, (b) t = 68, (c) t = 86, and (d) t = 96
for M = 3, Auc = 0.692, Re = 600.
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FIGURE 4-11. Contour plots of vorticity advection at (a) t = 86, and (b) 
< = 96 for M = 3, Auc = 0.692, Rc = 600.
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/////, Baroclinic torque

______ | Advection
----— — clockwise
------------ counterclockwise

FIGURE 4-12. Superposition of baroclinic torque and advection terms in 
vorticity equation at M = 3, f2e = 600.
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Figure 4-13. Phase effects on subharmonic evolution (a) W3, and (b) 
for <£ = 0, M = 1, Auc = 0.692, Re = 100.
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il il

FIGURE 4-14. Phase effects on subharmonic evolution (a) U3, and (b) T 
for <{> = tt/4, M = 1, Auc = 0.692, Re = 100.
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(«) (b)
Figure 4-15. Phase effects on subharmonic evolution (a) U3, and (b) T 
for <{> = tt/2, M = 1, Auc = 0.692, Re = 100.
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(a) ^ = 90 degi

FIGURE 4-16. Wave forms for u2 corresponding to subharmonic and fun­
damental modes (a) <p = tt/2, and (b) <t> = 0, (c) <f> = tt/4 for M — l, 
Auc = 0.692, Re = 100.
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FIGURE 4-17. Streamwise kinetic energy history of subharmonic eind fun­
damental for AT = 1, Auc - 0.692, Re = 100.
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X2 2 L3

[a, o] + [a, (3] + [a, -j3] 
2D 3D

FIGURE 5-1. Cartoon illustrating interaction of streamwise vorticity u>i 
and spanwise vorticity u>3 to form closed “vortex loops”.
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FIGURE 5-2. Plan view of a circular-cylinder wake at Re = 150; smoke-wire 
at xi/d = 2, X2/d = 2, corresponds to Fig. 20 of J. Fluid Mech. 1988, Vol. 
190, pp. 291, reproduced with permission from J. Cimbala.
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lot. o| + |a. [3| + |a. -(3|

|a. o| + |a/2. PI + |a/2. ~Pl

PLAN VIEW

FIGURE 5-3. Caxtoon illustrating orientation of spanwise vortices for (a) 
“peak-valley splitting” and (b) “staggered peak-valley-splitting” or “H-type” 
instability.
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(')

FIGURE 5-4. Perspective plots of vorticity norm for Case 1 after funda­
mental saturation (t = 49) illustrating planes of interest:^ A-A, (b) B-B,
(c) C-C, (d) D-D, and (e) E-E. Contour level chosen is 30% of peak value.
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Xl XI

(*) (b)
Figure 5-5. Side view (C-C) of (a) initial pressure and (b) initial stream- 
wise vorticity. “H” and “L” denote maxima and minima in pressure.
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counterclockwise ■

clockwise — -o
----- xo = 0 at 13

FIGURE 5-6. Cartoon illustrating antisymmetric pressure eigenfunction 
and symmetric streamwise vorticity eigenfunction. Regions of high pressure 
denoted by “H” correspond to high strain rates where the streamwise vor­
ticity will be stretched and intensified in the saddle region. Regions of low 
pressure denoted by “L” correspond to rotational regions in the spanwise 
vortex cores.
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FIGURE 5-7. Evolution of modal energies for the fundamental (1,0) and 
oblique (1, ±1) modes for (a) Case 1, 0 = 0, (b) Case 2, 0 = tt/2.
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4

FIGURE 5-8. Two-dimensional energy spectra for Case 1 at (a) t = 0, = 0, (b) t = 49, x2 = 0; and
(c) t - 49, x2 = 2.



N (V
FIGURE 5-9. Iso-level surfaces of vorticity norm, |u;,u;1|, for a 3-D wake. Contour level 
is 40% of peak value, (a) Case 1 at < = 49, (b) Case 1 at t = 64, fcj Case 2 at < = 40, (d) 
Case 2 at < = 64.
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STRAIN FIELD

FIGURE 5-10. Cartoon illustrating relative location of maximum strain 
rate to initial streamwise vorticity peak in the saddle point region, (a) Case 
1 and (b) Case 2.
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Figure 5-11. Side view (C-C) of (a,c) pressure and (b,d) streamwise vorticity for Case 
1 and Case 2, respectively. “H” and “L” denote maxima and minima in pressure.
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FIGURE 5-12. Plan view (D-D) of (a) pressure and (b) streamwise vorticity 
for Case 2. “H” and “L” denote maxima and minima in pressure.
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oo

FIGURE 5-13. Stresonwise vorticity for Case 2 at * = 49, (a) perspective of streamwise 
vorticity at 50% of peak value, (b) side view (C-C), (c) plan view (D-D), and (d) end view 
(E-E).



*1

FIGURE 5-14. Side view (C-C) of streamwise vorticity for Case 1 at (a) t = 18, 
and (b) t = 40 illustrating different topology.
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*1 x\
(c) (d)

FIGURE 5-15. Vorticity stretching terms responsible for production of streamwise vor­
ticity for Case 1 at t = 30, (a) (c) Si2u;2, and (d) Si3U>3.



Figure 5-16. Vorticity stretching terms responsible for production of streamwise vor­
ticity for Case 1 at t = 64, (a) u1,(b)Snuji, (c) Si2^2, and (d) Sl3u)3.
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Figure 5-17

(a) (b)
End view (E-E) of (a) u\ and (b) S33 for Case 1 at < = 64.

152



1

m

*2

(V
FIGURE 5-18. Iso-level surfaces of fa,) 5330/3 and (b) for Case 1, < = 64. 
Contour levels'are 70% of peak value 0.026 for (a) and 80% of peak value 
0.45 for (b).
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FIGURE 5-19. Isolevel surfaces of faj SaaWj and (b) W3 for Case 1, * = 64. 
Contour levels are 40% of peak value 0.026 for (a) and 50% of peak value 
0.45 for (b).
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(b)

FIGURE 5-21. Side view of (a) pressure and (b) density for Case 1 at 
t = 64. “H” and “L” denote maxima and minima in pressure and density. 
Note that pressure and density minima coincide with spanwise vortex cores.
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FIGURE 5-22. Iso-level surfaces of (a) vorticity norm, (b) pressure minima, 
and (c) density minima for Case 1 at t = 64.
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x2

FIGURE 5-23. Iso-level surfaces of faj vorticity norm, (b) pressure minima, 
and (c) density minima for Case 2 at t = 64.
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ll
(c)

FIGURE 5-24. Temperature field for Case 2, < = 64 faj iso-level surfaces 
of temperature at 20% of peak value, (b) side view (A-A), and (c) side view 
(B-B).
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Figure 5-25. Evolution of modal energies for the fundamental (1,0) and oblique sub­
harmonic (2, ±1) modes for Case 3.
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Two-dimensional energy spectra for Case 3 at (a) t
0, x2 = 0; (b) t = 60, i2 = O'. ^ (c) 1 ~ 60’

12 = 2
Figure 5-26.



FIGURE 5-27. Cartoon illustrating developed vortical structures for an
initial forcing including an oblique subharmonic.
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X2

osos

FIGURE 5-28. Perspective view of (a) vorticity magnitude, and (b) pressure 
for Case 3 at t = 60. Contour level is chosen to be 50% of peak value.
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(c)

Figure 5-29. Plan view (D-D) oi (a) spanwise vorticity, (b) pressure, and 
(c) streamwise vorticity corresponding to Case 3 at t - 60.
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Figure 5-30. Side view (C-C) of (a) spanwise vorticity, (b) streamwise 
vorticity, and (c) transverse vorticity corresponding to Case 3 at t = 45.
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FIGURE 5-31. Effect of Mach number on the evolution of modal energies for the funda­
mental (1,0) and oblique (1,±1) modes.



FIGURE 5-32. Iso-level surface of vorticity norm for Case 4 at < = 130. 
Contour level of 20% of peak value of 0.45.
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stable focus

saddle

FIGURE 6-1. Classification of critical points on a P-Q diagram at t = 0 for 
a 2D wake at Re = 300, M = 1.0.

169





(c)

FIGURE 6-2. Two-dimensional instantaneous streamlines for M = ly Re = 300 at (a) 
t = 0, (b) t = 35, and (c) t = 35 saddle point region enlarged. “S” denotes saddle point 
and “F” denotes focus point.



FIGURE 6-3. Three-dimensional instantaneous streamlines at t = 0 for Case 2.



stretching stable foci

(b)

FIGURE 6-4. Instantaneous streamlines at ('aj t = 0, and (b) t = 25 for 
Case 2. “S” denotes saddle point ?ind “F” denotes focus point.
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FIGURE 6-5. Projected velocity vectors at ^ x3 = 0, and (b) x3 = L3/2 
for Case 2 at t = 25. “S” denotes saddle point and “F” denotes focus point.
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FIGURE 6-6. Instantaneous streamlines initialized at 13 = £3/8 illustrating 
“limit cycle” behavior for Case 2 at t = 25.
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The P - Q plane ( R > 0) The P - Q plane (R < 0)
la. stable node/stable node/stable node lb. unstable node / unstable node / unstable node

2a. stable node/stable node/stable star node 2b. unstable node / unstable node / unstable star node

3a. stable star node/stable star node/stable star node 3b. unstable star node / unstable star node / unstable star node

6b. unstable node / saddle / saddle 6a. stable node / saddle / saddle

7b. unstable star node / saddle / saddle 7a. stable star node / saddle / saddle

10a. stable focus / compressing (b < 0) 0 9a. stable focus / stretching (b > 0)

10b. unstable focus / compressing (b < 0) 9b. unstable focus / stretching (b > 0)

12b. centre / compressing (b < 0) 12a. centre / stretching (b>0)

FIGURE 6-7. Classification of critical points on & (a) P-Q diagram (/i > 0), and (b) P Q 
diagram for (/2 < 0) for Case 2.



FIGURE 6-8. Evolution of three-dimensional vortex lines for M = 
Re = 100 at (a) t = 32, (b) t = 48, (c) t = 64, (d) t = 81, and (e) t = 81.
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FIGURE 6-9. Vortex lines for Case 2 at t = 77 corresponding to (a) side 
view perspective, and (b) combination side-plan view perspective.
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Figure 6-10. Critical points of the vorticity field for Case 2 at t = 77 displayed on a 
Q versus R diagram. The vortex loops consist of “no-flow through” centres connected by 
saddle points.
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FIGURE 6-11. Pressure gradient vectors for Case 2 at < = 64 corresponding 
to (a) spanwise cut (C-C), and (b) spanwise cut (A-A). “S” denotes saddle 
point and “N” denotes either node or star-node.
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