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Abstract

An elastic/plastic material model has been developed for use with the suite of Sandia Engineer-
ing Analysis Department finite element codes. This model describes post-yield strain hardening
by a power law equation involving the equivalent plastic strain and includes a yield plateau or
Liiders strain region. This combination of power law hardening and Liiders strain accurately
represents the mechanical behavior of a large number of commonly used engineering materials.
The material model is vectorized to take advantage of current super-computer architecture.
The model shows only a modest increase in CPU time over the linear hardening material model
currently in the codes. Several example problems are presented to show the accuracy and
flexibility of the elastic/plastic power law hardening model.
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Introduction

The nonlinear finite element codes developed by the Sandia Engineering Analysis
Department contain similar constitutive models within their respective material libraries.
The internal architecture of the codes is very similar, by design, in order to allow ma-
terial models developed for one code to be easily implemented into the other codes.
The most commonly used model in the material libraries is the elastic/plastic combined
isotropic/kinematic hardening model. This model, which is based on the standard Von
Mises yield criterion, uses the radial return method for integration of the rate equations.
The radial return method, which is simple in concept and implementation, has been stud-
ied by several authors [1,2] and found to be very accurate for integrating elastic/plastic
rate equations. The plasticity model commonly used in the Sandia suite of codes requires
as input the usual elastic constants E and v , which are Young’s modulus and Poisson’s
ratio, respectively, the yield stress, o,,, and the hardening modulus, E,. A final scalar
parameter, (3, which is called the hardening parameter, determines the proportion of
kinematic or isotropic hardening in the combined model.

This model considers the hardening modulus to be a constant which means that
the post-yield effective stress, & vs effective plastic strain, &, relationship is linear. For
a large class of important problems, a linear & vs € relationship may be adequate for
the post-yield behavior over the strain range of interest. This, however, places a severe
restriction on the materials to be modeled or requires a priori information about the
expected strain levels in the problem so that an appropriate hardening modulus may
be selected to produce a good approximation to the correct stress state based on the
expected strain values. In addition, the strain range of interest must be small (no large
strain gradients) so that the linear & vs & relationship is applicable. However, there are
classes of problems in which the linear approximation for plastic hardening is inadequate.
A constant hardening modulus cannot adequately describe the post-yield behavior in
order to predict structural behavior in the detail required. Determination of limit load
response is an example of a class of problems for which linear hardening is inappropriate.

In order to overcome these restrictions, a variable hardening plasticity model has
been developed for the Sandia developed finite element codes JAC|3], JAC3D[4], SAN-
TOS[5], PRONTO 2D|[6], and PRONTO 3D|7]. The use of piecewise linear segments
to represent the hardening curve was an initial consideration based on the capability to
match any material hardening behavior, but the resulting material model subroutine was
not amenable to vectorization. Vectorization requirements limit the form of the model
to a functional relationship between effective stress and effective plastic strain. The form
of the current implementation considers the post-yield stress to be described by a power
law involving the equivalent plastic strain with the option to include a Liiders strain
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Figure 1. Stress vs Strain Curve for a Typical Ferritic Steel Exhibiting Liiders Strain

segment. The form of the hardening model was selected for its simplicity and ability to
match the post-yield behavior of many engineering materials. The model has the form
during a plastic loading process

7—0y, =A@ - (1)

where A and n are material constants, € is the equivalent plastic strain, & is the effective
stress, o, is the initial yield stress, and e’ is the Liiders strain or yield plateau strain.
The use of brackets, <>, in Equation (1) denotes the use of a Heaviside function. The
function is zero until the arithmetic expression within the brackets becomes positive.
The material constants can be determined from measured stress vs strain data through
simple curve fitting techniques (see the Appendix). By suitably choosing the material
constants A and n, the form of the model can represent either elastic/perfectly plastic
or linear hardening material behavior in addition to the power law hardening response.
The proposed material model is strictly valid for isotropic hardening behavior where the
radius of the yield surface grows equally in all directions due to plastic straining.

Many engineering materials exhibit the phenomenon of Liiders straining. A typical
stress vs strain curve for such a material is shown in Figure 1. In reality, Liiders strain does



not occur at constant stress but rather in a serrated fashion. Each serration corresponds
to the formation of a new Liiders band. The serrations are small enough that a constant
stress representation is adequate. In common ferrous alloys, Liiders strain as well as
other yield point phenomena are generally associated with the interaction between solute
atoms and dislocations.

Experience with implicit finite element codes that utilize Newton-Raphson solution
schemes has shown difficulties in convergence when modeling material behavior in which
the hardening modulus increases. Since the hardening modulus always increases after
the Liiders strain segment, the Liiders strain is often omitted from elastic/plastic analy-
ses. This may be acceptable if the Liiders strain is small and the expected strain levels
are much greater, however, for many problems the Liiders strain will significantly affect
the structural response. The indirect solution schemes incorporated into the Engineer-
ing Analysis Department finite element codes exhibit no convergence difficulties when a
Liiders strain segment is included.

The next section of this report presents an overview of the development of the
elastic/plastic power law isotropic hardening model. It is followed by a chapter showing
selected example problems which utilize the model. The last chapter summarizes the
current development effort. The Appendix is a user’s manual for a curve fitting program
developed to provide the power law hardening constants, A and n, from a uniaxial stress
vs strain curve.



Model Development

The purpose of this section is to describe the development of the elastic/plastic power
law isotropic hardening material model and to document the underlying assumptions and
the numerical implementation. The unique aspect of this model is that it accommodates
the presence of Liiders strain in the measured stress vs strain curve. The current value
of the yield stress, &,, can be determined from

oy =0y + A (& - )" (2)

where o, is the initial yield stress, & is the equivalent plastic strain, e’ is the specified
Liiders strain, and A and n are material parameters determined by fitting the model to
elastic/plastic data. For equivalent plastic strain values less than €”, the current value
of the yield stress is equal to the initial yield stress.

In the following development, effective or equivalent scalar quantities are capped
with a bar and tensor quantities are denoted using conventional summation notation.
The constitutive routine is entered with the stress state at the beginning of the step,
a}’}d, the total strain rate, ¢;;, and the time step size, At. The value of the yield stress,
y, and the equivalent plastic strain, &, computed at the last step are available as state
variables. An elastic trial stress for the step is computed as

0':; = O'f;d-’r (/\ €Ekek 6,'1' +2[Léij)At. (3)
where A and p are the Lamé parameters, and §;; is the Kronecker delta. In this model
a von Mises yield criterion is used where the equivalent or effective trial stress, &, is

defined by
© Ll

The term S, refers to the deviatoric components of the trial stress. The effective trial
stress is compared to the current value of the yield stress and if 3" < &, then the step is
elastic and the trial stress is the final stress. Otherwise, yielding occurs during the step
and the radial return algorithm is used to compute the final deviatoric stress state, S;g-,
as

!
e ‘

where 3/ still remains to be determined. The plastic strain increments associated with
the process can be computed as

r f
Kk 2O it
) 2”

J

(6)



which can be rewritten as

1 af !
This tensor equation may be converted to a scalar equation by taking an inner product
with itself. The scalar equation may then be combined with the definitions of effective

stress, equation (4), and effective plastic strain

2 Ag A, ®)

AE = 3 j {]

to produce an expression for the effective plastic strain increment

aiy .
A& = a_—_af (9)
3p
which contains the still undetermined /. The increment of effective plastic strain can
now be added to & to get & which when substituted into equation (2) produces the final
form for &f
str — 51 n
&f=ay,+A<eg+—————eL> : (10)
3u
This nonlinear equation is solved for &/ using a fixed number of Newton-Raphson itera-
tions to preserve the vectorization. Comparison of input and computed stress vs strain
curves for several sample problems has shown that three iterations are sufficient to pro-
duce an accurate value of /. This value may then be used to compute the increment of
effective plastic strain occurring over the step, Equation (9), as well as the final deviatoric
stress state, S,-fj from Equation (5).

The model is implemented to take advantage of the vector architecture of the CRAY
computer. The constitutive model is called with the total strain rates for the step and
the stress from the previous step as input. Processing is done on a maximum block size
of 64 elements at a time incorporating a single FORTRAN loop. There are two internal
variables stored at each step for every element. These are the current radius of the yield
surface and the current value of the equivalent plastic strain. Timing studies have shown
that the execution time (CPU time/element /iteration) for the power law hardening model
increased 13 percent compared with execution times for the linear hardening model.

10



Example Problems

Three example problems were selected to demonstrate the accuracy and flexibility
of the elastic/plastic power law hardening material model described above. The first
example shows a comparison between the numerical results using this material model
and a closed form analytical solution of the problem of a pressurized hollow sphere. The
second example demonstrates the ability of this material model to accurately represent
the load-displacement behavior of a tensile specimen experiencing large geometry and
large strain effects. Finally, the third example demonstrates the broad range of material
response available with the elastic/plastic power law hardening model.

Hollow Sphere with Internal Pressure

An analytical solution has been found for an internally pressurized, hollow sphere
characterized by an elastic/plastic power law isotropic hardening material [8]. The hollow
sphere has an inner to outer diameter ratio of 2, with the dimensions shown in Figure 2.
The non-dimensional material constants used in the analysis are shown in Table 1. An
axisymmetric analysis was performed using the finite element analysis code, SANTOS.
Analytic values of plastic strain as a function of sphere radius are compared to the numer-
ical solution from SANTOS in Figure 3 for various internal pressures. The numerical
solution is represented in the figure by the solid lines. The solution is characterized by a
large gradient in plastic strain which occurs at the inner radius. The agreement between
the analytic and numerical models is extremely good at all locations through the radius
for the range of applied pressure.

Table 1. Material Properties Used for Hollow Sphere Analysis

Young’s | Poisson’s | Yield Hardening Hardening | Liiders
Modulus Ratio Stress | Constant, A | Exponent, n | Strain
31.0 x10° 0.3 30.x103 3.0x10° 0.5 0.0

Standard Tension Test

The ability to reproduce observed mechanical behavior provided the primary impetus
to the development of this new material model. The standard tension test is perhaps the
most familiar mechanical behavior in engineering. The intent of this example problem

11
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Table 2. GGG-40 Material Properties Used for Tension Test Analysis

Young’s | Poisson’s | Yield | Hardening | Hardening | Liiders
Modulus | Ratio Stress | Constant, A | Exponent, n | Strain
(GPa) (MPa) (MPa)
182.7 0.3 132.4 508.2 0.319 0.0

was to take the material’s true stress vs true strain behavior, and reproduce the load vs
displacement response of the tensile test, including peak load and unloading behavior.
During the tension test, the specimen experiences large geometry changes in addition
to the nonlinear material response. When the specimen softening due to the geometric
reduction in cross-section area matches the specimen stiffening from the material strain
hardening, peak load is reached. After this point a local tensile instability or necking will
result. Thus, the determination of peak load is controlled by the interaction between the
specimen geometry and the material nonlinear response. The true stress vs true strain
curve input provided to the model does not include any information regarding peak load
or unloading, see Figure 5, curve (c).

The tensile test geometry considered is shown in Figure 4. An axisymmetric analysis
of the 6.35 mm diameter tensile test specimen was performed using the finite element
analysis code, SANTOS. Making use of symmetry, only the top half of the specimnen
was modeled. In order to force the necking to initiate at the center of the gage length, the
diameter of the model was arbitrarily reduced to 6.29 mm to provide an initial geometric
imperfection at the plane of symmetry.

A ductile cast iron material (nominally GGG-40) was selected for use in this exam-
ple. The engineering stress vs engineering strain tensile test results for a gage length of
25.4 mm are shown in Figure 5. The true stress vs true strain curve, up to peak load,
was estimated assuming a uniform decrease in radius over the length of the specimen and
assuming coustant volume plasticity [9] according to the following:

€true = In(€eng + 1) (11)

Ttrue = Ueng(eeng i 1) . (12)

The power law constants, A and n, were extracted by performing a least squares fit to
the true stress vs true strain curve as described in the Appendix. Thus, the power law
hardening true stress vs true strain behavior has been extrapolated beyond peak load.
The material constants used in the analysis are shown in Table 2. The true stress vs true
strain curves estimated from equations 10 and 11 and from the power law description are
also shown in Figure 5.

The tensile test load vs displacement curve from the finite element analysis is com-
pared with that from the experiment in Figure 6. The agreement between experiment

13



Table 3. Material Properties Used for Analysis of Plate with a Central Hole

Young’s | Poisson’s | Yield | Hardening | Hardening | Liiders
" Modulus | Ratio Stress | Constant, A | Exponent, n | Strain |
(GPa) (MPa) (GPa)
Case A 207. 0.3 207. 0.00 1.0 1.0
Case B 207. 0.3 207. 2.07 1.0 0.0
Case C 207. 0.3 207. 2.07 0.5 0.0
Case D 207. 0.3 207. 2.07 0.5 0.05

and analysis is very good with the predicted peak load within 0.5 percent of the measured
value. The predicted peak load does occur at a larger displacement than observed in the
experiment. The accuracy of the peak load calculation could not be obtained using a
linear hardening model. The prediction of peak load and the onset of the instability is
controlled by the local material tangent modulus and the rate of change of the cross-
section area, which is a function of plastic strain. The variable hardening provided by
the power law representation is the key to this comparison. The analytical deformed
shape showing the necking behavior is shown in Figure 7 for a specimen displacement of
10.66 mm.

Plate with Central Hole Loaded in Tension

The intent of this example problem is to show the variations in behavior possible
with this material model. Four material descriptions (stress vs strain curves) were con-
sidered: elastic/perfectly plastic, elastic/plastic linear hardening, elastic/plastic power
law hardening, and elastic/plastic power law hardening with Liiders strain. All four
material characterizations can be represented by the material model described in this
report by suitably choosing the power law constants. The tensile plate with a central
hole geometry was selected because it has a simply described global behavior (remote
load vs displacement) which is controlled by a more complex local behavior (non-linear
stress and strain gradients along the plate centerline from the edge of the hole to the
plate free surface).

Two-dimensional, plane-strain analyses including large geometry change assump-
tions were performed on the plate. The plate had the following dimensions: half length
of 2 m, half width of 1 m, and hole radius of 0.25 m. Because of symmetry conditions,
only one fourth of the plate needed to be modeled, as shown in Figure 8. Kinematic
boundary conditions were used to enforce the symmetry conditions. The four stress vs
strain curves assumed for the analyses are shown in Figure 9. The value of the harden-
ing constant for the elastic/plastic linear hardening model was determined by requiring
the effective stress at an equivalent plastic strain of 1.0 to match the effective stress

14



determined from the elastic/plastic power law hardening model.

The plate was loaded by imposing uniform vertical displacements along the top
edge. Displacement control loading enhances the stability of the solution algorithm,
particularly under the conditions of decreasing load. The sum of the nodal reactions
along the horizontal symmetry plane provides the value of total load applied to the plate.
Figure 10 shows the four load vs displacement curves corresponding to the four stress
vs strain curves. The plotted value of displacement corresponds to the imposed vertical
displacement along the top edge. Curve (a) shows decreasing load with increasing vertical
displacement which reflects the response for an elastic/perfectly plastic material. The
cross-sectional area of the plate begins to decrease with the onset of plastic straining and
with no compensation from strain hardening, the total load decreases. The response at
small displacements shown in curves (b), (c), and (d) reflects the onset of yielding at the
edge of the hole and subsequent spread of the yield zone across the plate ligament. After
yielding of the entire ligament, the response of the plate is dominated by the specified
stress vs strain behavior.

15
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Summary

An elastic/plastic power law isotropic hardening material model, including Liiders
strain behavior, has been written for use in finite element codes developed by the En-
gineering Analysis Department. The model is based on a functional representation be-
tween effective stress and equivalent plastic strain which captures the hardening response
of many engineering materials. The form of the model is capable of representing sev-
eral distinct material descriptions: (1) elastic/perfectly plastic, (2) elastic/linear strain
hardening, (3) elastic/power law hardening and (4) elastic/strain hardening with Liiders
strain. In addition, the functional form of the hardening model lends itself readily to
vectorization for supercomputers such as the CRAY. A modest increase in CPU time of
13 percent over the widely used linear hardening material model was observed.

The accuracy of the model was demonstrated by comparing numerical results with
analytic results for an internally pressurized hollow sphere characterized by an elas-
tic/plastic power law hardening material. Agreement between theory and the model was
shown to be excellent. The advantage of the power law hardening material model over
linear hardening was demonstrated by considering the response of a standard tension
test specimen. The true stress vs true strain behavior of a ductile cast iron (GGG-40)
was used as input. The measured tensile test load vs displacement curve compared very
closely to the curve determined from the analysis. The computed peak load was within
0.5 percent of the measured value. The flexibility of the material model to represent
several material descriptions was demonstrated by considering the response of a plate
with a central hole loaded in tension.
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Appendix
User’s Manual for PLHFIT: a Program to
Calculate the Power Law Constants A and n

PLHFIT is a computer program to aid analysts in determining the power law
coefficients A and n which describe the post yield mechanical behavior of their material.
The program calculates A and n from a regression analysis of a user supplied set of
stress/strain data pairs. The details of the regression algorithm are given the following
section. Subsequent sections describe the execution procedure, the input format, and the
format of the results.

Description of the Regression Algorithm

The user supplied stress/strain data pairs are to be fit to a power law equation of

the form
F—0y = A(E”—e")n " (A.1)
As implied by the Heaviside brackets, only the hardening portion of the stress vs strain
curve is used to determine the power law coefficients A and n. Therefore, the strain data
are manipulated to extract the plastic component of strain from the total strain. Then
all data pairs which have a stress less than the yield stress or which have a plastic strain
less than the Luders strain are eliminated. Thus, only positive values of the quantities
(¢ —0y,) and (& — €) remain. The power law (equation A.1) can be rewritten as a linear
equation in terms of the logarithins of the stress and plastic strain difference quantities.

In(¢ —0oy,)=InA+nxIn (E”—e") (A.2)

Rather than simply performing a least squares linear regression on equation A.2,
two weighting parameters are introduced. The first weighting parameter reduces the
effect of variable data spacing on the regression results. The data are weighted by the
difference in the strain values. This weighting scheme tends to minimize the difference
in area between the experimental and regression curves rather than the differences at
individual data points. This weighting also introduces the requirement that the data
pairs be monotonic. Since stress/strain data are typically monotonic, this requirement is
not particularly restrictive. The second weighting parameter corrects for the inaccuracy
that results from performing the regression on the logarithms of the data rather than
on the original data. The least squares procedure minimizes the square of the difference
between the actual data, y, and the evaluation of the function, y, see expression A.3.

minz (y - 3})2 (A.3)
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By using logarithms of the data, the procedure actually minimizes the differences in
logarithms,

min Y (lny —Ing)’. (A.4)

Minimizing the differences in logarithms rather than the actual values, implicitly results
in giving greater weight to smaller data values than is given to larger data values. Using
1/y? as a weighting parameter approximately corrects this implicit weighting as shown
below [10]. Taking the first two terms of the Taylor series expansion for expression A.4,

B

S(lny-Ing)’ =Y (u) (A.5)
Y

The difference between expression A.3 and the right hand side of equation A.5 is simply

1/y?, the weighting parameter. The power law coefficients are then calculated using a

standard least squares weighted linear regression technique [11].

Execution of PLHFIT

The PLHFIT executable and source files are located on the 1500 VAX cluster. The
PLHFIT program is run by typing:

PLHFIT input_file

where input_file is the name of the file containing the stress-strain input data. The file
extension for this file must be .INP. PLHFIT does not allow the input data to be entered
interactively.

Input Format for PLHFIT

The data input format used by PLHFIT is a free field form using keywords. The
keywords are intended to define a user friendly program language input. The free field
input allows the user to delimit entries by either a blank, a comma, or an equals sign.
A dollar sign indicates that whatever follows on the line of input is a comment and
is ignored. The keyword parsing system used in PLHFIT examines keywords until
an unambiguous entity results. All subsequent character data are ignored. Once an
unambiguous keyword entity has been identified, the first numerical constant is accepted.
After a keyword and a numerical constant have been accepted, the remainder of the
command line is ignored. The keywords may be entered in any order. The entry of the
data pairs which define the stress/strain curve is a slight exception to the description
above. The keyword which defines the beginning of the stress/strain data pair entry
has no numerical value associated with it. When identified, this keyword transfers the
free field reader to a location where it will accept two numerical constants (strain value,
stress value) per line without any keyword until the keyword which defines the end of
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Table A.1. List of Keywords Recognized by PLHFIT

YOUngs modulus
or
E The elastic modulus of the material

YIEld STRess The yield strength of the material

LUDers strain
or

YIEld “LAteau The plastic strain offset from the yield point

to the start of the strain hardening region

DATa Sets the parser to commence reading
data pairs in STRAIN; STRESS order

END DATa Sets the parser to return to reading
KEYWORD; NUMERICAL CONSTANT input

END
or
EXIt Defines the end of the input data

the stress/strain data is identified. At this point, the command line parsing reverts to its
initial description (keyword followed by numerical value). The stress/strain data pairs
must define a monotonic curve. This requirement is due to the weighting values assigned
based on the spacing of the strain values explained in the previous section.

A list of keywords recognized by PLHFIT is provided in Table A.1. All keywords
are required and no default values are assumed. Typically, keywords are parsed for the
first three characters. The convention used in Table A.1 is, capital letters in the keyword
are required; lower case characters are optional. If an unacceptable or unrecognizable
keyword is read, PLHFIT prints an error message and aborts. The program will check
that all required information has been entered. If not, the missing keyword will be printed
and the program will abort. In all cases, a complete echo of the input data is printed. A
sample input deck is presented in Figure A.1.

Output from PLHFIT

Two files are created during the execution of PLHFIT. One file is a text file con-
taining an echo of the input data followed by the calculated power law coefficients. The
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E = 23.1E06

YIELD STRESS = 19200
LUDERS STRAIN = O.
DATA
7.996935-4,18604.1699
9.745377-4,21513.2402

0.17206070,60915.0508
0.17269200,61135.1094
END DATA

EXIT

Figure A.1. Sample input deck for PLHFIT

other file contains the stress/strain data pairs which define two curves in GRAFAID (12]
neutral file format. The first curve is an echo of the stress/strain input data. The second
curve contains stress/strain data pairs calculated using the power law coefficients. It is
strongly recommended that these two curves be examined graphically so that the user
may determine the suitability of the power law curve for his purpose. In certain cases, it
has been found to be beneficial to eliminate some of the small strain data when a good
fit to the large strain data is required.

The text file name is the same as the input file name with a .OUT extension. The
GRAFAID neutral file has the extension .NEU with the same file name as that used
for the input file. For example, if PLHFIT is successfully run with an input file of
CURVEL.INP, a text file named CURVE.OUT and a GRAFAID neutral file named
CURVE.NEU will be created.
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