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Abstract

In this paper we present a series of haptic exploratory procedures, or EPs, implemented for
a multi-fingered, articulated, sensate robot hand. These EPs are designed to extract specific
tactile and kinesthetic information from an object via their purposive invocation by an intelligent
robotic system. Taken together, they form an active robotic touch perception system to be
used both in extracting information about the environment for internal representation and in
acquiring grasps for manipulation.

The haptic system presented utilizes an integrated robotic system consisting of a PUMA
560 robot arm, a JPL/Stanford robot hand, with joint torque sensing in the fingers, a wrist
force/torque sensor, and a 256 element, spatially-resolved fingertip tactile array. We describe
the EPs implemented for this system and provide experimental results which illustrate how they
function and how the information which they extract may be used. In addition to the sensate
hand and arm, the robot also contains structured-lighting vision and a Prolog-based reasoning
system capable of grasp generation and object categorization. We present a set of simple tasks
which show how both grasping and recognition may be enhanced by the addition of active touch

perception.
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1 Introduction

1.1 Motivation

We motivate this work with two basic assumptions. First, a useful robot must manipulate its
environment. There are exceptions to this statement, of course - a space-faring robotic probe
doing planetary imaging is an example - but for the most part, robots are intended to carry out
tasks which involve grasping and manipulation of a variety of objects, either autonomously or in
conjunction with a human coordinator. Second, because the world is dynamic and uncertain, the
robot must interface with its environment via sensing. We define perception as the intelligent
utilization of this sensed data. Perception allows the robot to compensate for the uncertainties and
changes in its environment, to build meaningful internal representations, and to make decisions
about the objects in its world which may be useful in completing its designated tasks.

Most of the work in robotic perception to date has been in computer vision. Research in this
area ranges from low-level edge detection to high-level object recognition. Such work is primarily
concerned with segmenting multiple object scenes, determining the location of an object, and
extracting information about an object’s form and structure. Research in robotic manipulation
has largely concentrated on design and control of mechanical hands and on (primarily) analytical
studies of the positioning and forces required to generate stable grasps.

Let us make two observations: First, while vision is an undeniably important perceptual capa-
bility, it is often inadequate. Under the best of circumstances, it provides only partial information
- we cannot visually perceive an entire object in a single sensing step. In addition, objects are
often occluded by other objects, or even by the hand and arm in the case of a manipulation task.
And finally, many of the environments where robots will prove most useful provide extremely poor
visibility, creating conditions under which vision systems will not function optimally. Second, in-
voking our first basic assumption, the reason for the robot to be in these environments is to carry
out useful tasks. Since the tasks involve manipulation, the robot will be equipped with one or
more end-effectors. If the tasks are sufficiently complex and variable, one of these end-effectors
might well be a multi-fingered, articulated hand. By augmenting this end-effector with sensors and
developing a haptic perceptual system which utilizes this sensate hand, we create a complimentary

perceptual system which may be used either alone, or in conjunction with vision, to allow the



robot to explore and model its environment. The additional information provided may also be used
during manipulation to acquire and maintain grasps by allowing the robot to sense local object

properties and error conditions such as object slippage.

1.2 Related Work

There have been many projects involving the design of tactile sensors. Raibert [25], Siegel [28] and
Fearing [10], Begej [4], and Tise [34] present spatially-resolved tactile sensors for normal force mea-
surement based upon resistance, capacitance, optical, and piezoresistance transduction techniques,
respectively. Novak [22] presents a spatially-resolved capacitance sensor for normal and shear force
measurement, while Brock [7] presents a force/torque fingertip sensor. Despite this body of previ-
ous work, however, few sensors have been developed which have left the lab and found their way
into use as tools for those interested in utilizing such devices for further research. The reasons for
this include lack of robustness, repeatability and design of supporting electronics and interfaces.

Despite this dearth of devices, several researchers have addressed the issue of how to utilize
tactile sensing in a robotic system. The largest effort has been in the use of a single tactile sensor for
data extraction. A representative sampling of such work follows: Crimson [11] and Ellis [§] obtain
position and surface normal data, which is then used to determine where to next move the sensor.
The final goal is the recognition of objects modeled as polyhedra. Bajcsy [3] explores the usefulness
of the data obtained from spatially-resolved tactile arrays in both planar and curved geometries.
Hillis [12] uses pattern recognition techniques to analyze tactile array images of objects smaller than
the sensor pad, while Overton [23] and Shen [27], among others, use static tactile array images to
extract information about objects larger than the sensor. Allen [1] presents an active touch system
utilizing a tactile array with curved geometry. Positional information is obtained by moving the
sensor along a surface. The points obtained are used to build a parametric surface description
which is used for model-based recognition. Stansfield [32] takes a different approach, presenting the
design of an active robotic touch system based upon theories of human haptic perception. A series
of exploratory procedures are described which utilize a combination force/torque - tactile array
sensor mounted on a robot arm. These EPs are used to haptically explore an unknown object for
categorization.

A few researchers have done work in object recognition using tactile sensors mounted on two-



fingered, parallel-jaw grippers. Briot [6] uses tactile arrays mounted on a gripper to identify ele-
mentary shapes for objects smaller than the sensor pad. Luo [20] uses a pair of tactile array sensors
mounted on a gripper, along with two-dimensional vision, to recognize objects using the moment
invariants of object silhouettes. Koutsou [17] extends the work of Stansfield [32] by adding EPs
to extract information about the weight and gross size of an object using a pair of force/torque
- tactile array sensors mounted on a gripper. The gripper allows the robot to span and lift the
object.

Parallel-jaw grippers have limited use for perception, however, due to their lack of dexterity.
The next logical step is to explore the use of multi-fingered, dextrous hands for touch sensing. To
date, most research in sensate hands has involved the use of torque sensing in the joints or force
and torque sensing at the fingertips to produce and maintain stable grasps. Among the researchers
contributing to this area are Salisbury [26], Fearing [9], Brock [7], and Bicchi [5]. The use of a
sensate hand for perception has received far less attention. Kinoshita [14] and Stojilkovic [33]
present early research in the use of a multi-fingered hand for pattern recognition. Allen [2] uses a
dextrous, multi-fingered hand for model-based object recognition. Contact points are obtained from
the object by having the hand grasp it from several different pre-specified positions. A superquadric
is then fit to the data and is used to match the object against a database of known objects. The

integration of a fingertip tactile array sensor into the system is also briefly discussed.

1.3 Synopsis

The research presented in this paper extends the work of Stansfield [32] to a multi-fingered, dextrous,
sensate robot hand. We have used theories of human haptic perception as a guide in designing a
robotic touch perception system. Our goal is flexibility. It is obvious that the human hand is
not only a useful general-purpose manipulator, but also that it is a valuable perceptual system.
Studies have shown, for example, that the haptic system is capable of fast and accurate object
recognition [15]. Robotics researchers, however, usually address perception and manipulation as
two separate problems, thereby missing the important link between the two. It is our goal to explore
the interactions of manipulation with haptic perception. In this first stage of our work, we do not
address the problem of utilizing touch data to maintain grasps, but rather look at how the sensate

hand may be used as an exploratory and perceptual device. However, we do not ignore the link



between manipulation and perception even at this stage. The haptic exploratory procedures which
we present make ample use of our robotic grasp generator to both shape the hand for exploration
and to acquire the objects to be explored. Uses for the haptic information acquired during this
exploration include choosing initial values for parameters such as grasp force and adjusting the
initial hand position and posture before manipulation begins.

The remainder of this paper is structured as follows. Section 2 briefly discusses the theories of
human haptic perception which we have adopted and the model of robotic touch perception which
we have designed based upon them. Section 3 presents the haptic EPs which we have implemented
and provides experimental results for each. Section 4 presents a few simple tasks which demonstrate

how augmenting a robot hand with a haptic perception system might be useful.

2 Haptic Perception: A Model

2.1 Theories of Human Haptic Perception

Psychological studies of human haptics by Klatzky and Lederman [18, 16] point out the link between
desired knowledge about an object’s properties and the hand motions executed to acquire that
knowledge. Central to their studies is the idea that the haptic system is active and purposive. It
is made up of two subsystems: the motor subsystem and the sensory subsystem, with the sensory
subsystem piggy-backed onto the motor subsystem. Hence, unlike visual perception, it is not only
the processing of the sensory data which is important, but also the way in which the motor system
is used to extract that data.

Through a series of experiments, they have compiled a set of exploratory procedures, or EPs,
directly linked to the extraction of specific haptic object properties. Each EP is a stereotypical
movement pattern which has certain characteristics which are either invariant or highly typical.
That is not to say, however, that an EP need correspond to a particular end-effector, hand posture,
fixed pressure, etc. An example is the “pressure” EP used to extract hardness information. This
EP involves the application of shear and normal forces to an object. These forces may be applied
either by pushing on the object with a single finger, or by squeezing the object between the fingers
and the palm (or in any number of other ways.) It is the application of pressure which is the

invariant. Figure | presents a list of the EPs which Lederman and Klatzky propose for the human



Figure 1: EPs and the properties they extract.

Exploratory Procedure Haptic Properties Extracted

lateral motion texture

pressure hardness

static contact temperature
enclosure global shape, volume
contour following exact shape, volume
unsupported holding weight

part motion test part motion
function test specific function

hand, along with the haptic properties which each extracts.

2.2 Design of a Robot Haptic System

We have based the design of our robotic haptic system upon this theory of stereotypical exploratory
movements used to extract a fixed lexicon of haptic properties. These EPs (that is, the motor and
sensory processing modules which comprise them) must, of course, fit into some larger compu-
tational model of perception. We have addressed this issue in [32]. In that work, we propose a
structure for the perceptual system which consists of a hierarchy of problem-solving modules each of
which is domain-specific and informationally-encapsulated. Processing within this system proceeds
via the assignment of a set of intermediate levels of representation of the sensed world, beginning
with low-level primitives and ending with an abstract, symbolic representation to be used by the
cognitive system. This model is not unlike that proposed for the visual system by Marr [21], Our
current work with the sensate hand remains true to this model: the EPs comprise the lowest levels
of this hierarchy, extracting information about the world and making it available to upper levels for
further processing. Thus the EPs themselves may be thought of as a collection of tools available
for purposive, knowledge-driven invocation by higher-level modules. The order of invocation for
EPs within the human system is addressed in [19]. We discuss the incorporation of these ideas into

our robotic system in Section 4.



2.3 Implementation: the Robotic System

In this subsection, we briefly present the integrated robotic system upon which this work is imple-
mented. Section 3 discusses the implementation of specific EPs. The robot haptic system consists

of the following.

A 6 degree-of-freedom PUMA 560 robot arm.

e A wrist sensor which measures three force and three moment vectors about a central set of

axes.

A JPL/Stanford robot hand. This articulated hand has three fingers, with three joints per
finger, for a total of nine degrees-of-freedom. The hand provides joint positions and torques,

as well as Cartesian positions for the fingertips.

A 16 X 16 element tactile array sensor based upon piezoresistive transduction [13, 29]. This

sensor responds with scalar outputs to applied pressure.

The wrist sensor is mounted on the wrist of the robot arm. The hand is then mounted on this
sensor. The tactile array is mounted on the tip of one finger of the hand. We will discuss the
configuration of the tactile array sensor in Section 3.

In addition to the haptics hardware, the robotic system also contains structured-lighting vi-
sion and Prolog-based expert systems capable of object categorization and grasp generation. This
integrated system provides an excellent testbed for our theories. Not only does it allow us to demon-
strate how the work presented in this paper fits into an overall structure for robotic manipulation,
but also how it enhances the performance of other, non-haptic, components as well. The examples

presented in Section 4 utilize all components of our robotic system to make this point.

3 Active Exploratory Procedures for a Sensate Hand

In this section we present the haptic exploratory procedures which we have implemented for the
system described in Section 2. The EPs are organized according to the specific haptic property
which they are designed to extract. In most cases, an EP utilizes information from more than

one of the touch sensors. In addition, for several of the properties, we have implemented multiple



EPs for extracting that property. The choice of which to invoke may depend upon such factors as
previously extracted information about the object being explored and the sequence of invocation
for the set of EPs which constitute the entire exploration. For example, the hardness of an object
which fits into the hand might be obtained by squeezing, however the hardness of a support surface

is better determined by pushing on it with a single finger.

3.1 Cutaneous Properties

Cutaneous properties are obtained from the tactile array sensor mounted on the fingertip. The
sensor contains a 16 X 16 array in a sensing area of dimension 10 mm X 25 mm. The sensor is
designed to be wrapped “Bandaid-like” around a cylindrical fingertip. We found this to be a less
than ideal configuration for exploration, however. Instead, we have designed a new fingertip for the
sensor which consists of a planar portion, which we refer to as the pad and a curved portion, which
we refer to as the tip. The tactile array is mounted length-wise as shown in Figure 2. The planar
pad gives us a larger, less ambiguous contact surface for extracting tactile images. The curved tip
is actually at the top of the fingertip, allowing us to use the sensor for probe-like movements of the
finger. We also throw away half of the data, giving us a 16 X § array which better corresponds

to the dimensions of the sensing surface. Rows 0-5 constitute the tip of the finger. Rows 6-15

constitute the pad.

Cutaneous Contact By classifying the tactile image obtained on the fingertip during a contact,
we may get some idea of the local properties of the underlying object. These properties may then
be used to make further decisions during exploration. We currently classify a cutaneous, or tactile,

contact as one of four types:

» Extended contacts cover some large percentage of the sensor surface. They are usually created
by blunt objects larger than the sensor pad. Figure 3a shows an extended contact created by

pushing the flat end of a ruler against the padl.

* Multiple contacts are distinct regions of contact within a single tactile image. We will return
to this property when we discuss texture. Figure 3b shows multiple contacts created by

1The horizontal white line in the tactile images separates the planar pad portion from the curved tip portion of

the fingertip.
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Figure 2: Fingertip for tactile array sensor.

pushing a twisted-pair cable against the sensor pad.

» Small contacts cover only a small percentage of the sensor surface. They are usually created
by an object smaller than the fingertip, or by some part of a larger object which is smaller

than the fingertip. Figure 3¢ shows a small contact created by the tip of a screwdriver.

» Edge contacts are highly elongated and are usually created by contacting the edge of a large
object. Figure 3d shows the contact obtained for the edge of a ruler pressed diagonally across

the pad.

Surface Texture Because the array sensor is highly sensitive, it has a tendency to saturate
easily; therefore, we use it primarily as a binary device (contact/no-contact for each site.) For
the same reason, it is difficult to get meaningful statistics for the greyscale values when trying to
determine whether or not a given contact indicates a textured surface. Fortunately, because of the
density and tight spacing (approximately 1.37 mm between active sites) of the array, we can often
determine surface texture from the number of contacts contained in a single image. A static contact

EP which produces an image containing a single extended contact indicates a smooth surface, while

11



Figure 3: Tactile contacts on fingertip pad.

c) small d) edge



a static contact EP which produces an image having distinct multiple contacts indicates a rough
or textured surface. To determine this, a binary image is created via thresholding and the regions
contained in this image are then determined. Figure 4 shows the results of this process for both
the pad and the tip portions of the array. Figure 4a shows the processed regions for the extended
contact created by the flat side of a ruler. Figure 4b shows the multiple regions obtained from
the twisted-pair cable. Figure 4c shows an extended contact on the tip of the sensor (the curved
portion is here pressed against a flat metal surface.) Figure 4d shows multiple contact regions for

a surface of coarse sand.

3.2 Contour Following

The contour following EP is broken down into two steps: edge acquisition and edge following. The
cutaneous information obtained at the fingertip is used primarily, although the hand posture is
also utilized, particularly during error recovery. Figure 5 shows the hand during edge following.
Essentially, the robot uses the positions of its fingers to determine if the object is within its grasp.
If so, the hand is moved along the surface until an edge contact is sensed. The edge following EP
is then invoked. This EP determines the orientation and extent of the current edge contact from
the tactile image. It then opens the hand and moves the arm based upon this information in order
to properly place the hand and finger for the next sensing step. The hand is then closed and the
next tactile image of the edge is obtained. If the robot determines that it has lost either the object
or the edge, it reinvokes the edge acquisition EP. Figure 6 shows the results of running the contour
following EP on one edge of a styrofoam block: The top of the block was first sparsely imaged
visually to obtain positioning and exploration dehmiters for the hand. The horizontal grey lines
in the image show this visual data. The hand is then moved to approximately the position of the
block and the contour following EP is invoked. The white dots in Figure 6 indicate the position
of the center of the tactile contact during edge following. Only a small portion of the block was
explored due mostly to the fact that the length of the block is less than twice the width of the

hand, and the sensor covers a relatively small portion of one finger of this hand.
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Figure 4. Textured and non-textured surfaces determined by tactile contact.

¢) smooth d) textured
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Figure 5: Hand and arm configuration for following the edge of the block.

Figure 6: Results of contour following for the block.
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Figure 7: Mean of finger joint torques vs. weight.

weight of load (Ibs)

3.3 Weight

The weight EP is implemented as unsupported holding: an object is grasped and lifted. A measure
of the weight of the object may then be obtained via two independent means. Both the change in
the magnitude of the forces at the wrist and the change in the torques at the joints of the fingers
provide a good indication of the weight of an object: In both cases, the relationship is linear. Figure
7 shows a graph of the mean of the changes in the nine joint torques for known weights. Thresholds
chosen from these graphs may be used to assign objects into qualitative categories such as “light”
or “heavy” which may then be used for such diverse tasks as object categorization or determining

the state (full or empty) of a grasped container.

3.4 Local Surface Shape

Local surface shape is obtained from the kinesthetic information contained in the finger joint
positions after an object has been grasped multiple times. The EP involves local exploration of the
surface by the hand: the hand is put into a known posture and moved to the object. The grasp

is then closed. The grasp is opened, the fingers spread, and the grasp closed again. Finally, the
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Figure §: Surface shape classification by local exploration.

Object Surface Shape Classification
right planar polyhedron planar

right planar tube planar

inclined plane (45 degrees) planar

cylinder (42 mm radius) singly curved
cylinder (50 mm radius) singly curved
cylindrical tube (95 mm radius) singly curved
hemispheroid (47 mm radius) doubly curved
hemispheroid (108 mm radius) doubly curved
ellipsoid doubly curved

hand is returned to its initial posture and the arm is used to transport the hand vertically before
the grasp is once again closed. From the joint positions of the fingers during these three grasps,
the robot is able to categorize a surface as either planar or singly or doubly curved. Figure 8 shows
the results obtained by the surface shape EP for a variety of objects. While haptic surface shape
categorization is relatively simple, such information may prove useful in poor visibility situations

when the shape of the surface is important for either grasping or recognition.

3.5 Spatial Extent

Spatial extent may be obtained almost immediately from the kinesthetic information contained
in the positions of the finger joints and tips during grasping. The object may be grasped once to
provide rough extent in one or two dimensions by either holding it at the fingertips or enclosing it in
a wrap-type grasp. More complete and accurate information on extent and volume may be obtained
through multiple grasps of the object. Figure 9 shows the results of two experiments in which the
robot obtained the relative width of a series of cylinders of varying radii via an enclosing grasp.
After the robot was presented with the series of cylinders in arbitrary order, it was directed to sort
them by decreasing size. Figure 10 shows the robot holding a cylinder in this type of enclosing
grasp. Figure 11 shows the results of two experiments in which the robot held the cylinders length-
wise in a fingertip grasp. Objects are again sorted by decreasing size in the measured dimension.

By executing these two grasps consecutively for each object, one could determine a fair estimate of
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Figure 9: Extent from enclosing grasp.

Cylinders

(order of presentation)

G (58 mm radius)
F (48 mm radius)
E (43 mm radius)
D (40 mm radius)
C (33 mm radius)
B (25 mm radius)
A (17 mm radius)

Robot’s Odering
(decreasing size)

G (58 mm radius)
F (48 mm radius)
E (43 mm radius)
D (40 mm radius)
C (33 mm radius)
B (25 mm radius)
A (17 mm radius)

Cylinders

(order of presentation)

F (48 mm radius)
C (33 mm radius)
A (17 mm radius)
G (58 mm radius)
D (40 mm radius)
B (25 mm radius)
E (43 mm radius)

Robot’s Odering
(decreasing size)

G (58 mm radius)
F (48 mm radius)
E (43 mm radius)
D (40 mm radius)
C (33 mm radius)
B (25 mm radius)
A (17 mm radius)

the overall extent or volume for each cylinder.

Determining the rough spatial extent of an object is a quick way of pruning hypotheses during
object recognition. Such a skill might also prove useful as a verification mechanism. For example,
if the different tools which the robot uses were designed with different sized handles, then the robot

could verify that it had the proper tool during the grasp required in order to use that tool.

3.6 Hardness

Hardness, or stiffness, is obtained via the pressure EP. We have implemented this EP in three
different ways: two involve grasping the object and squeezing it, the third involves using one finger
as a probe to push against the surface. The robot may use the first two to determine the hardness
of objects which fit into its grasp. The third allows the robot to categorize large objects, such as

the support surface upon which other objects rest.

Hardness Via Squeezing Figures 12 and 13 show the results obtained for the pressure EP,
implemented as squeezing, for enclosing and fingertip grasps respectively. In this case, the change
in the joint positions of the fingers is used to determine hardness: the robot closes its grasp around
an object using a specified joint torque threshold. The grasp is then further closed using double
that threshold. Very hard objects will prevent the fingers from moving at all during this operation.
Soft objects will deform, allowing the fingers to move easily. The larger the change in hand posture,

the softer the object.
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Figure 10: Enclosing grasp for extent determination.

Cylinders

(order of presentation)

A (140 mm length)
B (115 mm length)
C (95 mm length)
D (45 mm length)
E (25 mm length)
F (1 mm length)

Robot’s Odering
(decreasing size)

A (140 mm length)
B (115 mm length)
C (95 mm length)
D (45 mm length)
E (25 mm length)
F (1 mm length)

19

Figure 11: Extent from fingertip grasp.

Cylinders

(order of presentation)

F (1 mm length)

E (25 mm length)
D (45 mm length)
C (95 mm length)
B (115 mm length)
A (140 mm length)

Robot’s Odering
(decreasing size)

A (140 mm length)
B (115 mm length)
C (95 mm length)
D (45 mm length)
E (25 mm length)
F (1 mm length)



Figure 12: Hardness by squeezing (enclosing grasp).

Contents of tube Robot’s Odering Contents of tube Robot’s Odering
(order of presentation) (increasing hardness) (order of presentation) (increasing hardness)

empty empty light sponge empty
tissue paper tissue paper empty light sponge
light sponge light sponge metal cylinder tissue paper
dense foam rubber dense foam rubber tissue paper dense foam rubber
metal cylinder metal cylinder dense foam rubber metal cylinder

In the set of experiments performed, the robot was presented with a series of paper cylinders all
of the same size, but containing materials of dilfering hardness. Of all of the properties we extract
with the haptic system, hardness is perhaps the most subjective. In experiments using both grasp
types, we noted that the robot sometimes produced a hardness ordering which ranked the tissue-
paper-filled cylinder as softer than the light sponge cylinder and at other times produced an ordering
which ranked it as harder. Since the physical characterization of materials is a complex procedure
(see for example, chapter 2 of [24]) which is additionally impossible to apply to full objects, we
opted for a less formal approach to exploring the nature of this ambiguity. In an informal set of
experiments, we gave the same set of objects used by the robot to several human subjects. We
found that about half of them ranked the tissue-paper as harder, half the light sponge as harder.
Based on these observations, we speculate that one possible explanation for the phenomenon is that
we allowed neither the robot nor our human subjects the choice of saying that two cylinders were
equally hard. The humans made an arbitrary choice based upon their individual perceptions. The
robot, operating within the limits of its precision, simply generated a ranking based on meaningless
digits. This result shows how important it is for perception to take a step beyond the application of

physical laws to observed data to the qualitative labeling of a quantity in order to give it meaning.

Hardness Via Pushing Our third implementation of the pressure EP uses a single finger to
push against a surface. This probe posture is shown in Figure 14. In this case, the position is
controlled and the finger torques are used to determine hardness: the hand is positioned so that

the probe-finger will push against the surface. Transportation of the hand is via the arm with
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Figure 13: Hardness by squeezing (fingertip grasp).

Contents of tube Robot’s Odering Contents of tube Robot’s Odering
(order of presentation) (increasing hardness) (order of presentation) (increasing hardness)

empty empty tissue paper empty
tissue paper tissue paper dense foam rubber light sponge
light sponge light sponge empty tissue paper
dense foam rubber dense foam rubber metal cylinder dense foam rubber
metal cylinder metal cylinder light sponge metal cylinder

the move guarded using the finger joint torques. The finger is moved against the surface until a
specified torque threshold is seen on any of the finger joints. The arm then moves 5 mm more, so
that the finger is further pushed against the surface. The mean of the change in the joint torques
for the probe finger indicates the hardness of the surface. A hard surface will not deform, creating
large torques as the finger presses into it. A soft, deformable surface will create smaller torques on
the finger joints. Figure 15 shows the results of using the probe posture to determine hardness for a
series of surfaces. In this case, the robot makes a binary decision, assigning each surface the label of
“hard” or “soft” depending on the value of the measured changes in joint torque. (For the purpose
of this illustrative example, we have hardwired the threshold based upon multiple experiments.

The robot could easily learn these thresholds through training sessions.)

3.7 Elasticity/Plasticity

Determining the elasticity or plasticity of a surface or object is a natural extension of determining
its hardness. An elastic surface is one which regains its previous shape after deformation. A
plastic surface will remain deformed after the applied pressure is removed. By our definition, only
a deformable, or soft, surface may be elastic/plastic. The EP for this property involves applying
and then removing pressure in a known way. The sensory inputs are the joint torques and the
cutaneous information from the tactile array. The robot invokes the pressure EP in the same way
as for hardness using the probe configuration. In this case, however, it moves against the surface
until a threshold on the size of the cutaneous contact is exceeded. It next presses against the surface

with a 5 mm movement of the arm and then backs away from the surface with a 4 mm movement
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Figure 14: Probe posture used for extracting hardness.

Figure 15: Hardness by pushing against surface.

Surface Material DeLjtorque Hard/Soft

wood 123.88 hard
metal 104.47 hard
plastic 73.85 hard
styrofoam 65.06 hard
sand 32.67 soft
sponge 24.85 soft
tissue paper 15.88 soft
salt 15.76 soft
dough 11.75 soft
cotton balls 4.92 soft

2.2



Figure 16: Surface deformation by probing.

Surface Material ~ Elastic/plastic

cotton balls elastic
tissue paper elastic
sponge elastic
dough plastic
sand plastic
salt plastic

of the arm. If there is still contact on tactile array, then the surface has recovered its shape as the
pressure against it is released and the surface is labeled as elastic. If there is no cutaneous contact
as the finger moves away, then the surface has retained its deformation and it is labeled plastic.

Figure 16 shows the results of applying this EP to a series of different materials.

3.8 Surface Solidity

Our final haptic property is surface solidity. The EP again involves moving the finger against
the surface using the probe configuration: the pressure EP is invoked to ensure that the finger is
pressed firmly against the surface. The robot then attempts to move its fingertip laterally against
the surface by changing the angular position of the most distal joint in a known way (in this case
by 30 degrees.) This movement is guarded using the joint torques. If the surface is non-solid, the
robot will be able to move its finger through the surface material to attain the new posture. If
the surface is solid, then the finger will not be able to achieve the new posture, but will simply
press against the surface until the joint torque threshold is reached2. Figure 17 shows the results of
invoking this EP for a series of surface materials. The robot currently makes a binary classification
of materials as either solid or non-solid.

2Solid but deformable materials, such as sponge, will allow some lateral motion.
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Figure 17: Solidity by moving laterally against surface.

Surface Material DeLjaS Solid/Non-solid

metal 3 deg solid
styrofoam 4 deg solid
tissue paper 9 deg solid
sponge 12 deg solid
sand 30 deg non-solid
salt 30 deg non-solid
dough 30 deg non-solid
cotton balls 30 deg non-solid

4 Demonstrating the Usefulness of Haptic Perception

In this section we present three tasks which illustrate ways in which haptic perception may be used
to enhance the performance of a robotic system. While the tasks presented are relatively simple, and
are meant only to be illustrative, they do utilize the haptic system as part of an integrated robotic
system. As such, they demonstrate that our model for haptic perception fits into a larger structure
for robotic manipulation and multi-sensory perception. These larger, more complex examples also
allow us to explore the sequence of invocation of EPs when several are to be utilized for a single
task.

Obviously, the desired information about the object being explored will determine which EPs
will be invoked. For example, in our first task, haptic EPs are used to augment visual information
in order to prune the set of hypotheses for the object of interest. In this case, the EPs are invoked
individually, as they are needed.

When the task is haptic object recognition, as in our second example, then the robot must
invoke a sequence of EPs before attempting to identify the object. In this case, we must look more
closely at the order in which these EPs are executed. Important factors are speed and efficiency
of execution. By grouping EPs according to their compatibility, we can create hybrid movements
which combine similar EPs and hence do not require radical changes in the posture or position of
the hand and arm between consecutive executions. Additionally, it makes sense to try to combine

exploratory procedures with the hand shaping and wrist orientation required for grasping. The
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pressure EP for the probe posture, combined with the EPs for elasticity and solidity, is an example
of the former. The pressure EP for squeezing, implemented for several hand postures, is an example
of the latter.

In our object categorization task, we combine the hand posture for surface shape determination
with the EPs for hardness and weight: the hand is properly configured and moved to the object. The
pressure EP is applied, and the object hefted, in a hybrid movement which extracts both hardness
and weight. This combination grasp, squeeze, and heft is a very economical way of extracting
multiple properties. The more time-consuming and specialized exploration required for surface
shape determination is then executed without reshaping the hand or further moving the arm. We
must, of course, be careful that the EPs which we combine do not interfere with each other: the
pressure applied to the object must be discontinued (by opening the hand) before the surface shape
EP is initiated, since the shape of a soft surface may be changed by the pressure EP. Likewise,
a determination of overall extent is combined with the multiple grasps and object reorientations
required for determining the shapes of the multiple surfaces of an object. This reduces, by at least
three, the number of grasps required to fully explore the object.

Finally, our third example illustrates the use of haptic properties for a task other than object
categorization. The information is extracted on an “as-needed” basis and is used to make decisions

required for the successful completion of a multiple component task.

4.1 Multi-Sensory Integration for Object Categorization

In this example, the task is object categorization of geometrically simple shapes made of different
materials. The object database consists of a set of generic models for blocks, cylinders, and spheres
made of metal, styrofoam, and sponge, for a total of nine objects. The object being sensed is a
polyhedral styrofoam block.

The robot uses its visual perception system to build a symbolic description of the object. The
object representation paradigm and reasoning mechanism are described in [30]. For the purposes
of this example, we need only point out that the result of the visual perception is a set of frames
containing aspects for the object as shown in Figure 18 for the styrofoam block. Figure 19 shows
the results of matching for this object. With the purely spatial and geometric information provided

by vision, the robot is able to distinguish between the different geometric shapes and correctly



Figure 18: Results of visual processing for styrofoam block.

object frame component frame
dimension: 3 component: body (255)
components: [body] enclosing volume: [119,93,112]

enclosing volume: [119,93,112]

surface frame surface frame
component: body (255) component: body (255)
view is top view is front

shape is planar shape is planar
surface frame surface frame
component: body (255) component: body (255)
view is back view is left

shape is planar shape is planar

surface frame
component: body (255)
view is right

shape is planar

identify the object as a block, but it is unable to distinguish between blocks of different materials.

If we now allow the robot to further explore the object haptically (in this case via the invocation
of weight and hardness EPs) and then integrate this information into the symbolic representation
of the object, the robot is able to correctly identify the styrofoam block. Figure 20 shows the
results of matching when only the weight slot is filled for the object, and when both the weight and

hardness slots are filled.

4.2 Haptic Object Categorization

In this example, the task is haptic object categorization. The haptic system is used exclusively to
extract the properties required to fill in the slots of the object’s frames for matching. In general, for
haptic exploration, the object is placed into the subject’s hands. Both hands are then used not only
for executing EPs, but also for supporting and reorienting the object during exploration. Obviously,
the robot has only one hand and arm and is therefore incapable of this kind of behavior. We mimic
it by having the robot request reorientation of the object when needed. Exploration proceeds in
the following way: the hand is moved to the object and a grasp posture is affected. The grasp

is closed, and the robot executes the hybrid pressure/hefting movement to obtain hardness and
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Figure 19: Identifying the styrofoam block with visual information only.

/* styrofoam block: vision only */

what_is_object (obj).

Object hypothesis is: metal_block
bottom left

side2 side5

matched faces are: top

sidel

styrofoam.block
bottom left
side2 sides

Object hypothesis is:
matched faces are: top

sidel

sponge.block
bottom left
side2 sides

Object hypothesis is:
matched faces are: top

sidel

Figure 20: Identifying the styrofoam block with vision and haptics.

frontback
side3 side4

right
side6

front back
side3 side4

right
sideé6

front back
side3 side4

right
sideé6

/* styrofoam block with weight characteristic,

value is ‘‘light’' */

what_is_object (obj).
styrofoam.block

bottom left

sidel side2 sideS

Object hypothesis is:

matched faces are: top

sponge .block
are: top bottom left

sidel side2 sideS

Object hypothesis is:

matched faces

/* styrofoam block with weight

values are ™“1light” and

what_is_object (obj).

styrofoam.block
bottom left

Object hypothesis is:

matched faces are: top

sidel side2 sideS
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Figure 21: Results of haptic exploration and match for sponge block.
object is light
object is soft
back: surface is planar
right: surface is planar
front: surface is planar
left: surface is planar
top: surface is planar
bounding volume is [100.59, 100.92, 94.59]
object dimension is 3D
Object hypothesis is: sponge.block

matched faces are: top bottom left right front back
sidel side2 side5 side6 sideS side4

weight properties. Simultaneously, one-dimensional extent is obtained. The robot then executes a
series of grasps of the object, invoking the surface shape EP for each of the five aspects required by
the object representation. As it grasps the object in different orientations, the robot also extracts
further extent measurements, giving it a global extent or volume for the object at the conclusion
of the exploration. Figures 21 and 22 show the results of this exploration, along with the results
of matching, for a sponge block and a sponge cylinder, respectively. The database is the same as

that used for the previous vision/haptics recognition task.

4.3 A Multi-Component Task Utilizing Haptics

In this example, we show how haptic information may be used during task execution to allow the
robot to acquire grasps and to make decisions about the objects in its environment, particularly
under conditions of poor visibility. The task is to clear the support surface of unknown objects,
sorting them into different trays based upon weight, and to then categorize the support surface and
place an appropriate marker. The only information which the robot is given is the position and
rough extent of the objects to be cleared. Thus it knows where, and roughly how big, objects are,
but it has no other information about them. Figure 23 shows the set-up for this task. The scene

consists of a polygonal box filled with paper clips, and a mangled, empty cylindrical can. These
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Figure 22: Results of haptic exploration and match for sponge cylinder.
object is light
object is soft
back: surface is singly curved
right: surface is singly curved
front: surface is singly curved
left: surface is singly curved
top: surface is planar
bounding volume is [117.34, 120.48, 95.69]
object dimension is 3D
Object hypothesis is: sponge.cylinder

matched faces are: top bottom left right front back
sidel side2 sideS side6 sideS side4

objects are sitting on a support surface of coarse sand. Figure 24 shows a script of the execution
of this “clearing” task.

The first thing the robot must do is to grasp, lift, and place each object. It utilizes a model for
grasping described in [31]. In this model, the shape of an object is used to determine which of a set
of grasps will be most stable for that object. For example, a fingertip grip grasp produces a stable,
highly dextrous grasp for the edges of a planar, polygonal object, while an enclosing wrap grasp is
more stable (though less dextrous) for a curved object. Ideally, shape information is provided by
the visual system. However, in a poor visibility situation such as we are simulating here, the robot
may obtain this information using haptics. Thus, for each object in turn, the robot executes the
surface shape EP and based upon this determination, invokes and executes the most appropriate
grasp. The robot then lifts the object, simultaneously invoking the hefting EP which determines
weight. If the object is heavy, as in the case of the full box, it is placed in tray 1; iflight, as in the
case of the empty can, it is placed in tray 2. Note that even without adequate vision, the robot
generates appropriate grasps for the regularly-shaped box and the irregularly-shaped can. It then
properly sorts the objects based upon the non-visual weight information.

Once all objects have been cleared, the robot categorizes the support surface as either solid
or non-solid. Again, this is a determination which would be difficult, if not impossible, to make

visually. The robot accomplishes this component of the task by executing the pressure EP to
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Figure 23: Experimental set-up for the clearing task.

determine if the support surface is hard or soft. If the surface is hard, then it is also solid by
default. If the surface is soft, then the solidity EP using lateral motion is executed to make the

final judgement. In this case, the support surface, which is sand, is both soft and non-solid.

5 Summary

Two skills which will enhance the usefulness of a robot are perception and flexible manipulation.
The former allows the robot to maintain and update internal models of its environment via sensing
and hence to respond to uncertainties and changes in the dynamic world as they are encountered.
The latter allows the robot to carry out tasks for which the tools and components need not be
rigidly specified. Haptics is the science of understanding the nature of the information which comes
from the sensate hand and how it is utilized. As such it provides the link between perception and
manipulation. It seems logical, then, that research into robot haptics should help bring us closer
to our goal of building useful robots.

In this paper we have presented a series of haptic exploratory procedures implemented for a

dextrous, sensate robot hand. These EPs are designed to extract specific tactile and kinesthetic
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Figure 24: Script of execution of the clearing task.

determine surface shape for first object
surface is planar locally

grasp choice is grip grasp of object top edge
hefting object for weight determination
object is heavy

placing first object in tray 1!

determine surface shape for second object
surface is doubly curved locally

grasp choice is wrap grasp of object
hefting object for weight determination
object is light

placing second object in tray 2
categorizing support surface:

surface is soft

surface is non-solid

placing maker 1

information from an object via their purposive invocation. Taken together, they form an active
robotic touch system. This system may be used by an intelligent, autonomous robot to extract
information about the world and to acquire grasps during manipulation. It may also be used
to enhance a tele-operated robot by increasing the capabilities of the remote device and thus
eliminating many of the problems associated with sensory feedback to the human operator. For
example, in current tele-operated grasping, the operator must place the hand properly, and, if he is
given force feedback at all, must somehow interpret and respond to the created forces (often with
time delays) before he either loses or crushes the object. Imagine, for instance, attempting to lift
the lid off of a delicate cardboard box in this way. On the other hand, if the robot itself is able
to handle the manipulation details, then all the operator need do is approximately place the hand
and give a high-level command. As an example, we have implemented the lid lifting task with
no sensory feedback to the operator. The hand is placed over the object. The edge acquisition
EP is then invoked to more precisely place the fingers on the lid. This operation includes the
interpretation of force and tactile data at the device level. Once the edge, and hence the lid, is
acquired, the lid may be lifted by a simple movement of the arm. We have also implemented this
task for solely autonomous execution, by having the robot acquire the object via its visual system,
rather than having the operator place the hand. The same set of haptic EPs is invoked in both

cases.
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The work presented in this paper has concentrated on hand motions and sensory processing
for knowledge-driven haptic exploration. The next phase of our research will explore the use of
haptic information as part of a data-driven, reactive mechanism for grasp maintenance during

manipulation.
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