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Computer Simulation of the Anomalous Elastic Behavior of Thin Films and

Superlattices

D. Wolf

Materials Science Division, Argonne National Laboratory

Argonne, IL. 60439.

Atomistic simulations are reviewed that elucidate the causes of the anomalous elastic behavior of thin films and
superlattices (the so-called supermodulus effect). The investigation of free-standing thin films and of superlattices
of grain boundaries shows that the supermodulus effect is not an electronic but a structural interface effect
intricately connected with the local atomic disorder at the interfaces. The consequent predictions that (i) coherent
strained-layer superlattices should show the smallest elastic anomalies and (ii) the introduction of incoherency at
the interfaces should enhance all anomalies are validated by simulations of dissimilar-material superlattices.

1. INTRODUCTION

The discovery [1] and intensive investigation in
recent years [2,3] of anomalies in the elastic response
of multilayer metal films has given rise to hopes that
one day it may be possible to develop synthetic lay-
ered materials with elastic properties not otherwise
achievable, Whereas in many cases an elastic soften-
ing has been reported 3], in some instances a harden-
ing has been observed [1, 4], although recent experi-
ments (see, for example, [5-7]) have questioned the
magnitudes of these strengthenings.

In superlattice materials in which detailed x-ray
studies exist, the elastic anomalies were found to be
accompanied by structural changes. [2,3,5-8] In gen-
eral, an expansion in the z direction (parallel to the
interface-plane normal) is observed which, in cases in
which experiments were performed, is accompanied
by anisotropic lattice-parameter changes in the inter-
face (x-y) plane. Whereas the expansion in the z di-
rection can obviously explain [8] both the observed
softening of the shear elastic constant C44 (for shear
parallel to the interface plane) [3] and a sometimes
observed softening of C33 (parallel to z) (5], the
strengthening reported in Young's and the biaxial
modulus {1, 4] appears to be in conflict with these
elastic-constant measurements particularly since it is
well known that in bulk crystals a lattice expansion
is usually accompanied by a softened elastic response.
Again we mention, however, that a consensus as to
the magnitudes of these strengthenings has not
emerged from the experiments.

Two qualitative explanations based on electronic
structure arguments (9,10] have been offered to ac-
count for the observed existence of elastic and
structural anomalies in strained-layer superlattices. In
one a finite-size effect giving rise to a folding back of
the Brillouin zone is assumed to be responsible [9];
in the other the different electronic properties of the
constituents are assumed to produce strains in the z
direction distributed homogeneously throughout the
bulk of the multilayer film [10]. Both models thus
assume the anomalies to be a homogeneous
electronic effect. However, recent experimental
evidence [5,11-13] strongly suggests that the
expansion in the z direction is localized at the
interfaces.

Other explanations put forward invoke arguments
based on continuum elasticity [14] or the third-order
elastic constants of anisotropically strained systems
[15]. Similar to the electronic-structure arguments,
by treating the superlattice as a homogeneous
system, the latter also ignore the role of the interfaces
as structural defects. Although these and other efforts
[8,16] have reproduced various aspects of the structure
and elastic behavior of superlattices, given the
structural and chemical complexity of these materials
it is not surprising that these studies have revealed
little about the underlying physical causes.

Here we focus on the structural causes for the
anomalous elastic behavior of multilayers. The de-
tailed investigation of thin films and of superlattices
of grain boundaries (see Sec. 3) shows that the su-
permodulus effect is not an electronic nor a homoge-
neous effect but, instead, a structural interface effect



intricately connected with the local (i.e.,
inhomogeneous) atomic disorder at the interfaces. The
consequent predictions that (i) coherent strained-layer
superlattices should exhibit the smallest elastic
anomalies and (ii) making the interfaces incoherent
should enhance all anomalies are validated by simula-
tions of dissimilar-material superlattices (see Sec. 4).
The effect of temperature will be discussed in Sec. 5.

2. COMPUTATIONAL METHODS

Since virtually all elastic-property measurements
on strained-layer superlattices have been performed at
rather low temperatures, two atomistic simulation
codes appropriate for T = O studies are used in our
computer calculations in Secs. 3 and 4. For a given
value of the modulation wavelength, A, the structure
is first relaxed under zero external stress, followed by
a lattice-dynamics like evaluation of the elastic-con-
stant tensor. The constant-pressure relaxation proce-
dure permits the unit-cell volume to respond to the
internal pressure, thus allowing the superlattices to
expand in the z direction and to contract or expand in
the x-y plane. [17] Following the complete relax-
ation of the system, the 6 x 6 elastic-constant and
-compliance tensors at T=0 are evaluated using a
lattice-dynamics like method. [18] The elastic
constants thus obtained can be compared directly with
those extracted from stress-strain curves.

A non-trivial conceptual problem in the evalua-
tion of elastic constants for inhomogeneous systems
arises from the internal relaxations which occur fol-
lowing the application of an external strain or stress
to the system. This relaxation effect, absent when
homogeneously deforming, for example, a perfect
monatomic cubic crystal, gives rise to a contribution
to the zero-temperature elastic constants, in addition
to the well-known Bomn term [19]. In molecular dy-
namics simulations of elastic constants (see also Sec.
5) this relaxation contribution is part of the so-called
fluctuation term [20] which, for inhomogeneous sys-
tems, does not vanish in the T—0 limit.

In all simulations discussed below a Lennard-
Jones (LJ) pair potential fitted for Cu and an embed-
ded-atom-method (EAM) potential fitted for Au [21]
will be used. As discussed in detail elsewhere [22],
the two types of potentials yield qualitatively the
same behavior for most interfacially controlled mate-
rials properties, indicating that the properties of inter-
faces are dominated by the (central-force) repulsive in-
teractions in these potentials. Here we will therefore
use the two types more or less interchangably.

3. STRUCTURE AND ELASTIC BEHA-
VIOR OF THIN FILMS AND SUPER-
LATTICES OF GRAIN BOUNDARIES
As already mentioned, the simultaneous presence

of structural and chemical disorder at the interfaces in

real materials greatly complicates the interpretation of
any lattice-parameter changes or elastic anomalies ob-
served either experimentally or in computer simula-
tions. By first investigating the structure and elastic
behavior of free-standing thin films and superlattices
of grain boundaries (admittedly two extremely simple
model systems), we eliminate chemistry as a factor.

This simplification permits us to focus on the corre-

lation between the atomic structure at the interfaces

on one hand and the elastic behavior on the other.

3.1. Thin Films

It has been widely recognized in recent years
that the surface-stress tensor, Gag (0,B=x,y,z), may
play an important role in the structure and elastic
response of thin films and superlattices. (17, 23-27]
In a fully relaxed surface Gop is usually diagonal,
with a vanishing component, &,,, in the direction of
the surface normal (z direction). In many cases its
only non-zero elements, Gxx and Oyy, are tensile
(indicated by negative values) [23, 28], and of
significant magnitude, favoring contraction in the (x-
y) plane of the surface.

While in a bulk free surface this stress can only
be relaxed, for example, by reconstruction or segrega-
tion [23], a thin film may in addition contract, giving
rise to a uniform reduction in the average lattice pa-
rameter(s) in the film plane (see Fig. 1), with a con-
sequent Poisson expansion in the z direction.
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Figure 1. Surface-stress-induced in-plane contrac-
tions, Aax/a and Aay/a (<0}, of unsupported thin
films of Au. a is the cubic lattice parameter. [27]



To relate these strains quantitatively to the sur-
face-stress tensor, in zero-th order the film stresses,
Oup(A) and elastic constants, Cap(A), (and hence the
compliances, Sqp(A)=[Cap(A)]-1), may be ap-
proximated by their bulk valueso ., C _and §
obtained in the A—yco limit; hergﬁ/\ reﬁ%sems 8‘,@
film thickness. Using linear elasticity theory, for the
isotropic (001) and (11i) films the in-plane con-
tractions may be written as follows [27]:

Aayfa= Aayfa= (1/A) oy, / Yy . )

where Yy =[ ST, + ST, 1! is the biaxial modulus.
E‘h(l) expresses the fact that a tensile surface stress
(0,4<0) gives rise to an in-plane contraction
(Aay,Aay < 0).

As a consequence of the Poisson effect, the in-
plane contraction has a pronounced effect on the film
structure in the z direction. Considering that 65,
vanishes identically for any value of A, analogous to
Eq. (1) the Poisson strain, Aa,/a, is given by

Aagfa=[0y, ST3+0G, S5 1/A . )

Defining the Poisson ratios vxy = -812/511 and v;x
= -513/S11, for the isotropic (111) and (001) planes,
with S13 = S23, Egs. (1) and (2) may be combined to
yield:
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Figure 2. Poisson expansion, Aaz/a (>0), of the
films in Fig. 1 (see also Eq. (3) below). [27]

As expected for the Poisson effect, the signs of Aa,
and Aay are opposite; for Aay<0 an outward dis-
placement of the film surfaces is therefore expected
(Aaz>0).

To test the validity of Eq. (3), in Fig. 2 the val-
ues of Aaz/a determined in the manner described
above are plotied against Aax/a. The solid lines in
the figure, with slopes '2sz/(1'vxy) = -1.121 and
-1.738, respectively, are the predictions of Eq. (3)
based on the bulk stresses and moduli. Their
excellent representation of the simulation data
demonstrates that, with the exception of the largest
contractions (i.e., the smallest values of A, typically
A<4a), the zero-th order linear-elastic equations (1) -
(3) permit prediction of the anisotropic lattice-
parameter changes of a free-standing thin film based
entirely on the knowledge of the bulk-surface stresses
and the perfect-crystal moduli. (For further details see
Ref. [27]))

It has been suggested that the decrease in the av-
erage atomic volume associated with these
anisotropic lattice-parameter changes give rise to a
strengthening of at least some elastic moduli, as one
would expect for a homogeneous solid. [25]
However, as evidenced by the related Young's moduli
Yx, Yy, and Yz shown in Figs. 3(a) and (b), while
some moduli are, indeed, strengthened others are
weakened. For example, in spite of the largest in-
plane contraction observed for the (001) film (see
Fig. 1), the related modulus Y (=Yy) is weakened
significantly (see Fig. 3(a)) while, surprisingly, Y,
simultaneously strengthens. By contrast, the
behavior of the (111) film is more like that of a
homogeneous material: the in-plane contraction is
accompanied by a strengthening in Y, while the z
expansion gives rise to a softening in Y.
Interestingly, in the (011) film Yy is practically inde-
pendent of A while both Yy and Y soften substan-
tially.

In exploring the origin of this anomalous elastic
behavior, it is important to recognize that, even with-
out the stress-induced contractions in the film plane,
the presence of the structurally disordered film sur-
faces alone alters the average elastic response of the
film as a function of A; this response is then modi-
fied by the superimposed stress-induced lattice-param-
eter changes. Two contributions to the net elastic
behavior therefore have to be distinguished. These
can be separated by first determining the elastic con-
stants of the thin film in which the x-y contraction



has been suppressed, against which the additional ef-
fects due to the in-plane contractions can then be
probed. All three Young's moduli are then found to
decrease steadily. [27] If now the surface stresses are
also permitted to relax, the distinct effect of the in-
plane contractions alone is given simply by the dif-
ferences AYx, AYy and AY; between these moduli
and those in Fig. 3. [27)

A detailed analysis of these results {27] demon-
strates that no direct relation exists between the sur-
face-stress-induced anisotropic lattice-parameter
changes and either the overall elastic moduli or the
contribution due to the surface stress alone. The rea-
sons for this very complex elastic behavior appear to
be intricately connected with the rather complex na-
ture of the coupling between the in-plane contractions
and the consequent yielding of the material in the z
direction. This coupling leads to a continuous
modification of the detailed atomic structure of the
film surfaces as A decreases, i.e., to a continuous
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Figure 3. Young's moduli, Yx,Yy and Y, of fully
relaxed single-crystal films of Au, normalized to the
related bulk values. [27]

evolution of the nature of the inhomogeneities near
the film surfaces.

3.2. Grain-Boundary Superlattices (GBSLs)
As for the free-standing thin films discussed
above, our detailed investigation of superlattices of
grain boundaries (GBs) {17, 29-31] has demonstrated
that the anisotropic changes in the average lattice pa-
ramelers can be predicted approximately based on a
knowledge of the interfacial-stress tensor and of bulk
elastic constants [30]. Therefore, in this section we
elaborate only on the relationship between the elastic
anomalies and the underlying atomic structure (as
seen, for example, in the radial distribution function).
We will demonstrate that, as for the free-standing thin
films, the observed elastic anomalies are a structural
interface effect, and hence associated with the fact that
superlattices are inhomogeneous systems.

If, as suggested in Sec. 3.1, the structural disor-
der localized at the interfaces is, indeed, the main
cause for the anomalous elastic behavior of the sys-
tem, one would expect a strong dependence of the
magnitude of these anomalies on the interface energy.
Our comparison between GBSLs composed of (100)
and (111) twist boundaries is motivated by the fact
that, based on their substantially lower energies [31],
one would expect significantly smaller elastic anoma-
lies for the (111) than for the (100) GBSLs.

Because a buried grain boundary is sandwiched
between bulk material, the interfacial stress parallel
to the GB (similar in nature to the surface stress)
cannot be relaxed; i.e., a lateral contraction cannot
occur. In a superlattice of GBs, by contrast, the size
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Figure 4. Average lattice parameters, axy/a and a,/a,
parallel and perpendicular to the interface planes vs.
modulation wavelength, A (in units of the lattice pa-
rameter a). [29]




of the perfect-crystal regions surrounding the GBs is
gradually reduced as A decreases, and the lateral con-
traction can actually take place. As illustrated in Fig.
4, the average x-y lattice parameter, ax=ay=ayy, con-
sequently decreases with decreasing A for both sets of
GBSLs; by contrast, az increases because of the vol-
ume expansion at the GB [32] and because an ever
larger volume fraction of atoms experiences the GBs
as A becomes smaller.

Although generally rather small, the x-y contrac-
tion is substantially larger for the superlattices on the
(100) plane than for those on the (111) plane, for
which almost no contraction in the interface plane is
observed. This difference arises from the very differ-
ent energies - and hence volume expansions [32] - of
the related GBs: the larger volume expansion for the
(100) boundaries [32] gives rise to a much larger
interface stress which, when relaxed, results in a
much larger Poisson contraction.

The elastic moduli exhibiting the largest anoma-
lies that were obtained for the two sets of GB super-
lattices, with full consideration of the relaxation-term
elastic-constant contribution {18], are summarized in
Figs. 5 and 6. (Other moduli can also be determined
readily, as discussed in detail in Ref. [17] for the case
of the (100) GBSLs.) 7.e elastic constants and
moduli in the A—oo limit are governed by the av-
erages over two perfect fcc crystals rotated with re-
spect to one another about <100> or <111>, respec-
tively [3]; they can be determined independently from
the perfect-crystal elastic-constant tensor. Notice that
the moduli in Figs. 5 and 6 have been normalized t
these A—yeo values. '

According to Figs. S and 6, Y, increases with
decreasing modulation wavelength while G4, decrea-
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Figure 5. Normalized values of Young's moduli in
the x and z directions for the (100) and (111) GBSLs.

ses dramatically. Particularly interesting is the long
range over which G,,(A) is substantially reduced in
both cases, as well as its very small values at the
minima which appear at A = 4a =~ 15A. These low
values of G,, at the minima indicate an extremely
small shear resistance right at the interfaces. This ex-
tremely slow convergence in the shear moduli for
A—oo was shown to arise from a greatly reduced
shear resistance at high-angle grain boundaries [33,
34).

The Young's moduli in Fig. 5 show a strong
dependence on the GB plane. Most remarkably, in
spite of the much larger z expansion of the (100)
GBSLs by comparison with the (111) GBSLs (see
Fig. 4), the related values of Y, are significantly
more strengthened. Equally puzzling, in spite of the
much smaller x-y contraction of the (111) GBSLs
(see Fig. 4), the related values of Y are significantly
more strengthened than those for the (100) GBSLs.
The shear moduli, by contrast, are of the same
magnitude for the two different GB planes. Why, in
contrast to Yx and Y, the shear moduli are rather
insensitive functions of the detailed atomic structure
and energy of the GBs was discussed in detail in [29].
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Figure 6. Normalized moduli for shear parailel to the
interface planes for the (100) and (111) GBSLs. [29]

3.3. Discussion

Our simulations of free-standing thin films and
superlattices of (100) and (111) twist grain boundaries
demonstrate the existence of an intimate connection
between the structural disorder at the interfaces
(characterized, for example, by the GB energy) and the
elastic anomalies of these systems. In particular, the
replacement of the grain boundaries in a GBSL by the
much less disordered free surfaces (i.e., the replace-
ment of the superlattice by a single free-standing thin
film) greatly reduces the elastic anomalies.



This reduction demonstrates an important point.
Based on the observation that the thin films are actu-
ally denser than the perfect crystal, by contrast with
the GBSLs (see Fig. 7), intuitively one would expect
the slabs to be elastically stronger than the GBSLs.
The above results demonstrate that this intuition,
based on the behavior of a homogeneous system, is
incorrect as are models based on homogeneous
behavior [8,14,15,25]. It therefore appears that the
supermodulus effect is a structural interface effect. In
the following, we will further investigate the
relationship between the atomic structure of the
interfaces and the elastic anomalies.

The degree of structural disorder is best il-
lustrated by radial distribution functions like the ones
shown in Figs. 8(a) and (b) associated with the
GBSLs on the (100) and (111) planes, each
containing 6 lattice planes in the unit cell, i.e., three
lattice planes each between the interfaces. The
comparison of the substantially broadened peaks with
the corresponding zero-temperature 8-function peaks
of heights 12, 6, 24, etc. at the nearest-neighbor (nn),
2nd nn, 3rd nn, etc. distances of 0.707a, a, 1.225a,
etc. demonstrates the strongly defected local environ-
ments of the atoms in the superlattices. A detailed
analysis shows the peak centers to be shifted slightly
towards larger distances [17, 31], by an amount ap-
proximately proportional to the corresponding vol-
ume expansion at the GBs. The greater broadening,
combined with a larger shift, of the peaks associated
with the (100) superlattices indicates the larger
amount of disorder in these systems. A slice-by-slice
analysis of these distribution functions (performed in
Ref. [17] for the (100)
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Figure 7. Average atomic volume vs. A for free-
standing thin films and GBSLs. [27,28]

plane), and a detailed analysis of the interplanar
separations in the superlattices [17] shows the
disorder to be localized at the GBs.

The apparently paradoxical question, first ad-
dressed in Ref. [31], is this: How can at least some
elastic moduli of an interface material strengthen, al-
though the overall sample volume increases? Based
on our usual intuition, gained from the study of ho-
mogeneous systems, one would expect all elastic
moduli and constants to weaken upon expansion. As
first pointed out in Ref. [31], although the overall
volume of the system expands upon introduction of
the interfaces (i.e., the average distance between the
atoms increases), some atoms are in closer proximity
to one-another, up to about 10%, than they are in the
perfect crystal (see Fig. 8). These shorter distances
are expected to strengthen the local elastic response
whereas longer distances give rise to a softening,
with the net effect being a strengthening of some
moduli. However, as illustrated in Figs. 5 and 6, the
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Figure 8. Radial distribution functions, r2G(r), asso-
ciated with GB superlattices on the (100) (top) and
(111) planes (bottom), respectively, each containing
6 lattice planes in the unit cell, i.e., three planes each
between the interfaces. [29)



net outcome of this complex averaging process seems
to depend strongly on the detailed atomic structure of
the interfaces. The structural disorder at the interfaces
therefore provides causes for both a strengthening and
a softening of the elastic response, with the larger de-
gree of disorder in the (100) superlattices causing the
larger anomalies.

The above discussion exposes the very different
roles played by the structural disorder and the conse-
quent anisotropic lattice-parameter changes in the thin
slabs and GBSLs: While the basic elasti: anomalies
of the system are caused by the structural disorder, the
effect of the lattice-parameter changes is io enhance
the anomalies due to the very existence of structural
disorder. [17] In what follows, an attempt will be
made to separate the two phenomena.

To illustrate the behavior of a homogeneous sys-
tem, however under the effect of the anisotropic lat-
tice-parameter changes discussed above, we have in-
vestigated the elastic properties of a perfect crystal
subjected to the anisotropic lattice-parameter changes
of the superlattices shown in Fig. 4, thus eliminating
any effects due to the interfaces and the structural dis-
order associated with them. The results thus ob-
tained, for example, for the moduli in Fig. 5 are
shown in Fig. 9. (For a similar comparison for other
moduli, see Ref. [29].)

In accordance with the volume increase in both
types of superlattices (see Fig. 7), the Young's modu-
li of the homogeneously strained perfect crystal in
Fig. 9 decrease monotonically as a function of A,
The enhancements in Y (see Fig. 5) thus disappear
completely with the elimination of the interfaces
from the system. Similarly for the shear moduli [29],
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Figure 9. Normalized values of the Young's moduli
in the z direction vs. A for perfect crystals of identical
lattice parameters and planar orientations as the
GBSLs in Fig. 4. [29]

no minima appear in the homoge-neously strained
material, with much less dramatically softened shear
moduli [29]. This comg.arison demonstrates that the
enhancement of Y, and the large softening in Gy, as
well as the appearance of extremes in these moduli
are intimately connected with the presence of
interfaces in the system.

This comparison of the elastic behavior of ho-
mogeneous and inhomogeneous systems strongly
suggests that models to explain the supermodulus ef-
fect based solely on the anisotropic lattice-parameter
changes of strained-layer superlattice materials
{8,15,25] may miss an important ingredient necessary
for understanding supermodulus behavior, namely the
important role played by the interfaces.

We finally consider the difference between the
elastic constants and moduli, a rather fundamental dis-
tinction from both a conceptual and experimental
viewpoint. When determining a modulus, an external
stress is applied to the system and the ensuing strains
are monitored; i.e., the stress is fixed and the strains
are variables. In an elastic-constant measurement, by
contrast, a strain is imposed on the system and the
ensuing stresses are monitored. Hence, while a mod-
ulus describes the physical response of the system
while permitting all lattice-parameter changes of the
system in response to the applied stress to take place,
an elastic constant describes the system response
while all strains are fixed. The moduli are conse-
quently given by the elastic compliances, thus repre-
senting combinations of elastic constants. Conse-
quently, while the anomalies in the elastic constants
may be rather small (see Fig. 9), the anomalies in the
related moduli may be much larger by comparison. It
therefore appears that the reduced elastic constants
reported in numerous experiments may not be in total
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Figure 10. Elastic constants (in 10'2 dyn/cm2) for
the (100) GBSLs(see also Fig. 5). [17,35]



contradiction to experiments in which enhanced
moduli were observed. The supermodulus effect may
therefore be very aptly named since a "super elastic-
constant" effect does not exist.

4. ROLE OF COHERENCY IN DIS-
SIMILAR-MATERIAL SUPER-
LATTICES
As illustrated above, the replacement of the grain

boundaries in a GBSL by the much less disordered
free surfaces (i.e., the replacement of the superlattice
by a single free-standing thin film) greatly reduces the
elastic anomalies. Also, the reduction in the GB en-
ergy (by replacing (100) twist boundaries by
boundaries on the (111) plane) leads to much smaller
elastic anomalies. Based on the above interpretation
of these phenomena as a structural interface effect,
several predictions can be made. Most importantly,
coherent (i.e., perfectly epitaxial) interfaces should
exhibit the smallest elastic anomalies; re-intro-
duction of structural disorder via misfit dislocations
should increase these anomalies significantly, similar
to the GBSLs studied above.

In order to test this prediction, we have investi-
gated the role of coherency in the elastic behavior of
composition-modulated superlattices of fcc metals.
[35, 36] Again, in order to eliminate interface chem-
istry as much as possible as a contributing factor,
these simulations were performed using Lennard-
Jones potentials with a 10% [35] and 20% lattice-pa-
rameter mismatch [36] but with the same cohesive
energies. The structures, energies, and elastic proper-
ties of coherent and incoherent (100) superlattices
were computed as a function of the modulation wave-
length and compared with those of coherent superlat-
tices. As expected, the incoherent superlattices were
found to be more structurally disordered and exhibited
greater elastic anomalies than the coherent ones, a dif-
ference which cannot be accounted for by the overall
anisotropic lattice-parameter changes of the superlat-
tices alone [15, 25].

Our main conclusion is that increasing the struc-
tural disorder in the superlattices by increasing the
lattice-parameter mismatch or by introducing a
relative rotation between the two materials (thus
introducing screw dislocations, as in the case of the
GBSLs of twist boundaries) will dramatically enhance
the small elastic anomalies present in the coherent
system. (For details see Refs. [35, 36].)

That the transition from an incoherent to a coher-
ent interface structure is, indeed, associated with a re-

duction in the elastic anomalies was recently verified
experimentally. {12,13]

5. EFFECT OF TEMPERATURE

Finally, the effect of temperature in the super-
modulus effect was investigated by molecular-dynam-
ics simulation. [37] Most importantly, the effects of
homogeneous (temperature-induced) and inhomoge-
neous (interface-induced) structural disorder on the
thermoelastic properties of the (100) GBSLs (see Sec.
3.2) were compared as a function of the modulation
wavelength. It was found that the elastic moduli of
the GBSLs soften with increasing temperature as one
would expect for homogeneous materials,
Considering that the elastic anomalies arise from the
inhomogeneous structural disorder localized at the in-
terfaces, this result is somewhat a surprise.

In these simulations [37], by allowing thermal
expansion in some cases and not in others, the ex-
plicit effects of the thermal expansion on the elastic
properties were also explored. It was found that the
thermal disordering on one hand and the consequent
volume expansion on the other are in competition
with one-another. In particular, it was shown that
the basic causes for the anomalous elastic behavior of
interface materials can be found even in a perfect
crystal: Increasing the temperature (i.e., broadening
the radial distribution function) without permitting
the crystal to expand actually strengthens the elastic
constants. In superlattices, by conirast, such a
broadening in the radial distribution function is
present even at zero temperature (see Fig. 8), leading
to an elastic strengthening perpendicular to the
interfaces provided the related volume expansion is
not too large.

We conclude [37] that atomic-level structural
disorder, be it homogeneous (i.e., temperature-in-
duced) or inhomogeneous (e.g., interface-induced), can
lead to elastic stiffening, provided that the related vol-
ume expansions do not dominate the elastic behavior
and result in a softening. These simulations have
lent further credence to the interpretation of the su-
permodulus effect as a structural phenomenon,

6. CONCLUSIONS

We have used the unique capabilities of atomic-
level computer simulations to explore the physical
origin of the so-called supermodulus effect in
strained-layer superlattices. These simulations have
provided valuable insights into (a) the atomic-level
phenomena and processes governing interfacial
elasticity and (b) the physical causes for the
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supermodulus effect. Such atomic-level insights are
difficult to obtain by experimental means or from
theoretical methods based on continuum mechanics.
The three major conclusions of this work may be
summarized as follows.

First, by systematically investigating free-stand-
ing thin films and superlattices of grain boundaries,
chemistry was eliminated as a factor that rnighi oth-
erwise contribute to the elastic behavior. The elasiic
anomalies observed for these model materials were
found to be qualitatively similar to those observed
experimentally for dissimilar-material superlattices,
with some moduli hardened while others are softened,
Moreover, our simulations have shown that the
supermodulus effect does not exist in the elastic con-
stants; i.e., although the anomalies in the elastic
constants may be very small, the related anomalies in
the moduli (which represent combinations of the elas-
tic constants) are generally much more pronounced.
These results suggest strongly that

(a) the elastic anomalies arise from the atomic-level
structural disorder localized at the interfaces and not
from electronic causes; however, the latter might
alter, and contribute in addition to, these anomalies;
and

(b) a knowledge of the anisotropic changes in the
average lattice parameter, although contributing to
the elastic anomalies, is not sufficient to predict the
elastic behavior even qualitatively,

Second, based on the interpretation that the elas-
tic anomalies arise from the degree of the interfacial
atomic-level structural disorder, several predictions
have been made and verified by simulations, Most
importantly, coherent (i.e., perfectly epitaxial)
interfaces were shown to give rise to the smallest
elastic anomalies; re-introduction of structural
disorder via misfit dislocations increases these
anomalies significantly. It was also predicted and
verified that the replacement of the grain boundaries
in a grain-boundary superlattice by much less
disordered free surfaces (i.e., the replacement of the
superlattice by a single free-standing thin film)
greatly reduces the elastic anomalies. These
simulations lend further credence to the interpretation
of the supermodulus effect as a structural interface
effect.

Third, the effect of temperature in the super-
modulus effect has been investigated. It was found
that the elastic moduli of grain-boundary superlattices
soften with increasing temperature as one would ex-
pect for homogeneous materials, Considering that
the elastic anomalies arise from the inhomogeneous

structural disorder localized at the interfaces, this re--
sult is somewhat a surprise.

Ultimately the elastic anomalies of interface ma-
terials arise from a competition between structural
disorder and the consequent (usually anisotropic) vol-
ume change. This competition can be seen even in a
perfect crystal at finite temperature: Increasing the
temperature (i.e., broadening the radial distribution
function) without permitting the crystal to expand
actually strengthens the elastic constants and moduli.
In superlattices, by contrast, such a broadening in the
radial distribution function is present even at zero
temperature, leading to an elastic strengthening
perpendicular to the interfaces provided the related
volume expansion, and the associated elastic
softening, is not too large.
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