

CONF-880793--1

CONF-880793--1

DE88 015299

Poloidal VV Currents, Disruption-Induced VV Forces, and TSC-EIGENCIRC Interfaces

R. O. Sayer
Fusion Engineering Design Center
Oak Ridge National Laboratory

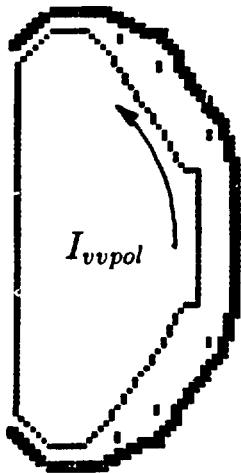
CIT PF Workshop - PPPL

July 12, 1988

- Poloidal VV currents induced by toroidal flux changes.
- TSC Disruption-Induced Forces on the CIT 2.10 m Vacuum Vessel
- Status of EIGENCIRC-TSC Interface.
- TSC Disruption Run with External TF Structure

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.


MASTER

* RESEARCH SPONSORED BY THE OFFICE OF FUSION ENERGY, U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC05-84OR21400 WITH MARTIN MARIETTA ENERGY SYSTEMS, INCORPORATED.

Forces due to poloidal VV currents

TSC computes VV forces arising from toroidal currents due to poloidal flux changes; forces due to toroidal flux changes are not calculated explicitly. However, one source of induced VV poloidal current may be estimated from the TSC plasma paramagnetism, namely the difference between the toroidal field and the vacuum field, integrated over the plasma volume. This "paramagnetic" flux, Φ_{para} is used in a simple circuit equation to determine the poloidal VV current, I_{vvpol} . The corresponding force histories are calculated in the post-processor code, TWIR.

Circuit Equation

Consider the VV as a loop with current I_{vvpol} flowing in the poloidal direction as a result of change in toroidal flux throughout the plasma volume. Neglect mutual inductances between the VV and plasma and between the VV and surrounding structures. The circuit equation is

$$L_{vv} dI_{vvpol}/dt + R_{vv} I_{vvpol} = -d\Phi_{para}/dt \quad (1)$$

where L_{vv} is the VV self inductance and R_{vv} is the resistance to poloidal current flow. The resistance is

$$R_{vv} = \rho * (165 \text{ "wires"} * 0.05m) / A = 15.6 \times 10^{-6} \Omega \quad (2)$$

A code written by S. Kalsi was used to compute $L_{vv} = 0.411\mu H$ for the 2.10 m VV geometry. As a check, the self inductance of a rectangular toroid of size approximating the VV was calculated to be $0.29\mu H$.

The circuit equation (1) is solved in TSC using Φ_{para} (=DIAMAG) and integrating forward in time:

$$I_{vvpol}(n) = (\Phi_{para}(n-1) - \Phi_{para}(n) + L_{vv} * I_{vvpol}(n-1)) / (L_{vv} + R_{vv} * (t_n - t_{n-1})) \quad (3)$$

For a major disruption of the type considered here, Φ_{para} increases from a small value to a large positive value during the 0.2 ms thermal quench. For example, for FBCHIA = 20000, $dI_p/dt = -3.4$ MA/ms, Φ_{para} increases from -0.25 to 0.53 webers in about 0.2 ms. Over this time scale the solution is inductive and the maximum current is approximately

$$I_{vvpol} \simeq 0.78 \text{ webers} / 0.411\mu H = 1.9 \text{ MA} \quad (4)$$

The actual maximum current from equation (3) is 1.82 MA. As the current quench proceeds, Φ_{para} decreases slowly to zero, and I_{vvpol} decays with a time constant of $L_{vv}/R_{vv} = 0.411/15.6 = 26.3 \text{ ms}$.

Let $F_{vvpol}(i)$ be the force in Nt/rad on an element of length dl , and let $G_o = R * B_t$, where B_t is the vacuum toroidal field. Then

$$F_{vvpol}(i) = I_{vvpol} dl G_o / (2\pi R_i) \quad (5)$$

where R_i is the radius of the element i .

Examples

The following figures show force distributions from: a) toroidal VV currents only, b) poloidal VV currents only, c) toroidal VV currents AND poloidal VV currents, and d) $F_r(\text{net})$ vs. time.

1. Snapshot of VV force distribution for a vertical disruption case at a time during the thermal quench.
2. Snapshot of VV force distribution for a vertical disruption case at a time about halfway through the current quench.

Observations

- The net vertical force due to poloidal VV currents is zero.
- Net radial forces due to induced poloidal and toroidal VV currents are opposite in sign.
- poloidal VV currents peak soon after the end of the thermal quench.
- The forces due to poloidal VV currents are compressive, yielding a maximum inward pressure of 2.8 MPa for the 3.4 MA/ms case.
- Let $F_{R\text{net}}(\text{pol})$ and $F_{R\text{net}}(\text{tor})$ be the net radial VV forces due to poloidal and toroidal currents, respectively. Just after the thermal quench, at the time of extreme $F_{R\text{net}}(\text{pol})$, we find

$$F_{R\text{net}}(\text{pol}) = -0.60 * F_{R\text{net}}(\text{tor}) \quad (6)$$

As expected, the result (6) is nearly independent of dI_p/dt since the induced currents at this time are determined almost entirely by geometry.

1. So: poloidal VV currents act to mitigate the net inward VV forces due to toroidal VV currents. Resultant $F_r(\text{net})$ is still inward.
2. But: poloidal VV currents increase the maximum inboard forces by a factor of about two.

TSC Disruption-Induced Forces on the CIT 2.10 m Vacuum Vessel

Model

- The 2.10 m VV was represented by a series of 164 passive filamentary wires based on the geometry of CIT-E-IWB101 (25 Apr 88). The VV material was taken as 5 cm thick Inconel with a resistivity of $1.25 * 10^{-6} \Omega - m$. A modified version of PASSIN (W. Reiersen) was used to generate the TSC "wires". Each wire was moved to the nearest grid point on a 5×5 cm mesh.
- The 2.10 m TF support structure was also represented by passive filamentary wires based on the geometry of CIT.WR-10T.MKB.LAYOUT3 (24 Mar 88). The TF structure was assumed to be composed of 10 cm thick SS.
- Each internal coil was represented by two adjacent wires above and two adjacent wires below the midplane.
- Eight external PF coils were used; the TSC circuit equations permitted currents to be induced in external coils. Initial PF coil currents were determined for each set of equilibrium conditions ($R_o, a, \beta_{pol}, \kappa$) with the ORNL FEDC equilibrium code (D. J. Strickler).
- Vertical Disruptions. An initial displacement was introduced by turning on opposing currents in upper and lower members of internal coil IC1. An equilibrium was obtained with the magnetic axis 9 cm below the midplane. The plasma was then transported for 169 ms until the edge q dropped to 2.1 and the magnetic axis was 45 cm below midplane. The disruption was then initiated by enhancing the thermal conductivity by a factor of 500 to 20000.

Results

Plasma disruption calculations for the CIT 2.10 m, 11.0 MA baseline design have been performed with the Tokamak Simulation Code (TSC) for inward and vertically moving plasmas for Troyon (4.9%) β values for cases corresponding to average current decay rates ranging from 0.25 MA/ms to 3.4 MA/ms.

- Table I gives the initial plasma parameters and coil configuration.
- Table II is a summary of extreme net VV forces for several disruption scenarios.
- Figure 3 contains the magnetic axis trajectory for a vertical disruption and the VV force distribution at a time about halfway through the current quench.
- Figure 4 illustrates the time behavior of net radial and vertical VV forces for a 3.4 MA/ms disruption over the current quench time.
- A vertical disruption run (0614A) with $dI_p/dt = -0.25$ MA/ms gave the same extreme net vertical force as the 0516D case with $dI_p/dt = -0.35$ MA/ms.
- The current set of "reference" disruption cases for VV structural analyses is identified as the cases 0623D, 0627A, and 0516D from Table II.

Status of EIGENCIRC-TSC Interfaces.

EC \equiv EIGENCIRC - represents a group of codes by R. Pillsbury for solenoid design and solution of the eigenvalue problem

$$[L]\{dI/dt\} + [R]\{I\} = \{V\} \quad (7)$$

for specified inductance, resistance matrices $[L]$, $[R]$ and specified driving voltages $\{V\}$ and initial conditions for the current vectors $\{I\}$.

Objectives

1. Develop a common electromagnetic model code for representation of PF coils and conducting tokamak structures for input elements of the codes TSC, EC, etc.
 - Well-defined correspondence in geometry and resistance for TSC and EC input elements.
 - Further streamline procedure for generation of input (improve PASSIN).
 - Automatic generation of TSC type 9, 39, 15 cards from EC coil locations sizes, and currents.
2. EC - initial eddy currents in external TF structure for TSC startup runs.
3. Include an EC module in TSC to speed up post-disruption calculations of structural response over long times (seconds).

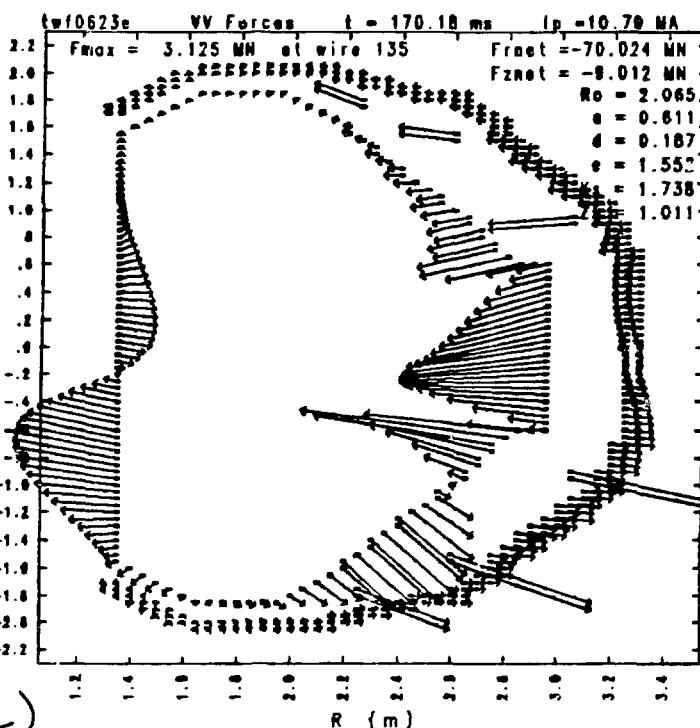
Figure 5. EC-TSC Interface Chart

Done

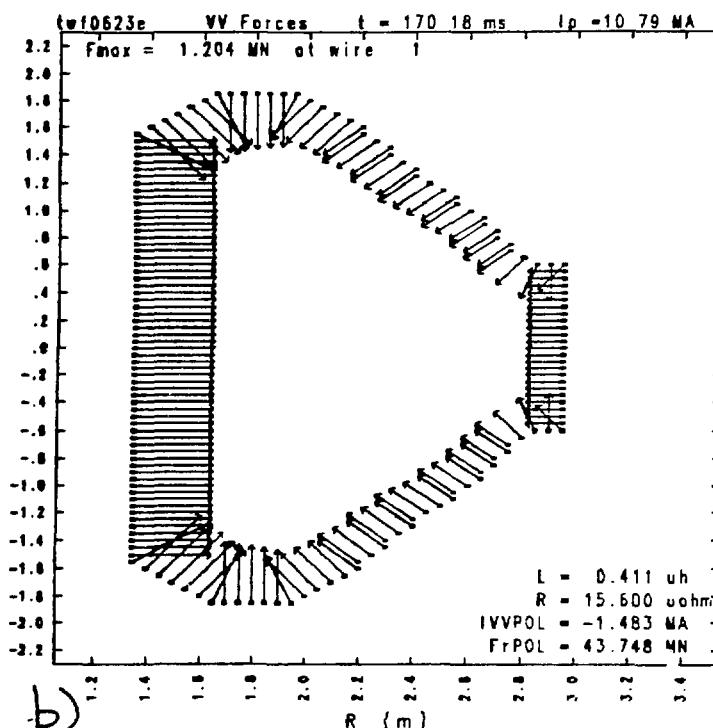
- EIGTSC - reads EC output file of external coil locations and sizes and writes TSC type 9, 39 cards for external coils.

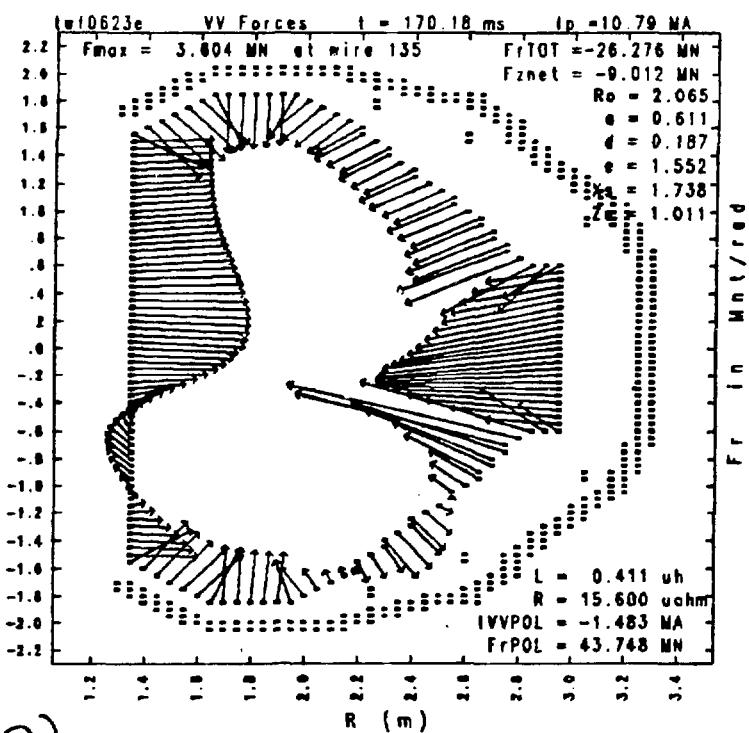
- ETEM

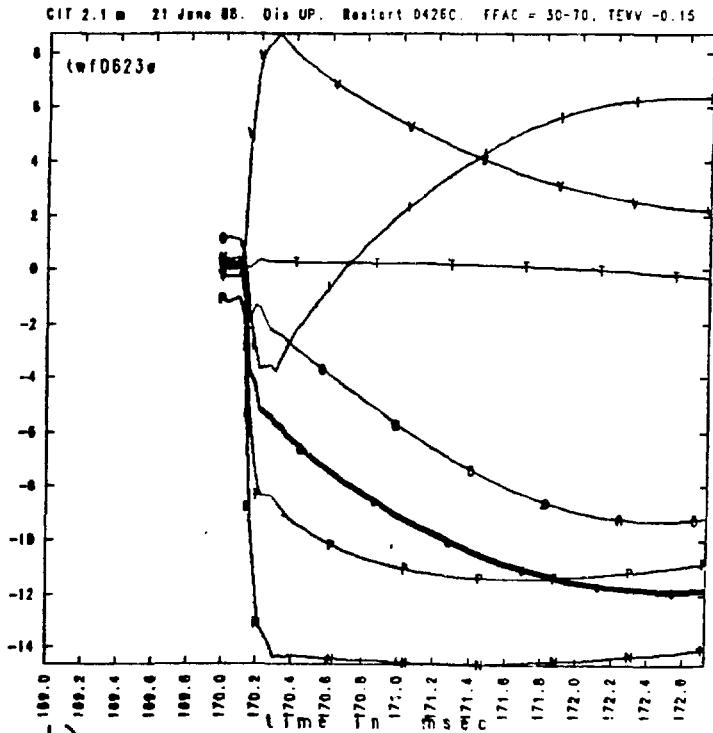
- reads TSC "wire" file and EC output file "EIGOUT".
- plots TSC wires, EC coils and wires.
- plots overlay of TSC and EC elements.
- Figure 6. Overlay of EC MOD061688 and TSC elements.


To Do

- Add currents to EIGTSC.
- Add VV and inner TF structure plots to ETEM.
- Write a code VTW to generate TSC and EC wires such that one EC wire is $N \times M$ TSC wires, where N and M are integers. Graphical selection ?
- Scheme for numbering TSC and EC coils, wires, coil groups.
- Specification of number of turns per coil.


TSC Disruption Run with External TF Structure


- Repeat 0623D - inward disruption, $dI_p/dt = 3.0$ MA/ms, with external TF and PF coil casings corresponding to R. Pillsbury's MOD061688.
- EIGTSC: read MOD061688 file and generated TSC type 9, 39 cards.
- TSC dimensions changed to allow additional external coil groups. For the symmetric case run, there were a total of 85 coil groups.
- Inclusion of external TF structure doubles TSC CPU time.
- Inclusion of external TF structure changes the net radial VV force by only 1.3 % .


a)

b)

c)

d)

Figure 1. Snapshot of VV force distribution for a vertical disruption during the thermal quench. a) toroidal VV currents only, b) poloidal VV currents only, c) toroidal VV currents AND poloidal VV currents, d) F_r (net) vs. time.

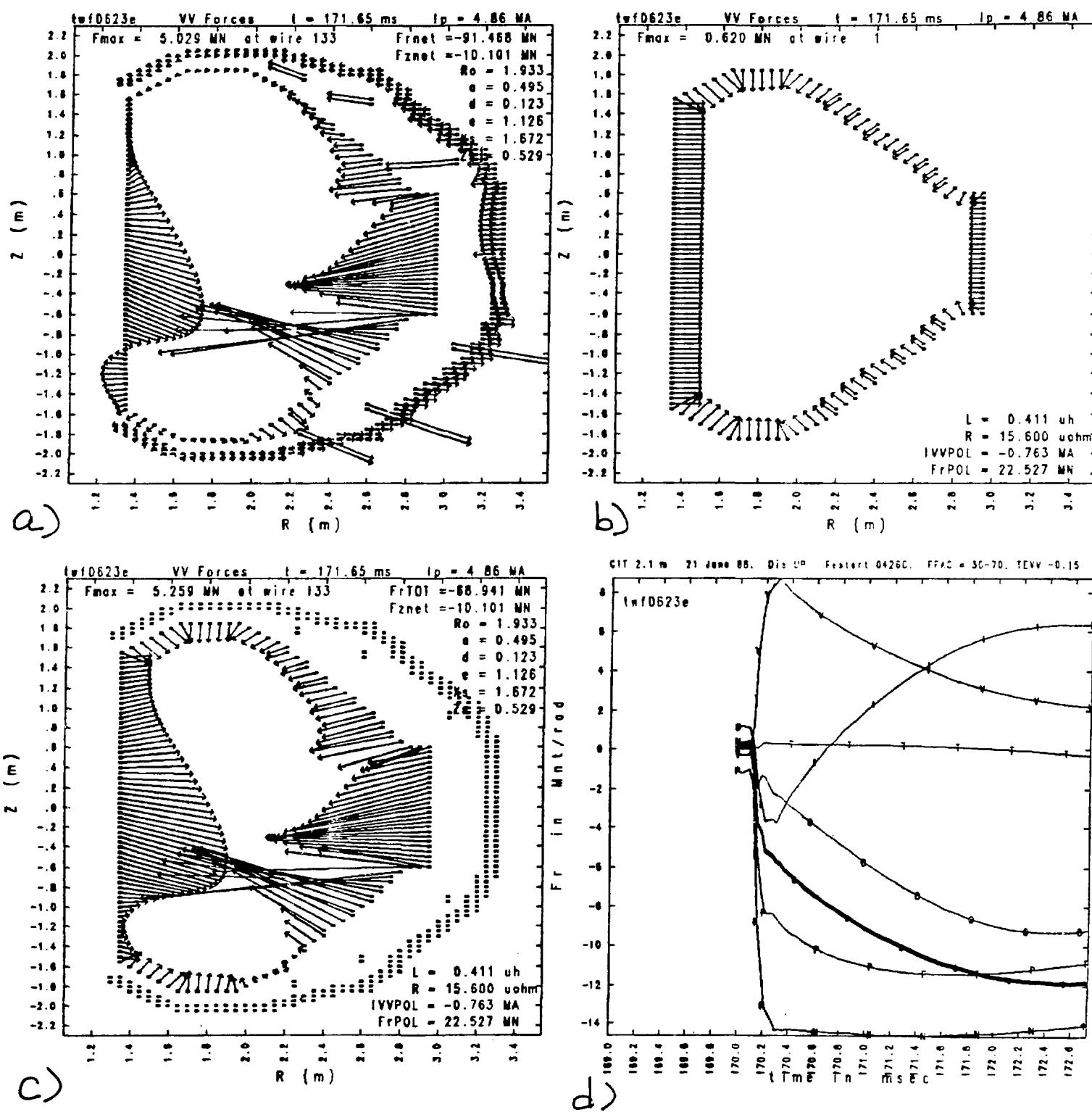
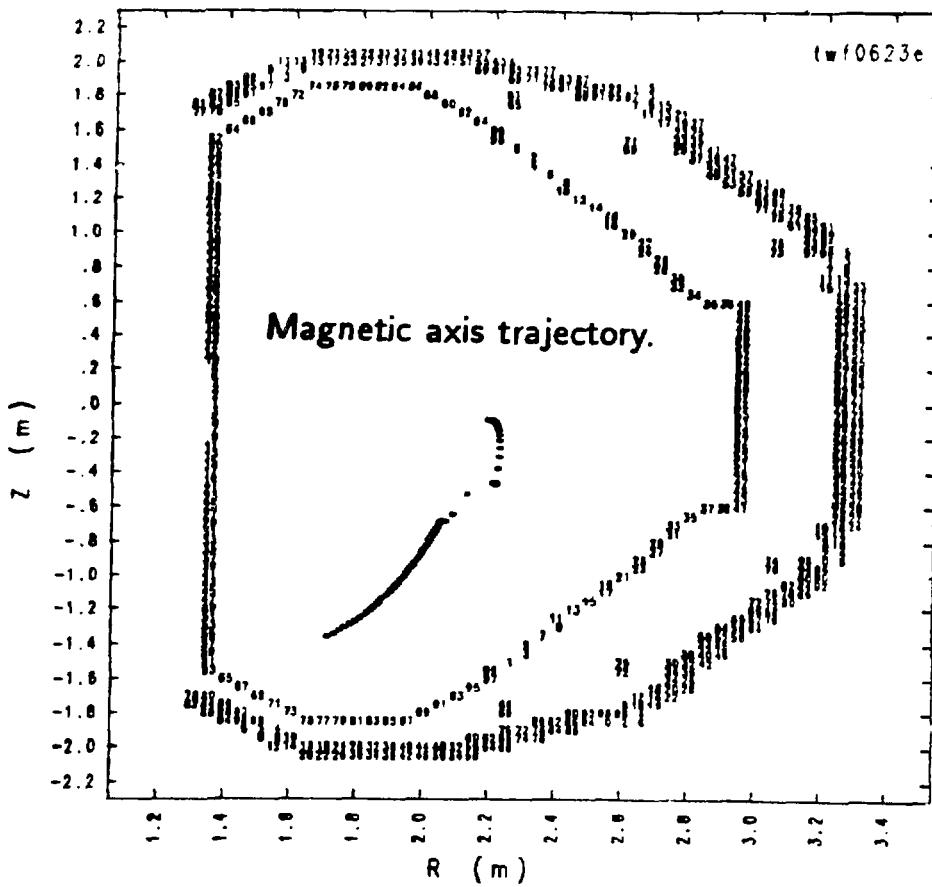
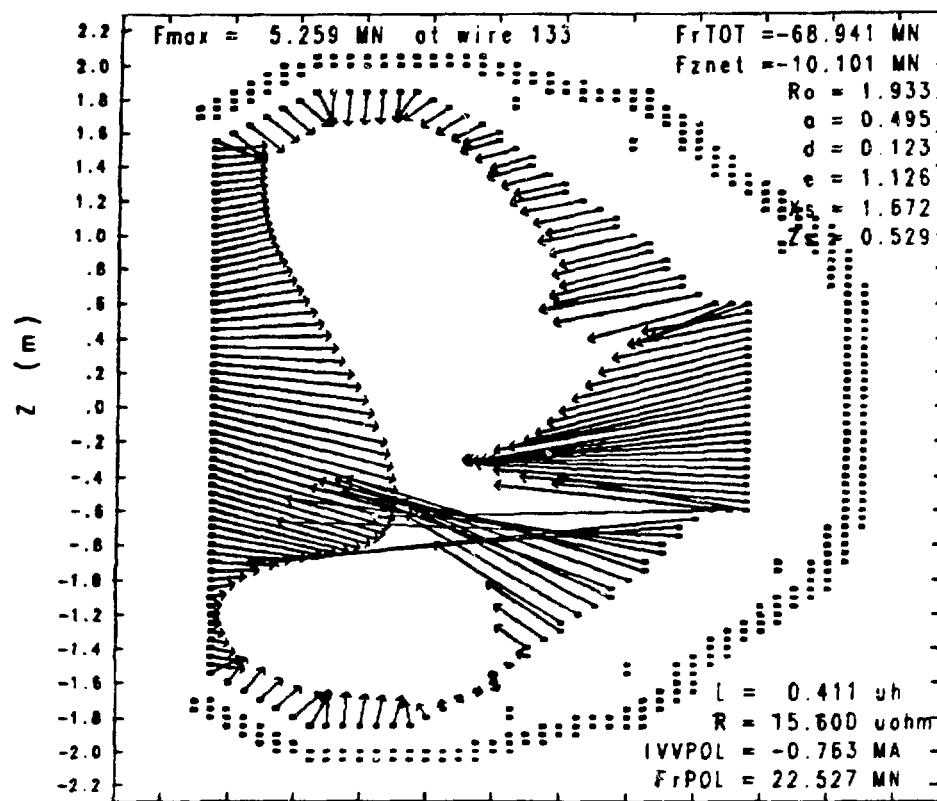
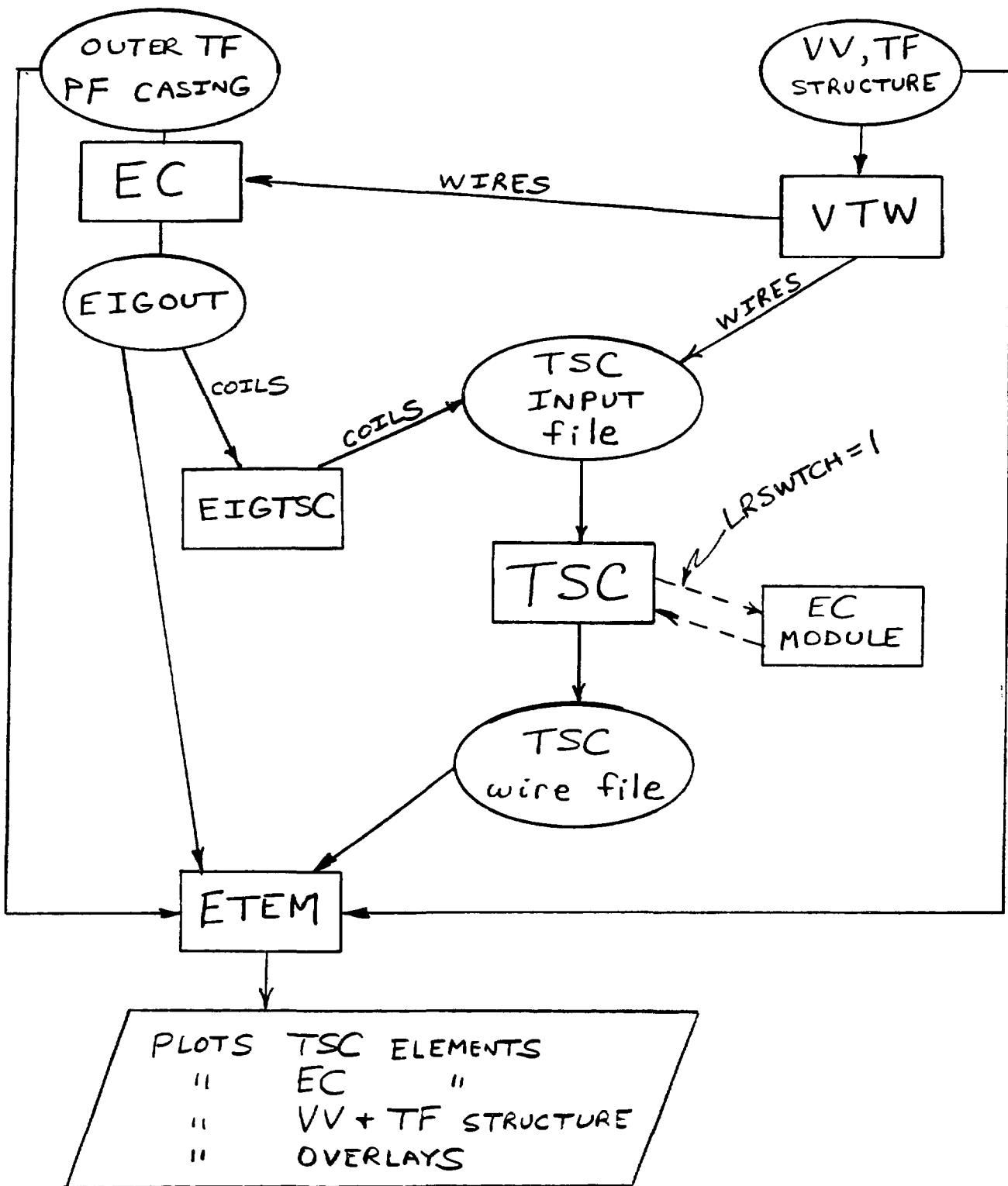


Figure 2. Snapshot of VV force distribution for a vertical disruption about halfway through the current quench. a) toroidal VV currents only, b) poloidal VV currents only, c) toroidal VV currents AND poloidal VV currents, d) F_r (net) vs. time.

CIT 2.1 m VV force distribution at $I_p = 4.86\text{MA}$.


Figure 13

CIT 2.1 m Vacuum Vessel Forces vs. time. $dI_p/dt = -3.4MA/ms.$

Figure 4

10 JULY 88
ROS

"WIRE" ≡ ELEMENT INTERNAL TO TSC GRID
"COIL" ≡ " EXTERNAL " " " "

Figure 5. EC-TSC Interface Chart

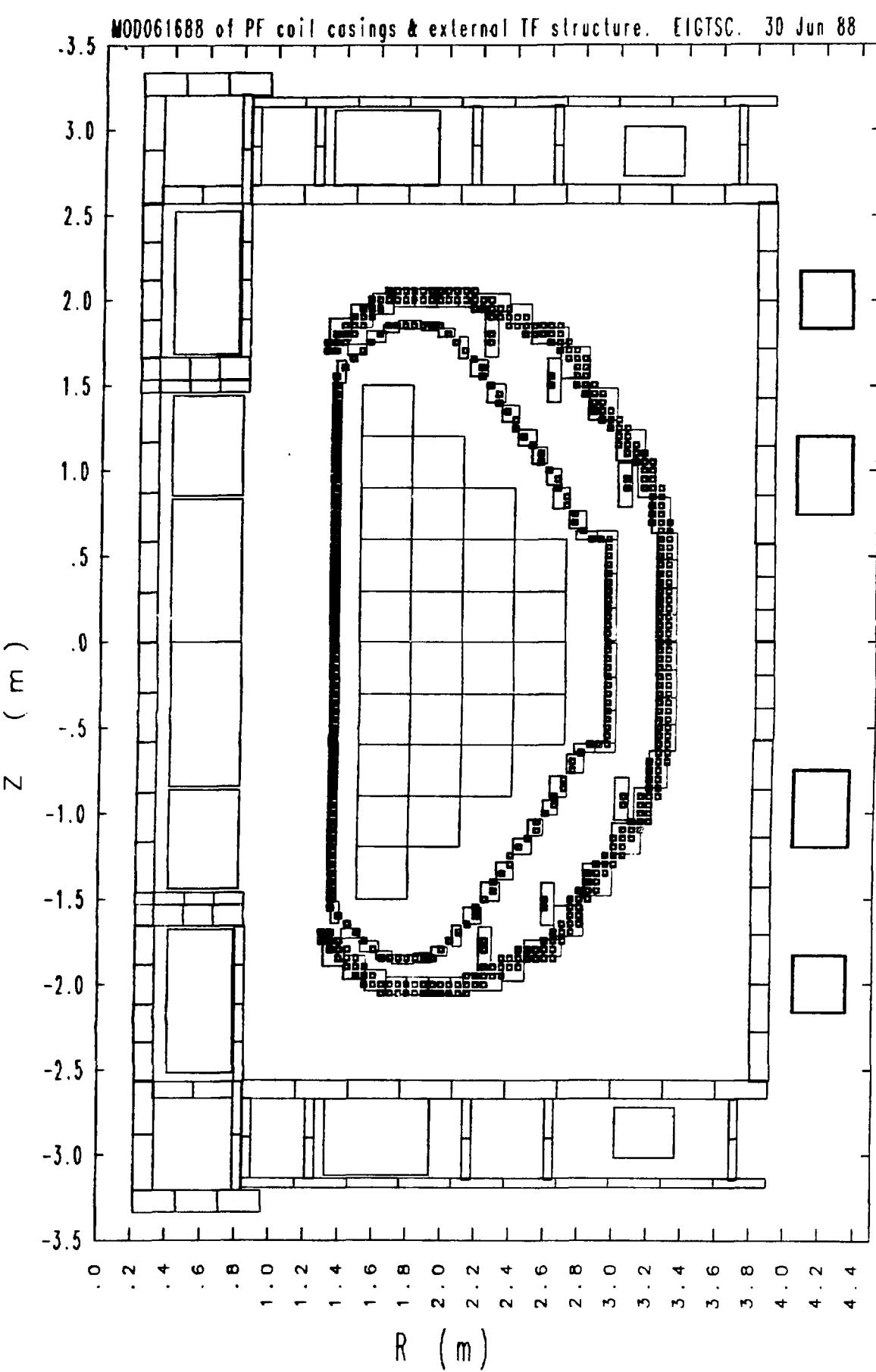


Figure 6. Overlay of EC MOD061688 and TSC elements.

Table I
CIT 2.10 m TSC Disruption Simulations
Initial Plasma Parameters and Coil Configuration

Coil	R(m)	Z(m)	I(MA)	R0(m)	a(m)	Xmag(m)
PF1	0.6104	0.0678	-2.553	2.10	0.646	2.19
PF1	0.6104	0.2035	-2.553			
PF1	0.6104	0.3392	-2.553			
PF1	0.6104	0.4748	-2.553			
PF1	0.6104	0.6105	-2.553			
PF1	0.6104	0.7462	-2.553			
PF2	0.6104	0.8728	1.055			
PF2	0.6104	0.9904	1.055			
PF2	0.6104	1.1080	1.055			
PF2	0.6104	1.2256	1.055			
PF2	0.6104	1.3432	1.055			
PF3	0.5579	1.7018	0.351			
PF3	0.5579	1.8375	0.351			
PF3	0.5579	1.9732	0.351			
PF3	0.5579	2.1098	0.351			
PF3	0.5579	2.2445	0.351			
PF3	0.5579	2.3802	0.351			
PF4	1.6600	2.8700	4.262			
PF5	3.1900	2.8700	0.152			
PF6	4.1900	2.0000	-0.823			
PF7	4.1900	1.4000	0.0			
PF8	4.1900	0.9500	-5.369			
IC1	2.2500	1.7500				
IC1	2.2500	1.8000				
IC2	2.6000	1.5000				
IC2	2.6000	1.5500				
IC3	3.0500	0.9000				
IC3	3.0500	0.9500				

Table II
TSC Disruption-Induced CIT 2.1 m Vacuum Vessel Forces

ID	Ip (MA)	dIp/dt (MA/ms)	Zmag (cm)	beta (%)	betapol	Extreme Net Radial Force (MNt/radian)
0406B	11.0	- 3.0	0	4.9	0.83	-13.32
0623D	11.0	- 3.0	0	4.9	0.83	-11.15
0406C	11.0	- 1.1	0	4.9	0.83	-10.22
0501B	11.0	- 3.4	-45	4.9	0.93	-18.57
0627A	11.0	- 3.4	-45	4.9	0.93	-14.60
0503D	11.0	- 0.6	-45	4.9	0.93	-13.46
0516D	11.0	- 0.35	-45	4.9	0.93	-12.86
0501B	11.0	- 3.4	-45	4.9	0.93	-2.41
0627A	11.0	- 3.4	-45	4.9	0.93	-2.03
0503D	11.0	- 0.6	-45	4.9	0.93	-2.74
0516D	11.0	- 0.35	-45	4.9	0.93	-2.92
0614A	11.0	- 0.25	-45	4.9	0.93	-2.92

** Includes both $J_{tor} \times B_{pol}$ and $J_{pol} \times B_{tor}$ forces.

The "reference" disruption cases for VV structural analysis are identified as 0623D, 0627A, and 0516D.