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Some Strategies for Enhancing the Performance

of the Block Lanczos Method

J. D. KWSS, S. B. Woodrufl ●, G. A. Parker “*, and R. T pack

hllp T-12, MS-J569

Los Alamos National hlmmtorp

Los Alamos, New Mezico 875~5

ABSTRACT

The block Lanczns method is used to calculate the eigenfunctions for a generalin 1 eigcn-

value problem constructed for a finite element solution to a 2-dimensional Schrbdingcr equation

on the surface of a hypersphere. This equation results from a treatment of the 3-dimensional

reactive scattering problem using Adiabatically adjusting, Principal axes Hyperspherical (APH )

coordinates. Three stategies are considered with respect to increasing the CPU performance of

the block Lanczos (with selective orthogonalization) method: (1) the effect of varying the Lanczos

block size; (2) the effect of solving the block tridiagonal ordinary eigenvalue problem upon eucry

other Lanczos iteration; and, (3) the eflcct of dividing a single problem of finding p eigenvalucs

into a Bet of p, problems, where each subproblem consists of finding p/pi eigenvalues.



Poster Page 2 July 18, 198,9

An accurate quantum theory for the treatment of3-dimensional reac’ive (atom-diatom) scattering has

been formulated recently using Adiabatically adjusting Principal axes Hypersphcricad (APH ) coordinates,’

Expansion of the scattering wavefunction in a sector-adiabatic basis and projection of this basis onto the

full Harniltonian yields a 2-dimensional surface Hamiltonian which depends parametrically on the sector

hyperradiz. P(. Expansion of the surface (eigen)functions in a finite elementz (FE) basis set and projection

onto the surface Hamiltonian yields a generalized eigenvalue problem,

H@ = S*E, (1)

which must be solved for each value of pt. Although a non-uniform mesh of elements is (usually) used which

places the majority of the nodes in the classically allowed regions of the potential, the resulting Hamiltonian

H and overlap S matrices ale typically large (of order n -3000 and of average half bandwidth of m * 180).

Furthermore, for most scattering systems of interest, the p N 100 lowest eigenvalues E, and eigenfunctions

~i (for i = 1,. ... p) are required at each p( for $ = 1,..., * 100. Solving for the su~%ce functions is the

most expensive step of our scattering calculations. Therefore, identifying an efficient method to solve Eq,

(1) is of utmost importance.

Application of both the Subspace Iterationa (S1) and block Lanczos (BL) methods to the calculation

of surface functions has been reported in this issue by some of these authores (hereafter referred to as

paper 1). The present paper describes some additiomu strategies we applhd to the BL method in order to

further improve the computational speed.

In practice, We transform’ Eq. (1) to obtain an ordinary eigenvalue problem which is then solved

using the EL method. Specifically, wfeform

H’ = D-l/aL-lSJ,-TD-l/a

(where H is factored as LDLT) which yields the transformed problem

H’4’ = 4’E’

Tlw block Lanczos proccduros red ucm H’ to a block tridiagona! form

(2)

(3)
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2. Rk + H’& - &-lB~-l (QO = 0).

3. Ah * ~;~k.

4. & b Rk -&Ak.

4’. purge & of any converged eig@nVect0r6of Tk.1.

5. Solve USjng Rayleigh Quotient Iteration (RQI): Tk@k = ek&.

6. Check & for convergence of the p lowest eigenvalues. Iterate back to titep 1 if necessary.

The version of BL implemented in our code is derived from the SNLASO code of Scott? Along with the

IIL reduction scheme, SNLASO incorporates the selective orthogonsliztion7 (SO) technique (step 4’). By

purging the converged eigenvectors of Tk.1 from ~k, the loss of orthogonafity (deviation of Q~Qk from

I), which is fatal to the EL reduction, can be delayed to later iterations (larger values of k).

The formation of H’~k in step 2, consisting of a LDLT eolve and a matrix multiply [tho matrix

inversions in Eq. (2) are efkcted as linear equation solves], costs 2n -(2rn + 1)s n~ multiplicative operations

(OPS) per iteration to ex~cute. As discussed in paper 1, ~tep 2 is the rate-limitimg step of the algorithm

for small values of p (< 20) since n . m is typically large (200,000 - 500,000). The cost of step 5, that

of finding p eigenvalues of Tk [which is of order = (k . n~) and of half bandwidth = (3/2 ● ~b)] using the

RQI method, is proportional to p” k I (n~)3 OPS to the leading term in ~b. On the average, we find that

k mas = 3p/rib Lanczos iterations are required to converge p eigenvalues, therefore the total work (summed

over k) to perform step 5 is proportional to 3~n~ + PL(nb)2 to the leading terms in p and nb. The total

work (summed over k ) to perform step 2 is 6p. n . (2m + 1), Therefore, for large values of p, the cost of

step 5, which is scales as p3, exceeds the cost of step 2, which only scales linearly in p.

The first strategy investigated involves studying the effect of varying nb on the performance of the

IIL method, H is constructed from the surface Hamiltonian evaluated at pc = 5.0a. using the potential

energy surface (PES) for the Liff + F * Li + H F ~ystem constructed by Lagan& and coworkcrsao (rem

the ab initio energies of Chen and Schaefer8~ A uniform FE mesh was used which yielded a H and S of

order n = 1729 and half bandwidth m = 10!I. The amount of CPU time required to convcrgc the p = 60

lowest eigcnvafues is presented in Table I as a function of nb. (These and subsequent calculations were

performed on a CRAY-XMPi) .41s0 provided is the number of itwations (km~z) necdw.t for ccmvvtgrncc

and the order n~a= = (k~a=. n~) of Tk at the &#a= iteration. For nb = 2, the proccduro fails due to a IOM

of orthogonally in the columns of Qb, For nb ~ 4, the value of k~mz decreases aB n~ is inrrcawd, with tlw

net result of 71m~zincreasing slightly WIa function of nb, ]t nppearR that a minimum number of rrdunlns of

Qh, nmar N 2(I(J,arc nm(!mary to convorgc the 60 Iowcxt vigmvalum, indqwndmlt of tlw value of nb. ‘III(I

h)~i’st (;]’{) tilll(’~ nr(! oht~n(id for th~ Illinilllum du(’h of ?Ib ( = 4 and 6). For larger VWIUVSof :1 b, ww
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consists of finding p’ = (p/pi) eigenvalues. The first modification was implemented by performing step 5

‘h iteration (for k = n:,2nl,3n:,. . .(and thus step 4’) every ni ). Since steps 1-4 do not depend explicitly

on step 5, in principle T’k and Qk can be constructed without the eigenvectors of Tk_l. But the SO (step

‘h iteration, ~on-orthogonality in Qk can4’) is dependcni on step 5, and by postponing the SO to every n,

potentially appear after fewer total iterations. This behavior places a practical maximum on n,.

The second modification effectively divides the p eigenvalues into pi intervals. This approach is op-

erationally possible since the SNLASO code has the capability of using a given number of converged

eigenvectors at the beginning of the algorithm. These initial eigenvect,~rs are purged from R. and are

treated as converged eigenvectors in the SO step. This prevents the duplication of the initial eigenvectors

on subsequent iterz tions, The interval approach starts by finding the first set of p’ eigenvalues. The first set

of eigenvectors are then purged from the next choice of R. used to generate the second set of eigenvalues.

After the second set of eigenvalues are found, the eigenvectors from both the first and second set are purged

from R. constructed to determine the third set of eigenvalucs. The above procedure is repeated until all

pi SCt~O: eige~v~ues are found. This strategy wiU be sucessful if the cost to solve the pi smaller problems

is less than the cost to solve the one large problem.

To test these two ~.edifications, FE matrices were calculated at p{ = 5.1a0 for the LiH+ F s Li+ HF

system using the same mesh as before, Table II lists the CPU times required to converge the p = 10fJ

lowest eigenva]ues using the BL method with a block size of nb = 8 for various combinations of ni and p,,

Also provided for comparison is the CPU time required for the same problem using the S1 method with

~ subspace of size q = 150. The (pi = 1; ni = 1) caae corresponds to the %talldard” method examined in

paper 1, This caae yielded the largest CPU time of all of the BL runs in Table 11. Also provided in Table 11

is the number of iterations (k~.=) required to converge 100 eigenvalues. By delaying the diagonalizaticm

of ‘rk to every other iteration (pl = 1; nl = 2), we obtain a decreaae in CPU time of N 33% with respect to

the standard method, By incrementing nl by one again, (Pi = 1; ni = 3), we cause orthogonality problems

and the method fails, In practice, for the various systems we have investigated, we have found that setting

n, ~ 3 is always fatal, The converged eigenvectors must be purged, at the minimum, upon every other

iteration (ni = 2), i; not upon every iteration (nl = 1),

The effect of dividing the p = 100 eigcnvaluc pioblem into two p’ = 50 eigenvaluc problems (pl =

2; n, = 1) also yields a dccrcasc in CPU time with respect to the standard method of N 17V, For t}lc

p, # 1 entries in ‘1’aide11, the value of k~a= for each subproblcm is listed, Even though the sum total

of k~dr = M for (pi = 2; n, = 1) is grcatrr than tho valup of k~or = 38 for (p, = 1; n, = 1), lCSSCl’l.:

timo is roquircd for tllv former CM{’,sil~cc the cost to perf(wnl step 5 scales as 2 times (p’)3 v{’rsus ~? for

the Iatlf*r taso, EVCIlt Uiill)’, increasing p, to a larger valur incr~aam the overhead involvwl in pcrforlning

titOl~S 1-4, SUCII tllilt till? (~), = /3; ?li = 1) CMW requires morv C1’[J time than the (pi = 2; n, = 1) ca.w,

Th(’ lowest (;1’[! timo ;Ichi(’vwl for this prn!)lrnl rmultwi froill usiilg both rnodifiations, (p, = 2; II, = 2),

yid{lil~g a dwrraso ill (’1’[~ time of w 3!)(X,with respm. t to thu standard m~thod. Any furtlltir ti(Ict]ipts to

uw l)othIllo(lifi(;lliofls” ill collll)in;)li(m willl p, > 2 and n, ~ 2 tvrmil~atw] th~ algori(lllll duo 10 a loss 0(

orlll(i~!(lll:lli!y,
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At this point in the analysis a caveat must be put forth. Varying ni and pi from their standard values

of 1 may introduce unwanted non-orthogonality which cannot be predicted in any systematic manner. We

have found from experience that a given set of (pi, ~i) will work correctly for a given H and S, but will fail

for a different set of matrices (i.e., those evaluated at a different value of P(). Since we require the whole

set of surface functions calculated sequentially in P(, typically fcm( = 1,...,100, we must have a robust

procedure which will not fail, for example, when ( = 99.

To provide a measure of the conditions we encounter when we generate surface functions necessary

for nez”’~ converged scattering results, we present some CPU requirements encountered for the F + H2 =

HP + H system. Using the PES of ref. (9), FE matrices are constructed on a non-uniform mesh of

order n = 3291 and of half bandwidth m = 174. To complete the sector-adiabatic basis when calculating

scattering probabilities, 50 unconverted as well u the p= 100 ccnverged surface functions are required.

Using the BL method, the extra 50 functions are obtained by retaining the lowest 150 eigenvalues from Tk~

for k’ = k~a=, Using the subspace iteration (S1) method, the 150 functions are obtained by implementing

a subspace of size g = 150. The BL cede used for this example is slightly different than the version

used above and in paper 1. Machine language subroutines for performing matrix-’natrix multiplies and for

factoring a banded matrix are now implemented which increase the efficiency of step 5. This modified code

was then applied using nb = 8, ni = 2, and pi = 1, 156 sec of CPU time and k~oz = 50 iterations were

vquired to converge the problem. In comparison, the S1 method required 15 subspace iterations and 363

sec of CPU time. The decrease in CPU time by a factor of * 2.3 for 13L w. S1 is the best performance

ratio we have observed for th.k &LSSand size of problem.

In conclusion, the effect of three different strategies on the computational efficiency of the block Lanczos

(with selective orthogona.lization) method to solve large generalized eigenvalues problems was investigated.

\Ve found that it was advantageous to use the smallest Lanczos block size which does not introduce the

loss of orthogonality in the Lanczos blocks. The second strategy, that of diagonalizing the reduced Lanczos

matr;x upon et~ery other iteration, provided an increased efficiency of w 33% with respect to diagonalizing

upon every iteration. The fastest solution approach for the test problem we studied combined the second

strategy with the third? where the latter entailed dividing the single problem of finding 100 eigen~’alues

into two subproblems of finding 50 eigenvalues each, In general, we have found that all three strategies

must be used judiciou~ly, as they can all introduce unwantrd (and fatal) non-orthogonality between the

Lanczos blocks early in thp iterat !ve process.
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Table I. Block Lanczos (BL) method. LiH + F test problem.
60 converged eigenvalues.

P( = 5.Oao, n = 1729, and m = 109.

nb k maz n ~.= = (k~.= . n~) CPU time”
(see)

2 (Loss of orthogonality in Qk)
4 45 180 88.5
6 32 192 f38.4

8 27 216 102.0
10 22 220 100.7
12 20 240 114.7
14 18 252 122,4

July 18, 1988

‘CPU time on a CR.iY-XhfP.
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Table II. Lill + F test problem.
100 converged eigenvalues,

P.f = 5.laO, n = 1729, and m = 109.

Block Lanczos (BL) nb = 8

Pi nl kmar CPU time”
(See)

11 38 127.6
12 88.5
13 (Loss of ortho~onality in Qk)
21 22,31 106.2
52 12,17,20, 110,0

21,24
22 22,32 78.0

Subspace Iteration (S1) q = 150~

136.3

‘CPU time on a CRAY-XhlP.
~Number of vectors i,l the subspace.


