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ABSTRACT

The block Lanczos method is used to calculate the eigenfunctions for a generaliz. 1 eigen-
value problem constructed for a finite element solution to a 2-dimensional Schrodinger equation
on the surface of a hypersphere. This equation results from a treatment of the 3-dimensional
reactive scattering problem using Adiabatically adjusting, Principal axes Hyperspherical (APH)
coordinates. Threc stategies are considered with respect to increasing the CPU performance of
the block Lanczos (with selective orthogonalization) method: (1) the effect of varying the Lanczos
block size; (2) the effect of solving the block tridiagonal ordinary eigenvalue problem upon cvery
other Lanczos iteration; and, (3) the effect of dividing a single problem of finding p eigenvalues

into a set of p; problems, wiiere each subproblem consists of finding p/p; eigenvalues.
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An accurate quantum theory for the treatment of 3-dimensional reac-ive (atom-diatom) scattering has
been formulated recently using Adiabatically adjusting Principal axes Hyperspherical (APH) coordinates.}
Expansion of the scattering wavefunction in a sector-adiabatic basis and projection of this basis onto the
full Hamiltonian yields a 2-dimensional surface Hamiltonian which depends paranetrically on the sector
hyperradit. p¢. Expansion of the surface (eigen)functions in a finite element? (FE) basis set and projection

onto the surface Hamiltonian yields a generalized eigenvalue problem,
H® = S®E, (1)

which must be solved for each value of p¢. Although a non-uniform mesh of elements is (usually) used which
places the majority of the nodes in the classically allowed regions of the potential, the resulting Hamiltonian
H and overlap S matrices a: = typically large (of order n ~ 3000 and of average half bandwidth of m ~ 180).
Furthermore, for most scattering systems of interest, the p ~ 100 lowest eigenvalues E; and eigenfunctions
®; (fori = 1,...,p) are required at each p¢ for £ = 1,...,~ 100. Solving for the suiface functions is the
most expensive step of our scattering calculations. Therefore, identifying an efficient method to solve Eq.
(1) is of utmost importance.

Application of both the Subspace Iteration? (SI) and block Lanczos (BL) methods to the calculation
of surface functions has been reported in this issue by some of these authors® (hereafter referred to as
paper I). The present paper describes some additionai strategies we applied to the BL methed in order to
further improve the computational speed.

In practice, we transform* Eq. (1) to obtain an ordinary eigenvalue problem which is then solved
using the BL method. Specifically, we form

H = D-1/3L-1s1,-Tp~1/3 (2)

(where H is factored as LDLT) which yields the transformed problem
H® =&'E (3)
The block Lanczos procedure® reduces H' to a block tridiagonal form

Ay, BT o 0

B, Aj; *a 0

0 l.' ..l Br-l
0 0 Br-1 Ay,

Ty = (4)

where Ty = QEII'Qk. Q. is constructed as (Q;,Qz,... Qu) where cach Qg is a block of ny column
vectors (ny is defined as the Lanczos block size). The submatrices in Eq. (4), Ax and By, are of dimension
up X ny. The Qy are constructed iteratively once a starting residual matrix Ro (J|[Rol] £ 0) is specified,
Thea the algorithm proceeds for k = 1,2,... (the subscripts denote the A jteration):

1. Orthonormalize Ry_y (QR factorization): Ry-y = QuBu-1
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2. Ry — H'Qu - Qu-1BT_, (Qo =0).

3. Ax — QTR;.

4. Ry — Ry - QuAx.

4’. Purge Ry of any converged eigenvectors of Ty_;.

5. Solve using Rayleigh Quotient Iteration (RQI): Ty @y = OkEy.

6. Check Ey for convergance of the p lowest eigenvalues. Iterate back to step 1 if necessary.

The version of BL implemented in our code is derived from the SNLASO code of Scott.® Along with the
BL reduction scheme, SNLASO incorporates the selective orthogonaliztior” (SO) technique (step 4°). By
purging the converged eigenvectors of Ty.3 from Ry, the loss of orthogonality (deviation of QEQk from
I), which is fatal to the BL reduction, can be delayed to later iterations (larger values of k).

The formation of H' Qy in step 2, consisting of a LDLT solve and a matrix multiply [the matrix
inversions in Eq. (2) are eflu.cted as linear equation solves), costs 2n-(2m + 1) - n, 1nultiplicative operations
(OPs) per iteration to exzcute. As discussed in paper I, siep 2 ie the rate-limiting step of the algorithm
for small values of p (< 20) since n - m is typically large (200,000 - 500,000). The cost of step 5, that
of finding p eigenvalues of Ty [which is of order = (k - n,) and of half bandwidth = (3/2 - n})] using the
RQI method, is proportional to p- k - (n,)? OPs to the leading term in n,. On the average, we find that
kmor = 3p/ny Lanczos iterations are required to converge p eigenvalues, therefore the total work (summed
over k) to perform step 5 is proportional to 3p*n, + p*(ny)? to the leading terms in p and n,. The total
work (summed over k) to perform step 2 is 6p - n - (21n + 1). Therefore, for large values of p, the cost of
step 5, which is scales as p3, exceeds the cost of step 2, which only scales linearly in p.

The first strategy investigated involves studying the effect of varying n, on the performance of the
BL method. H is constructed from the surface Hamiltonian evaluated at p; = 5.0ap using the potential
energy surface (PES) for the Lilf + F = Li + HF system constructed by Lagand and coworkers®® {rom
the ab initio energies of Chen and Schaefer.®® A uniform FE mesh was used which yielded a H and S of
order n = 1729 and half bandwidth m = 109. The amount of CPU time required to converge the p = 60
lowest eigenvalues is presented in Table I as a function of ny. (These and subsequent calculations were
performed on a CRAY-XMD.) Also provided is the number of iterations (kmaz) needed for convergence
and the order npmgz = (kmar-ns) of Ty at the k!? _iteration. For ny = 2, the procedure fails due to a loss
of orthogonality in the columns of Q. For ny 2 4, the value of kyo, decreases as n, is increased, with the
net result of nmar increasing slightly as a function of ny. It appears that a minimum number of columns of
Qi Nmar ~ 200, arc necessary to converge the 60 lowest cigenvalues, independent of the value of ny. The
lowest CPU times are obtained for the minimum values of npy (= 4 and 6). For larger values of a1y, even
though kpiar decreases (fower iterations performed), the cost to diagonalize Ty, which © proportional to
(n4)? (see abovel, is increasingly more expensive. The net result is an overall slower method with respect
to increasing 1.

To minimize the cost of performing step 5. two maodifications to the algorithm were tested: 1) decreas
ing the number of Ty diagonalizations performed by skipping step 5 for a given interval of iterations: and,

2) dividing the one problem of calenlating p cigenvalues into a set of p, problems, where cach subproblem
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consists of finding p’' = (p/pi) eigenvalues. The first modification was implemented by performing step 5
(and thus step 4°) every n!" iteration (for k = n;,2n,,3n,,... ). Since steps 1-4 do not depend explicitly
on step 5, in principle Tx and Qy can be constructed without the eigenvectors of Ty_;. But the SO (step
4’) is dependen: on step 5, and by postponing the SO to every n!h iteration, non-orthogonality in Qy can
potentially appear after fewer total iterations. This behavior places a practical maximum on n,.

The second modification effectively divides the p eigenvalues into p; intervals. This approach is op-
erationally possible since the SNLASO code has the capability of using a given number of converged
eigenvectors at the begirning of the algorithm. These initial eigenvect>rs are purged from Rg and are
treated as converged eigenvectors in the SO step. This prevents the duplication of the initial eigenvectors
on subsequent iterztions. The interval approach starts by finding the first set of p’ eigenvalues. The first set
of eigenvectors are then purged from the next choice of Rg used to genzrate the second set of eigenvalues.
After the second set of eigenvalues are found, the eigenvectors from both the first and second set are purged
from Ry constructed to determine the third set of eigenvalues. The above procedure is repeated until all
pi sets of eigervalues are found. This strategy will be sucessful if the cost to solve the p; smaller problems
is less than the cost to solve the one large problem.

To test these two modifications, FE matrices were calculated at p¢ = 5.1aq for the LiH+ F = Li+ HF
system using the same mesh as before. Table II lists the CPU times required to converge the p = 100
lowest eigenvalues using the BL method with a block size of n, = 8 for various combinations of n; and p;.
Also provided for comparison is the CPU time required for the same problem using the SI method with
a subspace of size ¢ = 150. The (p; = 1;n; = 1) case corresponds to the “standard” method examined in
paper I. This case yielded the largest CPU time of all of the BL runs in Table II. Also provided in Table 11
is the number of iterations (kn,z) required to converge 100 eigenvalues. By delaying the diagonalization
of Tk to every other iteration (p; = 1;n; = 2), we obtain a decrease in CPU time of ~ 33% with respect to
the standard method. By incrementing n; by one again, (p; = 1;n; = 3), we cause orthogonality problems
and the method fails. In practice, for the various systems we have investigated, we have found that setting
n; 2 3 is always fatai. The converged eigenvectors must be purged, at the minimum, upon every other
iteration (n; = 2), i, not upon every iteration (n; = 1).

The effect of dividing the p = 100 eigenvalue problem into two p' = 50 eigenvalue problems (p, =
2;n, = 1) also yields a decrease in CPU time with respect to the standard method of ~ 17%. For the
po # 1 entries in Table 11, the value of kmqz for each subproblem is listed. Even though the sum total
of kmar = 53 for (p; = 2;n,; = 1) is greater than the value of kyar = 38 for (p, = I;n; = 1), less CPU

¥ versus p° for

time is required for the former case, since the cost to perform step 5 scales as 2 times (p')
the latter case. Eventually, increasing p; to a larger value increases the overhead involved in performing
steps 1-4, such that the (p, = §;n; = 1) case requires more CPU time than the {p; = 2;n, = 1) case,
The lowest CPU time achieved for this problem resulted from using both modifiations, (p, = 2:n, = 2),
yielding a decrease in CPU time of ~ 39% with respect to the standard method. Any further attempts to
use hoth modifications in combination with p, > 2 and n, > 2 terminatea the algorithm due to a loss of

orthogonality,
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At this point in the analysis a caveat must be put forth. Varying n; and p, from their standard values
of 1 may introduce unwanted non-orthogonality which cannot be predicted in any systematic manner. We
have found from experience that a given set of (p;, n;) will work correctly for a given H and S, but will fail
for a different set of matrices (i.e., those evaluated at a different value of p¢;. Since we require the whole
set of surface functions calculated sequentially in p¢, typically for £ = 1,...,100, we must have a robust
procedure which will not fail, for example, when £ = 99.

To provide a measure of the conditions we encounter when we generate surface functions necessary
for nezr'y converged scattering results, we present some CPU requirements encountered for the F + H; =
HF + H system. Using the PES of ref. (9), FE matrices are constructed on a non-uniform mesh of
order n = 3291 and of half bandwidth m = 174. To complete the sector-adiabatic basis when calculating
scattering probabilities, 50 unconverged as well as the p=100 ccnverged surface functions are required.
Using the BL methkod, the extra 50 functions are obtained by retaining the lowest 150 eigenvalues from T\
for k' = kmaz. Using the subspace iteration (SI) method, the 150 functions are obtained by implementing
a subspace of size ¢ = 150. The BL c~de used for this example is slightly different than the version
used above and in paper I. Machine language subroutines for performing matrix-'natrix multiplies and for
factoring a banded matrix are now implemented which increase the efficiency of step 5. This modified code
was then applied using n, = 8, n; = 2, and p; = 1. 156 sec of CPU time and k4, = 50 iterations were
raquired to converge the problem. In comparision, the SI method required 15 subspace iterations and 363
sec of CPU time. The decrease in CPU time by a factor of ~ 2.3 for BL vs. SI is the best performance
ratio we have observed for thi: (lass and size of problem.

In conclusion, the effect of three different strategies on the computational efficiency of the block Lanczos
(with selective orthogonalization) method to solve large generalized eigenvalues problems was investigated.
We found that it was advantageous to use the smallest Lanczos tlock size which does not introduce the
loss of orthogonality in the Lanczos blocks. The second strategy, that of diagonalizing the reduced Lanczos
matrix upon every other iteration, provided an increased efficiency of ~ 33% with respect to diagonalizing
upon every iteration. The fastest solution approach for the test problem we studied combined the second
strategy with the third, where the latter entailed dividing the single problem of finding 100 eigenvalues
into two subproblems of finding 50 eigenvalues each. In general, we have found that all three strategies
must be used judiciously, as they can all introduce unwanted (and fatal) non-orthogonality between the

Lanczos blocks early in the iterative process.
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Table 1. Block Lanczos (BL) method. LiH + F test problem.
60 converged eigenvalues.

pe = 5.0a0, n = 1729, and m = 109.

np kmaz Nmar = (kmar “np) CPU time®
(sec)
2 (Loss of orthogonality in Qy)
4 45 180 88.5
6 32 192 88.4
8 27 216 102.0
10 22 220 100.7
12 20 240 114.7
14 18 252 122.4

2CPU time on a CRAY-XMP.

July 18, 1988
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Table II. LiH + F test problem.
100 converged eigenvalues.
pe = 5.1ap, n = 1729, and m = 109.

Block Lanczos (BL) ny, =8

Di n; kmaz CPU time®
(sec)
1 1 38 127.6
1 2 38 88.5
1 3 (Loss of orthogonality in Qy)
2 1 22,31 106.2
5 2 12,17, 20, 110.0
21,24
2 2 22,32 78.0

Subspace Iteration (SI) g = 150°

136.3

2CPU time on a CRAY-XMP.
*Number of vectors ia the subspace.

July 16, 1988



