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Introduction

In this quarter, we continued our study of the effects of vibrating
boundaries on granular assemblies. We extended our earlier work on
isotropically vibrating boundaries by employing formal methods of statistical
averaging to calculate the rates at which momentum and energy are
transferred from anisotropically fluctvating bumpy boundaries to dense
granular assemblies.

The assemblies consist of identical, smooth, nearly elastic spheres that
are thermalized by repeated collisions with the boundaries, but experience no
mean motion as a consequence of these collisions. The boundaries vibrate
with velocities that are governed by a tri-axial Gaussian distribution function
that depends on both the normal and tangential mean square fluctuation
speeds of the boundaries. Using the transfer rates calculated, we have written
down conditions that ensure that momentum and energy are balanced at
such boundaries, and have employed these conditions with a corresponding
kinetic constitutive theory to analyze steady, gravity-free, thermalized states
of granular assemblies between parallel, vibrating, bumpy boundaries.

This work is described in detail in attached paper, "The Effects of
Anisotropic Boundary Vibrations on Confined, Thermalized, Granular
Assemblies," prepared for and presented at the Joint NSF/DOE Workshop on
the Flow of Particulates and Fluids, in Gaithersburg, MD, September 17-18,
1992.
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THE EFFECTS OF ANISOTROPIC BOUNDARY VIBRATIONS
ON CONFINED, THERMALIZED, GRANULAR ASSEMBLIES

Mark W. Richman and Richard E..Martin

Mechanical Engineering Department
Worcester Polytechnic Institute
Worcester, Massachusetts 01609

Abstract

In this paper, we employ formal methods of statistical averaging to
calculate the rates at which momentum and energy are transferred from
anisotropically fluctuating bumpy boundaries to dense granular assemblies.
The assemblies consist of identical, smooth, nearly elastic spheres that are
thermalized by repeated collisions with the boundaries, but experience no
mean motion as a consequence of these collisions. The boundaries vibrate
with velocities that are governed by a tri-axial Gaussian distribution function
that depends on both the normal and tangential mean square fluctuation
speeds of the boundaries. Using the transfer rates calculated, we write down
conditions that ensure that momentum and energy are balanced at such
boundaries, and employ these conditions with a corresponding kinetic
constitutive theory to analyze steady, gravity-free, thermalized states of
granular assemblies between parallel, vibrating, bumpy boundaries. We find
that, as the boundaries become bumpier, vibrations that are tangent the
boundaries become more effective and vibrations that are normal to the
boundaries become less effective at transferring energy to the assemblies.

Introduction

Of interest here are the effects of vibrating boundaries on the granular
flows with which they interact. Such boundaries may be employed with great
advantage to induce granular flows that would otherwise not occur, and to
enhance flows that would otherwise be driven by less effective means. For
this reason, the effects of vibrating boundaries on granular flows have been
the subject of much recent work, including the experiments of Savage [1988],
Thomas, et. al. [1989], Jaeger et. al. [1989], Evesque and Rajchenbach [1989],
Akiyama and Shimomura [1991], and Liu and Nagel [1992]; the theoretical
work of Jackson [1991], Potanin [1992], and Richman [1992]; and the computer
simulations of Rosato [1992]. In particular, Richman [1992] employed formal
methods of statistical averaging to obtain expressions for the rates at which
momentum and energy are exchanged between a granular flow of identical,
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smooth, nearly elastic spheres and a bumpy boundary that fluctuates
isotropically.

In this paper, we focus on dense assemblies of identical spheres that
interact with vibrating boundaries that induce no mean motion as a
consequence of the interactions. In this manner, we eliminate the effects of
slip work at the boundaries and stress power throughout the assemblies, and
isolate the effects of boundary vibrations on the resulting thermalized states.
In particular, we consider bumpy boundaries that vibrate anisotropicaily with
fluctuation velocities that are governed by a tri-axial Gaussian distribution
function. Employing this velocity distribution for the boundaries and a
Maxwellian as the lowest order distribution for the assembly particles, we
calculate the statistically averaged rates at which momentum and energy are
transferred from the boundaries to the assemblies. The resulting expressions
depend explicitly on the bumpiness and mean normal and tangential
fluctuation speeds of the boundaries. Finally, we employ the expressions for
the transfer rates in conditions that ensure that momentum and energy are
balanced at the bumpy boundaries of interest.

As an application of the boundary conditions, we employ them and a
specialization of the constitutive theory of Jenkins and Richman [1985] to
calculate the solid fraction and granular temperature variations throughout
dense, gravity-free, assemblies of identical, smooth, inelastic spheres that are
confined between and thermalized by the vibrations of parallel, bumpy
boundaries. In presenting the results, we pay special attention to the separate
effects of normal vibrations, tangential vibrations, and boundary bumpiness
on the thermalized states induced.

Rates of Momentum and Energy Transfer

We are concerned here with the rates at which momentum and energy
are transferred from vibrating bumpy boundaries to assemblies of identical,
smooth, inelastic spheres of diameter 6 and mass m. These transfer rates
depend on the geometry, dissipative nature, and vibratory motion of the
boundaries. Here we focus on flat surfaces to which identical, smooth,
hemispherical particles of diameter d are randomly attached at an average
distance s apart in such a way that it is not possible for the flow particles to
collide with the flat surfaces. The bumpiness of the boundaries is measured
by the angle 6=sin’’(d+s)/(d+c), which increases from 0 to n/2 as the
boundaries evolve from perfectly flat to extremely bumpy.

The distributions governing the velocities ¢ of flow particles and the
velocities C of boundary particles are f(c, r) and p(C), defined such that f(c, r)dc
gives the number of flow particles per unit volume at r with velocities ¢
within the range dc, and p(C)dC gives the probability that a boundary particle
has velocity C within dC. The mean velocity <C> of the boundary, and the
full second moment <C®C> of its velocity are defined by,
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where the integrations are carried out over all velocities C. We restrict our
attention to boundaries that vibrate about zero mean velocity; i.e. <C>=0.

At impact between a boundary particle and a flow particle, the unit
vector directed from the center of the former to the center of the latter is k,
the boundary particle center is located at x, and the distance between centers is
8=(c+d)/2. The frequency per unit area of flat surface of collisions between
flow particles (with velocities ¢ within dc) and boundary particles (with
velocities C within dC) that meet within solid angle dk centered about k is
then given by,

—X e, x+8Kp(C)gKdkdedC |, o

where gk must be positive for a collisions to occur. The factor X accounts for
the effects of excluded volume and the shielding of flow particles from
boundary particles by other flow particles.

At the instant just prior to collision, the impact velocity as observed
from the boundary particle is g=C-c. If e, is the coefficient of restitution that
characterizes the energy lost in such a collision and the velocity of the
boundary is unaffected by the collision, then the change in mometum
experienced by the flow particle is,

m(c* - ¢) = m(1+e, Ngkk , 3

where c¢* is the velocity of the flow particle just after impact; the
corresponding change in energy is,

1
3 (et - co) = mllve, (g k)| (CH) -5 (e, )Xgh)| . @

As expected, the contribution to the change in energy from the inelasticity of
the particles is always negative. However, the contribution from the absoiute
motion of the boundary may be positive or negative, depending on whether
the boundary particle moves towards (C-k>0) or away from (C-k<0) the flow
particle as they strike.

‘ The net rates at which momentum and energy are transferred from the
boundaries to the assemblies are calculated as statistical averages of the
appropriate changes experienced by a flow particle in a single collision with
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the boundary. If, for example, M is the rate per unit area of flat surface at
which momentum is supplied to the flow by the boundary, then, from
equation (3), M is the average of the momentum change m(l+e,)(g k)k
weighted by the collision frequency (2) and integrated over all points of
contact k that are accessible to flow particles and all incoming velocities ¢ and
C for which gk is positive. Similarly, if F is the rate per unit area at which
energy is supplied to the flow due to the vibratory motion of the boundary,
and D is the rate per unit area at which it is absorbed due to dissipative
collisions with the boundary, then, from equation (4), F and D are the
corresponding weighted averages of the contributions m(1+e,)gk)(Ck) and
m(1-e,2)(g-k)?/2 to the total energy change. The net rate at which the
boundary supplies energy to the flow is equal to the difference F-D.

In order to carry out the averaging procedure, it is necessary to write
down expressions for the velocity distribution functions. To this end, we
introduce an x;-x,-x; Cartesian coordinate system in which the x,-direction is
normal to the flat parts of the bumpy boundaries, and focus on fluctuating
boundaries whose velocities are described statistically by the tri-axial
Gaussian,

1 18 & G
PO = @n)P72v,vv;s P2 (Vlz AR )] ' )

Calculated according to integral definition (1), the x;-x,-x; components of the
full second moment are then simply,

v 0 O
<C®C>=[ 0 v;? 0] . 6)
0 0 V32

In this manner, we further restrict our attention to boundaries with second
moments that are diagonal in Cartesian coordinate systems that are
themselves aligned with the boundaries. Furthermore, we approximate the
flow particle velocity distribution f(c, r) as Maxwellian, which, in the absence
of any mean flow velocity, is given in terms of the particle number density n
and granular temperature w? by,

O e’“P(ziv Cj | %

For thermalized assemblies of nearly elastic particles that experience no mean
motion, the largest corrections to the Maxwellian that we have neglected are
proportional to gradients of granular temperature.
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When the mean velocity vanishes and the gradients of temperature
and solid fraction are normal the boundary, the transfer rates are insensitive
to permutations of the tangential x,- and x3-directions For this reason, we
carry out the averaging procedure for the special cases in which the tangential
fluctuation speeds v, and v, are equal. Under these circumstances, the lowest
order expression for the rate of momentum supplied to the assembly due to
nearly elastic collisions with the boundary is given by,

1
M =px [(w2+v22) +3 (vlz-vzz)sinze] N |, ®

where p=nm is the mass density of the flow, and N is the unit inward normal
to the boundary. Because the x;-, X,-, and x;-directions are the principal
directions of <C®C>, only momentum normal to the boundaries is supplied
to the assemblies. Interestingly, as the bumpiness of the boundary increases,
the rate at which momentum is supplied may increase or decrease, depending
on whether the tangential fluctuation speed v, is greater or less than the
normal fluctuation speed v,

In terms of the ratio R—(vz 2-v,3)/(w?+v,?), the lowest order expressmn
for the rate of energy absorbed due to dissipative collisions is,

1/2 0
D= (%) 2px(1-e ) (Wi+v,?)3/2 g (fsc;)a 73 [H(R, 8) + 3I(R, 9)] , 9)

in which the functions H and I are defined by,

H(R, 6) = (1+R)!/2(5+2R) - (1+Rcos?6)'/2(5+2Rcos20)cos® (10)

and

r\/'l—ﬁ‘—[Sinh‘lﬁ - sinh'I(VR cos®)] when R>0

IR, 8) = 3 (11)

1R [sin'VR - sin’(WRcos8)]  when R<0 .

The corresponding expression for the rate of energy supplied due to the
vibratory motion of the boundary is,
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F= (%)1 4py( ‘ 24y,2)1/2 (1?122)3/2 {% [(w2z\112) i vf] IR, 6)
0wl . a2
where ] and K are defined by,
J(R, 8) = (1+Rcos20)!/2cos0 - (1+R)/2-I(R,8) , (13)
and
K(R, 6) = (1+Rc0s?6)*/2cos@ - (14R)*2 . (14)

Expressions for M, D and F have been obtained by Richman [1992] when the
boundary vibrations are isotropic, and depend on mean square fluctuation
speed v2=tr(<C®C>)/3 rather than on the individual components of <C®C>.
In this special case, the tangential and normal velocities v, and v, are equal,
the ratio R vanishes, and expressions (8), (9), and (12) for M, D, and F reduce
to those obtained by Richman [1992]. If the boundaries are flat, then 6 is equal
to zero, and even for anisotropic vibrations M, D, and F are insensitive to v;.
In this limit, only after we replace v, by v wherever it occurs, do our results
reduce to those obtained by Richman [1992].

Thermalized States of Confined Assemblies

We focus attention on steady, gravity-free, thermalized states of
assemblies of identical, smooth, inelastic spheres that are confined between
two infinite, parallel bumpy boundaries that randomly vibrate with no mean
velocities. The spheres are of mass density o, and coefficient of restitution e.
The boundaries are separated by a fixed distance 2L, have mean square
fluctuation velocities 3v2=(2v,2+v,?), and vibrate in the manner described in
the previous section. Under these circumstances, the velocity field and the
slip velocity vanish, and the variations in granular temperature w? and solid
fraction v are induced entirely by the motions of the boundaries.

We employ an x;-x,-x3 Cartesian coordinate system oriented as
described in the previous section. The boundaries are located at x,=+L and
x;=-L and extend infinitely in the x,- and x;-directions. The solid fraction v
and the dimensionless measure W=w/v of granular temperature depend
only on the dimensionless distance y=x,/c from the midplane between the
boundaries. The dimensionless perpendicular distance between the
boundaries is 2B, where B is the ratio L/o.

1
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In these agitated states, the balance of mass is satisfied identically.
Furthermore, if -P;, and P,, are the shear stress and normal pressure
throughout the assembly and S=-P,,/av? and P=P,,/av? are their
dimensionless counterparts, the x;- and x,-components of the balance of
momentum are simply,

=0 and P'=0 |, (15)

where primes denote differentiation with respect to y. Because only a normal
force is required to keep the distance between the boundaries fixed, equations
(15) demonstrate that the shear stress vanishes throughout, and the normal
pressure is everywhere equal to the pressure applied at the boundaries.
Finally, if Q, is the x,-component of the energy flux, y is the collisional rate of
energy dissipation, and q=—Q,/av® and I'soy/av?® are their dimensionless
counterparts, then the energy equation reduces to,

q-T=0 . (16)

In these thermalized states, energy is conducted to balance the rate at which it
is dissipated.

To compliment the balance equations, we employ the kinetic
constitutive theory of Jenkins and Richman [1985], which applies to flows of
nearly elastic spheres in which the transfer of momentum and energy occurs
entirely by particle transport and particle collisions. For simplicity, we focus
attention on dense flows and ignore the effects of particle transport. In this
limit, the normal pressure P is given by,

P =4vGW? 17)

where G is the function of solid fraction given by v(2-v)/2(1-v)3; the energy
flux is given by,

2MPW'’
q = .\/7‘ ’ (1 8)

where M is equal to 1+91/32; and the energy dissipation is given by,

6(1-e)PW
r =-‘—"—"‘*-\/-7-t . (19)

In principle, for fixed normal pressures P, equations (16), (17), (18), and (19)
determine W(y), v(y), q(y), and I'(y) to within two constants of integration.
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To eliminate q and T', we employ constitutive relations (18) and (19) in
equation (16). In this manner, the energy equation reduces to,

W'-MW=0 |, (20)
where A\?=3(1-e)/M. The profile W(y) is therefore given by the solution,

Qcoshlx

coshaAfp ° (21)

W=

in which, because of symmetry, we have ensured that W/(y=0)=0. Only the
constant Q=W(y=0) remains to be determined. Its value is fixed by
appropriate conditions at the bumpy boundaries (y=1f).

At the vibrating surfaces that induce the thermalized states of interest,
the normal pressure is determined by the rate M, per unit area at which
momentum in the x,-direction is supplied to the assembly by the boundaries,
and the energy flux is determined by the competition between the rate F per
unit area at which energy is supplied to the assembly by vibrations of the
boundaries and the rate D per unit area at which it is absorbed from the
assembly due to dissipative collisions with the boundaries. If M=M,/av?,

=F/av?, and D=D/av? are ihe corresponding dimensionless transfer rates,
then, at the upper (y=B) vibrating boundary the balance of momentum
requires that,

M=P , (22)
and the balance of energy requires that,
F-D=gq . (23)

When neither the shear stress nor the slip velocity vanishes, the energy
balance at the boundary also includes a contribution from slip work, which is
an additional mechanism by which the boundaries may supply energy to the
flows.

In order to nondimensionalize M,, F, and D, we introduce the
dimensionless fluctuation speeds V=v,/v and V, =v,/v that satisfy the
relation V 2+2V2=3. Defined in this manner V,2/3 is the fraction of total
boundary energy that is due to normal motion. In particular, the boundary's
energy is divided isotropically in the three coordinate directions when V, 2=1,
and is divided evenly between normal and tangential motion when V,2=3/2.

We employ the x,-component of the rate (8) of momentum transfer in
condition (22) to obtain,
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Rsin267-!
2(1 +R)] ¢

w(Q2+V.2) =P [1 -

which determines the factor ¥ so that the solid fraction at the boundary is a
free parameter. In terms of dimensionless quantities, the ratio R is given by
(V,2-V2)/(Q2+V2). Finally, we employ energy transfer rates (12) and (9), and
constitutive relation (18), to replace F, D, and q in condition (23). If equation
(24) is used to eliminate X and solution (21) is used to eliminate W’ from the
intermediate result, then the equation that determines the unknown
temperature Q is given by,

MAtanhAB[. Rsin?0
V2esc [1 ) 2<1+R)] QUQPH+V)VY14R)? =
Q2+V,2 2 -
=[(-_£_L2-V‘Z]J'Q#K'(l-ew)(smvnz)'(é'(ﬁﬁ) , (25)

where the functions J(R,0), K(R,0), H(R,6), and I(R,6) are defined by equations
(13), (14), (10), and (11). Because we have focused on dense assemblies, v
appears in neither the energy equation (20) nor the energy flux boundary
condition (25), and the granular temperature profile is independent of solid
fraction.

With B, e, e,, 8, V,, and V, prescribed, the granular temperature Q at y=f
is determined by equation (25), and the granular temperature profile is fixed
by equation (21). Then, with P prescribed, the solid fraction profile and its
depth-averaged value,

B
V= 515 [vipay (26)
i

are determined by inverting constitutive relation (17). If, instead, Vv is
prescribed, then we guess at a value of P and iterate on the guess until v
calculated according its definition (26) agrees with its prescribed value. In
either case, the solid fraction profiles are symmetric about y=0 and increase
monotonically from the boundaries to the midplane.

Results and Discussion
Of primary interest are the effects of the boundaries' motion, geometry,

and dissipative character on the thermalized states that their vibrations
induce. For this reason, in carrying out the solution procedure described
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Figure 1: The variations of Q with Fig.re 2: The variations of Q with
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above, we have varied only V,, 6, and e,,. All the results presented here are
for e=.9, and B=5. .

In Figure 1, we plot the variations of the granular temperature Q at y=p
with bumpiness 6 for normal fluctuation speeds V,2=0, 1, 3/2, 2, and 3, when
e,,=.9. When the vibrations are due entirely to tangential motion (V,2=0), the
temperatures increase from zero as the boundaries evolve from perfectly flat
(6=0) to extremely bumpy (6=r/2), as expected. However, when the vibrations
are due entirely to normal motion (V,2=3), the temperatures actually decrease
as the boundaries becomes bumpier and experience fewer normal and more
oblique impacts. These two extreme cases demonstrate the competing
dynamics that determine the influence of bumpiness on vibrationally
induced granular temperatures. Interestingly, the increase ‘n Q with 8 when
V,2=0 is far more pronounced than the corresponding decrease in Q when
V,2=3. Consequently, about two-thirds of the boundaries' energy must be in
normal motion (V,2=2) for these competing effects to roughly cancel over th2
full range of 6.

Figure 1 also demonstrates that, for fixed values of 8 between 0 and
1.41, the granular temperatures throughout the assemblies increase
monotonically as the energy of tangential vibration is converted to energy of
normal vibration. However, the differences between the temperatures
induced by pure tangential motion and those induced by pure normal motion
diminish as @ increases in this range. This is because tangential vibrations
become more effective and normal vibrations become less effective at
tranferring energy to the spheres as the boundaries become bumpier. In fact,
the theory predicts that when the boundaries are extremely bumpy (6>1.41),
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energy is transferred most effectively by tangential vibrations. Under these
circumstances, the granular temperatures actually decrease as the energy of
tangential vibrations is converted to energy of normal vibrations.

In Figure 2 we show the variations of Q with e,, between .8 and 1.0 for
V,2=0, 1, 3/2, 2, and 3, when 8=n/6. As expected, for fixed values of V.2 the
granular temperatures throughout the assemblies increase monotonically as
the collisions between boundary and flow particles become less dissipative.
This trend becomes somewhat more pronounced as V,? increases because e,
is related to the energy lost in normal impacts, which occur more frequently
as tangential vibrations are converted to normal vibrations.

In the dense assemblies of interest here, the profiles W(y), given in
closed form by solution (21), depend on V,, 6, e,,, €, and B, but are independent
of solid fraction. Conversely, according to constitutive relation (17), both the
ratio P/Q? and the solid fraction profile v(y) depend on e, f and v, but are
independent of V,, 0, and e,. In Figure 3, for example, we show the
dependence of P/Q? on V between .4 and .5 for e=.9 and f=5. Independent of
boundary effects, the constitutive behavior of the assemblies dictates that as v
increases from .4 to .5, the normal pressure nearly triples. In Figure 4, we plot
the solid fraction profiles corresponding to v=4, .45, and .5. Because the
temperature decreases monotonically from the boundaries to the midplane,
the solid fraction must increase to ensure that the normal pressure is constant
throughout the assemblies.

As a numerical example, we consider the case in which 6=x/6, e,=e=.9,
and p=5. Under these circumstances, »s V,? increases from 0 to 3, the
boundary value & of W increases by a factor of 3.55 from .54 to 1.92, and the



midplane value of W increases from .15 to .51. If, in addition, v=.45, then
regardless of V,? the ratio P/Q? is equal to .74, the boundary value of v is .28,
and the midplane value of v is .56. As V,? increases from 0 to 3, the pressure
P increases by more than a factor of 12 from .22 to 2.73, while the solid fraction
profile remains unchanged.

For assemblies that are less dense than those considered here, the
energy equation, the energy flux boundary condition, and the temperature
profiles all depend on the solid fraction. However, just as in the dense
assemblies considered here, both the ratio P/Q? and the solid fraction profile
are independent of the parameters V,, 6, and e, that describe the boundary.
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