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his paper presents a practical design perspective on multivariable feed-

back control problems. It reviews the basic issue--feedback design in the

face of uncertainties--and generaliz »s itnown SISO statements and

constraints of the design problem te MIMO cases. Two major MIMO
design approaches are then evaluated in the context of these results
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SECTION 1

INTRODUCTION

i S
The last twp decades have brought major developments in the mathematical
theory of multivariable linear time mvanant feedback systems. These
include the celebrated stafe space concept for system description a.nd‘tk,le
notions of n;athematiqal optimization for controller synthesis. [1" 2] _ Vaﬁous
tiﬁze-domain-based ana.lytical and computational tools have been made
possible by these ideas. The developments also include certain generali-
zations of frequency-domain concepts which offer analysis and syrthesis
tools in the classical single~input, single~-output (SISO) tradition. [3. 4]
Unfort.ﬁnately, however, the two decades have also brought a growiﬁg
schism between practitioners of feedback control design and its theoret-
icians. The theory hﬁs increasingly concentrated on analytical issues énd
has placed little emphasis on issues which are important and interesting
from the perspective of design.
This paper is an attempt to express the latter perspective and to examine
the extent to which modern results are meaningful to it., The paper begins
with a review of the fundamental practical issue in feedback design--~namely,
how to achieve the benéﬁts of feedback in the face of uncertainties. Various
types of uncertainties which arise in physical systems are briefly described
and so-called "unstructured uncertainties'' are singled out as generic errors
which are associated with all design models. The paper then shows how

classical SISO statements of the feedback design problem in the face of |
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unstructured uncertainties can be reliably generalized to multi-input, multi-
output (MIMO) systems, and it develops MIMO generalizations of the classical
Bode gain/phase constraints (5. 6] which limit ultimate performance of feedback
in the face of such uncertainties. Scveral proposed MIMO design procedures
are examined next in the context of the fundamental feedback design issue.
These include the recent frequency don}ain Inverse Nyquist Array (INA) and
Characteristic Loci(CL) methods an:d the well known linear-quadratic-gaussian
(LQG) procedure. The INA and CL methods are found to be effective, but

only in specialtl cases, while LQG methods, if used properly. have dlesii-able
general features, The latter are fortunate consequences of quadratié dpti-
mization, not explicitly sought after or tested for by the theoretical dex;elopers
of the procedure. Practitioners should find them valuable for design.



SECT ON 2

FEEDBACK FUNDAMENTALS

Standard Feedback Conﬁguration

' Figure 1.

It consists of the mterconnected plant (G) and controller (K) forced by
The dashed

prepompensator (P) is an optional element used to achleve dehberateli

commands (r), measurement no1se (1), and disturbances (d)

We will deal w1th the sta.nda.rd feedback configuration illustrated in Figure 1:

I, |I
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command shaping or to represent a non-unity feedback system in eqdiv:alent
unity feedback form. All disturbances are assumed to be reflected to tfhe

N
measured outputs (y), all signals are multivariable, in general, and both

nominal mathematical models for G and K are finite dimen.smnal lmea.r

time invariant (FDLTI) systems with transfer function matmces G(s) a.nd

following major properties: = |

T L Y TT)

Then 1t is well known that the mﬁguratxon, if it is stable. ha.s the




(1) Input-output behavior

vaGKI+GK) > (r-M+{+GK) *d (1)
o, |
esr-y |
= (I+GK) l(r-d) +GKI+GR) T (2)

(2) System sensitivity[7] ' T

‘o=l
AH 1=(I+GK) Hol T | (3:)
In equation (3), AHcl and AHol denote changes in the closed Ioob sy'stem and
changes in a nominally equivalent open loop system, respectively, caused

by changes in the plant G, i.e. G' = G +4G.

Eqmﬁom (1) through (3) summarize the fundamental benefits and deéign
objectives inherent in feedback loops. Specifically, equation (2) shows
that the loop's errors in the presence of commands and disturbances can
be made "small” by making the sensitivity operator, or inverse return
difference operator, (I + GK)°1. "small', and equation (3) shows that
loop densitivity is improved under thege same conditions, provided G'

does not stray too far from G.

For SISO systems, the appropriate notion of smallness for the sen.s1tiv1ty

L e i B

operator is well understood--na.mely, we require that the complex scalar
{1 + gjw) k(Jw)] have small magnitude, or conversely that 1 + g(jw) k(j‘{»)
have large magnitude, for all real freguencies w where the commands,
disturbagces and/or plant changes, AG, are significant. In fact, t‘hej ,

pem'c;rmance objectives of SISO feedback systems are commonly stipulated
in te“ms of explicit inequalities of the form i |

%i
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,i " 'where ps(w) lis a (large) positive function and W, speciﬁes‘tﬁe active _‘ ‘

frequency range.

' | |
Thls basm 1dea can be readily extended to MIMO problems through the use

|
of matr:x norms. Selecting the spectral norms as our measure of matz;lx

| .
size, for example, the corresponding feedback requirements become
| ‘ i

- NS SR
c [(I + G(juw) K(jw)) ] small | I o t
P R R
. ‘or conversely ' - L |, i
ps(w s g (I +Gio) Kijo)] ()
for the necessary range of frequencies. The symbols ¢ and g in these .
- expressions are defined as follows: -
‘ ) ! ] !
—(ay 4 omax _ S
TIA1 T Nl = Vg (anal G
5 ' ~ B
o [a] = “ < ” 1 | ax “ s "\/?\ . [A*A] : f. (7)| ,
‘ y 1 11;‘3( l iil‘ s
f whlere - || is the usual Euclidian norm, A[-] denotes eigenvalues, 1 ]"‘I

denotes conjugate transpose. The two o's are called maximum a.nd mmmum
‘singular values of A (or principal gains [4 ]), regpectively, and can be
calculated with available linear system software. [8] More discussion of
singular values and their properties can be found in variouis texts. [9] ‘

: . B ‘ ' J I {
Condition (5) on the return differencz I -+ GK can be interpreted as merely

a Pastatement of the common intuiticn that large loop gains or "tiéht" loops

yield good performance. This follows from the inequalities o
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g [GK] -1sg[I+GK]=sg[GK]+1 (8)

whic;:x show that return difference magnitudes approximate the loop ga.i:is, ,
o[GK], whenever these are large compared with unity. Evidently, gooé
multivariable feedback loop design boils down to actneving high loop gains
in the necessary frequency range.

] ,
Despite the simplicity of this last statement, it is clear from years of
research and design activity that feedback design is not trivial. This‘is
true because loop gains cannot.-be made a.rbitra.rﬂy high over a.rhitr'arily
large £requeucy ranges. Rather, they must sa.tisfy certain performance
tradeoffs and desig’n Umitations. A major performance tradeoff, for i
example, concerns command and disturbance error reduction versx‘xs | ;
sensor noise error reduction.[ 0] The conflict between these two objectives
is evident in equation (2). Large g[GK(ju)] values over a large frequency
range make errors due to r and d small. However, they also make errors
due to 7 large because this noise is "passed through' over the same
frequency range, i.e.

y = GK(o) [I +CKGa)] ! 1 » I (9)

Worse still, large loop gains can make the control activity (variable uin
Figure 1) quite unacceptable. This fcllows from !
~1 o -1, oy
u = K[I+GK] "(r=1~d ‘& G (o (r =17 - ci)~2 (10)
Here we have assumed G to be squars and invertible for convenience. The
resulting equation shows that commands, disturbances and sensor noise are
actually amplified at u whenever the frequency range szgniﬁca.ntly exceeds

the bandwidth of G; i.e. for w such tiat ¢ [G(jw)] << 1 we get |
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One of the major contributions of modern feedback theory is the development
of systemat;c procedures for conducting the above performance tradeoffs

We are referring, of course, to the 1.QG theory [11] and to its modern
Wiener-Hopf frequency domain connterpart [12] Under reasonable :
assumptions on plant, disturbances, and performance cr1ter1a. these
procedures yield efficient design compromises. In fact, 1f the tradeoff ,
‘between command/disturbanoe erroyr reduction a.nd sensor lnoise er:i:ta;gx'; |
reduction were the only constraint on feedback design, pract;tioners would
have little to complain about with respect to the relevance of modern theory.
The problem 1s that these performance trades are often overshadowed by a
second hmltatzon on high loop gains~~namely, the requlrement for i'cole::'e.nce
to uncertainties. Though a controller may be designed used FDLTI xlnodels.
the design must be implemented and operate with a real physzcal pla.nt

The propertles of physical systems, in particular the ways in which they
dev:.ate from finite-dimensional linear models, put strict limita.tlons onI the
frequency range over which the loop gains may be large. In order to, | g
prooeriy motivate these restrictions, we digress in Section 3 to a brief
description of the types of system uncertainties most frequently encountered.
The manner in which these uncertainties can be accounted for in MIMO-

des1gn then forms the basis for the rest of the paper. v




SECTION 3

UNCERTAINTIES

While no nominal design model, G{s), can emulate a physical plant perfectly,
it is clear that some models do so with greater fidelity than others. lHe"n.c:e.
, o

no nominal model should be considered complete without some asses‘slmlent

of its errors. We will call these errors the "model uncertainties", ‘and

whatever mechanism is used to express them will be called a ''representation
of uncertainty. " | '

Representations of uncertainty vary primarily in terms of the a.mouxit of
structure they contain. This reflects both our knowledge of the physical
mechanisms which cause differences between model and plant and our ability
to represent these mechanisms in a way that facilitates convenient manipula-
tion. For example, a set membership statement for the parameters pf an
otherwise known FDLTI model is a highly~-structured representation of
uncerta.inty It typically arises from the use of linear mcremental models
at various operating points, e.g., aerodynamic coefficients in fhght control
vary with flight environment and aircraft configurations, and equation '
coefficients in power plant control vary with aging, slag buildup, coal '
composition, etc. In each case, the amounts of variation and any lmowﬁ'

~ relationships between parameters can be expressed by confining the !;)é.ra-
meters to appropriately defined subsets of parameter space. A specific

example of such a parameterization for the F-8C aircraft is given ini[13].
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Exa.mples ‘'of less-structured representations of uncertamty are'du'ect' set
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memhership statements for the transfer function matrix of the model. For

instance, the statement

G'(jw) = G(jw) + 8G(jw)

with ! N

g [AG(jw)] & W
i 1

where 4 ( )is'a positive scalar function, confines the matr:x G' to a. ;

a
The statement does not uLply la

< ¢ (w) > o (12)

) |

nelghborhood of G with magnitude ¢ (m)
mechanism or structure which gzves rise to AG. The uncertainty may be
caused by parameter changes, as above, or by neglected dynanucs. or by
a host of other unspecified effects. An alternative statement for (12) is

the so-called multiplicative form: ' i

G'(jw) = [I +L(jw)] G(jw)

with

T [LGw)] < Lm(w) ¥ w >=o0 (13)

This statement confines G' to a normalized neighborhood of G. It is
preferable over (12) because compensated transfer functions have the same
uncertainty representation as the raw model (i.e., the bound (13)'applies
to GK as well as to G).

are the inverse forms of (12) and (13) which confine (G')

Still other alternative set membership statements

1 to direct or
normalizéd neighborhoods about Gml.

Thé best choice of uncertainty representation for a specific FDLTI model
depends;, of course, 9f the errors the model makes. In practice, it is
. . P
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generally possible to represent some of these errors in a highly-structixred
parameterized form. These are usually the low {requency error componeats.
There are always remaining higher frequency errors, however, which
cannot be covered this way. These are caused by such effects as infinite-
dimensional electro-mechanical resonances [18, 17] t:.me delays. diffusion
processes, etc. Fortunately, the lesﬁ-structured representa.t.ons. (12) or
(13), are well suited to represent this latter class of errors. Consequently,
'(12)-(13) have become widely used "generic' uncertainty representations for
FDLTI models. :
I : | |
Motivated by these observations, we will focus throughout the rest of thils

paper\ exclusively on the effects of urcertainties as represented by (13).'
For lack of a better name, we will refer to these uncertainties simply as
"unstructured. ' We will assume that G' in (13) remains a strictly proper
FDLTI system and that G' has the same number of unstable modes as G.
The unstable modes of G' and G do not need to be identical, however, and
hence L(s) may be an unstable operator. These restricted assumptions on
G' make exposition easy. More general perturbations (e.g., time varying,
infinite dimensional, nonlinear) can i1lso be cove;ed by the bounds in (13)
provided they are given appropriate “conic sector' interpretations via
Parseval's theorem. This connection is developed in [14,15] and ‘wm. not

be pursued here. ' P

When used to 'represent the various high frequency mechagisms mentioned
above, the!bolmding functions £ (w) in (13) commonly havé the prppé'rt}e’_s |
illustrated in Figure 2. They are small (< < 1) at low frequencies and .
increase to unity and above at higher frequencies. The growth with

I
frequency inevitably occurs because phase uncertainties eventually exceed |
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+ 180 degrees and magnitude deviations eventually excéed the nominal
transfer function magnitudes. Readers who are skeptical about this reality
are encouraged to try a few experimenis with physical devices.

It should also be noted that the representation of uncertainty in (13) can be
used to include perturbation effects that are in fact not at all uncertain, A
nonlinear element, for example, may b‘e quite acéurately modeled, but

because our design techniques cannot deal with the nonlinearity effectively,

it is treated as a conic linearity. [14,15]

As another example, we may
deliberately choose to ignore various kaown dynamic <:hara.<:te:‘151:1(:5:l {n
order to achieve a simpler nominal design model.

‘Another important point is that the construction of Lm(w) for multivariable
systems is not trivial. The bound assumes a single worst case uncertainty
magnitude applicable to all channels, If substantially different levels of
uncertainty exist in various channels, it may be necessary to scale the
input-output variables and/or apply frequency-dependent 1::-ar.xs.fox‘mations[1 ]
in such a way that Lm becomes more uniformly tight. These scale factors

and tralnsformations are here assumed to be part of the nominal model G(s).
!
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' © . ' ©  FEEDBACK DESIGN IN THE FACE OF " | |
| UNSTRUCTURED UNCERTAINTIES . -

1
,
o 4
. }
! ! '

:Once we specify a design model, G(s,, ‘and accept the existence of ! '
unstructured uncerteinties in the forn, (13), the feedback de51gn problem

becomes one of finding a compensator K(s) such that

(i) the nominal feedback_, syster, -‘fK‘[-'I + GK] , is sta.ble* o

C ;)"" l -
| (i) the perturbed systeis, Q'K [ + G' K]™%, is stable for . u ol
| o
all possible G' allowed by (13); and | K ;
(iii) . performance objectives are satisfied for all possible G |
- ; . ‘ ;
allowed by (13). : )

All three of these requirements can be interpreted as frequency domain b

1

conditions on the nommal loop transfer matrix, GK(s), wluch the des1gner

must attempt to satisfy.

Stability Conditions , : ; ] ’ |
. ' i i Coy I :. ;

The frequency domain conditions for Requirement (i) are. of course, weu .
known. In SISO cases, they take the form of the sta.ndard Nyquist Crltenon,
and in MIMO cases, they involve its multivariable generalization. [18] ’
Namely, we require that the encirclement count of the map det (I + C}K(é)],

*x
See any classical control text

| :
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evaluated on the standard Nyquist D~coatour, be equal to the (negative)

number of unstable open loop modes of GK.

Simila.rly, for Requirement (ii) the number of encirclements of the map
det (I + G'K(s)] must equal the (negative) number of unstable modes of
G'K. Under our assumptioas on G', however, this number is the same
as that of GK. Heace, Requirement (ii) is satisfied if and only if the
number of encirclements of det [I + G' K(s)] remains unchanged for all
G' allowed by (13). This is assured iff det {I + G'K) remains nonzexi-o as
G is warped continuously toward G', or equivalently, iff :
: «

o <g [1+I+eL@G@®ED) g
for all o £ ¢ <1, all S on the D-contour, and all L(s) satisfying (13). éince
G' vanishes on the infinite radius segment of the D-contour, and assuming,
for simplicity, that the contour requires no indentations along the jw-axis,*

equation (14) reduces to the following equivalent conditions:

o <o [1+GGw) Ko + ¢ Liw) Glio) Klio) ] as)
foralose¢s<1l, osw<w, andallL ‘ ‘
. . -1 i ‘
<o <g [1+LcRa+cr! ] (16)
forallo<w<w, andall L
- ‘ -1 ' b ' ,
<7 [era+on™] < 1/4_(w) ' o an

foralloguw<a s

9t msh, Nty o e s el e

*Ij‘ 1ﬁaehta%ions aré refuired, (14) are (17) must hold in the limit for all
g &3 the indentéd path az the redius of indentation is taken to zero. ‘ o

-
1
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The last of these equations is the MIMOQO generalization of the familiar SISO
reqmrement that loop gains be small whenever the magnitude of unstructured
uncerta.mt:.es 1s large. 1In fact, whenever L (w) >>1, we get the fouowmg

constraint on GK £

s [oxGw] < 1e_@ | a8

for all w su?h that Lm(w) >>1 - " h '
| ' R

We emphasize that these are not conservative stability conditions'. On the

colntrary, if tllxe uncertainties are truly unstructured and (1 7) is vmllated

then there exists a perturbation L{(s) within the set allowed by (13) for Wthh

the system is unstable. Hence, these stability conditions impose hard

limits on the permissible loop gains of practical feedback systems.

Performance Conditions

Frequency domain conditions for quuu*ement (iii) have already been
described in Section 2, equation (5), The only modification needed to
account for unstructured uncertainties is to apply (5) to G' instead of

G;J.e. :
|

ps < o [I +(I+L)GK]‘

= ps < o [I+LGK(I+GK)"1] g [1+GK]
s(w) . "
< i-:e—zgl(—w—)- =g [ GK(JU))] (19)

for all w such that Lm(w) <landg [GK(jw)] >> 1 o

15




This is the MIMO genera.uzation of ax‘z?tt‘ttxﬁr fa:ml.ia.r SISO design rule--
namely that performance objectivea asn be met in the face of unstructured
uncerta.mties if the nominal loop gm Y* are made sufficiently la.rge to
compensate for model variations. Note, however, that finite solutions

exist only in the frequency range where Lm(w) < 1.

The stability and performance conditior;s derived above illustrate that
MIMO feedba:;k design problems do not differ funda.mentalfy from tﬁéu‘ 1
SISO counterparts. In both cases, stability must be acmeved nomm;.lly‘
and assured for all perturbations by sztisfying conditions (17-18). .
Performance may then be optimized by satisfying condition (19) as well .
as possil’:le.I What distinguishes MIMO from SISO design conditions are |
the functions used to express transfer function ''size." Singular values
replaéé absolute values. The underilying concepts remain the same.

We note that the singular value functions used in our sta;ements of design

conditions play a design role much like classical Bode plots. The

¢ [I + GK] function in (5) is the minimum return difference magnitude of

the closed loop system, o [GK] in (8) and & [GK] in (18) are minimum and
maximum loop gains, and 7 [GK (I + G-K)-l] in (17) is the maximum closed
loop frequency response. These can all be plotted as ordinary frequency
dependent functions in order to display and analyze the features of a

multivariable design. Such plots will here be called o-plots.

’

\

One of the ¢-plots which is particularly significant with regard to design
for uncertainties is obtained by inverting condition (17), i. ’e. ,

T h e
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‘ _ . =1 : ‘
1@ < =TGRA+GRT] - & (I +(GK@Gw)™"] | (20)

i
forallosw<e

The function on the right hand side of this expression is an explicit measure
of the degree of stability (or stability robustness) of the feedback systém.
Stability is guaranteed for all perturbations L(s) whose maximum singular
values fall below it. This can include gain or phase cha.nges in individual
output channels simultaneous changes in several cha.nnels, and varlu[)us
other kinds of perturbations. In effect, g [I HGK)" 1] is a reliable mu1t1-
variable generalization of SISO stability margin concepts (e.g., frequency
dependent gain and phase margins). Unlike the SISO case, however, it is
important to note that ¢ [I + (GK)~1] measures tolerances for uncertainties
at the plant outputs only. Tolerances for -uncertainties at the input are
generally not the same. They can be analyzed with equal ease, however,

by using the function g [I + (KG)~1] instead of of1+ (GK)']'] in (20). This
can be readily verified by evaluating the eancirclement count of the map

det (I + KG) under perturbations of the form G' = G (I + L) (i.e., uncertainties
reflected to the input). The mathematical steps are directly analogoﬁs to
(15-18) 'above.

Classical designers will recognize, of course, that the difference between
these two stability robustness measures is simply that each uses a loop

transfer function appropriate for the loop~breaking point at which robustness

is being tested.

17
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SECTION 5

TRANSFER FUNCTION LIMITATIONS

The feedback design conditions derived above are pictured graphically in '
Figure 3. The designer must find a loop transfer function matrix, QK.‘ for
which the loop is nominally stable and whose maximum and mimmun'u :

singular values clear the high and low frequency "design boundaries" given

I

by Condition (17) and (19). The high frequency boundary is mandatory,

while the low frequency one is desirable for good performance. Both are
influenced b}; the uncertainty bound, cm(w). l

i

Tog w

Figure 3. The Design Tradeoff for GK

i

' CONDITION

(17)
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’me o-plots of a representative loop transfer matrix are a.Lso sketched m

the ﬁgure. As shown, the effective bandwidth of the loop ca.nnot fall much
beyond the frequency w, for which ¢ {mé) = 1. As a result, the frequency
range over wmch performance ob;;ec’mves ¢an be met is exphcitly constramed
by the uncertainties. It is also evident from the sketch that the sevemty of
this constraint depends on the rate at which g [GK] and ¢ [GK] are attenuated.
The steeper these functions drop off, the wider the frequency range over
which Condition (19) can be satisfied. Unfortunately, however, FDLTI
tra.nsfer functions behave in such a w%ay that steep attenuation comes only

at the expense of small ¢ [I + GK] values and small g [I + (GK)~ ] values
when ¢ [GK] and ¢ [GK] ~ 1. This means that while performance is gooéi
at lower frequencies and stability robustness is good at higher frequencies,
both are poor near crossover. The btehavior of FDLTI transfer functions,
therefdre, irnposes a second major limitation on the achievable performance

of feedback systems.

- i
SISO Transfer Function Limitation

' |
For SISO cases, the conflict between attenuation rates andHoop quaht}; at
crossover is again well understood. We know that any rational,, sta.ble, ‘
proper, minimum phase loop transfer function satisfies fixed mtegral
relations between its gain and phase components. Hence, its phase a.ngle
near crossover (i.e., at values of o such that | gk(jw) | ~ 1) is determmed
uniquely by thé gain plot in Figure 3 (for g = ¢ = |gk|). Various expressions
for Hiis angle were dérived by Bode usi{fg contour integration around closed

conk3urs encompassiﬁf; the right half glane. [5, Chapters 13,14] @)
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Pgc - 3TE [gkGu )]
_ 1 in | gkQjolv))| - én!gk(jwc?’ du (21)
w sinh v °

where v = Ln(m/wc). w(v) = w_ exXp V. Since the sign of sinh (u) is the same

as the sign of u, it follows that ¢gkc will be large if the gain |gk! attenuatgs

slowly and small if it attenuates rapidly. In fact, ¢gkc is given explicitly

in terms of weighted average attenuation rate by the following alternate

form of (21) (also from [5]): ' | l
!

[

® = L %Jﬁl {Ln coth -l;—‘ du (22)

The behavior of ¢gkc is significant because it defines the magnitudes of
our two SISO design conditions (17) #nd (19) at crossover. Specifically,

when |gk| = 1, we have

1+gk| ® [1+(@] = 2|stn

1122&) 1 (23)

I
The quantity of v + ¢gkc is the phase margin of the feedback system. '

Assuming gk stable, this margin must be positive for nominal stability '

and, according to (23), it must be reasonably large (=~ 1 rad) for good

return .diffex;ence and stability robusiness properties. Ifm + ¢gkc is forced

to be very small by rapid gain attentuation, the feedback system will a.m'plif;'r

disturbances (|1 + gk| << 1) and exhibit little uncertainty tolerance at Iai.nd
AR

near o . The conflict between attenuation rate and loop quality near cfoss-

over is thus clearly esvident.
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It is also known that more general norminimum phase and/or unstable loop
transfer functions do not alleviate this conflict. If the plant has right half
plane zferos, for example, it may be factored as I

g(s) = m(s) p(s) - (24)

where m(s) is minimum phase and pis) is an all-pass (i.e., |p(Jw)| =1 ¥ w.)
The (negative) phase angle of p(s) reduces total phase at crossover, i.e.,
(25)

? ® %mke * ¢pc < ®nmke

and therefore aggravates the tradeoff problem. In fact, 1f Npc‘ is too
large, we Wiu be forced to reduce the crossover frequency. Thus rhp
zeros limit 1oop gain (and thus performance) in a way similar to the'

,\i

unstructured uncertainty. A measure of severity of this added hmxt‘iatlon :
{

is |1 - p(jw |, which can be used just like 1 (w) to constram a nommal'

minimum phase design.

If g(s) has rhp poles, the extra phase iead contributed by these poles
compared with their mirror images in the left half-plane is needed to
provide encirclements for stability. Unstable plants thus also do not

offer any inherent advantage over statle plants in alleviating the cross-

Lo

over conflict. i

Multivariable Generalization

Lo, wyuad,&v;( {;‘,& Vnd UL e he s st

The above transfer limitations for SISO systems have multivariable

generalizations, with some additional complications as would be expected.
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The major complication is that singular values of rational transfer matrices,
viewed as functions of the complex variable s, are not é.nalyﬁc and therefore
cannot be used for contour integration to derive relation such as (21).
Eigenvalues of rational matrices, on the other hand, have the necessary
mathematical properties. Unfortunsately, they do not in general relate
directly to the quality of the feedback design. (More is said about this in
Section 6). Thus, we must combine the properties of eigenvalues and
singular values through the bounding relations

|

s [A] = [A[A]] s [A] (26)

which holds for any eigenvalue, 11, cf the (square) matrix A. The approach

will be to derive gain/phase relations as in equation (21) for the eigenvalues

of 1+ GK and I +(GK)™® and to use these to bound their minimum singular
values‘. .' Since good performance and stability robustness requires singular
values of both of these matrices to be sufficiently large near crosgsover,
the multivariable system's properties can then be no better than the
properties of their eigenvalue bounds,

i
Equations for the eigenvelues themselves are stra.ightforward'. There is a
one-to-one correspondence between eigenvalues of GK and eigenvaiues of
I+ GK such thf.t
| )‘i [1+GK] = 1 A [GK]
Likewise for I + (GK)™'; | ’

-1 = 1 > »
7\1 [I+(GK) ] 1 + I:raf{:\, , a4 (28)
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Thus when' [, [GK]| = 1 for some 3 aadw = w_, We have | ' ‘ Coy

[l
- H

-1 . (" ¢ )
Iki[l-!-GK]‘ = ])\i[l+(GK) 1l = 2lsin ..._....l._.‘ : (29)

‘e l | 2 ! l '| !
Since tlus equation is exactly analogous to equation (23) for the scalar case,
and since ]A | bounds o, it follows that the loop will exhibit poor properties
whenever the phase angle (n’ + ¢x.c) is small,

i
In order to derive expressions for the angle $y.c itself, we require cez%ain
results from the theory of algebraic functions. [20-26] The key cqncepts
needed from these references are th.ﬁ.:" the eigenvalues }‘i of a rational,
proper tra.nsfer function matrix, viewed as a function of the complex
variable, s, const1tute one mathematical entity, A(s), called an a.lgebraa.c
function. Each eigenvalue, )‘i' is a branch of this functzon and is defined
on one sheet of an extended Riemann surface domain. On its extended
domain an algebraic function can be treated as an ordinary meromorphic
function whose poles and zeros are the system poles and transmission
zeros of the transfer function matrix. It also has additional critical
points, .'caued branch points, which correspond to multiple eigenvalues.
Contour integration is valid on the Riemann surface domain provided
that contours are properly closed. '
: | L

In the contour integral leading to (21), gk(s) may therefore be replaced by
the algebraic function, A(s), with contour taken on its Riemann domain.

Carrying out this integral yields several partial sums:

23
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Lo 1 f § [wlki(jw':v))l '“‘W(j‘f’c)l] | |
T

sinh v dv (30)

where each sum is over all branches of A(s) whose sheets are connected by
right half-plane branch points. Thus the eigenvalues { ki} are r,estricteé
in a way similar to scalar transfer functions but in summation form. The
summation, however, does not alter the fundamental tradeoff between |
attznuation rate and loop quality at crosqover In fact, if we deliberately
choose to maximize the bound 29) by mab.ug L and ¢"1° identical for all
i, then (30) imposes the same restrictions on mulnvanable loops as (21)

imposes on SISO loops. Hence, multivariable systems do not escape the
fundamental transfer function limitaiions.

As in the scalar case, expression (30) is agsin valid for minimum phase
systems only. That is, GK can have no transmission zeros* in the rhp.
If this is not true, the tradeoffs governed by (29)-(30) are aggravated because
every rhp transmission zero adds the same phase lag as in (25) to one of

the partial sums in (30). The matrix GK may also be factored, as in (24),
to get

GK(s) = M(s) P(s) (31)

where M(s) has no rhp zeros and P(s} is an all-pass matrix PT(-S)P(S) s I,

Analogous to the scalar case, ¢ (I - P(s)) can be taken as a jmeasure of the

degree of multivariable nonmmimuzﬁ nkaseness a.nd used Like 1. (w) to’
constrain a nominal minimum phase design. oo

For éur purposes, transmission zewcs[ 1] are values s such that
det [G(s) K(s)] = 0. Degenerate systems with det [GK] 2 0 for all s are
not of interest because they cannot meet Condition (19) in Figure 3.
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MUL’J{I‘IVARllABLE DESIGN BY MODERN FREQUENCY DOM.AIN
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So! fa.r, we havie described the FDL'I"’ feedback des1gn prob‘lem as a des1gn .

p i

S o

txladeoff Ainvlci>1vmg performance obJectwes (Condition 19), _stabllity re quire- 0

' ments in the face of unstructured uncertainties (Condition 17), and- certa.m
performa.nce hmltations imposed by gain/phase relations which must be
satisfied by reahzable loop transfer functions. This tradeoff is essent1ally

the same for SISO and MIMO problems Design methods to carry 1t out

of course, are not. ‘ R

t
For sc'a'.'lar design problems, a large bedy of well-developed tools exists
(e.g.,
functlons for Figure 3 with relatively little difficulty. Vamous attempts

|
have been made to extend these methods to multivariable des1gn problems.

Probably the most successful of these are the Inverse Nyq\.ust Array (INA)[B]
and the Charactemstic Loci(CL) methodologies, [4) Both a.re based on the
idea of reducmg the multwanable design problem to a sequence of scalai.r ‘
problems. This is done by constructing a set of scalar transfer funcnons
which may bé manipulated more or less independently with classical
techniques. In the INA methodology, the scalar functions are the diagonal
elemerits &f & ).oop transfer function matrix which has been pre- and post-
comtﬁensaied to be diizgenally dominait. In the CL methodology. the’ functlons
arg ihe éigenvaxués &f the loop transfer matrix. |

i
1

R

. ‘ !
"classical control") which permit designers to construct good transfer

o tea bt B p sy e E TS EASML e g St et £ BIA . et o o it pepon

e e ey

.



t

!
Based on the design perspective deveioped in the previous sections, theée
multiple single-loop methods turn out to be reliable design tools only fof
special types of plants. Their restrictions are associated with the fact
that the selected set of scalar design functions are not necessarily related
to the system's actual feedback properties. That is, the feedback system
n:iay be designed so that the scalar functions have good feedback properties
if interpreted as SISO systems, but the resulting multivariable system may
still have poor feedback properties. This possibility is easy to demonstrate
for the CL method and, by implicaticn, for the INA method with perfect
diagona.].izatiori. For these cases, we attempt to achieve stability r%:bt_zsiness
by satisfying oy

ot < [ I+ (GRTI] = |1 +1/3(GK)] (32)

for all i and 0 £ w < @ and similarly, we attempt to achieve performance
objectives by making

s(w =
TPTZ'JJS s I [T+GK]l = |1 +(GK)| (33)

foralliando<suw < =.

As discussed in Section 5, however, the eigenvalues on the right hand sides
of these expressions are only upper bounds for the true stability xl-obustness
and performance céaditions (20) and (19). Hence, ¢ (I +(GK)™>] and/or

g [1 + GK] may actually be quite small sven when (32) and (33) are satisfied.
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These potential inadequacies in the INA and CL methods are readily’ |
illustrated with a simple example selacted specifically to highlight the -

limitations. Consider

'
-

«47s + 2 56s X
. : " 1 ‘ (34)
L G = EmeE '

~4Zs 50s +2

This system may be diagonalized exactly by introducing constant compensa-
tion. Let

7 8 7 -8 |
U = vl - 1(35)
i

:. 6 7 -6 7 ;
Then :
' 1 -y ‘
s+l 0 } |
G=veu! = (36)
- 2
5 0 s+2

If the diagonal elements of this (; are interpreted as independent SISO
systems, as in the INA approach, we could readily conclude that no further
compensation is necessary to achieve desirable feedback propei‘ties. For
example, unity feedback yields stabilily margins at crossover of + « db in
gain and greater than 90 degrees in phase, Thus an INA design could e
ressonably stop at this point with corjlni,pensator K(s) = UU"1 = I, Since the
diagshal elements of Gare also the ejgenvalues of G, we could also be
reasonably satisfied with this design from the CL point of view.

!
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Singular value analysis, however, leads to an entirely different conclusion.
The &-plots for (I + G-l) are shown in Figure 4. These clearly display a
serious lack of robustness with respect to unstruéturéd uncertainties, The
smallest value of ¢ is approximately 0.1 near w = 2 rad/sec., This means
that multiplicative uncertainties as gmall as L (2) = 0.1 (= 10% g‘ain changes,
az 8. deg phase changes) could produce _mstabihty An mterpretatzon of this
lack of stability robustness is given in Figure 5. This figure shows stability
regions in "gein space' for the compensatof K(s) = diag (1 + k,, 1 +'k2).
The figure reveals an unstable region in close proximity to the nominal
design point. The INA and CL methods are not reliable design tools because
they fail to alert the designer to its presence.

This example and the discussion whicl precedes it should not be misunder-
stood as a universal indictment of the INA and CL methods. Rather, it
represents a caution regarding thei}r nse, There are various types of
systems for which the methoas prcwg nffectzve and rehable. Conditions
which these systems satisfy can be deduced from equation (32) and (33)-;-
namely they must have tight singular value/eigenvalue bounds. This
includes naturally diagonal systems, of course, and also the class of
[28] The limitations which arise when the bounds are

not tight have also been recognized in [4].

"normal' systems.

i
We note in passing that the problem of reliability is not unique to the INA
and CL methods. Various examples can be constructured to show that other

I .
design approaches such as the "singlz-loop-at-a-time" methods com!mon
in engineering practice and triadiagonalization approaches ‘suffer s:.milarly.
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SECTION 7
MULTIVARIABLE DESIGN VIA LQG
A second major approach to multivariable feedback design is the modern

[11,12] We have already introduced this method in
connection with the tradeoff between command/disturbance error reduction

LQG procedure.

and sensor noise error reduction. The method requires that we select
stochastic-models for sensor noise, commands and disturbances an‘d define
a weight.ed mean square error criterion as the standard of goodness for the
design. The rest is automatic, We gst an FDLTI compensatér. K(s), which
sta.bilizes the nominal model G(s) (under mild assumptions) and optimizes
the criierion of goodness. All too often, of course, the resulting loop
transfer functions, GK or KG, are entirely unacceptable when examined
against the design constraints of Figure 4. We are then forced to iterate
the design--adjust weights in the performance criterion, changethe stochastic
disturbance and noise models, add dynamics, etc. There are so many
parameters to manipulate that frustration sets in quickly and the schism
between practitioners and theoreticians becomes easier to understand;.

: i
Fortunately, such design iterations of LQG controllers have become easier
to carry out in the'last few years because the frequency domain properties
of these controllers are better understood. Some of the key new results‘
are sufirnarized below and their significance with respect to Figure 3 are
distussed.
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For our purposes, LQG controllers are ordinary FDLTI compensators 'with
a spec;a} internal structure. This structure is shown in Figur’é 6 la.lmzl iis :
well known. It consists of a Kalman-Bucy Filter (KBF) des1gned forla !

state space realization of the nominal model G(s), including all appended

dynamics for disturbance processes, commands, integral action, etc.

The model is ) . ! %I
1
x = Ax+Bu+€ x ¢ R%, u ¢ R™ (37
i r
y = Cx+1; y ¢ R
and sat_isﬁes
G(s) =C & (s)B (38)
d =C & (s) ¢
{
with .
. B I
Q(s)=(sIn-A)1 | 0 (39)

Compensator_K(s)

| |
. | ) -C - l C
AN ' E" (1)) .
VARLINAY,

I R o Tl w e B8 >

| L I

l - P L . il P

o N T

Figure ‘,6 Q Feedback Loop
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The symbols § and 7 denote the usus! white noise processes. The filter's
gaing are denoted by K, and its state =stimates by 2. The state estimates
are multiplied by full-state linear-quadratic regulator (LQR) gains, Kc‘
to produce the control commands which drive the plant and are also fed
back internally to the KBF. The usual conditions for well-posedness
of the LQG problem are assumed. '

I

In terms of previocus discussions, the functions of interest in Fig\%re 6 é.re

the loop transfer, return difference, and stabjlity robustness functionsli

-1
GK, I +GK, I +(GK, ot

|
and also their counterparts
KG, I_ + KG, I+ (KG) !
m m

As noted earlier, the first three funsiions measure performance and
stability robustness with respect to u:certainties at the plant outputs (loop-
breaking point (i) in Figure 6), and the second three measure performance
and robustness with respect,to-uncesininties at the plant input (l,oog:-b.re;aking

point (ii) in Figure 6). Both points are generally significant in design.'
S L o

Two other loop-breaking pcints;, (i)' and (ii)', are also shown in the

figure. These are internal to the compensator and therefore have little
direct sigm'.ﬁ?ance. However, they have desirable loop transfer pr?pertiesl
which cdfd be related to the properties of points (i) and (ii). The properties

ard Zopnedtions aré these:
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Fact 1' The loop transfer function obtained by breaking the LQG loop at

_ point (i) is the KBF loop transfer function C ¢ Kf. b ll

i ; - ‘ ! : ! ‘

Fact 2 The loop transfer function obtai,ned by breaking the LQG loop at '
point (i) is GK. It can be mzade to approach C ¢ K, pointwise in s

by designing the LQR in acc?rda.nce with a "sensitivity recovery"
procedure due to Kwakenagk'<®

Fact 3 The loop transfer function obtained by breaking the LQG loop at
pomt (11) is the LQR loop transfer function Kc ¢ B.

Fact 4 The loop transfer function cbtained by breaking the LQG loop at
point (ii) is KG. It can be made to approach Kc ¢ B pointwise in

s by designing the KBF in accorda[nci with a ''robustness recovery'
procedure due to Doyle and Stein. l

Facts 1 and 3 can be readily verified by explicit evaluation of the transfer‘

functions involved. Facts 2 and 4 take more elaboration and are taken up
in a later section. They also require more assumptions. Specifically,

G(s) must be minimum phase with m > r for Fact 2, m < r for Fact 4, and

hence, G(s) must be square for both. Also, the names "sensitivity recovery'

and ''robustness recovery' are overly restrictive. "Full-state loop transfer
recovery'' is perhaps a better name for both procedures, with the distinction

that one applies to points (i), (i)' and the other to points (ii), (ii)'.

The significance of these four facts is that we can design LQG loop transfer
functions on a full-state feedback basis and then approximate them ade-
quately with a recovery procedure. For point (i), the full state design
must be done with the KBF design equations (i.e., its Riccati equation)

and recovery with the LQR equations, while for point (ii), full-state design
must be done with the LQR equations and recovery with the KBF. The
mathematics of these two options are, in fact, dual. Hence, we will

describe only one option (for point (ii)) in further detail. Results for the

other are stated and used later in our example. i




Full-State Loop Transfer Design . ) il 1 ‘ ) ?‘ I j
- E . . | .

‘The interm‘ediate full-state design step is worthwhile because LQR and

KBF loops have good clagsical properties which have been re-discovered

over: the last few years [31-33]. The basic result for the LQR casejis
: i o
that I.QR loop transfer matrices ) i o ' :

T(s) 8 K_#(s)B (40

satisfy the following return difference identity;[32]

[xm + T(jsn)] 'R [Im + T(jw)] =R+ [H ¢ (jm)B]* [H ij)B] o
¥O0sp<e . (41)

where R = RT > 0 is the standard control weighting matrix, and HTH =Q=20
is the corresponding state weighting matrix. Without loss of generahty,

H can be of size (m x n). [34] Using the definitions (6)-(T), (41) wzth
R = ¢l implies that

. 1 * : |
o [1m+r(3w>] ‘-\/‘1 f+2@mem) nes] ,
1 *
-‘\/1 - {(HQB) HQB]
=’\/1 +lq? (%0 Gus] | » (42)

This expréasion éppliss to all singulsy values ¢, of T(s) and, hence,

specificaily § and &, It governs ths parformance and stability robustness
predefties 8f LQR losps,
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Performance Properties (Condition 19):

i
l
' t : ; . !
Whenever ¢ {T] >>1, the following approximation of (42) shows explicitly
L g“ :

o, [T (o) o, [H ¢ () B)/Vo 1 )

i
1
- : : ' (

how the parameters p and H influence T(s):
i

!
We can thus choose p and H explicitly to satisfy condition (19) and ailso
to "balance" the multivariable loop such that o [T] and © [T] are reasonably
close together.* This second objective is consistent with our assumption in
Section 3 that the transfer function (3{s) has been scaled and/or transformed
such at l.m(w) applies more or less uniformly in all directions. This is algo
the justification for considering control weighting matrices in the form

f
R = pl only. Non-identity R's are subsumed in G as Gr'/2, !

Robustness Properties (Condition 17 and 20):

It also follows from (42) that the LQR return difference always exceeds

unity: i.e.,

‘g [Im-’-T(jw)]Zl Wosw<e® ‘(44)

It fiéy 3186 be Heeessaky to append Additional dynamics. In order to achieve
28¥8 HteAdy state errors, for example, ¢ [H ¢ B) must tend to ® as v = 0,
This may require additional integrations in the plant.
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This implies[ ¢ that

- g [Im‘*-T‘l {jm)] 21/2 Hosp<e (45)
! !
Hence, LQR loops are guaranteed to remain stable for all unstructured
uncertainties (reflected to the input) which satisfy L (w) < 0. 5. Withoiut
further knowledge of the types of uncertainties present in the plant this
bound is the greatest robustness guarantee which can be ascribed to the
regulator.*
' i
While i't is reassuring to have a guarantee at all, the zm < 0.5 bound is
clearly inadequate for the requiremernts of Condition (20) with realistic
(w)'s. In order to satisfy Condition (20) in LQR designs, therefore.

it becomes necessary to directly manipulate the high-frequency behav:.or
|

of T(s). This behavior can be derived from known asymptotic propexl-tzes
of the regulator as the scalar p tends to zez-o.[29 47, 48, 34, 36] Thel
: result needed here is that under minimum phase assumptions on H ¢ B, the

" LQR gains K, behave asymptotically asl?91 Coe- |

-\/EKC-'W'H (486)

o | RN
; ' ci "

*The 4m < 0.5 bound turns out to be tight for pure gain changes; i/e.,
0.5 & db, which is identical to regulator's celebrated guaranteed gain
margin [33]. The bound is conservative if the uncertainties are known to

. be pure phase changes, i.e., 0.5 ® = 30 deg, which is less than the known

% 60 deg guarantee [33]. ¥
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where W.is an orthonormal matrix. The LQR loop transfer functmn. T(s),

[ 1

' I *
evaluated at high frequencies, s = j ¢/ Ve with ¢ constant, 1s therlx given by

TGN =K _(Gel-Vsa s - 5

- WHB/jc. f | (47)

Since crossovers occur at ci [T] =1, this means that the maximum

(asymptotic) crossover frequency of the loop is

- 7EB)/Vp . 8

w
cmax

As shown m Figure 3, this frequency cannot fall much beyond w,, where
unstructured uncertainty magnitudes approach unity. Hence, our choice of
H and p to achieve the performance objectives via (43) are constrained by

the stability robustness requirement via (48).

Note also from (47) tixat the asymptctic loop transfer function in the vicinity
of crossover is proportional to 1/w (-1 slope on log-log plots). This is a
relatively slow attenuation rate which, in view of Section 5, is the price

the regulator pays for its excellent return difference properties. If

L:nl {w) attenuates faster than this rate, further reduction of w_ may be
required. It is also true, of course, that no physical system can actually
maintain a 1/w characteristic indefinitely.[sl This is not a conce‘rn here
since T(s) is a nominal (design) function only and will later be approximated

by one of the full-state loop transfer recovery procedures.
t

*

This specific limiting process is appropriate for the so-called generic case
[36] with full rank HB. More general versions of (55) with rank ([HB]) <m
are derived in Reference [44].
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Full-State Loop Transfer Recovery

As described earlier, the full-state loop transfer function designed above
for point (ii)' can be recovered at point (il) by a modified KBF design
procedure; The required assumptions are that r 2 m and that C ¢ B is

minimum phase. The procedure then consists of two steps:
o
(1) Append additional dummy columns to B and zero row to

Kc to make C ¢ B and Kc ¢ B square (rxr)., C & B must
remain minimum phase.

{

(ii) Design the KBF with modified noise intensity matrices.

E(EET) = [Mo +q° BBT] 8(t - 7)

E(MT) = N_ 8 (t - 7),

where Mo' No are the nominal noise intensity matrices
obtained from stochastic models of the plant and q is a

scalar parameter. [

Under these conditions, it is known that the filter gains K, have the following

£
asymptotic bebavior as q = = [30]:

; -1/2 .
rBWN, | i oy a9
| N
R

Here W is another orthonormal mat:ix, as in (46). When éhis Kf is useid

in the loop transfer expression for point (ii), we get point-wise loop

1K

| f
o9

[

transfer recovery as q— *; {.e,,

33
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Iv - -1 , r -1 X . ' ll '
l K(s)F‘(s) = K, [é +BKc+th] KCE#B 'h"; ’(50>!1
,' N . P lll |.| o
L : _ T_F Y -l .5 ]
-Kc [Q QKf(Ir*CQKf) C‘?]KfCQB (51)
f = -1 . | .
| =K TK @ +CTRY)CEB G2
“ , T t\! -
‘ | - — - ]
- -k ¥TB(CTB)Y? Cce¢B R 'l‘ (53) ]
f ], c i ‘
, ‘
- -1 -1)t-1 ' "
. -KCQB(II_'FKc@B) [CQB(Ir-*KcQB)“] C‘QB (54)
J A
={x<cina(c¢B)1 C¢B b i(s5)
=K, ¢B . (56)

| |
In this semes of e*:pressmns, % was used to represent the matnx .
(sIn - A+ BKC) , equation(49) was used to get from (52) to (53). and
the identity ¢ B = ¢ B (I + Kc 4 B) was used to get from there to (54).
The final step shows explicitly that :he asymptotic compensator K(s)
(the bracketed term in (55)) inverts the nominal plant (from the left) and
s’ubsti‘Eutes the desired LQR dynamics. The need for mn‘umum phase is
thus clear, and it is also evident that the entire recovery pr0cedure is
only appropriate as long as the target LQR dynamics satisfy Figure 3's
constraints (i.e., as long as we do not attempt ihversion in frequency‘
ranges wherel uncertainties do not permit it). Closer inspection of; (50)-—(56)
further shows that there is no dependence on LQR or KBF optlmlahty of
the gains KC or Kf. |
and ha'vg the asymptotic characteristic (49), Thus, more general state

|

!

The procedure requires only that Kf be stabilhzmg

t
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feedback laws can be recovered (e. g., pole placement), and more general

-3
filtefs can be used for the process (z.g., observers).

An Examgle

The behavior of L.QG design iterations with full-state loop transfer recovery
is illustrated by the following abstructed longitudinal control design example
for a CH-47 tandem rotor helicopter. Our objective is to control two |
measured outputs--vertical velocity and pitch attitude--by manipulating .

collective and differential collective rotor tb.rust'commands. A nominal

model for the dynamics relating these variables at 40 knot airspeed is [43]
i ]
; - ) - ~ l ‘ o
o 02 . 0005 2»4 -32o 014 - " 12
_d - e 14 'c44 "1&3 '3,0' x + o36 -8¢6 u
dt 0 . 018 ~1.6 1.2 .35 °~  .009
L. O 0 1 o L 0 0.

Major unstructured unce‘zrt_ainties‘,'a&‘,;*,f{fitiated with this model are.due to

neglected rotor dynamics and unmodeled rate Lmit ncb.hnearxties.~ These

are discussed at greater length: in [46]. For our present purposes..* it

i_ ]

! !
Stm more, generally, the modified KEF procedure will actually reco{ver full-
state feedback loop transfer functions at any point, ul, in the system for
which C & Bl is minimum phase. [3C] f

=
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Vgt

b | t
o ' , ) o
' su‘fﬁces‘ to note that they are uniform in both control cham!zels! and|that

. !'m (w) > 1 for all w 2 10 rad/sec. Hence, the controller bandwidth should
be constrained as in Figure 3 to ® iz £10,
Since our objective is to control two measured outputs at point (i), the
design iterations utilize the duals ¢ -uations (40) ~ (56), They begin with
a full state KBF design whose noise intensity matrices, E (§§T) = l"I"T 8(t=1)
and E (TlTIT) = pl §(t-7), are selected to meet performance objectives at

low frequencies; i.e.,
o [T]~ 0 [C & TN 2ps, I (57

while satisfying stability robustness constraints at high frequencies;

w
cmax

=5 e/ Ve <10 r/sec (58)
' v i
‘ |
For the choice I' = B, equation (58) constrains p to be greater than or equal

to unity.* The resulting KBF loop transfer for p = 1 is shown in Figure 7.
For purposes of illustration, this function will be considered to have the
desired high gain properties for Condition (19), with low gains beyond

W= 10'f.or Condition (20‘).* It then remains to recover this function by means

of the full-state recovery procedure for point (i). This calls for LQR
2 N . —

- design with Q = Qo +q CTC and R = Ro' Letting Qo = 0, Ro = I, the

resulting LQG transfer functions for several values of q are also shown
in Figure 7. They clearly display the pointwise convergence properties

of the précedure,

Lwemeenea g

*if GF (or HB) is singular, equations (58) or (48) are still valid in the
nén~zero directions. I
1"I"he function should not be considered final, or course. Better balance

between ¢ and o and greater gain at low frequencies via appended integrators
would be desirable in a serious design.
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‘ |
CONCLUSION AR
l

This paper has attempted to present a practical design perspective on'
multt-mput multi~output linear time invariant feedback }cc)ntrol probliems

It has focused on the fundamental issue--feedback in the face of uncertaintites.
It has shown how classical SISO approaches to this issue can be réiiably
generalized to MIMO systems, and has defined the extent to which MIMO
systems are subject to the same uncertainty constraints and transfer

function gain/phase limitations as SISO ones. Two categ;ories of design

procedures, were then examined in the context of these results.
e - Y

{

j . _ , .
There are numerous other topics and many other proposed design procedures

which were not addressed, of course. Modal controlf‘lz] eigenv'alue-vector
ass1g'nment[43] and the entire field of geometric methods[lgl are prime

examples. These deal with internal structural properties of systems which,
though important theoretically, cea:e to have central importance in the face
of the input-output nature of unstructured uncertainties. Hence, they were
omitted. We also did not treat certain performance objectives m MIMO
systems which are distinct from SISO systems. These include perfect non-
interaction and integrity. Non-interaction is again a structural property
which loses meaning in the face of unstructured uncertainties. (It is ‘
achieved as well as possible by Condition 19). Integrity, !o'n the other hand,
cannot be dismissed as lightly. -It coﬁcerns the ability of MIMO sgystems

to maintain stability in the face of actuator and/or sensor failures. The

43 ' \

I R S 4 o o S '!



* ﬂumi o.x‘"

singular value concepts described here are indeed useful for integrity
analysis. For example, a design has integrity with respect to actuator

failures whenever

o [1 +(KG)‘1] >1 % o (59)

This follows because failures satisfy zin £ 1., Moreover it can be

sbown[37]

that full-state control laws designed via Lyapunov equations,

as opposed to' Riccati equations, as in Section 7, satisfy (58). 1t is also
worth noting that integrity properties claimed for design ::cethods such es
INA and CL suffer from the reliability problem discussed in Section 6 ‘
and, hence, may not be valid in the system's natural (non-diagonal) coordi-

nate system.

The major limitations on what has been said in the paper are associated
with the representation chosen in Section 3 for unstructured uncertainty.
A single magnitude bound on matrix perturbations is a worst-case
representation which is often much too conservative (i.e. it may admit
perturbations which are structurally inown not to'occur). The use 1of

weighted norms in (8) = (9) or selective transformations applied to G

(as in [39]) can alleviate this conservatism somewhat, but seldom completely.

For this reason, the problem of representing more structured uncertamtles :

in simple ways analogous to (13) is receiving renewed research attention. | [38]

| LR

A second major drawback is our implicit agsumption that all loops (all
dirécétions) of the MIMO system should have equal bandwidth (g closelto 2
In Figure 3). This assumption is consistent with a uniform uncertamty bound
but will no longer be appropriate as we learn to represent more complex

; |
dfsertainty structures. Research along these lines is also proceeding.
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