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INTR ODWCTION 

The last two decades have brought major developments in the mathematical 

theory of multimriable Linear time invariant feedback systems. These - 

include the celebrated state space concept for  system description and the 

notions of mathematical optimization far controller synthesis. [I,' 21 V-OU 
I - :  

' time-domain-based analytical and computational tooh have been made 

possible by these ideas. The developments also include certain generali- 

zations of frequency-domain concepts which offer analysis and sy rthesis 

tools in the classical single-input, single-output (SISO) tradition. [3# 41 

unfo&unately. however. the two decades have also brought a growing 

schism between practitioners of feeaiack control design and its theoret- 

icians. The theory has increasingly cancentrated on analytical issues and 

has placed Little emphasis on issues which a r e  important and interesting 

from the perspective of design. 

This paper is an attempt to express +he Latter ,perspective and to examine 

the extent to which modern results are meaningful to it. The paper begins 

with a review of the fundamental issue in feedback design--namely. 

how to achieve the benefits of feedback in the face of uncertainties. Various 

types of uncertainties which arise in physical systems a r e  briefly described 

and so-called "unstructured uncertainties " a r e  singled out as  generic er rors  

which axe associated with all design ~nodels.  The paper then shows how 

classical SISO statements of the feedback design problem in  the face of ! 
I 



unstructured uncertainties can be reliably generalized to rnulti-input. multi- 

output (MIMO) systems, and it develops MI340 generalizations of the classical 

Bode gain/ phas e constraints [" which limit ultimate perlormance of feedback.. 

in the face of such uncertainties. Several proposed MTMO design procedures 

a r e  examined nevt in the context of the fundamental feedback design issue. 

These include the recent frequency domain Inverse Nyquist Array (TNA) and 

Characteristic Loci(CL) methods and the well known Linear-quadratic-gaussian 

(140) procedure. The INA and CL rnethocb a r e  found to be aective.  but 
1 only in speciil cases, while LQG methods. if used properly, have desirable 

general features. The latter are fortunate consequences of quadratic opti- 

mization. not uplicitly hought after or tested for by the theoretical de&lopers 

of the procedure. Fractitioners should 5 d  them wluable for design. 



We w i l l  deal with the standard feedbeck configuration illustrated in Figure I:  
! I !  1 I 

' ; 
It consists of the interconnected plant (G) and controller (K) forced by ' 

commands (r). measurement noise (111, and disturbances (d). The dashed 
; I 

precompensato! (P) is an optional element used to achieve deliberate; 1 
I I 

command shaping or to represent a ncn-unity feedback system in &&+lent 

unity feedback form. Al l  disturbances a re  assumed to be reflected to b e  
' I  

measured outputs (y), all signals a re  nuttivariable, in general, &d both 

nominal mathematical models for G and K are  finite dimensional l ined 
I ,  

time invariant (FDLTI) systems with traqsfer function matrices b(r) ahd 

K(s), Then it is we l l  Lenown.th3t the rpMigtrration. if it is stable, 'has the 

folloWing major propeeies : 



( 1 ) Input-output behavior - 

P I  (2 )  System sensitivity 

. , 

In equation (3) .  AHcl and AH denote changes in the closed loop system and 
0 1 

changes in a nominally equivalent open loop system, respectively, caused 

by changes in  the plant G, i. e. G' = G i- AG. 

Equations (1 through (3 1 summarize the fundamental benefits and design 

objectives inherent in feedback loops. Specifically, equation (2)  shows 

that the Loop's er rors  in the presence of commands and disturbances can 

be made "small" by making the sensitivity operator, or  inverse return 

difference operator. (I + G K ) - ~ ,  "small", and equation (3)  shows that 
1 

loop sensitivity is improved under these smne conditions, provided G 

does not stray too far from G. 

For SLSO systems, the appropriate eorion of smallness for the sensitivity 

operator is well understood--namely, we require that the complex scalar 
I [ l  i g(jw) k(jw) 1'' have small magnituae. or  conversely that 1 + g(jw) k(jw) 

have large magnitude, for  all real fxquencies m where the commands, 

distwbances and /or plant changes, AC, a re  significant. In fact, the 
4 

perinrrnat.ke objectives of SISO feedback systems a re  commonly stipulated 
I 

in t e , ? s  of explicit inequalities of tJr2 form i 
I 



I 
+ gob, k(jUr) I ++ 

I 

(Large) positive function and u, 
0 

frequency range. 

I ' I l a , /  I 

This basic idea can be readily extended to MIMO problems through the L e  
I I l l  1 

of matrix norms. Selecting the spectral norms as our measure of m&ix 
I 

size. for dample .  the corresponding feedback requirements become 
I 

- 
o [(I + G(j.1 K(~uI))-'] small 

I i 
' o r  conversely, 

for the, necessary range of frequencies. The symbols and D in these . - 
. &press'ions a r e  defined as follows : 

max 

D [A] min - l l  x lI=1 - i i I I 'if 
/ I 

wblere 11.- 11 is the usual Euclidian norm. A[-  ] denotes eigenvalues;l Pnd [ ]? 
11 I I ! !  / 

denotes conjugate transpose. The two o's a r e  called maximum and minimum 

singular values of A (or principal gains '41). respectively. and can be 

calculated with available Linear system software. More discussion of 

I 

'91 singular values and their properties can be found in vario& texts. 

I 
Condition (5) on the return different-? 1 .F GK can be interpreted as  merely - 
a ~ B ~ t & t e m e n t  of the common intuition ihat large loop gains or  "tightu loops 

good perfarma~ea,  This follow$ tpam the inequalities I 
I 



o [GK] - I r o [I + GK] S o [GK] + 1 - - - (8) 
I 

w&i& show that return difference magaitudes approximate the Loop gains, 
I 

o[GK]. whenever these are large c o ~ ~ p a r e d  with unity. Evidently, good - 
1 

rnultivariable feedback loop design boils down to achieving high loop gains 
I 

in the necessary frequency range. 

I 
Despite the simplicity of this last statement, it is clear *om years of 

research and design activity that feedback design is not trivial. ThLo is 

true because Loop gains cannot be made arbitrarily high over arbit;arily 

l v g e  frequency ranges. Rather, they must satisfy certain performance 
' I 

tradeoffs and 'design Limitations. A major perfoxkance tradeoff, for '  j 
l i ,  example, concerns command and disturbance e r ro r  reduction versu4 , 

sensor noise e r ror  reduction. rlO1 The conNct between these two objectives 

is evident in equation (2). Large o[OK(ju)] values over a large frequency 
..D 

range make errors  due to r and d small. However, they also mak; errors  

due to 1 large because this noise is "passed through" over the same 

frequency range, i. e. 

Worse still, large loop gains can make the control activity (varf'able u in 

Figure 1) quite -sceptable. This fellows from 
; I ' 

h 
Here we have assumed G to be s q W o  and invertible for conwnience. The 

I 

resulting equation shows that ccmmqds, disturbances and senso; no$e a re  
I 

actually amplified at u whenever the frequency range significantly exceeds 
I I 

the bandwidth of G; i. e. for ur such t; .st 7 [~(j.)] << 1 w e  get I 



, .  . 
I 

1 
I ' ,  >> 1 

! ' 

4 . . 
One of the major contributions of modern feedback theory is the development 

I of systematic procedures for  conducting the above performance tradeoffs. I 

I 

- 
1 t 

1 We a re  referring, of course, t o  the 1-QG theory [lil and to its modern 

Wiener-Hopf frequency domain counterpart. Under r e a s o n a l l  
I 1 '  

assumptions on plaqt, disturbances. and performance criteria, t h ~ s e  1 , 
I * I 

procedures yield efficient design c a ~ : ~ ; ~ x ~ a W s  es. IPl fact, if the tradeoff 
, I ' (' I! 

between command/disturbanoe e r ro r  reduction and sensor'noise e r r o r '  1 
i I 

reduction were the only constraint on feedback design. practitioners would 

have Uttle to complain about with respect to the relevance of modern theory. 

The problem is that these performance trades a r e  often overshadowed by a 
' 3  I ,  

second '1irnita;on on high loop gains - -namely, the requirekent for tolerance 
' I 1  

to uncertainties. Though a controller may be designed used FDLTI models, 
! 

the design must be implemented and operate with a real physical plant. 

The properties of physical systems. in particular the ways in which they 
I deviate from finite-dimensional linear models, put s tr ict  limitations on the 

i 
frbquency range over which the loop gains may be large. h order to: ' 

0 ,  

properly motivate these restrictions. we digress in Section 3 to a brief 

description of the types of system uncertainties most frequently encountered. 

The manner in which these uncertainties can be accounted for in MIMO 

design then f o r k s  the basis for the rest  of the paper. , t 

i f '  
I 



SECTION 3 

UNCEP(T,4IP$rIES 

While no nominal design model. G(s),  can emulate a physical plant perfectly. 

i t  is clear that some models do so  with greater fidelity than others. / ~ b n c e ,  
1 I t  I 

no nominal model should be considered complete without some assessment 
I 

of its errors. We will call these errors  the "model uncertainties", 'and 

whatever mechanism is used to express them will be called a "representation 

of uncertainty. " 

Representations of uncertainty vary primarily in terms of the a m o u t  of 

structure they con-. This reflects both our knowledge of the physical 

mechanisms which cause differences between model and plant and our ability 

to represent these mechanisms i~ a wry that facilitates convenient manipula- 

tion. For ecample. a set  memberoEp statement for the parameters of an 

otherwise known FDLTI model is a -highly-structured representation of 

unce-ty. It typically arioes from 'the use of linear incremental models 
4 

at various operating points. e. g., aerodynamic coefficients in flight control 

wrg with flight environment and aircraft configurations, and equation I 

8 1 '  

coefficients in power plant control vk-y with aging. slag buildup, coal 
1 1  J 

composition. etc. In each case. the amounts of Pariation and any known 
I 

relationships between parameters can be expressed by confining the para- 

meters to appropriately defined subsets of parameter space. A specific 

example of such a ponmeterization for the F-8C aircraft is given in [13]. 
I '  



I 

membership statements for the transfer function matrix of the model. For  
I 

instance, the statement 

with I 11 

I I 

where 4, ( a  ) id a positive scalar  function, confines the m&ix GI to h , 
I a I / /  

neighborhood of G with magnitude 4, (a). The statement does not imply a I 

a I 
mechanism o r  structure which gives r i se  to AG. The uncertainty may be 

1 .  

caused by parameter changes, as above, o r  by neglected dynamics, o r  by 

a host of other unspecified effects. An alternative statement for (1 2)  'is 

the so-called multiplicative form: I 

GI ( jw )  = [I + ~ ( j u ) ] .  G( jd  

with 

This statement confines G' to a normalized neighborhood of G. It is 

preferable over (12) because compensated transfer functions have the same 

uncertainty representation as  the raw model (i. e., the bound (13) applies 

to GK as well as to GI. Still other alternative set  membership statements 

a r e  the inverse fo,rms of (12) and (13) which confine (GI )" to direct or 

normllized neighborhoods about G-'. 

Th@ b . ,  -. est choice of Wcertainty representation for  a specific FDLTI model 
1 

d&p@fid$~ bf course' ~h the errors the model makes. In practice, it is 



generally possible to represent some of these errors  in a highly-structured 

parqe te r ized  form. These a r e  usually the low frequency e r ror  components. 

There are  always remaining higher frequency errors, however, which I 

cannot be covered this way. These a r e  caused by such effects as infinite- 

diraensional electro-mechanical resonances [I6' ''], time delays, diff&ion 

processes, etc. Fortunately, the less -structured representations , (1 2)  or  

(13). a r e  well suited to represent tbis latter class of errors. Consequently, 

(12)-(13) have become widely used "generic" uncertainty representations fo r  

FDLTI models. I 

I 
I ,  

I 
Motivated by these observations, we will focus throughout the rest  bf this 

\ , , 

paper urclusively on the effects of uccerLainties as represented by (1 3) .I 

For lack of a better name, we will refer to these uncertainties simply ap 

"unstructured. We will assume that GI in (13) remains a strictly proper 

FDLTI system a s d  that Gt has the s f m e  number of unstable nodes as  G. 

The unstable modes of Gt and G do not need'to be identical. however, and 

hence L(s) may be aa unstable opemiitor. These restricted assumptions on 

G make exposition easy. More general perturbations (e. g.. time varying, 

infinite dimensional, nonlinear) can also be covered by the bounds in (1 3) 

provided they are  given appropriate "conic sector" interpretations via 

Parsemlls  theorem. This connection is developed in [14.15] and will not 

be pursued here. i 1  
I 

I 
When used to represent the various high frequency mechanisms mentioned 

I 
above, the~bokding fuuctions L,(u) in (13) commonly h a d  the p r o p d i &  I 

I ' I  

illustrated in Figure 2. They a re  small (< < 1) at low frequencies and 
! 

increase to unity and above at higher Crequencies. The growth with ' 



LOG FREOUENCY 

Figure 2. Typical Behavior of Multiplicative Perturbations 
I 



+ 180 degrees and magnitude deviations eventually exceed the nominal - 
transfer function magnitudes. Readers who are  skeptical about thfo reality 

are encouraged to try a few experirce.css with physical devices. 

It should also be noted that the represcsntaion of uncertainty in (13) can be 

used to include perturbation effects that a re  in fact not at all uncertain. A 

nonlinear element, for  example, may be quite accurately modeled, but 

because our design techniques cannot deal with the mnIinea.riQ effectively, 

it is treated as a conic linearity. [la, as] 
As another example, we may 

I 

deliberately choose to ignore m o w  !mown dynamic characteristics in 

order to achieve a simpler nom.irra1 design model. I 
.Another important p i n t  is that the ssrxstruction of 4 (w) for multivarieible 

m 
systems is not trivial. The bound assumes a single worst case uncertainty 

magnitude applicable to all channels, If substantially different levels of 

unce-ty exist in vzwious channels, it may be necessary to scale the 

iaput-output variables and/or apply frequency-dependent transformations [IS] 

in such a way that 4 becomes more d o r m l y  tight. These scale factors 
a 

and Wansformations a re  here assumed to be part of the nominal model G(s). 
! 

I 
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SECTPOEJ 4 
I 
! 

FEEDBACK DESIGN IN THE FACE OF i , , 

UNSTRUCTURED UNCERTAINTIES . ! 
i :  

:Once we specify a design model. G(s) ,  'and accept the existence of , 
1 

unstructured uncex-t~inties in the fohn:, (13). the feedback'design p&oblem 
I 

becomes one of fincling a compensatoi: K(s) such that 

(i) the nominal feedback systexL, GK [,I + GK]", is stable; , ' 
I :: ! : i  a I (ii) the perturbed sys'tern, G'"K t- G' K]". is stab12 for 

,,( , ! I I 

all possible G' allowed by (13); and ! I  I I / . / I  ' I 

(iii) performance objectives a r e  satisfied for  all possible GI 
I' , , 

allowed by (13). 
I /  

I , ' ,  , 
All three of these requirements can be interpreted as freqdency domaid ' , 

I I '  

conditions on the nominal loop transfer matrix. GK(s). which the designer 
, 

must ateempt to satisfy. 

Stability ~ond i t i om 
t I 

I ! I  : 
I ' I !  I 

The frequency domain conditions for Requirement (i) are; of cokse :  well' 
' *  known. In SISO cases. they take the form of the standard Nyquist Criterion. 

and in MIMO cases. they involve i ts  nultivariable generalization. [I81 ; 

Namely, we require that the encirclenlent count of the map det [I + GK(s)], 

I ,  I 

* 
See any classical control text . 

I 
i 



evaluated on the 'standard Nyquist D-co~tour, be equal to the (negative) 

number of unstable open loop modes of 6K. 

. . 

Similarly, for Requirement (ii) the n m b e r  of cncirclemellts of the map . 

det [I + G'K(s)] must equal the (negative) number of unstable modes of 

GI K. Under our assumptions on GI, however, this number is the same 

as that of GK; Hence, Requireme& (ii) is satisfied if and only if the 

number of encirclements of det [I + 6' K(s) ]  remains unchanged for all 
I 

G' allowed by (13). This is assure? iff det [I + G'K] remains nonzero as 

G is warped continuous ly toward G' , or equivalently, iff 

for all o s c s 1, all T on the D-contour, and all L(s)  satisfying (13). Since 

G' vanishes on the infinite radius segment of the D-contour, and assuming, 
0 

for simplicity, that the contour requires no indentations along the jm-axis, 

equation (14) reduces to the followi.ng equivalent conditions: 

for akl o s r s 1, o s u  e m ,  and all L 

for  all o s w <, =, and all L I 

for all o ru 4 I 

$4.. 

@ lfi~&htiifi8& &@ ~bq,tiired, (14) PA& (17') must hold in the Umit for all - 
, a 

n bi thb i i idebt~a pat& ra as radlur d L~dentation it take6 to zero. I : ! 

I I 

1 i 



I The l ~ t  of these equations is the MXMO generalization of the familiar SISO 
I I '  I 

, - 
1 

requirement that loop gains be small whenever the magnitude of uns$ructured 
I I (  / 1 '  uncertaintie: i~ large. In fact. whenever L (w)  > > 1, we get the folloaing 

, m 
constraint on GK: I I '  

for all w such that 4 (w) > > 1 
I rn 

I 
We emphasize that these a r e  not conservative stability .conditions. On the 

I 
- 

I ' contrary. if the uncertainties a r e  truly unstructured and (117) is violated. 
I I I 

then there exists a perturbation L(s) vithin the se t  allowed by (13) fo r  which 
4 I 

the system is unstable. Hence. these stability conditions impose hard 

limits on the permissible loop gains o f  practical feedback systems. 

Performance Conditions 

Frequency domain conditions for  R e ~ q r e m e n t  (iii) have already been 

described in Section 2. equation ( 5 ) ,  The only modification needed to 

account, for  unstructured uncertainties is to apply (5) to GI instead of 
I 

G; i. e.. I 

PS 5 - [ I  + ( I  + L )  G K ]  

c= ps s - o [I + L GK(1 + G K ) ~ ' ]  o [I + GK] - 

for  all w such that 4, (w) < 1 and 0 [ ~ ~ ( j w ) ]  > > 1 
m - 



This is the MlMO generalization of aoof&er familiar SISO design ~ u l e - -  
f { ~ , l h t d \  i 

wneJy  that 'performance objecilvea san be met in the face of unsGuctured i 
I 

uncertaintie; if the nominal t$op id& k c  made sufficiently 1 4 6  to I 

compensate for  model va~iations. Mote, however, that finite solutions 

exist only in the frequency range whme 4. (w) < 1. 
m 

The stability and performance coetddtions deriwd above illustrate that 
I .  1 MIMO feedback design problems do not U f e r  fundamentaliy from &err I 

I 1 1  I SISO counterparts. In both cases, skbiLity must be achieved nominally 

and assured for  all perturbations by satisfying conditions (1 7-1 8). 
/ 
I 

Performance may then be optimized by satisfying condition (19) as well . 
as possible. What distinguishes MTMO from SISO design conditions a r e  / 

I 
the functions used to express transfer function "size. " Singular values , 
replac; absolute values. The underly-hg concepts remain the same. 

,- 
We note that the singular value functions used in our statements of design 

conditions play a design role much Like classical Bode plots. The - 
o [I + GK] function in (5)  is the minimum return difference magnitude of 

I 

the closed loop system, a [GK] in (8) and [GK] in (18) are minimum and - 
maximum loop gains. and = [GK (I + G~)-l] in (17) is the maximum closed 

loop frequency response. These can all be plotted as ordinary frequency 

dependent functions in order to dispLqv and analyze the features of a 

multivariable design. Such plots will here be called a-plots. 

One of the o-plots which is particularly significant with regard to design 

for uncertainties is obtained by inverting condition (17). i. e., 
... I 



i for all o s u, < a, 

The function on the right hand side of this expression is an explicit measure 

of the degree of stability (or stability robustness) of the feedback system. 

Stability is guaranteed for all  pertur5ations L(s)  whose maximum singular 

values fall below it. This can include gain or  phase changes inindividual ' 

1 1  output channels, simultaneous changes in several channels, and various 
' I  other kinds of perturbations. In effect, g [I HGK)-'] is a reliable multj- 

variable generalization of SISO stability margin concepts (e. g., frequency 

dependent gain and phase mapgins). Unlike the SISO case, however, it is 

important to note that g [I + ( G K ) - ~ ]  measures tolerances for uncertainties 

at the plant outputs only. Tolerances for uncertainties at the input a r e  

generally not the same. They can be analyzed with equal ease, however, 

by using the function a [I + (KG)-'] instead of a [ I + (GK) -~ ]  in (20). This - - 
can be readily verified by evaluating the encirclement count of the map 

det (I + KG) under perturbations of the form G' = G (I + L) (i. e., uncertainties 

reflected to the input). The mathematical steps a r e  directly analogor$ to 

(15-18) above. 

Classical designers will recognize, of course, that the difference between 

these two stability robustness measures is simply that each uses a loop 

transfer function appropriate for  the loop-breaking point at which robustness 

is being tested. 



TRANSFER FUNCTTON LJ1MTATIONS 

The feedback design conditions derived above are  pictured graphically in 

Figure 3. The designer must find a loop transfer function matrix, GK,: for 
! I  
I !  which the loop is norainally stable and whose maximum and minim= 

I I 
singular ~ l u e s  clear the high pnd l o r  frequency "design boundaries " qven 

by Condition (1 7) and (1 9). The high frequency boundary is mandatory, 

while the Low frequency one is desirabie for good performance. Both are 
I 

influenced by the uncertainty bound, 4 (uI). rn 
I 

Figure 3. The Desdga Tradeoff for GK 



I I 

' 1 
a representative loop transfer matrix a r e  also 

' I  the figure. As shown, the effective bandwidth of the loop =&not fali much 

beyond the frequency u4 for which C ( w  ) = 1. As a result, the frequency 
1 m 4 

j I 
range over which performance objectives can be met is explicitly constrained 

by the uncertainties. It is a b o  evident from the sketch that the severity of 

Ws constraint depends on the rate at which p [GK] and 'i; [GK] a r e  attenuated. 

The steeper these functions drop off, the wider the frequency range over 

which Condition (1 9) can be satisfied, Unfortunately, however, FDLTI 

transfer functions behave in such a nny that steep attenuation comes oniy 
I 

at the 'expense of small - o [I + GK] val~es and small - o [I + (GK)'~] d u e s  
I 

when - o [GK] and [GK] 1. This means that while performance is good 

at lower frequencies and stabiUty robustness is good at  higher frequencies, 

both a r e  poor near crossover. The klc-hzvior of FDLTI transfer functions, 

therefore, imposes a second major iixitation on the achievable performance 

of feedback systems. 

I 

SISO Transfer Function Limitation 
I 

' ( 1   or S 1 0  cases, the conflict between attenuation rates andiloop quality at 

crossover is again well understood. We know that any rational,, stable, I ' 
proper, minimum phase loop transfer function satisfies fixed integral 

relations between its gain and phase components. Hence, its phase angle I 
I 

near crossover (i. e . ,  at  values of cu such that ] gk(jw) I = 1) is determined 

uniquely byathe gain plot in Figure 3 (for 7 = o = Igk().  Var i~us ' ex~re s s ions  

for &a angle wkie airrived by Bode mifig contour integration around closed 
cd&J&d & ~ b a ~ p & ~ i ~ ~  a@ right hall [S, Chapters 13,141 - One 

I * .  .,, - *  i . - ?  . J t  



where u = C n ( m / ~ ~ ) ,  s(u) sc exp u. ~ & c e  the sign of sinh (u)  is the same 

as the sign of u, it follows that I$ will be large if the gain /gkl attenktes 
gkc 

slowly and small if it attenuates rapidly. In fact, @ is given explicitly 
gkc 

fn terms of weighted average attenuation rate by the following alternate 

form of (21) (also from [5]): 

9 

The behavior of Q is significant because it defines the magnitudes of gkc 
our *O SLSO design conditions (17) rz~d (19) at crossover. Specifically. 

when 1 gk 1 1, we have 

The quantity of rr + Q is the phase margin of the feedback system. 
gkc ' I  ! 

Assuming gk stable. this margin mvst be positive for nominal stability 

and. according to (23), i t  must be Peesonably large (e 1 rad)  for good 

return ,difference and stability robustness properties. If n + (b is forced 
I gkc 1 %  1 

to be very small by rapid gain attentuation, the feedback system will amplify 

disturbances ( I 1 + gk 1 c< 1 ) and exhihit Uttle uncertainty tklerthc; a* gd 
I 

n e e  % . The conNct between attenuation rate and loop quality near cross- I! I 
over fs thus cletuLy evident. 



It is also known that more general notminimum phase and/or -table loop 

transfer functions do not alleviate this conflict. If the plant has right half 

plane z'eros. for  example. it may be factored as I 
' I 

where m(s) is minimum phase and pis) ,is an all-pass (i. e.. l p ( j ~ )  1 = 1 V U. ) 

The (negative) phase angle of p(s) reduces total phase at crossover. i. e., 

and therefore aggravates the tradeoff problem. In fact. if 10 1 is too 
PC 

large. we will be forced to reduce the crossover frequency. Thus rhp I 

I zeros limit lobp gain (and thus performance) in a way similar to the, a 1 . i  
unstructured uncertainty. A measure of severity of this &ded Limitation 

I I I 
is 11 - ~ ~ ( j , )  1. which can be used just like 4 (u) to constrain a nominal 1 

m 
minimum phase design. 

If g(s) has rhp poles. the extra phase Lead contributed by these poles 
I ' 

compared wi th  their mirror  images in the left half-plane is needed to - 
provide encirclements for stability. Unstable plants thus also do not 

offer any inherent advantage over st;Llle plants in alleviating the cross- 

over conflict. 

Mult imiable Generalization 

The above transfer limitations for $3230 systems have multivariab le 
I 

generalizations. with some additional complications as would be expected. 



The major complication is that singular values of rational transfer matrices, 

viewed as functions of fAe complex m i a b l e  s, are  not analytlc and therefore 

cannot be used for contour integration to derive relation such as (21 f. 1 
Eigenvalues of rational rnatzices, ors the other hand, have the necessary . 

mathematical properties. Unfo r t~~~ i t e ly ,  they do not in general relate 

*ectly to the quality of the feedback design. (More is said about this in 

Section 6). Thus, we must combine CPe properties of eigenalues &d 

siggular values fhough the bounding relations 

s i3 [A] 

which holds for any eigenvalue, 1 of the (square) matrix A. The approach 
is 

will be to derive gain/phase relations zs in equation (21) for the eigenvalues ' 

of I + GK and I + (GK)-' and to use these to bound their mtnimum singular 

values.. Since good performance and stability rob'utness requires singular 

values of both of these matrices to be sufficiently large near crossover, 

the multivarfable system's properties can then be no better than the 

of their eigcnvalue bounds, 

I 
I 

Equations for the eigenvalues themseIvss a r e  straightforward. There is a 

one-to-one correspondence bemeen eigenvalues of GK and eigenvalues of 

I + GK such that 
I 

I 
Li (1 + GK] ' = 1 + xi [GK] 

Likewise for I + (GK)-'; 



I I 

. . 1 li [I + GK] I 5 I X~ [I + (OK)-'] 1 = 2 Isin 

I I 

, Since &is equation is exactly analogous to 

and since Il. I bounds o, i t  follows thaithe loop will exhibit poor pr&erties 
1 - 

whenever the phase angle [ n + # i iC)  I small. 

In order to derive expressions for t he  angle mi itself, we require certain 
i 

results from the theory of algebraic functions. [20-261 The key concepts 

needed from these references are til"~:' the eigenvalues 1. of a rational, 
1 

proper transfer function matrix, viewed as a function of ehe complex 
I 

variable, s, constitute one mathematical entity, A (s). called an algebraic 
r ' 

function. Each eigenvalue, h is a branch of this function and is de&ed i' 
on one sheet of an extended Riemann surface domain. On i ts  extended 

domain an algebraic function can be treated as an ordinary meromorphic 

function whose poles and zeros a r e  the  system poles and transmission 

zeros of the transfer function matrix. It also has additional critical 

points, called branch points, which correspond to multiple eigenvalues. 

Contour integration is valid on the Riemann surface domain provided 

that contours a r e  properly closed. 
I , 

I ' 1  I 
In the contour integral leading to (21). gk(s) may therefore be replaced by 

the algebraic function, A(s), with contour taken on its Riemann domain. 

Carrying out this integral yields several partial sums : 



where each sum is over'all branches of h ( s )  whose sheets a re  connected by 

right half-plane branch points. Thus the eigenvalues ( hi) are  restricted 

in a way similar to scalar transfer fun&ons but in summation form. The 

sumnation, however, does not alter the fundamental tradeoff between 

att~nuation rate and l w p  quality at cqossover. In fact, if we deliberately 
+ . 1  . ' t 

choose to maxhdze the bound ( 29 )  by baising u, and 0 identical for all 
C xiC 

i. then (30) imposes the same restrictions on rnultivariable loops ss (21) 

imposes on SISO loops. Hence. rnultivwiable systems do not escape the 

fundamental t rms fe r  function Limitaxf ors.  

8 

As in the scalar case, expression (30) is again valid for minimum phase 
* 

systems only. That is. GK can have no transmission zeros in the rhp. 

If this is not true. the tradeoffs governed by (29)-(30) a r e  aggravated because 

every rhp transmission zero adds the same phase Lag as in (25) to one of 

the partial sums in (30). The matrix GK may also be factored, as in (24). 

to get .' 

T where M(s) has no rbp zeros and P(s) j.s an all-pass matrix P (-s)P(s) * I. 

Analogous to the scalar case, (I - P(s)) can be taken as a measure pf the 
..- -. - -- i I 

degree of m u l t i ~ r i a b t e  nonminimuna pkaseness and used like t - ( w )  to' 

sogstrahi a nominal mlnimum phase design. 
-----.-. - --- 

* .  
For bur purposes, t ~ m i s s i o n  zeros 1411 are mlues F such that 
dH [G(S) K(s)] = 0. Degenerate systems with det [GK] 0 for all s a re  
not of interest because they c a ~ o t  meet Condition (19) in Figure 3. 

*.d-:* A!*,.$> yi&?s?&G$k.gj.+,;,, ; '. f , . ' , . "I. , .; .@I. % *l "-: ... :". "-;L - 
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SECTION 6 

1 I 
1 I 

i 
I 

. . I i 

;I k : ' i  
I So. far; we have 'described the FDLT: feedback design problem!L a besign 

1 / I .  I i i  , : [ / ( I  1 , ' :  ~ . ~ / l , l i ; l  , , .  

tradeoff involving performance ibjecti;es (condition 19), stability bequire-' '!I 
! 1,. . ; I I ! I !  i l l  I ' ! :  

ments '&i the face of unstructured uncertainties (Condition 17). a n d  cer?ain , 
I 

performance limitations imposed by gainlphase relations which must be 
I , '  . . 

satisfied by realizable loop transfer functions. This tradeoff is essentially 
I ! i 

the same for SISO and MIMO problems. Design methods tb carry it,out, 
, I 

of course, a r e  not. 
I 

I ! 

For scalar design problems, a large bcdy of well-developed tools &sts 

(e. g.. "classical control") which permit designers to construct: good t k n s f e r  
I I I ! '  

functions for  Figure 3 with relatively little difficulty. Various attenipts 
I 

have been made to extend these methods to multivariable design problems. 
' P I  Probably the most successful of these a r e  the Inverse Nyquist Array (&A) 

and the Characteristic LOC~(CL)  methodologies. r41 Both are based on the 

I 

I I idea of redubing the multivariable design problem to a sequence q f ' s b a l a r  
I 1  

problems. This is done by construcUsag a set of scalar  transfer functions 

which may be m a p u l a t e d  more o r  less independently with classical 

techniques. In the ZNA methodology, ?&ire scalar functions a re  the diagonal 

elements af 3 loop t t ~ f e r  function matrix which has been pre- and post- 
. , I ! 

comfkii%&&kid fb 6s  &hi$8idly dominatk. In the CL methodology, thefunctions 
I , I ar$ &a @igBiivii.' 

~ u G S  . ~ f  &e loop trans? e r  matrix. ! 



Based on the design perspective developed in the previous sections, these 

multiple single-loop methods turn out to be reliable design tools only for 

special types of plants. Their restrictions aFe associated with the fact 

that the selected set of scalar desi- Pactions a r e  not necessarily related 

to the system's actual feedback props-rkies. That is, the feedback system 

may be designed so  that the scalar Punqtions have good feedback properties 

if interpreted as SrSO systems, but the resulting multivarfable system may 

still have poor feedback properties. Tkis possibility is easy to demonstrate 

for the CL method and,, by hplicaticta, for th'e INA method with perfect 
! 

diagonalization. For these cases. we attempt to achieve stability rbbuskese 

by s a t i s f m  
. !  1 ; 

I 

i 

for all i and o s w < and similarly. we attempt to achieve performance 

objectives by making 

for a11 i and o s w c =. 

As ch cussed in Section 5, however, the eigen~alues on the right hand sides 

of these expressiom are only upper bouads for the true stability robustness - 1 and performance conditions (20) and (19). Hence, o [I + (GK) ] andlor - 
o [I + GK] may actunlly be quite small. men when (32) and (33) are satisfied. - 



An Example 
I i I 

I I 
I 

/ I !  I 

Thesi potential inadequacies in the IXA and C L  methods a!e readilj,' 1 
illustrated with a simple example se l~c ted  specifically to highlight the 

limitations. Consider 
, . '  

I ! G(s)  = 1 1 (34) 
(s+l)(s+2) 

50s + 2 -42s 
- 

This system may be diagonalized exactly by introducing constant compensa- 

tion. Let 

Then , .  

A 

If the diagonal elements of this G are  interpreted as independent SLSO 

systems, as in the INA approach, w e  could readily conclude that no further 

compensation is necessa-ry to achievi- desirable feedback properties. For 

example, unity feedback yields stabilj.ty margins at crossover of + = db in - 
gain and greater than 90 degrees in blase.  Thus an INA design could . 

I I 
reeionably stop at this point with cou,pensator K ( s )  = UU" a I, Since the 

dilgehal elements d 2 a r e  also the e i g e n ~ l u e s  of G, we could also be 

re~ona5Ly satisfied with this design from the CL point of view. 



Singular value analysis, however, leads to an entirely different conclusion. 

The 6-plots for (I + G - ~ )  a+e shown in Figure 4. These clearly display a 

serious lack of robustness with regpect t~ unstructured uncextaintles. The 

smallest value of a is approximately 8.1 near w 2 rad/sec. This means 
1 

that multiplicative uncertainties as small as Lm(2)  0.1 (O 10% gain changes. 

S= 6. deg phase changes) could produce ,U%bility. An interpretation of ,this 

lack of stability robustness is given in Figure 5. This figure shows stability 

regions in "gain space" for the cornpeasator K(s) - diag (1 + kl, 1 + k2). 

, The figure reveals an unstable region in close proximi9 to the nominal 

design point. The XNA and CL methods are not reliable design tools because 

they fail to alert the designer to its p- esence. 

This example and the discussion which precedes it should not be misunder- 

stood as a universal indictment of the INA and CL methods. Rather, it 

represents a caution regarding Fei;;?:uqe,. There a r e  various types of 
* 

s y s t e m  for which the methods p rovq  effective aad reliable. Conditions 

which these systems satisfy can be deduced from equation (32) and (33)- 

m e l y  they must have tight singular value/eigenvalue bounds. This 

includes naturally diagonal systems, of course, and also the class of 
I I n oma l "  systems. [281 The limitations which arise when the bounds are  

I 

not tight have also been recognized in. [4]. 

We note in passing that the problem of reliability is not unique to the INA 

and CL methods. Various examples can be constructured to show that other 
' I 6 

I I design.approaches such as the "sml.2-loop-at-a-tfme" rne'thods common ' 
I I I  

in engineering practice and triadiagomlization approaches stPfer similarly. 



Figure 5 .  

I 

I ' 

Stability Regions for { I + [El : 2 ) G ( G f ~ m e q n  



SECTION 7 

MULTNARIABL.3 DESIGN VIA LQG . . 

A second major approach to multi@-able feedback design is  the modern 

LQG procedure. [11' 12' We have alreody introduced this method .in 

connection with the tradeoff beween command/disturbanc.e e r ror  reduction 

and sensor noise e r ror  reduction. The method requires that we select 

s t o w t i c  ,models for sensor noise. csanmands and disturbances Ad' define 

a weighted mean sq-e e r ror  criterion as  the standard of' goodness f b r  the 

design. The rest  is automatic. We gst an FDLTI compensatar. K(s) .  ih ich  

stabilizes the nominal model G(s) (under mild assumptions) and op@dzes 

the criterion of goodness. All too often. of course. the resulting loop 

transfer functions, GK o r  KG. a r e  enti-rely unacceptable when examined 

against the design constraints of Figure 4. We are then forced to iterate 

the design--adjust weights in the performance criterion. changethe stochastic 

disturbance and noise models. add dynamics. etc. There a r e  so many 

parameters to maniputate that frust*ra%isn sets in quickly and the schism 

between practitioners and theoreticians becomes essier  to understand. 
I : 

i 
Fortunately, such d.esign iterations of LQG controllers have become easier 

to carry out in  the Last few years because the frequency domain properties 
I 

of these controllers a re  better underntood. Some of the key new results 

a r e  sunimeuized below and their sig&icance with respect to Figure 3 a r e  

diiiil-bed. 



For our purposes, LQG controllers u e  ordinary FDLTI compensators'with , 

' 1  I I l i  I I  t 

a special internal structure. This structure is shown in Figure 6 and is 
t .  1 1  : a  1 1 1  I 

well known. It consists of a KaLman-Bucy Filter (KBF) designed' for a f 

state space realization of the nominal model G(s) ,  including all appended 

dynamics for disturbance processes, tomrnands, integral action, etc. 

The model is  I 1 I I 
I 

and satisfies 

with 

Figwe 6 .  .L$G4 Teedback Loop 
L , 1 ,  , 



The symbols 5 and 7 denote the usu! white noise processes. The filter's 

gains are denoted by Kf and its state estimates by 2. The state estimates 

are multiplied by full-state Linear-qimkatic regulator (LQR ) gains, Kc, 

to produce the c o ~ o l  commands which drive the plant and ape also fed 

back internally to the KBF. The usunt conditions for well-posedness 

of the LQG problem a r e  assumed. I 

In terms of previous dbcussions, the functions of interest in Figure 6 &s 
I 

the loop transfer, return difference, and stability robustness fuctiods 
I I ' I 

GK. Ir + GK. I + ( ~ I c l - ~ ,  r 
I 

and also their counter- 

KG, I~ + KG, I + (KG)-' rn 

As noted earLier, the first three fuxlcdons measure perfoqance and 

stability robustness with respect to :z:certainties at the plant outpub (loop- 

brea- point (i) in Figure 6 ) .  and tbe second three measure performsnce 

and robustness with respectito-w.cnce~, :%inties at the plant l n p d  (loop-breaung 
r *  , ' , '  

point (fi) Figure 6). Both points w e  generally significant in design. ' , 
, I 

I i .  

Tprro o t h e  loop-breaking points, (i)' and (ii)' , are also shown in the 

f i e .  These are  internal to the cornpeesator and  therefore have little 

d i r ec t  significance. Bowever, they bave desirable Loop transfer properties, 
I I 

which ciki be related to the propelties of points (11 and (fi). The properties 

50ke&ions 8i;e &ese: ' 

I 



I 
Fact 11 The loop transfer function obtained by breaking the LQG loop at 

point (i)' is the KBF loop transfer function C 9 
I 1 I 

Fact 2 The loop transfer function obtained by breaking the i & ~  lobp at 
point (i) i s  GK. It can be m r d e  to approach C @ Kf pointwise in s 
by designing the LQR in accrtfdance with a "sensitivity recovery" 
procedure due to ~wakenaak-b9].  

Fact 3 The loop transfer function obtained by breaking the LQG loop at I 
point (ii)' is the LQR loop transfer function Kc OB. I 

Fact 4 The loop transfer function ebtained by breaking the LQG loop at 
point (ii) is KG. It can be  made to approach Kc 9 B pointwise in 
s by designing the KBF in accord c with a "robustness recovery" 73 07 procedure due to Doyle and Stein. I 

Facts 1 and 3 can be readily verified by explicit evaluation of the transfer 

functions involved. Facts 2 and 4 take more elaboration and a r e  taken up 

in a later section. They also require more assumptions. Specifically. 

G(s) must be miaimurn phase with m 3 r for Fact 2. m ,< r for Fact 4. and 

hence. G(s) must be square for  both. Also. the names "sensitivity recovery" 
I 

and "robustness recovery" a r e  overly restrictive. "Full-state loop transfer 

recovery" is perhaps a better name for  both procedures. with the distinction 

that one applies to points (i). (i)' and the other to points (ii). (ii) . 

The significance of these four facts is that we can design LQG loop transfer 

functions on a full-state feedback basis and then approximate them ade- 

quately with a recovery procedure. For point (i), the full state design 

must be done with the KBF design equations (i. e.. its Riccati equation) 

and recovery with the LQR equations, while for point (ii), full-state design 

muSt be done with the LQR equations and recovery with the KJ3F. The 

mathematics of these two options are, in fact. dual. Hence. w e  will 

describe only one option (for point (fi)) in further detail. Results for the 

other a r e  stated and used later in our example. 
I 



' ,  
. I 

i 1 

Full-State Loop Transfer Design 1 I L ,  / / 
L I i U  I 

The i n t e r d e ~ t e  full-state design step is worthwhile because LQR kind 

KBF loops have good classical properties which have been re-discovered 

over the last few years [31-331. The basic result for the LQR case,is 
I I I 

that LQR loop transfer matrices I I 
1 

satisfy me following return difference identity; (321 

Y O $ w < -  (41) 

T where R = R~ > 0 is the standard control weighting matrix. and H H = Q 0 

is the eorrespondfng state weighting matrix. Without loss of generality, 

H can be of size (m x n). [341 Using the definitions (6)-(7). (41) with 

R * PI  implies that 

'This ki*@k&iisi~d i?p&ieB to a l l  sin@%: Mlues s of T(s)  and. hence, 
. * .  .. .. i 

S ~ ~ E I E ~ @  fB 6- Irid St It governs &s ?@rformance and stability robustness - 
p+.53g*&kJ 8p l-&gR i%:;b')o@ab 



I 

I ' I  
I 

i f  I 1' ! 

I ,  

I I I 

I 

I 

- I 

I '  
I ' 

4 
I I 

I 1 :  I ' 1 1  I ' 
Performance Properties (Condition 1 9): - ' , I  " I , ,  

( '  I 

I I 

Whenever o [TI >>I, the following approximation of (42) shows 

I how the parameters p and H influence T(s): 
I 

* ] (43) 

I I 
We can thus choose P and H explicitly to satisfy condition (19) and also 

to  "balancef' the multivariable loop such that a [TI and o [TI a r e  reasonably - * 
close together. This second objectdw is consistent with our ass.umption in 

Section 3 that the transfer function G ( s )  has been scaled and/or transformed 

such a t  I (w) applies more o r  less  uniformly in all.directions. This is also m 
the justification f o r  considering control weighting matrices in the form 

1 / 2  I R = PI only. Non-identity R's a r e  subsumed in G a s  GR . I I 

Robustness Properties (Condition 17 and 20): 

It also follows from (42) that the LQR return difference always exceeds 

unity: i. e., - 

S 
It hir'y 81gi6 Bi heOOliERPy to append additional dynamics. In order  to achieve 
i e f8  rjteadp 5Wte orPers, for example, o [H P B] must tend to a s  UI + 0. 
yh16 may require additional integrationsmin the plant. 



I 
0 

EPence, LQR loops a re  guaranteed to remain stable for al l  unstructured 

uncertainties (reflected to the input) which satisfy I (w)  < 0. 5. ,Without m I 
funher  knowledge of the types of uncertafnties present in the plant, this 

! 
bound is the greatest robustness guarantee which can be ascribed to the 

* 
regulator. 

I I 

While it is reassuring to have a guarantee at all, the 1 < 0.5 bound is m 
dear ly  inadequate fo r  the r e q u i r e m e ~ s  of Condition (20)  with reaListic 

I (uI)'s. In order to satisfy Condition ( 2 0 )  in LQR designs, therefore, m I 
l 

it becomes necessary to directly mzApulate the high-frequency behavior 
I I of T(s). This behavior can be der i rc~l  fram known asymptotic propefii& 

of the regulator a s  the scalar P tender to zero. (29, 47, 48, 34, 361 ( 'The I 

result needed here is that under minimum phase assumptions on R 4 B, the 

LQR gains K behave asymptotically a s  
C 

6291 I 

I * j '  I 
The Am 0.5 bound turns out to be tight for pure gain changes; I. e., 
0. 5 * 6 db, which is identical to regulator's celebrated guaranteed gain 
margin [33]. The bound is conservative if the uncertainties a r e  known do 
be pure phase changes, i. e., 0.5 30 deg, which is less than the kdown 
i 60  deg guarantee [33]. 

I 
1 1  
1 ,  

I 



I 
, I  1 I I 1 '  ' I  

where W # i s  an orthonormal matrix. The LQR loop transfer function, T(s), 
I+ I t  a . 1 1 ' '  I * I 

emluated at  high frequencies, 6 = j c/$with c constant, is then given by 
i I 

Since crossovers occur at 0. [TI 1, this means that the maximum 
1 

(asymptotic) crossover frequency of t!!e loop is 
.- . 

U) 
cmax 

= z [ H B ] / G  . 
4 '  

AS shown in Figure 3, this frequency cannot fall much beyond wA,  wheie 

unstructured uncertainty magnitudes approach unity. Hence, our choice of 

H and p to achieve the performance ~hject ives  via (43) a r e  constrained by 

the stability robustness requiremen.!, ria (48). . 

Note also from (47)  that the asymptotic loop transfer function in the vicinity 

of crossover is proportional to 1 /car (-1 slope on log-log plots). This is a 

relatively slow attenuation rate which, in view of Section 5, is the price . , 

the regulator pays for its excellent return difference properties. If 

4 - I  (u);) attenuates faster than this rate, further reduction of UI may be 
m .  C 

required. It is also true, of course, that no physical system can actually 

maintain a I/. characteristic indefinitely.[61 This is not a concebn here 

since T ( s )  is a nominal (design) function only and w i l l  later be approximated 

by one of the full-state loop transfer recovery procedures. 
I I 

This specific limiting process is appropriate fo r  the so-called generic case 
[36] with f u l l  rank HB. More general versions of (55) with rank [HB] < m 
a re  derived in Reference [44]. 



Full-State 'LOO? Transfer Recovery - 
As described] earlier, the full-state loop transfer function designed above 

for  p i n t  (ii)'' can be recovered at point (ii) by a modified KBF design 

procedure. The required assumptioas a r e  that r 2 m and that C 4 B is 

minimum phase. The procedure thea consists of two steps: 
1? 

(i) Append additional dummy cob- to B and + e m  row to , I 
Kc to make C 4 B and Kc 4.B square (r x r). C O B mukt 

remain minimum phase. I 

(ii) Design the KBF with modified noise intensity matrices. 

where Mo, N a re  the nominal noise intensity matrices 
0 

obtained from stochastic rrmc?dels of the plant and q is a 

scalar parameter. I 

Under these conditions. it is known thnt the filter gains Kt have the following 

asymptotic behavior as  q + = (301: 

I 
Here W is another orthonormal matrix, as  in (46). When h i s  Kf is used 

I 
in the loop transfer expression for point (ii), we get point-wise loop 

transfer recovery as q * * ; i. e., 
I ! 



= K c 4 B  , ( 5 6 )  

I 
I 

! 
b this series of expressions, 4 was used to represent the matrix 

I I 
(sIn - A + B K ~ ) - ' ,  equation(49) was used to get from (52) to (53;, and 

- 1 
the iden t i ty7B = 4 B  ( I + K c  4 B )  wasused to  ge t f romthere to(54) .  

The f i n a l  step shows explicitly that h e  asymptotic compensator K( s) 
I 

(the bracketed term in (55)) inverts the nominal plant (from the left) add 
I 

' substitutes the desired LQR dynadcs .  The need for minimum , phase I is 

thus clear, and it  is also evident that the entire recovery procedure is 

only appropriate a s  long a s  the target LQR dynamics satisfy Figure 3's 

constraints (i. e., as  long as  we do net attempt inversion in frequency 

ranges wherd uncertainties do not permit it). Closer inspection of; (50)-(56) 
! 1 

further shows that there is no dependence on LQR o r  KBF cpfim!liiy ( 1 1  i f  I 

the gains K c  o r  K The procedure requires only that Kf be stabilihng 
f* I I t 

and have the asymptotic characteristic (49). Thus, more general state 

I !  I 
I 
I I 



feedback laws can be recovered (a, g. , pole placement), and mare general 
* 

f1ltef.s can be used for the process ( 5 ,  g., observers). 

An Example 

The behavior of LQG design iteratioris ,with full- state loop transfer recovery 

is illustmted by the following abstracted longitudinal control desim exa1mPle 

for a CIf-47 tandem rotor helicopter, Our objective is to control two I 

measured outputs--vertical velocity and pitch attitude--by manipulating 

collective and differential collective mtQr thrust commands. A nominnl 

model for  the d p m i c s  relating these variables at  40 knot airspeed is [451 
I ! 

I -. 02 ' . O O S  2 * 4  -32. 

d -. 14 -. 44 
u 

dt 0 . 018 -1.6 1 . 2  

0 0 1 0 

Ma ]or unstructured uncertaintiesajq@$i+ted with this model are .  due to 
1' " , 

neglected rotor dynamics and unmode;t(f.d rate b i t  noalinearities, 
I I ,i , Pese 

ore discussed at greater length in [46]. For our present purposes: it .. , 
' I  . , f ! ,  

I 
1 ,  + I : ,  

3 t a  more generally, the modffied KEF procedure w i l l  actually recover full- 
state feedack loop transfer functiom at  any point, ul, in'ihe bystem for 
which  C 4 'hl is minimum phase. [301 I . 



A (u,) > 1 fo r  a l l  m 2 1 0  rad/sec. Hence, the controller bandwidth should - 
be constrained a s  in Figure 3 to u, 

CCA 13: 
s 10. 

Since our objective is to control two measured outputs at  point (i), the 

design iterations utilize the dualz of - ~ ~ u a t i o n s  (40) - ( 5 6 ) ,  They begin with 
T T 

a full state KBF design whose noige fp<ensity matrices, E ( g %  ) = 6(t-4) 
T and E (77 ) = PI  6 ( t - ~ ) ,  a r e  selected t~ meet performance objectives a t  

low frequencies; i. e. . 

while satisfying stability robustness constraints at high frequencies; 

U) cmax = [ ~ r ] / %  e 10 rleec (58)  
I 

I '  
F o r  the choice r = 3, equation (58) constrains P to be greater  than o r  equal 

* 
to unity. The resulting KBF loop transfer  for  P = 1 is shown in Figure 7. 

F o r  purposes of illustration, this function will be considered t o  have the 

desired high gain properties for  Condition (19), with low gains beyond 
t 

I 
w = 10-for condition (20). It then remains to recover this function by means 

of the full-state recovery procedure f o r  point (i). This calls for  LQR --- . -- . --- 
2 T 

. --- 
design with Q = Qo + q C C and R = Ro. Letting Qo = 0, Ro = I. the 

resulting LQG t ransfer  functions for  several values of q a r e  also shown 

in Figure 7. They clearly display the pointwise convergence properties 

of the procedure, 
A2 .- .' 

4 . "  
If ~f (o r  HB) is singular, equations (58) o r  (48) a r e  sti l l  valid in the 
fiQn; S e 28 dice ctiofib, 

' lhe  function should not be considered final, o r  course. Better balance 
I 

between = and a and greater  gain a t  low frequencies via appended integrators 
would be desirable in a serious design, 
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SECTION 8 

CONCLUSION 

This paper has attempted to present a practical design perspective on I 
I 1 ' 1  , ' I  &lti-input, multi-output linear time invariant feedback control problems. 

I I 
It has focused on the fundamental issue--feedback in the face of uncertaintites. 

It has shown how classical SlSO approaches to this issue can be reliably 

generalized, to MIMO systems, and has defined the extent to which MIMO 

systems a re  subject to the same uncertainty constraints and transfer 
a function gain/phase limitations a s  SISO ones. Two categories of design 

procedures, were then examined in the context of these results. 
.. . - . . - . . - - . . - 1- 

t 

1 
There a r e  numerous other topics and many othe; proposed design procedures 

I which were not addressed, of course. Modal control!421 eigenmlue-vector 

assignment!431 and the entire field of geometric methods[lS1 a r e  prime 

examples. These deal with internal structural properties of systems which, 

though important theoretically, cea:3e to have central importance in the face 

of the input-output nature of unstruciured uncertainties. Hence, they were 

omitted. We also did not treat certain performance objectives h MIMO 

systems which a r e  distinct from SISO systems. These include perfect non- 

interaction and integrity. Non-interaction is again a structural Property 

which loses meazing in the face of unstructured uncertainties. (It is 
I 

achieved as well as possible by Condition 19). Integrity, .on the other hand, 

cannot be dismissed as lightly. . I t  concerns the ability of MIMO systems . 

to maintain stability in the face of actuator and/or sensor failures. The 



singular value concepts described hare a r e  indeed useful for integrity 

analykis. For example, a design ha8 integrity with respect to actuator 

failures whenever 

This follows because failures satisfy 1. Morewer it can be 

shown[371 that full-state control l a i s  designed via Lyapunov equations, 

as opposed tov  Rccati equations, a s  ;in Section 7, satisfy (59). I is also 
I 

worth noting that integrity properties claimed for design methods such as 

N A  and CL  suffer fmrn the reliability problem discussed in Section 6 , I 
and, hence, may not be =lid in the ripstemts natural (non-diagonal) coordi- 

nate system. 

The major limitations on what has bean said in the paper a re  associated 

with the representation chosen in Section 3 for unstructured uncertainty. 

A single magnitude bound on matrix perturbations is a worst-case 

representation which is often much  to^ s o n s e r ~ t i v e  (1. e. it may admit 

perturbations which a r e  structurally known not to 'occur). ,The use of I 
weighted norms in (8) (9)  or  selective transformations applied to G 1 

1 
(as in [39]) can alleviate this conser=tism somewhat, but seldom completely. 

I 
Fur this reason, che problem of representing more structured unc'ertainties 

I f381 in simple ways analogous to (13) is receiving renewed research attention. 

A second major drawback is our i m p k i t  assumption that all loops (all ' 
I 

dirrbtions) of the MIMO system shoQd have equal bandwidth (a - close to 

In Figure 3). This assumption is consistent with a uniform uncertainty bound 
1 * 

but rill no lodger be appropriate a s  w e  l e a r n  to represent more complex 
I I 

d c e m i n t y  structures. Research aiong these lines is also proceeding. I 
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