
'̂ SANDIA REPORT %

SAND87-2997 • U C - 3 2
Unlimited Release
Printed September 1988

EXODUS: A Finite Element File Format
for Pre- and Postprocessing

William C. Mills-Curran, Amy P. Gilkey, Dennis P. Flanagan

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DP0078g

S F 2 9 0 0 Q (8 81)

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern­
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof or
any of their contractors or subcontractors.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: AOl

00 m ^ ' ILM

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

SAND87-2997 Distribution
Unlimited Release UC-32

Printed September 1988

EXODUS: A Finite Element File Format for Pre-
and Postprocessing

SAND—87-2997

DE89 001054

William C. Mills-Curran
Amy P. Gilkey

Dennis P. Flanagan
Applied Mechanics Division III
Sandia National Laboratories

Albuquerque, New Mexico 87185

Abstract

The EXODUS format defines a binary file which is used for finite element analysis pre-
and postprocessing. It includes data to define the finite element mesh and label both
boundary condition and load appHcation points. EXODUS accomodates multiple
element types and is sufficiently general to service many different analysis codes. It
also provides a very general format for analysis results. A benefit of combining the
mesh definition data and the results da ta in the same file is that the user is assured
that the results data are consistent with the model. EXODUS is currently in use
by the entire range of Department 1520 codes (including preprocessors, translators,
Unear and nonlinear analyses, and postprocessors) and is finding applications in codes
outside Department 1520.

0!STRiDUT!GN OF IhiS mZUmVi iS UKLt.ilia

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi­
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer­
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

Contf»nt^ mendation, or favoring by the United States Government or any agency thereof The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

Figures 9

Tables n

1 INTRODUCTION 13

2 FILE DESCRIPTION 15

2.1 File Open 16

2.2 Header Record 16

2.3 Problem Size Record 16

2.4 Nodal Coordinates Record 17

2.5 Optimized Element Order Map Record 17

2.6 Element Blocks 18

2.6.1 Element Block Parameter Record 18

2.6.2 Element Connectivity Record 19

2.6.3 Element Attributes Record 19

2.7 Node Sets 19

2.7.1 Node Set IDs Record 19

2.7.2 Node Set Counts Record 19

2.7.3 Node Set Pointers Record 20

2.7.4 Node Set Node List Record 20

2.7.5 Node Set Distribution Factors 20

2.8 Side Sets 20

2.8.1 Side Set IDs Record 20

2.8.2 Side Set Element Counts Record 21

5

2.8.3 Side Set Node Counts Record 21

2.8.4 Side Set Element Pointer Record 21

2.8.5 Side Set Node Pointer Record 21

2.8.6 Side Set Element List Record 21

2.8.7 Side Set Node List Record 21

2.8.8 Side Set Distribution Factors Record 22

2.9 QA Data 22

2.9.1 QA Count Record 22

2.9.2 QA Title Records 22

2.10 Information Data 23

2.10.1 Information Count Record 23

2.10.2 Information Text Records 23

2.11 Coordinate Names Record 23

2.12 Element Type Names Record 23

2.13 Results Size Record 23

2.14 Results Names Record 24

2.15 Truth Table Record 24

2.16 Time Step Data 24

2.16.1 Time Record 25

2.16.2 History Results Record 25

2.16.3 Global Results Record 25

2.16.4 Nodal Results Records 25

2.16.5 Element Results Records 25

6

3 CONVENTIONS 27

3.1 Element Connectivity Node Ordering 27

3.2 Side Set Node Ordering 27

3.3 Element Names and Attributes 27

3.4 Coordinate and Displacement Residts Names 30

3.5 Character Strings 30

A FORTRAN PROGRAMMING EXAMPLE 33

References 39

v//

Figures

3.1 Element Node Order 28

3.2 Side Set Node Ordering 29

9 / / ^

Tables

3.1 Element Type Names and Attributes 31

n//^

1. INTRODUCTION

Ever since Department 1520 began to use pre- and postprocessing in conjunction
with finite element analysis codes, the Department has sought to unify its computing
environment wherever possible. That is, code specific pre- and postprocessing utilities
have been avoided in favor of utihties which could service many analysis codes. For
example, rather than writing a mesh generator which is tailored for a partictdar
analysis code, the analysis code supporter works with the mesh generator supporter
to insure that the two codes can communicate well.

The benefits of this approach are compelHng:

• Each analysis code writer does not have to reinvent pre- and postprocessing
independently. The analysis code writer then concentrates on what he/she
does best - developing analysis code.

• Pre- and postprocessing efforts can be concentrated at a single point to meixi-
mize capabihties and support. This then reduces the total effort spent on pre-
and postprocessing yet increases the probabihty that these capabihties will work
correctly.

• Users of a new analysis code do not need to leaxn new pre- and postprocessors.
Fa mill AT pre- and postprocessors may be used for a wide range of analysis codes.
Thus, a barrier to immediate use of a new analysis code is removed.

In order for this unified approach to succeed, a flexible commtmication format
from preprocessor to analysis code to postprocessor must be defined. As Department
1520's finite analysis capabihties became more sophisticated, new requirements were
placed on the communication hnk. In the past , the TAPE9, TAPEIO, T A P E l l
(SEACO), TAPE56, and GENESIS formats have provided this communication hnk.
Each format represents a step forward in an evolutionary process as formats become
both more sophisticated and more phant.

Most recently, Department 1520 rehed on the TAPE9 and SEACO formats as
mesh definition and results data files for finite element analyses. A serious drawback
of these formats is that they allowed only one type of element within the file. This
has been acceptable for most nonhnear analyses within the department , because they
typically use a single continuum element type. However, hneax analyses frequently
mix beams, shells, and sohds within a single model and thus were restricted to the

13

PATRAN [l] format for pre- and postprocessing. (Special purpose translators are
necessary to convert the data in a PATRAN file to a format which can be used by a
finite element program.) In addition, there were significant differences between the
TAPE9 (preprocessing or mesh) and the SEACO (postprocessing or results) binary
files so that two different file formats were required to perform an analysis. The two
different formats also needed their own translators to move data between different
computers and operating systems.

As a first step to improving the situation, the GENESIS [2] format was defined.
The GENESIS format implemented a midtielement-type mesh format and success­
fully replaced the TAPE9 format.

The EXODUS format extends this benefit to results data by appending analysis
results to the mesh definition. Thus, the beginning of an EXODUS file is a GENESIS
file. In addition, the EXODUS format provides for quality assurance information to
be carried through model creation, analysis, and restilts postprocessing steps.

In May, 1988, all apphcable Department 1520 programs and procedures were
successftilly converted to the EXODUS format. It is expected that this staindard will
diffuse throughout the other departments in 1500 and become the de facto standard
for finite element pre- and postprocessing files.

14

2. FILE DESCRIPTION

This chapter describes in detail the EXODUS format. It should be noted from
the start that some of the records in an EXODUS file will appear only once, while
others may appear multiple times. If a record contains no data, it still must be
written. On systems (such as CTSS) which will not write a zero-length record, a
single, arbitrary, datum should be written. When reading such a record, a null read
is used.

An EXODUS file is read and written with standard FORTRAN unformatted
input and output statements. Word packing is not used. No system dependent
coding is required, thus, EXODUS will not comphcate the movement of codes between
computer systems.

An EXODUS file can logically be defined in two parts: A and B. Part A includes
all data that can be defined by a preprocessor. These data are input to a finite element
analysis code. The element type names record (Section 2.12) is the last record in
part A. Paxt B contains the restilts of the analysis and begins with the results size
record (Section 2.13). A postprocessor requires both psirts to function properly.

Except for the first record of a time step, the information about the existence of
a record and the length of a record is provided before the record is read. Thus, the
format of a record is always known at the time it is read. Time step data axe the
only exception, because the EXODUS format uses an end-of-file to indicate the la.st
record in the file.

Node and element numbers are indicated by the order in which the nodes and
elements appear in the EXODUS file. Thus, the node and element numbers form a
contiguous, ordered hst.

In order to promote eflScient storage within an EXODUS file and to enable
efficient processing within analysis codes, elements are grouped into element blocks.
Within an element block, all elements must be of the same type (basic configuration
and number of nodes) and the same material.

In part B, analysis results are grouped into one of four different types for two
different types of timesteps. Element results are output for all elements in one or
more element blocks. Thus, element results can be described as a vector. Stress is
an example of an element result. Nodal results are output for all the nodes in the
model. Nodal results are also a vector. Displacement in the X direction is a nodal

15

restilt. Global and history results are output for a single element or node, or for a
single property. Linear momentum of the structure and acceleration of node 5 are
both examples of global and history variables.

History and global results are distinguished by the frequency at which they are
output. Two different timesteps are defined in EXODUS. A history timestep contains
only history results. A whole timestep contains history, global, nodal, and element
results. No restriction is made on the frequency of either type of timestep, or that
both appear in an EXODUS file. The only restriction is that time must increase
monotonically. It can be seen that the history results and history timesteps provide
a mechanism for chronologically refined output of select results.

Appendix A contains sample FORTRAN code which may be helpful in under­
standing the EXODUS format.

2.1 File Open

When opening an EXODUS file from FORTRAN, the only specific requirement
is to include the FORM='UNFORMATTED' keyword and value in the OPEN statement.

2.2 Header Record

The first record of the EXODUS file is an 80-character string for use as a title
or heading.

2.3 P rob lem Size Record

The problem size record consists of ten integers which define the general problem
size and also identifies the version of the EXODUS format.

1. N u m b e r of Nodes . This datum defines the total number of nodes defined in
the file.

2. P r o b l e m Dimension. The problem dimension refers to the number of space
coordinates. A 1, 2, or 3 is reqtiired here.

3. N u m b e r of E lements . This is the total number of elements of all types in
the file.

4. N u m b e r of Element Blocks. In EXODUS, elements are grouped together
in blocks. Each block consists of elements of the same type and material. This
datum defines the number of blocks.

16

5. Number of Node Sets. Node sets can be used as a convenient method for
referring to groups of nodes. This dattmi defines the number of node sets in
the file.

6. Node Set List Length. The node sets Hst length describes the total length
of all node set hsts. Because a node can appear in many node set Hsts, it is
possible for the node set list length to be greater than the total number of
nodes.

7. Number of Side Sets . Side sets are used to identify elements (and their
sides) to which boundary conditions, such as heat flux, pressure, or sHde hues,
are apphed. Elements in a single side set must be of similar type, e.g. all quads
or all beams.

8. Side Set Element List Length. Each side set has a Hst of elements. This
datum identifies the total length of all side set element Hsts. Because an element
can appear in multiple side sets (or even repeat in a single side set), this hst
length can be greater than the total number of elements.

9. Side Set Node List Length. In order to identify the portion of an element
to which a boundary condition is appHed, the element's nodes must be included
as part of a side set definition. This datum identifies the total length of all side
set node Hsts.

10. Version Number . This is the EXODUS version number: 1. This version
number allows future modifications to be made to EXODUS without causing
undue confusion. The authors reserve the right to define/approve new versions
of EXODUS.

2.4 Nodal Coordinates Record

This record contains the (real) spatial coordinates of all the nodes in the model.
The number of nodes and the problem dimension (data 1 and 2 of the problem size
record, Section 2.3) define the length of this record. The data cycle faster on nodes
and slower on coordinates, thus the X coordinate for all the nodes is written before
any Y coordinate data are written. Node numbers are impHed from a node's place
in the nodal coordinates record.

2.5 Optimized Element Order Map Record

This record defines the element order in which a wavefront solver should process
the elements. For example, the first (integer) datum is the number of the element

17

which shotJd be processed first by a wavefront solver. The length of this record is
defined by datum 3 (number of elements) of the problem size record (Section 2.3).
This record is necessaxy because the elements in EXODUS must be grouped in blocks
and caimot be reordered for optimal wavefront solver performance.

When not used for indicating an optimized element order, this record can also
be used to indicate a mapping to a different element order.

2.6 Element Blocks

For efficient storage and minimizing I/O, EXODUS groups elements in element
blocks. Within an element block, all elements axe of the same type (basic geometry
and number of nodes) and have the same material definition.

The number of an element is defined by the order in which it appears in the
EXODUS file. Elements axe numbered consecutively across all element blocks.

The foUowing three sections describe the three records which are repeated for
each element block.

2.6.1 Element Block P a r a m e t e r Record

This record defines four integer parameters which apply to this paxticular ele­
ment block.

1. Element Block I D . The element block ID is an arbitrary, unique number
which identifies the particular element block. This ID allows the user to specify
a group of elements to the analysis or postprocessing code without having to
know the order in which element blocks axe stored in the file. For analysis, the
user must associate each element block with an element type and a material
model.

2. Number of Elements. This datum defines the number of elements in this
element block.

3. Nodes per Element. This datum defines the number of nodes per element
for this element type.

4. Number of Attributes. This datum defines the number of attributes per
element.

18

2.6.2 Element Connectivity Record

This record defines the (integer) element connectivity for this element block. The
length of this record is the product of data 2 and 3 (number of elements and nodes
per element) of the element block parameters record. The node index cycles faster
than the element index. Requirements for node ordering are found in Chapter 3.

2.6.3 Element Attributes Record

This record contains the (real) attributes for the elements in this element block,
eaid its length is defined by data 2 and 4 (number of elements and attributes per
element) of the element block parameters record. The attributes index cycles faster
than the element index.

2.7 Node Sets

Node sets provide a means to reference a group of nodes with a single ID without
requiring the user to know node numbers in the model. Node sets may be used to
specify load or boundary conditions, or to identify nodes for a special output request.
A particular node may appear in any number of node sets, but may be in a single
set only once. Five records axe used to define all the node set data in a model.

2.7.1 Node Set IDs Record

This record contains a Hst of unique integer node set IDs. The length of this
record is defined by datum 5 (number of node sets) of the problem size record (Sec­
tion 2.3).

2.7.2 Node Set Counts Record

Each integer datum in this record specifies the number of nodes in a particular
node set Hst. While the t"* dattmi in the node set IDs record specifies a node set id,
the t"* datum in the node set cotmts record indicates the number of nodes in that
node set. The length of this record is defined by datum 5 (number of node sets) of
the problem size record (Section 2.3).

19

2.7.3 Node Set Pointers Record

This record contains an integer pointer for each node set. Each pointer locates
(in a concatenated Hst) the first node in the node set. The length of this record is
defined by datum 5 (number of node sets) of the problem size record (Section 2.3).

2.7.4 Node Set Node List Record

This record is a concatenated (integer) Hst of all the nodes in node sets. The
two previous records are used to find the first node and the nimiber of nodes in a
particular node set. The length of this record is defined by dattma 6 (node set Hst
length) of the problem size record (Section 2.3).

2.7.5 Node Set Dis t r ibu t ion Factors

This record defines (real) distribution factors associated with the nodes in a node
set. These data may be used for uneven appHcation of load or boundary conditions.
Each datum on this record is associated with the corresponding datum on the previous
record (node set node Hst record) and is the same length.

2.8 Side Sets

Side sets provide a second means of applying load and boundary conditions to
a model. UnHke node sets, side sets axe related to specified sides of elements rather
than simply a Hst of nodes. For example, a pressure load must be associated with
elements in order to apply it properly. In order to retain simpHcity in the definition
of side sets, each side set can refer to only a single type of element. Within this
restriction, however, a side set may contain elements from several element blocks.

Eight records are used to define side sets and have a format similar to that of
the node set records.

2.8.1 Side Set IDs Record

This record contains a Hst of the unique integer side set IDs. The length of
this record is defined by datum 7 (ntimber of side sets) of the problem size record
(Section 2.3).

20

2.8.2 Side Set Element Counts Record

This record specifies the integer number of elements in each side set and is
the length defined by datum 7 (number of side sets) of the problem size record
(Section 2.3).

2.8.3 Side Set Node Counts Record

This record specifies the integer number of nodes in each side set and is the length
defined by datum 7 (number of side sets) of the problem size record (Section 2.3).

2.8.4 Side Set Element Pointer Record

This record contains an integer pointer for each element set which locates the
first element of a particular side set within the side set element Hst. The length
of this Hst is defined by datum 7 (number of side sets) of the problem size record
(Section 2.3).

2.8.5 Side Set Node Pointer Record

This record contains an integer pointer for each element set which locates the first
node in a particular side set within the side set node Hst. The length of this record
is defined by datum 7 (number of side sets) of the problem size record (Section 2.3).

2.8.6 Side Set Element List Record

This record consists of a concatenation of the integer element Hsts for all side
sets. The side set element pointer record indicates the location of the first element
in a paxticular side set, and the side set element counts record indicates the number
of elements in the side set. The length of this record is defined by datum 8 (side set
element Hst length) of the problem size record (Section 2.3).

2.8.7 Side Set Node List Record

This record consists of a concatenation of the integer node Hsts for all side sets.
The side set node pointer record indicates the location of the first node in a particular
side set, and the side set node counts record indicates the number of nodes in the
side set. The length of this record is defined by datum 9 (side set node Hst length)

21

of the problem size record (Section 2.3). Requirements for node ordering are found
in Chapter 3.

2.8.8 Side Set Distribution Factors Record

This record contains the distribution factors associated with the nodes in a side
set. This data may be used for uneven appHc&tion of load or bovmdary conditions.
Each real datum on this record is associated with the corresponding datum on the
previous record and is the same length.

2.9 QA Da ta

QuaHty Assurance (QA) data are contained on two or more records.

2.0.1 QA Count Record

This record contains a single integer datum which indicates the number of QA
title records which follow. Each file must contain at least one QA title record.

2.9.2 QA Title Records

Each QA title record consists of four eight-chaxacter strings. The number of
QA title records is indicated by the QA count record and must be at least one. In
the case where multiple codes modify the file, each code should copy all existing QA
records and append an additional QA record.

1. Code Name. The code nsime indicates the code which has operated on the
EXODUS file.

2. Code QA descr iptor . The code QA descriptor provides a location for a
version identifier.

3. Date. The date field should be of the format 01/25/88.

4. Time. The time datum indicates the 24 hour time with fields for hours, minutes
and seconds: 16:30:15.

22

2.10 Information Data

The foUowing records provide a location for storage of supplementary text. There
is no minimum number of text records, but the count record is required.

2.10.1 Information Count Record

This record contains a single integer datum which indicates the number of in­
formation text records to foUow.

2.10.2 Information Text Records

This is an 80-chaxacter text record which is intended for optional supporting
documentation from a code. Any number of records may be used and the number is
indicated by the information count record.

2.11 Coordinate Names Record

This record contains eight-chaxacter fields which name the spatial coordinates.
There is one field for each dimension in the model (see datum 2 of the problem size
record, Section 2.3), thus there are one to three fields on the record. Coordinate
Uciming conventions are in Section 3.4.

2.12 Element Type Names Record

Element type names are included to imiquely distinguish element types. This
record contains an 8-character field for each element block. Names for several element
types are Hsted in Section 3.3.

2.13 Results Size Record

The results size record contains four integer data.

1. Number of History Variables

2. Number of Global Variables

3. Number of Nodal Variables

4. Number of Element Variables

23

2.14 Results Names Record

This record contains the character string nemaes (8 characters each) which are
associated with the history, global, nodal, and element residts. The names are orga­
nized in four groups, and the size of each group is defined on the results size record.
Any group size (including zero) is permitted.

1. History Variable Names

2. Global Variable Names

3. Nodal Variable Names

4. Element Variable N a m e s

2.15 T r u t h Table Record

The integer data in the truth table record indicates whether a paxticular ele­
ment result is output for the elements in a paxticular element block. For example,
hydrostatic stress may be an output result for the elements in element block 3, but
not in element block 6.

It is helpful to describe the truth table as a two dimensional array. Each row
of the array is associated with an element variable and element variable name. Each
column of the array is associated with an element block. If a datum in the truth
table is 0, then no resxJts axe output for that element variable for that element block.
A nonzero entry indicates that the appropriate results will be output.

The truth table array is stored in columns on the record, that is, the variable
index cycles faster than the block index.

2.16 T i m e Step D a t a

The number of records associated with time step data is quite variable for two
reasons. First, no provision is made to record the number of time steps in the
file because analysis codes frequently stop (or fail) at unpredictable times. Second,
history and whole timesteps contain different numbers of records. (See the discussion
at the beginning of this chapter.) History timesteps include only two records, while
whole timesteps contain additional records with global, nodal, and element residts.

24

2.16.1 Tune Record

This record contains two real data: the analysis time for the results that follow
in the file, and a flag which indicates whether this is a history timestep or a whole
timestep. The value 0.0 indicates that this is a whole timestep. Any other value
indicates a history timestep.

2.16.2 History Results Record

The history results record contains the (real) history data and is present for
history and whole timesteps. The length of this record is indicated by datum 1
(number of history variables) of the results size record (Section 2.13).

2.16.3 Global Results Record

This record contains the (real) global data and is present only for whole time-
steps. The length of this record is indicated by datum 2 (number of global variables)
of the results size record (Section 2.13).

2.16.4 Nodal Results Records

These records contain the (real) nodal data and are present only for whole
timesteps. There is a record for each nodal variable name, thus the number of
records is indicated by datum 3 (number of nodal variables) of the results size record
(Section 2.13). The length of these records is indicated by datum 1 (number of nodes)
of the problem size record (Section 2.3).

2.16.5 Element Resul ts Records

Element results records axe written from within nested loops. The outer loop
cycles on the element blocks, and the inner loop cycles on the element variables.
An element results record is output for a particular combination of element block
and element variable only if indicated by the truth table (Section 2.15). If output is
indicated, then the record contains one datima for each element in one element block.

ih/xCp

3. CONVENTIONS

This chapter contains supplementary requirements for use of the EXODUS file
format. The preceding chapter provides a complete description of the structure of
the file, but is incomplete as far as content and usage are concerned. For example,
provisions are made for storing element type names. These names are necessary to
imiquely identify some types of elements (e.g. tetrahedron vs. quadrilateral). But
the file format does not suggest which specific names should be used (e.g. TET vs.
TETRA or QUAD vs. QUAD4). Thus, it becomes necessary to impose conventions
for use of the EXODUS format.

These conventions are provided to smooth the use of the EXODUS format def­
inition. Department 1520 users of the EXODUS format have agreed to adhere to
these conventions, thus, any EXODUS data which does not follow these conventions
may not interface with Department 1520 codes.

3.1 Element Connectivity Node Ordering

The element connectivity should be ordered in the same manner as PATRAN [l].
Figure 3.1 depicts the node ordering for six higher-ordered elements. Lower-ordered
elements should use the same ordering scheme, skipping the nodes that are not used
in the element.

3.2 Side Set Node Ordering

Nodes in a side set should be ordered to help the analysis code identify the
"outward" direction. Figure 3.2 shows the node ordering for higher ordered elements.
For lower ordered elements, simply omit the imused nodes.

3.3 Element Names and Attributes

An element naming convention is required for correct plotting of elements. El­
ement attributes are necessary to completely describe structural (non-continuum)
elements. Table 3.1 lists the names of several types of elements and the attributes
that are normally expected for each.

27

4 7
> •

8<> •9 <>6

1 5 2

QUAD TRIANGLE

WEDGE

HEX

3

TRUSS/BEAM

Figure 3.1. Element Node Order
28

G
O

ro
4

N
3

C
D

2 ni

C
O

n
 o

ft
 O

H
 a.

O

oq

C
O

D

C7
1

hO

C
D

C
D

CO

o>

C
O

*

N
O

* CO

N
5

3.4 Coordinate and Displacement Results Names

In order for postprocessing codes to link the proper coordinates with displace­
ment results, the following rules should be followed:

1. The displacement names must be the first 3 (or 2 for 2D) names in the nodal
variable hst.

2. All displacement names must begin with "D" and must be the same except for
the last character.

3. The last character of the i''* coordinate name must match the last character of
i''' displacement name.

3.5 Character Strings

All character strings should be left justified in their field.

30

Table 3.1. Element Type Names and Attributes

NAME
TRUSS
BEAM

TRIANGLE
QUAD
TETRA
WEDGE
HEX
CIRCLE
SPHERE

ATTRIBUTES
Area
3D:Area,Ix,l2,J,Vi,V2,V3
2D: Area, I, J
t
t

r
r

The Vi define a vector that, together with the axis of the element defines a plane for
the beam element. The Ii bending moment of inertia affects displacements in this
plane, while the I2 bending moment of inertia affects bending out of this plane. J is
the torsional (polar) moment of inertia.

3%-

A. FORTRAN PROGRAMMING EXAMPLE

The program fragment below shows how an EXODUS file may be written. Be­
cause this is a program fragment, many of the statements necessary to make this
a legal program are missing, but sufficient detail is included to aid the reader in
understanding the EXODUS format.

CHAJUCTER HEAD*80
C
C —Open t h e da tabase f i l e
C

NDB = 11
OPEN (UNIT=NDB, FORM='TTNFORMATTED')

C

C —Header record

C

WRITE (NDB) HEAD

C

C —Problem size record

C

WRITE (NDB) KUMNOD, NDIM, ITOMEL, NELBLK,

* NUMNPS, LNPSNL, NUMESS, LESSEL, LESSNL, 1

C —NUMNDD - the number of nodes

C —NDIM - the number of dimensions

C —NUMEL - the total number of elements

C —NELBLK - the number of element blocks

C --NUMNPS - the number of node sets

C —LNPSNL - node set list length

C —NUMESS - number of side sets

C —LESSEL - side set element list length

C —LESSNL - side set node list length

C — 1 - version number of this EXODUS format

C

WRITE (NDB) ((CDORD(I,J),I=l,irUMNOD),J=l,!n)IM)

C —COORD - Nodal Point Coordinates

C

WRITE (NDB) (MAP(I),I=l,inJMEL)

C —MAP - Optimized Element Order Map

33

c
C —Element Blocks

C

DO 100 K=l,NELBLK

C

C —Si^zing Parameters for this Element Block

C

WRITE (NDB) IDEBLK,NUMELB,NELNOD,NATRIB

C —IDEBLK - Element block identification (must be unique)

C —NUMELB - Number of elements in this block (the sum of

C NUMELB over all blocks must equal NUMEL above)

C —NELNOD - Number of nodes defining the connectivity for an

C element of this type

C —NATRIB - Niunber of element attributes

C for this element type

C

WRITE (NDB) ((ICONK(J,I),J=l,NELNOD),1=1,NUMELB)

C —ICONK - Connectivity for this Element Block

C

WRITE (NDB) ((ATRIBK(J,I),J=1,NATRIB),1=1,NUMELB)

C —ATRIBK - Attributes for this Element Block

C

100 CONTINUE

C

C —Node Sets Data

C

WRITE (NDB) (IDNPS(I),1=1,NUMNPS)

C —IDNPS - Node Set IDs

C

WRITE (NDB) (NNNPS(I),1=1,NUMNPS)

C —NNNPS - Node Set Counts

C

WRITE (NDB) (IPTNPS(I),1=1,NUMNPS)

C —IPTNPS - Node Set Pointers

C

WRITE (NDB) (LSTNPS(I),1=1,LNPSNL)

C —LSTNPS - Node Set Node List

C

WRITE (NDB) (FACNPS(I),1=1,LNPSNL)

C —FACNPS - Node Set Distribution Factors

C

34

C —Side Sets Data

C

WRITE (NDB) (IDESS(I),1=1,NUMESS)

C —IDESS - Side Set IDs

C

WRITE (NDB) (NEESS(I),1=1,NUMESS)

C —NEESS - Side Set Element Counts

C

WRITE (NDB) (NNESS(I),1=1,NUMESS)

C —NNESS - Side Set Node Counts

C

WRITE (NDB) (IPEESSCI),1=1,NUMESS)

C —IPEESS - Side Set Element Pointers

C

WRITE (NDB) (IPNESS(I),1=1,NUMESS)

C —IPNESS - Side Set Node Pointers

C

WRITE (NDB) (LTEESS(I),1=1,LESSEL)

C —LTEESS - Side Set Element List

C

WRITE (NDB) (LTNESS(I),1=1,LESSNL)

C —LTNESS - Side Set Node List

C

WRITE (NDB) (FACESS(I),1=1,LESSNL)

C —FACESS - Side Set Distribution Factors

C

C

C —Write the QA header information

C

WRITE (NDB) NQAREC

C —NQAREC - the number of QA records (must be at least 1)

C

DO 110 IQA = 1, NQAREC

WRITE (NDB) (QATITL(I,IQA), 1=1,4)

C —QATITL - the QA title records; each record contains:

C — 1) analysis code name (CHARACTER*8)

C — 2) analysis code qa descriptor (CHARACTER*8)

C — 3) analysis date (CHARACTER*8)

C — 4) analysis time (CHARACTER*8)

110 CONTINUE

C

35

C —Write the optional header text

C

WRITE (NDB) NINFO

C —NINFO - the number of information records

C

DO 120 I = 1, NINFO

WRITE (NDB) INFO(I)

C —INFO - extra information records (optional) that

C — contain any supportive documentation that the

C — analysis code developer wishes (CHARACTER*80)

120 CONTINUE

C

C —Write the coordinate names

C

WRITE (NDB) (NAMECO(I), 1=1,NDIM)

C —NAMECO - the coordinate names (CHARACTER*8)

C

C —Write the element type names

C

WRITE (NDB) (NAMELB(I), 1=1,NELBLK)

C —NAMELB - the element type names (CHARACTER*8)

C

C END OF EXODUS PART A - BEGINNING OF PART B

C

C —Write the history, global, nodal, and

C element variable information

C

WRITE (NDB) NVARHI, NVARGL, NVARNP, NVAREL

C —NVARHI - the number of history variable names

C —NVARGL - the number of global variable names

C —NVARNP - the number of nodal variable names

C —NVAREL - the number of element variable names

C

WRITE (NDB)

t (NAMEHI(I), 1=1,NVARHI),

k (NAMEGV(I), 1=1,NVARGL),

ft (NAMENV(I), 1=1,NVARNP),

k (NAMEEV(I), 1=1,NVAREL)

C —NAMEHI - the history variable names (CHARACTER*8)

C —NAMEGV - the global variable names (CHARACTER*8)

C —NAMENV - the nodal variable names (CHARACTER*8)

36

C —NAMEEV - the element variable names (CHARACTER*8)

C

WRITE (NDB) ((ISEVOK(I,J), 1=1,NVAREL), J=l,NELBLK)

C —ISEVOK - the name truth table for the element blocks;

C — ISEVOK(i,j) refers to variable i of element block j;

C — the value is 0 if and only if data will NOT be output for

C — variable i for element block j (otherwise the value is 1)

C

c
C —Write each time step

C (the time value must increase monotonically)

C

DO 160 ITIME = 1, NSTEP

C

WRITE (NDB) TIME(ITIME), HIFLAG(ITIME)

C —HIFLAG - the history flag (0 for output of all variables

C nonzero for history variables only)

C —TIME - the time step value

C

WRITE (NDB) (VALHKIVAR.ITIME), IVAR=1,NVARHI)

C —VALHI - the history values for the time step

C

IF (HIFLAG(ITIME) .EQ. 0.) THEN

C

WRITE (NDB) (VALGVdVAR,ITIME), IVAR=1,NVARGL)

C —VALGV - the global values for the time step

C

DO 130 IVAR = 1, NVARNP

WRITE (NDB) (VALNVdNP,IVAR,ITIME),

4 INP=1,NUMN0D)

C —VALNV - the nodal veoriables at each node

C — for the current time step

130 CONTINUE

C
DO 150 IBLK = 1, NELBLK

DO 140 IVAR = 1, NVAREL

IF (ISEVOK(IVAR,IBLK) .NE. 0) THEN

WRITE (NDB) (VALEVdEL,IVAR,IBLK,ITIME),

IEL=1,NUMELB(IBLK))

—VALEV - the element variables at each element

37

C — for the current time step

END IF

140 CONTINUE

150 CONTINUE

C

END IF

160 CONTINUE

C

c
C —End of data is indicated by an end of file

C

CLOSE (NDB)

38

References

[1] "PATRAN Plus User Manual," PDA Engineering, Costa Mesa, CA, 1987.

[2] L. M. Taylor, D. P. Flanagan, and W. C. Mills-Curran, "The GENESIS Finite
Element Mesh File Format," Sandia National Laboratories, Albuquerque, NM,
SAND86-0910, May 1986.

3 9 / ^ ^

DISTRIBUTION
1510
1511
1511
1511
1511
1511
1511
1512
1513
1513
1513
1520
1521
1521
1521
1521
1521
1522
1522
1522
1522
1522
1523
1523
1523
1523
1523
1523
1524
1524
1524
1530
1550
2814
3141

J. W. Nunziato
N. E. Bixler
R. R. Eaton
D. K. Gartling
R. C. Givler
J. H. Ghck
P. L. Hopkins
J. C. Cummings, Jr.
D. W. Larson
J. A. Schutt
C. E. Sisson
L. W. Davison
R. D. Krieg
J. D. Miller
G. D. Sjaardema
C. M. Stone
J. R. Weatherby
R. C. Renter, Jr.
C. R. Adams
T. D. Blacker
R. J. Kipp
D. R. Martinez
J. H. Biffle
D. P. Flanagan (20)
A. P. GilVey
J. R. Koteras
W. C. Mi l l s -Curran^)
L. M. Taylor
A. K. Miller
K. W. Gwinn
J. Pott
W. Herrmann (actg.)
C. W. Peterson
P, F. Chavez
S. A. Landenberger (5)

3141-2 for DOE/OSTI (8)
3151
6416

W. I. Klein (3)
R. P. Rechard

8231
8231
8240
8241
8242
8243
8243
8244
8245
8524

M. H. Pendley
V. K. Gabrielson
C. W. Robinson
G. A. Benedetti
M. R. Bimbaum
M. L. Callabresi
W. E. Mason, Jr.
C M . Hartwig
R. J. Kee, Jr.
P. W. Dean

41

