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ABSTRACT

The Laplace Transfbrrn Boundary Element (LTBE) method is a recently introduced
numerical method, and has been used for the solution of diffusion-type PDEs., lt
completely elinfinat_ the time dependency of the problem and the need for time
discretization, yielding solutions numerical in space and semi-analytical in time. In LTBE
solu_,ions are obtained in the Laplace space, and are then inverted numerically to yield
the solutic.n in time. The Stehfest and the DeHoog t'orn_'lla.¢,ionsof LTBE, b_,e.d on two
differe,_t i,._versionalgorithms, are investigated. Both formulations produce comparable,
extrem_,_y_curate solutions. The Stehfest formulation uses real values for tlm Laplace
space parameter A, combines linearly the results of a liufited number of matrix solutions
(6 to 8), does not increase comput.er storage, i.ssimple to code, and requires significantly
less execution time, but :_ields a solution at a single observation time l for each set of A's.
The DeHoog formulation uses complex vMues for the A's, needs more matrix inversions,
and uses non-lib.ear combinations of the solutions, but allows solutions _t a range oi' times
t.from a single set of ,X's.Compared to the Stehfe_t LTBE, the DeHoog LTBE produces
matrices 4 tames as l_ge, increases execution times per matrix inversion by at, least a
factor of 12 and the memory requirements by a nfinimum, factor of 4. The Stehf_;:t LTBE
seems to have a clear advantage, except in cases involving very steep functiox_sof time.

INTROD UCTION

In diffusion-type equations, we seek an approximate solution to the PDE

1 aU(x,_,t)
v:'-u(;r,,,t)= p,: ot z_ e _ (1)

'with the boundary conditions

' U(_.,,,*,) = V(_,,,t), x,, E r, , (2)

v(_,,t) = _w(_,_) =V(_, ,), _., e r..,, (3)
• O,,(_,) '

and initial conditions
u(_.0 : Uo(_,,to). (4)



,J l_,J, ,l_llkl Ldli,_[ ,,,, _h irl, ,,., _ill,, ,iL, ,I_ ,, ,,i_Li_L,ii,. _ iii lbl, ,,k, .,_ ,, lll_Lilu , h_i _i , , IlL ,IA JL

f2 is tile solution domain (a volume ii, three-dimensions and an area in two dimensions) of
U, and z_ (_' - I, 2, 3) are the space coordinates_ I"_ emd I'_ are compleme,_tary segments

of the exterior surface I" (an area i:l three-dimensions a.nd a line in two dimensions), and y_

is the unit outward vector normal to F. U0 indicates known initial conditions, and _7 artd
'._ i

V indicate known values of U and V on the boundaries. The term k is a.ssurned constant
in time and space, and its interpretation depends on the physical problem under study.

Parameter invariability does not limit the generality of equation (1). Inhomogeneous

and anisotropic conditions are easily included by using subregions (e.g. Brebbia [1]) and
stretched coordinates (e.g.Liggett mad Liu [2]).

Two traditional methods are i_sed to address the problem of time dependency in
equation (1). The first uses a coupled boundary element-finite difference approach in

which a finite difference approximation of 0v"_i"is employed. This formulation, thoroughly

investigated by Curan, Cross, and Lewis [3], nee.ds small time steps to produce accurate

results, and requires large computation times. The second formulation [4] accounts for
time dependence by directly integrating over #,ime a weighted residuals equation of' the
PDlg in (1), and uses time interpolation functions (constant., linear, quadratic, or even

of higher order) and a time-marching procedure . These two time-marching schemes

(e.g. Wrobel and Brebbia [5]) were discussed in detail bv Brebbia [1]. Application of the
BEM method, eaad discretization of the resulting equations results in a system of linear

equations of the type Al ,7 = /_, where A is s fully populated N x N rnatr._x, 17 is the

vector of unknown (U_s or V's), and /_ is the known right-hand side of the discregized
equations. '1.'he time dependence, the complexity of determir_ation of the elements of the

matrix A (compounded by tee elaborate time interpolation and time-marching schemes),
and the fact that A is a fully populated matrix (unable to benefit from the wealth of

fast matrix solvers available for the solution of banded matrices) results in a laborious

and computer-time intensive numerical method which has limited the adoption of BEM
for the simulation of transient diffusion-type problems.

The combination of Laplace transforms with the BEM for the solution of (1) has
been attempted in the pa.st, but w_ hampered by the lack of a reliable algorithm for
the inversion from the Lapla,ce space into the origina,l time space. Using BEM and the

inversion method of Schapery [6], Rizzo and Shippy [7] solved the Laplace-traaasformed
equation of heat conduction. This inversion method had several serious weakne_es which

limited its application. I1, w,_s essentially a curve-fitting proems, and a.s such presupposed
some knowledge of the expected solution. The Laplace space transform part, meter ,_
was arbitrarily chosen, and a poor choice resulted in unstable solutions or insuftlcient

definition of the curve and reduced accuracy (e.g. Liggett and Liu [8]). The curve
fitting s_:heme required the determination of N coefficients obtained from the computer-
time consuming solution of a system of simultaneous equatiorts, and was irnpractical and
time-consuming if the boandaries had a complex tiz_le history (Lachat and Combescure
['_]).

The Laplace Transform Boundary Element (LTBE) numerical method, is a retentive

developed numerical method introduced by Moridis and l_eddeil [10]. lt belongs to _t
family of Laplace transform.based numerical methods introduced by Moridis a.nd Reddell

[11,12,13,14], and does not sufrer :rrom the limitations of the Schapery [6] t,zversion
scheme. The method eliminates problems with sl;ability and t_ccuracy posed by the
traditional treatment, of the time derivative, renders the time interpolation and tim,i:

n_arching schemes irrelevant, and allows an unlimited At size without any l¢.x;sof accuracy



or stability because thne is no longer considered, lt consists of 4 steps: (I) A Laplace

transfbrm is performed on tile PDE, (2) the transformed PDE is approximated using the

Boundary Elen_ent Method (BEM), (3)the resulting system of simultaneous equations L,_
solved and the transformed vector of unknowns is determined in the Laplace space, enid

• (4) the solution vector obta.ined in step 3 is inverted numerically to yield the solution
irt time. In thiz paper two a,lternative formulations of the LTBE, based on different

..... numel:ical inversion scheme_, are pre_ented and compared.

THE U_BE NUMERICAL METttOD

ht this section the mathematical basis of LTBE ks pre_ented and the four' steps involved
in its application are described.

te ............. t......._p__!.l; _ L.a.pl_c.e.._nsform of he P D__

Because of the properties of the Laplace transform, equation (1) b,,comes ;.a the Laplace
transform space

1[a,(_, a)-v0c_,,to)] (5)v2¢c_'"a)= i;
with the boundary conditions

_(,_,_)= W(_.,_), _ e T'I, (6)

oc_.,_)= b-ft;;)
where A is the Laplace space transform parameter,

• (_,,_)= LTu(_..,_)}, e(_,, _)= ClV(_,_)}, (8)

and l:{} denotes the Laplace transform of the quantity in brackets. If sources or sinks of

strength Q are included, then the term Q(z,_, A) = g{Q(z,_,t)} is added to the right..hand
side of equation (5).

Step_.2: The BEM in the Lap.]a.c_ee_ace

For an appropriate fundamental solution _*, the mJoimization of the weighted residuaL_
using the BEM at ali interior points _ yields the statement

_(z_,A) O'(_,z_,A) dr'(x_)+
,JL ,PL"

(9)
d_2(z,_),

df l .In

where (-)'(_', z_, A) = aq_°(_,z_,A)/On(z_). The fundamental solutkms @" for the two-

and the three-dimensional problem are given by Brebbia, Telles, and Wrcbel [4] and
Greenberg [1,5], and are respecticely

where K,,, is the moJifled Bessel function of the second kind arid of order m. The _"

of the three-dimensional problem hm_ a singularity a.s r --, 0, with a. limiting form of



@" _- 1/(4rkr) (&bramowitz and Stegun [16]). The _:_"of the tw_dimensional problem

issingularasr _/X_ _ 0 [141,witha limiting form

lim_,= 1._lnl 1 In k for rV/A"_'--0 (11)2_rk r 4rk ' '

For the point _ approaching F, the equation to be solved is lP

C(_) • (_, ;_)

. f _(_,_) _'(_,_,_) d_(_),Uo(x,,,to) _'(_,x,,,X) aft(x.)-- Jn
(12)

in which C(_') is a coefficient and t9° is discontinuous as _ -, P. Discretizstion of

equation (12) on the boundary I:'yields the relationship between the node i at which the
fundamental solution is &ppfied and ali the elements of the boundary, and has the form.

A_i A2i

N N

"= j=l

(_3)

N_ m = 1 N_ m

B_ T_

where F_. is the length of the element j, tom are the integration weight,s, m_d Ne is the

number of cells (of area A.e) into which ft is subdivided. The quantities (U0_')m and

((_@')m must be evaluated at, the M integration points. The quantity Bi represents a

domain integral resulting from the imposition of specific initial conditions. The quantity
represents the domain integral of source and sink singularities usually appearing in the

interior of ft, and allows an easy accounting for the effects of'sources and sinks if a better
definition of U and V in their vicinity is not needed. Bi and Ti do not introduce any
more unknowns since both U0 and Q are prescribed. If U0 satisfies Laplace's equation or
is harmonic in ft, _he domain integral of U0 can be transformed into equivalent boundary

integrals [1], and integration over the Ne cells of f_ to obtain Bi is avoided.

If constant boundary elements are employed, Ci - ½, and _I' and (3 are constant
within each element. Then A_i and A2i bec_me

N N

j=l j'-I

(14)

Substituting in equation (13), we obtain

N N

j=t j'-'!

where H_j = /_'i,j iri _ j and .11_ = /_Iij + ½ ifi = j. Caution must be used in the

cMculation of H;j _tnd Gij in the vicinity of singularities (usually as r --) 0), in which case



higher order integration schemes need to be used, e.g. Brebbia, Telles, and Wrobel [4],
Ligget and Liu [2]. Collecting and rearranging terms, we arrive at tile matrix equation

. n_-G(_ = R, R = B- T. (16)

The total number of unknown @'s and O's in equation (1.6) is N. Separating and
reordering knowns and unknowns yields the final BEM system of simultaneous linear
equations described by the matrix equation

A_7 = R, (17)

in which Y is the vector of unknown ¢'s and e's, /_ is the vector of the known right-
hand side, and A is the fully populated N x N coefficient matrbc. The use of constant
elements in our analysis does not affect the generalit'." of the LTBE method. If linear or
higher order elements axe used, the resulting final equations are invariably of the type of
equations (15), (16) and (17), and ali subsequent procedures apply.

__The_.q._Solution in the LaEla__e__

The computation of A and /_ necessitates values for the A parameter of the Laplace
space. These axe provided by the two schemes investigated in this paper: the Stehfest
algorithm (Stehfest [17, 18]), and the DeFloog method (DeHoog, Kinght, and Stokes

[19]). For a desired observation time t, the A in the Stehfest [17,18] algorithm is real and
given by

In2
A_,= .... v, v = 1, Ns (18)

where Ns is the number of summation terms in the algorithm ar.d is an even number.

Optimum values for Ns are discussed in a following section. In the DeHoog method [191,
A is a complex number given by Sudicky [20] and Crump [21] as

_,TrL In(En)
,\_=A0+--_--, A0=_ 2T ' v--- 1,...,NH (19)

where 2T is the period of the Fourier series approximating the inverse function in the

interval [0,27], _ = x/'Z'-.l, and NH = 2M + 1 is an odd number. A disc:_ssion of the

terms lt and En can be found in Sudicky [20]. As is later discu_ed, excellent results are

obtained when p = 0, l0 -l° .<_En < l0 -s, and 0.9 tmax _< T < 1.1 t,_az., where t,,a_: ks
the maximum simulation time.

The solution of (17) returns a set of Ns or Nal vectors of the unknown )7,s as

= -a = 1,...,Ns orX.. (20)

'lh obtain a solution at a time t, ali vectors )Tr, v = 1,... ,Ns or Nta are needed, i.e. the

. system of simultaneous equations has to be solved Ns or NH times. Once _7 is known,
the value of [q_(),_)]_ at any interior point i can be determined from the discretized

integral relat,ionship between i and the b.,undary values of _(A_) and O(A_) a.s

N N

= c,., - ft,., [v )],.+ v,.
j=l j=I



_o 4: The 'N___!nversiq_n of the La.piace Sohltion
The unknown U's at any boundary or interior point i and at any time t are obtained by
numerically inverting the Laplace space solutions @i(Av). When using the Stehfest [17,

18] algorithm, the procedure is described by the following equations:

in2 Ns

[u(t)l,=7- _w_. [¢(A,,)h, (22)

where

mi_(v,_ } _ (2_)! (23)wv= (-1)"_+_ '_-'--"_, ,'_ - _-,)!_!(_- 1)!(_- _)!(2_-_)!
_'-. "'+1) x

Although the accuracy of the meth :_is theoretically expected, to improve with increasing
Ns, Stehfes_; [17] showed that wi_., increasing Ns the number of correct significant

figures inreases linearly at first and then, due to roundoff errors, decreases linearly. He
determined that the optimum Ns was 10 for single precision variables (8 significant

fgures) and 18 for double precision variables (16 significant figures). However, Moridis

and Reddell [10] reported that LTBE seems to be insensitive to Ns for 6 _ Ns .<_20.

The inversion of the Laplace space solution obtained with the DeHoog [19] method

is far more complicated. The solution at a time t is given by

1 exp(A0t) Re _"A_,_, _ (24)

wh.ereA_l =0, Ao=do, B-1 =Bo- I,

A,=A,_I+d, zAn_2, Bn=Bn_j +d, zB,__, n=I,...,2M, (25)

do=ao, d2,n-l=-q(m °), d2m-----e_ ), m=l,...,M, (26)

= 1,...,M, e =vr -q +"t-x , tc=0,...,2M-2/?

(,,) .(,_+t)(_+I) __) _ = 0, 2M - 2_- Iforg::2,...,M, qt --_t.-.1 e_-I /e t, "", '

and

½q_(_,o), a,_=@(A,_) and z=exp(ert/T'i. (29)
ao-"

A further acceleration is obtained if on the last evaluation of the recurrence relations
d_. z is repaced by R2M(Z),

R_M(Z) = -h2M [1 .... _,_1 + d'2-MZ/h2_ i] , h2M = ._[1 +z (d_,,,,t__- d_M)], (30)

giving

:'12M = AXM-t + I_.2M .A_.AI-2, [3"_M= B2M-I -b R2M B2M-2, (31)

in which case the acceleraLed solution at a time t is given by

1 exp(A0[ ) ,_e I AR.--_M ) ° (32)



As will be shown irt a subsequent section, the minimum M for an acceptable accuracy is 5,

resulting in a NH = 11, which indicates that equation (1.7) has to be solved a minimum
of 11 times. For an accuracy comparable to thai, of the Stehfest method M > 6 and
NH _ 13. The unique advantage of the DeHoog formulation is that a whole range of

• solutions at times t in the range [0, T] can be obtained from a single set of solutions _,

i.e. equation (17) needs not be solved for each _ of interest.

• The solution in the Laplace space elinfinates stability and accuracy problems caused
by the treatment of the time derivative in standard BEM simulators, thus allowing an
unlimited time-step size. The truncation error of the method is limited to that caused by
the space discretization because time is not discretized, and provides a solution inherently
more accurate than _he standard BEM method for the same grid system. The ability
to use an unlimited time-step size bounds the accumulation of roundoff error by an
upper limit defined as the roundoff error accumulated afl,er the Ns or NII solutions.
Thus, LTBE offers a stable, non-increasing roundoff error irrespective of the time of
observation rob, because calculations are performed at one time only by letting At = toba.
Calculations in the standard BEM method have to be pertbrmed at all the intermediate
times of the discretized time domain, continuously accumulating roundoff error in the
process.

THEORETICAL COMPARISONS OF TItE TWO LTBE FORMULATIONS

.Computer Memory Requirements
This analysis excludes the memory requirement for property description and domain

discretization (which are identical in both formulations), and focus_ on the memory

needed to obtain the solutions of equations (22) and (24) or (32). In the Stehfest LTBE,
the memory requirements are limited to the storage needed for (a) the fully populated

matrix in equation (17), (b) the vector of the initial conditions, (c) the solution vector

ITL,in the Laplace space, (d) the vector of the interior points in equation (21), and (e) an

intermediate vector, which, because of the simple additive algorithm of equation (22),
is also used to store the solution at time t. If N is the number of boundary nodes and
Ni the number of interior points at which a solution is required, then the total memory

requirement (number of double precision words) for the Stehfest LTBE is

(_) Cb) (_) (_) (_)
_-_ _ _ _

Mst=N(N+I)+ N + N + Nd + Ni = N 2+3N+2Ni. (33)

The situation is drastically different for the DeHoog LI'BE. Because Xv (_' > 0) is
a complex number, ali the pertinent matrices and vectors are complex. Use of complex

arithmetic on a computer for the solution of the matrix equation (17) may be convenient,
but this approach is extremely inefficient and slow. A much better approach is to split
each node equation in two: the first equation is the equation of the real parts, and the
second is the equation of the imaginary parts. Then there is no need to use complex

arithmetic for the soiutiol_ of equation (17), the vectors Y and/£ become real vectors of
length 2N each, and matrix A is a fully populated 2N x 2N real matrix. In. the inversion
of the Laplace space solution using the DeHoog method ali the intermediate vectors

" /_, /3, _ _*,_*must be stored, and complex arithmetic must be used. Using the same

nomenclature as in equation (33), the storage requirement (in double precision words) is

. (_) (b) (_.) (d) (f)

MD_I=2N(2N't'I)+2N+2N'.'(2M+I)Ni+2Ni(2M2+IlM+7) (34)

==4N 2 + 6N + N_ (4M 2 + 24M + 17),



where Nn = 2M + 1 (equations (24) through (32)), and (f) indicates the memory
requirement for the intermediate vectors and corresponds to an optimized memory
management. The strong dependence of Moll on M and Ni is obvious, Figure 1 shows
the memory requirement ratio RMn = MollMst of the two formulations for a number

of cases for M = 5 (the absolute minimum), lt is evident, that (1) the DeHoog LTBE

requires at least 4 times the storage of the Stehfest LTBE, (2) RMn increases wi/_h the

number of internal nodes of interest Ni, and (3) RMR is significantly higher for N < 100

(usually the case in most LTBE simulations), demonstrating the advantage of the Stehfest
LTBE. This advantage becomes more pronounced with increasing M.

Computational Effort

The matrix in equation (17) is a ! filly populated matrix, and as such it is unable to benefit
from the wealth of fast matrix solvers available for the solution of banded matrices. The
solution of (17) is by far the n'lost computer time-intensive process in LTBE. This analysis

de' ermines the work of a Gauss elimination solver, and accounts for all the divisions,
multiplications, additions, subtractions, and register access operations (i.e. transfers

between registers and the main memory of the computer) involved in a single matrix
inversion. For the Stehfest LTBE scheme, the number of divisions is

N

L(t,/')-" _1= N, (35)
l=!

the number of multiplications is

N

L(s*' _ E(t2 + ,_ 1)- 6N(N + 1)(2N + 1)+ 1N(N "4"1)--N, (36)
l=l

the number of additions and subtractions is

N

L(±) ls, :-'_(£-1)(£+1)=: N(N4-1)(2N+I)-N, (37)
l=l

and the number of RAO's is

N

1N(N + 1) -t-2N (38)2 g(g + 1)(2N -4-1) + _L(_ A) '- _ [£(4t 4- 1)4-21- _"
t=l

In the Delloog formulation, for A = Ao tile equation to be solved (and the

corresponding computational effort) are practically the same as in the case of the Stehfest

version because ,_0 ks a real number and ali the constituents of equation (17) are real.
For ,_ with _ >_ 1, the equation splitting technique discussed in the previous subsection
results in a fully populated 2N x 2N real matrix A. Then the work for divisions,

multiplications, additions/subtractions, and RAO's are obtained from equations (35)
through (38) by replacing N by 2N in the summations.

The work to obtain t7 is then computed a.s

WT: " T= Dh ,(39)

where C (1/_:) C (') C (_) and _(_.A), , C , "-'C are tim computer clock cycles per division,

multiplication, addition or subtraction, and I&AO. The numbers of clock cycles per



operation for a number of different computers are presented in Table 1. Figure 2 shows
the work ratio Rw - WDH/Ws_ when M = 5 for a single matrix solution and for a
variety of computing platforms. Tile larger the value of Rw, the larger the execution
time required by the DeHoog LTBE and the less attractive the method compared to the

' Stehfest version, lt can be seen that. (1) a single matrix solution in the DeHoog LTBE

method requires at least 6 times the work (and the execution time) of the Stehfest LI'BE,

(2) Rw rapidly reaches the asymptotic value of (2N/N) S = 8, and (3) machine specificity
isnot an importantfactor.

...... Table 1. Clock Cycles .pcr Double Precision Operation for Various Computers

COMPUTER a+/- b a*b 1/b a*(1/b) Rcgis_ Access Operations RAO
Memory to Cache-Isr clement 22

IBM 3090 3 5 30 30 Memory to Cache-Next 15 elements 15

Cache to Register -16 ¢lcmcnts 16

TOTAL for 16 arrayelements 53
Prime2275 1 13 34 47 2

.Cra_-YMP 6 7 14 21 _Mcm_ to R.cgiste, - Scalar 17

EXPERIMENTAL COMPARISONS OF THE TWO LTBE FOB.MUI ATIONS

The two versions of the LTBE numerical method were tested in four diffusion-type
problems of groundwater flow which represented increasing levels of comp_.xity The
fact that the examples focus exclusively on groundwater problems does not in any way
limit the generality of the method, and an identical approach can be employed within
the same class of PDE's. In the first test problem, the LTBE solutions were verified
through comparison to the existing analytical solution. No analytical solution exists for
the remaining test cases. In ali tbur cases the results obtained from the implementation of
LTBE were tested against results obtained from a standard BEM simulator for the same

space discretization. Based on the previous work of Moridis and Reddell [10], a Ns = 6

was used in all the Stehfest LTBE simulation. The value of M = 6 (Nn = 13), wLich
was shown to result in an accuracy comparable to that of the Stehfest LTBE, was used
in the DelIoog LTBE simulations.The sinmltaneous equations of the LTBE and BEM
methods were solved by a Gauss elimination. Linear space interpolation functions were

used in all cases. In the BEM simulator a constant time interpolation was employed.
Double precision variables with 20 significant figures were used in all simulations.

Verification _ Test Case 1
Test case 1 represents the one-dimensional radial flow problem towards a well of radius
rw --* 0 in a homogeneous circular aquifer with infinite boundaries. The aquifer had

a transmissivity T = 1000 m2/day, a storage coefficient S = 0.0001, and water was

pumped at a rate of Q = 1000 mSday. A uniform thickness of 50 m was assumed,

and the initial aquifer pressure was taken as po = 6 x l0 s Pa. A single observation
was made at tob, = 10 days. A variable At was used for ali test cases in the

BEM simulator, given by the recursive formula Atr = rain{1.5 x Att_l,At_m,_}, with

At,naz = 8.64 x 104 sec = I day . The number of time-steps was therefore a function of
the original time-step At0.

The analytical solution was given by Theis [22]. Varying A_0 in the BEM simulator,
the number of required time-steps to reach tob, was 1, 2, 3, 4, 6, and 18. Tile drawdown



results for both the analytical and the numerical solutions, as well as the difference
between the Theis solution and the numerical solutions, are presented in Figures 3(a)

and 3(b) respectively. The Theis solution and the two LTBE solutions (obtained using
a total of Ni = 60 internal points} practically coincided, having a rrtaximum difference

of 1.0 x 10-a m at r = 0.01 m (where the maximum drawdown of 2.3487 m occurs).
As expected, the BEM solution tended towards the LTBE and the Theis solutions with

an increasing number of time-steps (smaller At's). Both LTBE variants give extremely
accurate results. The Stehfest LTBE solution .*_eemsto be slightly more accurate, but the
difference between the two LTBE versions is too small to be of any practical significance.

Te_t Case 2

The second test problem involved flow towards a single well in a twc,-dimensional

axisymmetric cylindrical (r, z)system. The geometry, boundaries, and properties of

the simulated aquifer (i.e. the permeabilities kt, k, in (r, z) and the porosities ¢), as
well as other general information, are shown in Figure 4, and describe an extremely
anisotropic and inhomogeneous layered system. Since no analytical solution is available,
a comparison was made between the LTBE and the BEM solutions. The initial pressure

and the boundary pressure at the constant head boundary were Po = 6.0 x 105 Pa. All
other properties were as in the Test Case 1.

The formulation of the equations followed the procedure described by Liggett

and Liu [2]. The domain was subdivided into 5 subregions, and stretched coordinates
were used to describe the anisotropy of the problem. For the LTBE and the BEM
simulations the internal and external boundaries were divided in 160 unequally-sized
elements, resulting in a total of N = 154 nodes. A single observation was made at

tob_ = 12 hrs. Varying At0 in the BEM simulator, the number of required time-steps to
reach to_0 was 1, 2, 5, and 28. Comparisons of the drawdown estimated from the LTBE
and the BEM solutions were made along the z axis at r = 0.15 m using a total of Ni = 25
internal points. The comparison appears in Figure 5, in which the same pattern as in the
Test Case 1 is evident. The accuracy of the LTBE solutions was indicated by the fact

that the BEM solution for an increasing number of At's (corresponding to a decreasing

At size, smaller truncation errors, and more accurate solutions) tended to the LTBE
solutions. The power of the LTBE methods is demonstrated in Figure 5 by its ability to
capture in detail the significant variations in drawdown due to the presence of wells and
zones of drastically different permeability. The standard BEM solution showed significant
deviations and insufficient accuracy caused by the averaging effect of the treatment of the
time derivative for larger At's, deviations which decreased with smaller A_'s. The two

LTBE solutions are extremely close. As is shown below (Figure 9), the Stehfest ve_:sion
is more accurate, but the difference is negligible for any practical purposes.

Test Case 3

The third test problem was identical to the problem in Test Case 2 in properties,
initial and boundary conditions, and space discretization. The different features in

'rest Case 3 are: (1) time-dependent well rates, obeying the linear relationship Q =

Q0(1 - 3.8580246 x 10-7t), where Q0 is the initial rate (same as in Test Case 2), and

t is in seconds, and (2) tin,e-variable boundary conditions (at the position of the time-

invariant boundary in Test Case 2) obeying the relationship ph(t) -- ph(0)+ 0.23148148 _,

where ph(t) is the time variable boundary pressure. A single observation was made at
tobj = 10 days. In the BlgM simulation equal time step sizes were used, resulting in 1,
10, 20, 40, 120, and 240 _'s.

Comparisons of the potential (head) estimated from the LTBE and the BEM
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solutions were made along the z axis at r = (i_15 m using the same Ni = 25 internal
points. The results of the comparison appear in Figure 6, in which the same pattern
observed in ali previous test cases is obvious: the two LTBE versions produced accurate
solutions, a fact indicated by the realization that the BEM solution for a decreasing z_t

" size tended to the LTBE solutions. Compared to the BF_M, the LTBE methods are better
equiped to accurately describe the effects of the presence of wells and zones of significantly
different permeability. These are identified by the existence of peaks and sharp variations

" in potential, variations which decrease in magnitude with a decreasing At size in the BEM
solution. Both the Stehfest and the DeHoog LTBE versions produce extremely accurate,
virtually indistinguishable results; the Stehfest version has a slight accuracy advantage,
but for practical purposes the two versions produce identical solutions.

Test_

Test case 4 was an anisotropic and inhomogeneous three-dimensional cartesian (x, y, z)
system of flow to two well_. The initial and boundary conditions, geometry, boundaries,
and properties of the aquifer, as well as the location and pumping rates of the two wells,
are shown in Figure 7. The aquifer had a time-variable boundary at x = 8,000 m. No
analytical solution was possible for this problem. Using the procedure of Liggett and

Liu's [2], the domain was subdivided into 3 subregions, and stretched coordinates were
used to describe the heterogeneity of the problem.

The boundary of the solution domain was discretized into 772 unequally-sized

triangular (linear) elements, with N = 364. The interior domain was subdivided into 800
tetrahedral elements for the computation of Bi and T_. A single observation was made
at tob_ =- 10 days. The LTBE methods were evaluated by comparing the solutions of the

potential (head) distribution along the x axis at y = 1050 rn, z = 17.5 m and passing

through the well at (x,y, z) = 2000 m, 1050 m, 17.5 m). The potential distribution is
shown in Figure 8. The pattern observed in ali previous test cases is present here. The
power of LTBE and the inability of BEM - caused by the averaging effect of the treatment
of the time derivetive for larger At's - to accurately describe the effects of wells and time-
variable boundaries are reflected in the difference between the solutions. The location of
tlm well can be identified by the existence of a 'valley' in Figure 8. With increasingly fine
time discretization, the BEM solution approaches the two LTBE solutions. Both LTBE
versions yield very accurate solutions which are very close to each other. The Stehfest
LrBE method is more accurate, but not significantly so.

MassBalanc__..____._.e_Error Consider ation_s

A very important measure of (a) the validity and accuracy of the LTBE methods and

(b) their relative performance was provided by the determination of the mass balance

error EB. Figure 9 shows EB for the Stehfest and the DeHoog LTBE methods, as well
as the dependence of Ep on Ns and N H. The following conclusions can be drawn:

(1) the Stehfest LTBE version is consistently more accurate (and computationally more

efficient) for a '_maller number of matrix solutions Ns, (2) as a mass balance error of 10-3

- 10 -2 is unacceptably high for most groundwater applications, the minimum acceptable

number of matrix solutions NH in the DeHoog LTBE is 11 (M = 5), (3) an accuracy

comparable to that of the Stehfest LI'BE version is attained for NH >_ 13 (M :> 6), (4)
the performance of the DeItoog LTBE seems to be far more adversely affecte.'t by the

complexity of the problem, (5) the performance of the Stehfest LTBE scheme improves

initially (but not monotonically) with an increasing Ns, and seems to be practically
. insensitive to the value of Ns for 6 < Ns <<' 16, as the arithmetic differences of the

solutions are at or beyond the 4th or 5th decimal place, and (6) the performance of the
DeHoog UrBE method improves monotonically with an increasing NH.
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These last two observations confirm the theoretical background of the two inversion
methods. The Stehfest algorithn_ is based on coefficients computed as ratios of facto riats
(equation (23)), which may be theoreticaliy correct but may introduce computational

errors because the rapidly increasing magnitudes and the re:suiting roundoff error may
over_,helrn the machine accuracy agter a certain Ns (which seems to be problem,-_peeific),
This can be evidenced by the existence of a minimum in the mass balance error curve.

On the other hand, the Detloog method is based on the Pade' approximant of an infinite

sum, and its accuracy keeps increasing with the number of _erms involved (M or N//)
until .the machine accuracy is reached. Thi_ is indicated by the monotonically declining
mass balance error in the DeBo.og LTBE curve, and is an advantage of the method in
the inversion of very steep functions of time such as step functions and spikes. This
seems to be the only case when the Stehfest algorithm is at a disadvantage, as it tends
to smear these steep front_. Stehfest [17] identified this weakness, and cautioned against

using the algorithm ia the inversion of extremel.y steep surfaces. Increasing Ns to 20 or
22 improves its performance, but small oscillations and some smearing persist. However,
such st,eep time functiot_s m_y be encountered o,nly if well rates or boundary conditions
are described by step functions or pulses. The DeIioog method is ideally suited to the
inversion of su,¢th s_..;eptime fuztctions, _nd returns extremely accurate solutions with an

M _ 10 (Nn __'2!). Unless the simulated process_ cannot be described otherwise (e.g.
by interrupting and restarting the simulation with a different well ra_e inst_ead of using
a step function), the excessive storage a.nd ¢:xecution tim_. requirements make the use of
the Deltoog LrBE method prohibitive,

Having determined the minimum M for' an acceptable level accuracy of the DeHo.og
LTBE scheme, the ratio of the total work for the two LTBE versions can be determined

a_ RTW :-- W,OH,T/Ws_,T, where the terms WIgtC,T and Ws_,7" indicate the total work

needed for the _31ution of equation (17) Ns and NH times respectively. Then

W_H,T 2 M _¢%n+ Wst (40)
RTW = _'-VSt__T= Ns Ws_ '

Considering a Ns = 6 and NH = 13 (M = 6) as the minimum necessa,ry for a

comparable performance of the two UI_BE methods (meeting acceptable accuracy crieria),
a theoretical estimate of RTw is given in Figure i0 for various computers. It is evident

that for the name discretization, the work (and consequent.l.y the execution time) for the
solution of the coefficient, matrix equation (17) in the DeHoog LTBE method is at least

12 (and up to slightly over 16) times tile work needed for the SteM'est LTBB version.
C,onversely, Figure 10 indicates that if computer memory is not, a limitation, the use of
the DeHoog LTBE version may be advantageous only if observations at more than I2-16

times are desired (since equation (17) does not need to be solved for more than one set of

A,. (v = I, .... , NH) in the range [0, 7']), However, in practice this number ts higher since
the considerable computationa,l effort expended in the computation of the intermedmte

complex vectors A, /J, d, q', e"i,s not considered ira equat, ion (40),

SUMMARY

The Laplace q.'ra.nsform Boundary Element (I.TFBE)method is a recently introduced
(Moridis and Reddel [10]) numerical method, and has been used for the solution of

diffusion..type PD_s. LTBE completely eliminates tile time dependency of the problem
and the need for time dtscretization, yielding s.olutions numerical irl space and semi- "

analytical ira time. It consi,nts of 4 steps: 1) A Laplace transforrn is perfo.rmed on the PDE,

2) the ¢,rannformed PDE is approximat,ed using the Bour_da:ry Element Method (BEM),
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3) the resulting system of simultaneous equations is solved and the transformed vector
of unknowns is determined in the Laplace space, and 4) the solution vector obtained in

step 3 is inverted numerically to yield the solution in time.

The Stehfest and the Deltoog formulations of LTBE, based on two different
numerical inversion algorithrra_, are investigated. Both formulations produce comparable,
extremely accurate solutions by combining the Laplace space solutions obtained for sets of

" discrete values of the Laplace parameter AmThe Stehf_st formulation uses real value_ for

the Av (g = 1, ..., Ns) parameters, combines linearly the Ns solutions without requiring

storage of the individual Ns volution vectors, but yields a solution at a single observation
time t for each set of A. It is simple to code, and yields a very accurate solution for a

relatively small Ns (6 to 8).

The Detloog formulation uses complex values for the A_ (u = 0, ..., NH) parameters,
requires storage of the NH individual 8olution vec_rs, uses non-lineax combinations of the
NH solutions, and needs a minhrmm of NH = 11 matrix inversions. However, solutions
at a range of times t can be obtained from a single vet of AI,. Compared to the Stehfest

LI'BE, an optimized DeHoog LTBE produce_ neat-singular matric_ 4 times as large (by

doubling the number of equations and the bandwidth), and increases (1) the execution

time requirements per matrix inversion by at least a factor of 12 and (2) the memory
requirements by at least a factor of 4. The Stehfest If/'BE seems to have a clear overall

advantage, with the exception of cases when the sinks or sourc_ involved are very steep
functions of time (i.e. step functio:_s or spikes).
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Fig. 7. Geometry, boundaries, and properties of the aquifer in Test Case 4. kx, kv and
kz are in m2.
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Fig. 8. Test C_e 4: poteatial (head) distribution obtained from a standard BEM and
the two LTBE methods.
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