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ABSTRACT

The Laplace Transform Boundary Element (LTBE) method is a recently introduced
nurnerical method, and has been used for the solution of diffusion-type PDEs. It
completely eliminates the time dependency of the problem and the need for time
discretization, yielding solutions numerical in space and semi-analytical in time. In LTBE
solutions are obtained in the Laplace space, and are then inverted numerically to yield
the soluticn in time. Tlie Stehfest and the DeHoog formulations of LTBE, based on two
different iiversion algorithms, are investigated. Both formulations produce comparable,
extrem~iy accurate solutions. The Stehfest formulation uses real values for the Laplace
space parameter A, combines linearly the results of a limited number of matrix solutions
(6 to 8), does not increase computer storage, is simple to code, and requires significantly
less execution time, but yields a solution at a single observation time { for each set of A's.
The DeHoog formulation uses complex values for the A’s, needs nmore matrix inversions,
and uses non-linear comnbinations of the solutions, but allows solutions at a range of times
¢ from a single set of A's. Compared to the Stehfest LTBE, the DeHoog LTBE produces
matrices 4 times as large, increases execution times per matrix inversion by at least a
factor of 12 and the memory requirements by a minimurm factor of 4. The Stehfcct LTBE
seems to have a clear advantage, except in cases involving very steep functions of time.

INTRODUCTION

In diffusion-type equations, we seek an approximate solution to the PDE
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§2 is the solution domain. (a volume in three-dimensions and an area in two dimensions) of
U,and z, (k= 1,2,3) are the space coordinates. I'y and I'y are complementary segments
of the exterior surface I' (an area in three-dimensions and a line in two dimensions), and n
is the unit ontward vector normal to I'. Uy indicates known initial conditions, and U and

V indicate known values of U and V on the boundaries. The term & is assumed constant
in time and space, and its interpretation depends on the physical problem under study.

Parameter invariability does not limit the generality of equation (1). Inhomogeneous
and anisotropic conditions are easily included by using subregions (e.g. Brebbia [1]) and
stretched coordinates (e.g.Liggett and Liu [2}).

Two traditional methods are used to address the problem of time dependency in
equation (1). The first uses a coupled boundary element-finite difference approach in
which a finite difference approximation of %?- is employed. This formulation, thoroughly
investigated by Curan, Cross, and Lewis [3], needs small time steps to produce accurate
results, and requires large computation times. The second formulation [4] accounts for
time dependence by directly integrating over time a weighted residuals equation of the
PDE in (1), and uses time interpolation functions (constant, linear, quadratic, or even
of higher order) and a time-marching procedure . These two time-marching schemes
(e.g. Wrobel and Brebbia [5]) were discussed in detail by Brebbia [1]. Application of the
BEM method, and discretization of the resulting equations results in a system of linear
equations of the type AY = R, where A is s fully populated N x N matrix, ¥ is the
vector of unknown (U's or V’s), and R is the known right-hand side of the discretized
equations. The time dependence, the complexity of determination of the elements of the
matrix A (compounded by the elaborate time interpolation and time-marching schemes),
and the fact that A is a fully populated matrix (unable to benefit from the wealth of
fast matrix solvers available for the solution of banded matrices) results in a laboricus

and computer-time intensive numerical method which has limited the adoption of BEM
for the simulation of transient diffusion-type problems.

The combination of Laplace transforms with the BEM for the solution of (1) has
been attempted in the past, but was hampered by the lack of a reliable algorithm for
the inversion from the Laplace space into the original time space. Using BEM and the
inversion method of Schapery [6], Rizzo and Shippy [7] solved the Laplace-transformed
equation of heat conduction. This inversion method had several serious weaknesses which
limited its application. It was essentially a curve-fitting process, and as such presupposed
some knowledge of the expected solution. The Laplace space transform parameter X
was arbitrarily chosen, and a poor choice resulted in unstable solutions or insufficient
definition of the curve and reduced accuracy (e.g. Liggett and Liu [8]). The curve
fitting scheme required the determination of N coefficients obtained from the computer-
time consuming solution of a system of simultaneous equations, and was impractical and
time-consurning if the boundaries had a complex tire history (Lachat and Combescure

[9))-

The Laplace Transform Boundary Element (LTBE) numerical method, is a recently
developed numerical method introduced by Moridis and Reddell [10]. It belongs to a
family of Laplace transform-based numerical methods introduced by Moridis and Reddell
(11,12,13,14], and does not suffer from the limitations of the Schapery [6] inversion
scheme. The method eliminates problems with stability and accuracy posed by the
traditional treatment of the time derivative, renders the time interpolation and time
marching schemes irrelevant, and allows an unlimited At size without any loss of accuracy
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or stability because time is no longer considered. It consists of 4 steps: (1) A Laplace
transform is performed on the PDE, (2) the transformed PDE is approximated using the
Boundary Element Method (BEM), (3) the resulting system of simultaneous equations is
solved and the transformed vector of unknowns is determined in the Laplace space, and
(4) the solution vector obtained in step 3 is inverted numerically to yield the solution
in time. In this paper two alternative formulations of the LTBE, based on different
‘numerical inversion schemes, are presented and compared.

THE LTBE NUMERICAL METHOD

In this section the mathematical basis of LTBE is presented and the four steps involved
in its application are described.

Step 1. The Laplace Transform of the PDE
Because of the properties of the Laplace transform, equation (1) becomes in the Laplace
transform space

V¥(z,, ) = 7i.[,\w(:ﬁ,,\) — Uo(zx:to)] (5)

with the boundary conditions

W(zy, A) = W(zs,A), ze€ly, (6)
0¥, ) _ ,
C-)(:c,;,z\)~ W) __é-(z,;,/\), zx €T, (7)

where A is the Laplace space transform parameter,
¥(ze A) = L{U(za 1)}, O(24,7) = L{V (26, 1)}, (8)

and L£{} denotes the Laplace transform of the quantity in brackets. If sources or sinks of

strength Q are included, then the term Q(z., A) = L{Q(z«,1)} is added to the right-hand
side of equation (5).

Step 2: The BEM in the Laplace Space
For an appropriate fundamental solution ¥*, the minimization of the weighted residuals
using the BEM at all interior points £ yields the statement

W(E,\) ::k/@(zK,A) W€ 2, N) dl"(x,;)——k/\ll(m,..,)\) O (€,2x,A) d'(24)+

& r (9)
/Uo(zmtu) V(€. 20, \) dQ(z,) w—/Q(x.‘,,\) W (€, zx,2) d2(z,) ,
£t 0

where ©*(€, 2., A) = 0¥ (€, 24,X)/In(z,). The fundamental solutions ¥* for the two-
and the three-dimensional problem are given by Brebbia, Telles, and Wrrbel [4] and
Greenberg [15], and are respectively
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where K,, is the moilified Bessel function of the second kind and of order m. The ¥*
of the three-dimensional problem has a singularity as r -- 0, with a limiting form of



¥* = 1/(4mkr) (Abramowitz and Stegun [16]). The ¥* of the two-dimensional problem
is singular as r\//\—/-l? — 0 [14], with a limiting form

limw* = ——tnt - Lind for r/i7E -0, (11)
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For the point £ approaching I', the equation to be solved is
C(§) ¥, ) =k/ O(zx, A) W7 (£, 2x, A) dl'(zx) - k/ W(ze,A) O (€, zx,A) dT(24)+
r r
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n 0

(12)
in which C(€) is a coefficient and ©* is discontinuous as £ — I'. Discretization of
equation (12) on the boundary I' yields the relationship between the node i at which the
fundamental solution is applied and all the elements of the boundary, and has the form
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where T; is the length of the element j, wy, are the integration weights, and N, is the
number of cells (of area A.) into which Q is subdivided. The quantities (Ug¥*),, and

(@¥*)m must be evaluated at the M integration points. The quantity B; represents a
demain integral resulting from the imposition of specific initial conditions. The quantity
T; represents the domnain integral of source and sink singularities usually appearing in the
interior of 2, and allows an easy accounting for tie effects of sources and sinks if a better
definition of U and V in their vicinity is not needed. B; and T; do not introduce any
more unknowns since both Up and @ are prescribed. If U satisfies Laplace’s equation or
is harmonic in €, ¢che domain integral of Uy can be transformed into equivalent boundary
integrals {1}, and integration over the N, cells of § to obtain B; is avoided.

If constant boundary elements are employed, C; = 1, and ¥ and © are constant
within each eilement. Then Aj; and Ay become

N N
Ay = }::H{‘jq’j, Do = 5; G.'“,'ej, where H =k ©%dl and G = k/ ¥rdl .
j=1 j=1 r r
(14)
Substituting in equation (13), we obtain
N N
LH.‘_J' ‘I’j—ZGg,J‘ 6, ~-Bi+Ti=0, (15)
j=1 j=1

where Hy = H;j il i # j and Hij = H;j + 3 if i = j. Caution must be used in the
calculation of H,; and G; ; in the vicinity of singularities (usually as r — 0), in which case



higher order integration schemes need to be used, e.g. Brebbia, Telles, and Wrobel [4],
Ligget and Liu [2]. Collecting and rearranging terms, we arrive at the matrix equation

— -~

HY-GO6=R, R=B-T. (16)

The total number of unknown ¥’s and ©’s in equation (16) is N. Separating and
reordering knowns and unknowns yields the final BEM system of simultaneous linear
equations described by the matrix equation

AY = R, (17)

in which ¥ is the vector of unknown ¥’s and ©’s, R is the vector of the known right-
hand side, and A. is the fully populated N x N coefficient matrix. The use of constant
elements in our analysis does not affect the generalit," of the LTBE method. If linear or
higher order elements are used, the resulting final equations are invariably of the type of
equations (15), (16) and (17), and all subsequent procedures apply.

Step 3: The Solution in the Laplace Space

The computation of A and R necessitates values for the A parameter of the Laplace
space. These are provided by the two schemes investigated in this paper: the Stehfest
algorithm (Stehfest {17, 18]), and the DeHoog method (DeHoog, Kinght, and Stokes
(19]). For a desired observation time t, the ) in the Stehfest [17,18] algorithm is rea} and
given by

,\Uzlr.;.?..y’ u:l,...,Ns (18)

where Ng is the number of summation terms in the algorithm ard is an even number.
Optimum values for Ng are discussed in a following section. In the DeHoog method [19],
A is a complex number given by Sudicky {20] and Crump [21] as

%4 In(E
/\u=f\o+7"i‘ Ao = p = E),’J«R)’ v=1,.. Ny (19)

where 27" is the period of the Fourier series approximating the inverse function in the
interval [0,27], « = =1, and Ny = 2M + 1 is an odd number. A discussion of the
terms p and Egr can be found in Sudicky [20]. As is later discussed, excellent results are

obtained when p =0, 107'° < Er < 1075, and 0.9 tpmaz < T < 1.1 tymaz, Where tpqz is
the maximum simulation time.

The solution of (17) returns a set of Ng or Ny vectors of the unknown ¥’s as

YV, =Y\) =AM B(\), v=1,...,Ns or Ny. (20)
"To obtain a solution at a time ¢, all vectors ﬁ,, v=1,...,Ng or Ny are needed, i.e. the

system of simultaneous equations has to be solved Ns or Ny times. Once Y, is known,
the value of [¥(),)]; at any interior point i can be determined from the discretized
integral relationship between i and the boundary values of ¥(4,) and ©(),) as

N N
¥ = E Gi; [©(W); - Eﬁi,j WA + B -1 . (21)
j=1 j=1
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Step 4: The Numerical Inversion of the Laplace Solution

The unknown U/’s at any boundary or interior point ¢ and at any time t are obtained by
numerically inverting the Laplace space solutions ¥;(A,). When using the Stehfest [17,
18] algorithin, the procedure is described by the following equations:

e l’l? Z W, . (22)
where
min{y, 58} Ng
Ng., e 73 (2x)!
W, = (-1)75+ \_.: - — (' ) ' x (23)
‘e a) {Z& — w)Il(x = 1)i(r = &)}(2x — v)!

Although the accuracy of the meth :1is theoretically expected to improve with increasing
Ng, Stehfesi [17] showed that wii.. increasing Ns the number of correct significant
figures inreases linearly at first and then, due to roundoff errors, decreases linearly. He
determined that the optimumn Ns was 10 for single precision variables (8 significant
figures) and 18 for double precision variables (16 significant figures). However, Moridis
and Reddell [10] reported that LTBE seems to be insensitive to N5 for 6 < Ng < 20.

The inversion of the Laplace space solution obtained with the DeHoog [19] method
is far more complicated. The solutioa at a time ¢ is given by

A
W), = -‘— exp(hot) Re{ 2M } , (24)
Bom
where A_; =0, Ag =dpy, By = By = 1,
Ay = A1+ dn 2 Anlsg, Bn =Bu_1+dn 2z Byg, n=1,...,2M, (25)

do = ag, dyn-1= -—~q( ) dopy = —e.s,?), m=1,....M, (26)

e=1,..., M, &P =gt _gfm et e L oM~ 2 -
27
for £=2,..., M, <~ng:‘+1> 0D k=0,...,2M - 201,

e =0fork=0,...,2M and ¢ =ar;facforn=0,...,2M -1,  (28)
and

ag = —;—‘I’()so), a, =¥(A;) and 2z =exp(ent/T\. (29)

A furtl}er acceleration is obtained if on the last evaluation of the recurrence relations
dap, 2z is repaced by Raps(z),

: y 1
Rop(z) = —hop |1~ (1 + dops 2/haar)], hopt = 5[1 + z (daap—1 — danr)], (30)

giving
Agrs = Aan -+ Rop Aapg g, Byp = Bapoy + Rom Bapr—g, (31)

in which case the accelerated solution at a time t is given by

2M

W), = % exp(lot) Re { ’;2’" } . (32)



As will be shown in a subsequent section, the minimum M for an acceptable accuracy is 5,
resulting in & Ny = 11, which indicates that equation (17) has to be solved a minimum
of 11 times. For an accuracy comparable to that of the Stehfest method M > 6 and
Nu > 13. The unique advantage of the DeHoog formulation is that a whele range of
solutions at times ¢ in the range [0,T] can be obtained from a single set of solutions ¥,
i.e. equation (17) needs not be solved for each t of interest.

The solution in the Laplace space eliminates stability and accuracy problems caused
by the treatment of the timne derivative in standard BEM simulators, thus allowing an
unlimited time-step size. The truncation error of the method is limited to that caused by
the space discretization because time is not discretized, and provides a solution inherently
more accurate than the standard BEM method for the same grid system. The ability
to use an unlimited time-step size bounds the accumulation of roundoff error by an
upper limit defined as the roundoff error accumulated after the Ng or Ny solutiens.
Thus, LTBE offers a stable, non-increasing roundoff error irrespective of the time of
observation to3, because calculations are performed at one time only by letting At = t,p,.
Calculations in the standard BEM method have to be performed at all the intermediate

times of the discretized time domain, continuously accumulating roundoff error in the
process.

THEORETICAL COMPARISONS OF THE TWO LTBE FORMULATIONS

Computer Memory Requirements

This analysis excludes the memory requirement for property description and domain
discretization (which are identical in both formulations), and focuses on the memory
needed to obtain the solutions of equations (22) and (24) or (32). In the Stehfest LTBE,
the memory requirements are limited to the storage needed for (a) the fully populated
matrix in equation (17), (b) the vector of the initial conditions, (¢) the solution vector

Y, in the Laplace space, (d) the vector of the interior points in equation (21), and (e) an
intermediate vector, which, because of the simple additive algorithm of equation (22),
is also used to store the solution at time t. If N is the number of boundary nodes and
N; the number of interior points at which a solution is required, then the total memory
requirement (number of double precision words) for the Stehfest LTBE is

() ®) (e @ (e
it S e S T o
Msi=N(N+1)+ N + N + Ni + N; = N2 +3N +2N;. (33)

The situation is drastically different for the DeHoog LTBE. Because A, (v > 0) is
a complex number, all the pertinent matrices and vectors are complex. Use of complex
arithmetic on a computer for the solution of the matrix equation (17) may be convenient,
but this approach is extremely inefficient and slow. A much better approach is to split
each node equation in two: the first equation is the equation of the real parts, and the
second is the equation of the imaginary parls. Then there is no need to use complex
arithmetic for the solution of equation (17), the vectors ¥ and R become real vectors of
length 2N each, and matrix A is a fully populated 2N x 2N real matrix. In the inversion
of the Laplace space solution using the DeHoog method all the intermediate vectors
A, 5, J, ¢, # must be stored, and complex arithmetic must be used. Using the same
nomenclature as in equation (33), the storage requirement (in double precision words) is

(a) () (e) (d) (’{)
v S N N -~ - > N
Mpy = 2N(2N -+ 1)+ 2N + 2N +(2M + 1) Ny +2N; (2M?2 +11M +7)  (34)
= 4N? + 6N + N; (4M? 4+ 24M 4 17),




where Ny = 2M + 1 (equations (24) through (32)), and (f) indicates the memory
requirement for the intermediate vectors and corresponds to an optimized memory
management. The strong dependence of Mpy on M and N; is obvious. Figure 1 shows
the memory requirement ratio Ry g = Mpy /Mg, of the two formulations for a number
of cases for M = 5 (the absolute minimum). It is evident that (1) the DeHoog LTBE
requires at least 4 times the storage of the Stehfest LTBE, (2) Rasg increases with the
number of internal nodes of interest N;, and (3) Ry g is significantly higher for N < 100
(usually the case in most LTBE simulations), demonstrating the advantage of the Stehfest
LTBE. This advantage becomes more pronounced with increasing M.

Computational Effort
The matrix in equation (17) is a {ully populated matrix, and as such it is unable to benefit

from the wealth of fast matrix solvers available for the solution of banded matrices. The
solution of (17) is by far the most, computer time-intensive process in LTBE. This analysis

de ermines the work of a Gauss elimination solver, and accounts for all the divisions,
multiplications, additions, subtractions, and register access operations (i.e. transfers
between registers and the main memory of the computer) involved in a single matrix
inversion. For the Stehfest LTBE scheme, the number of divisions is

N
L(slt/z) = El =N, (35)
=1
the number of multiplications is
X 1 1
L =S +e-1)= gV +DEN + 1)+ SN(N +1) =N, (36)

=1

the number of additions and subtractions is
N ]
L) =S (e~ 1)t +1) = NN+ DEN+1) =N, (37)
=1

and the number of RAQ's is

N
R 9 . 1,
LM =" [eae+1) +2) = SNV +DEN + 1)+ 5NN +1) +2N . (38)
£=1
In the DeHoog formulation, for A = Ay the equation to be solved (and the

corresponding computational effort) are practically the same as in the case of the Stehfest
version because Ao is a real number and all the constituents of equation (17) are real.
For A with £ > 1, the equation splitting technique discussed in the previous subsection
results in a fully populated 2N x 2N real matrix A. Then the work for divisions,
multiplications, additions/subtractions, and RAQ’s are obtained from equations (35)
through (38) by replacing N by 2N in the summations.

The work to obtain ¥ is then computed as

¥

Wr =C8/® . LM 4.5 L + ¢ LB 4 ¢ LB T = 51, DE, (39)

where Cg/x), Cg), Cé,i), and C(;M) are the computer clock cycles per division,
multiplication, addition or subtraction, and RAO. The numbers of clock cycles per



operation for a number of different computers are presented in Table 1. Figure 2 shows
the work ratio Rw = Wpy/Ws when M = 5 for a single matrix solution and for a
variety of computing platforms. The larger the value of Ry, the larger the execution
time required by the DeHoog LTBE and the less attractive the method compared to the
Stehfest version. It can be seen that (1) a single matrix solution in the DeHoog LTBE
method requires at least 6 times the work (and the execution time) of the Stehfest LTBE,
(2) Rw rapidly reaches the asymptotic value of (2N/N)? = 8, and (3) machine specificity
is not an important factor.

Table 1. Clock Cycles per Double Precision Operation for Various Computers

COMPUTER a+/-b a*b 1/b  a*(1/b) Repister Access Operations RAO
Memory to Cache-1st element 22

IBM 3090 3 5 30 30 Memory to Cache-Next 15 elemenis 15
Cache to Register -16 elements 16
TOTAL for 16 array elements 53
Prime 2275 1 13 34 47 2
Cray-YMP 6 7 14 21 Memory to Register - Scalar 17

EXPERIMENTAL COMPARISONS OF THE TWO LTBE FORMUI ATIONS

The two versions of the LTBE numerical method were tested in four Aiffusion-type
problems of groundwater flow which represented increasing levels of complexity The
fact thal the examples focus exclusively on groundwater problems does not in any way
limit the generality of the method, and an identical approach can be employed within
the same class of PDE’s. In the first test problem, the LTBE solutions were verified
through comparison to the existing analytical solution. No analytical solution exists for
the remaining test cases. In all four cases the results obtained from the implementation of
LTBE were tested against results obtained from a standard BEM simulator for the same
space discretization. Based on the previous work of Moridis and Reddell [10], a Ng = 6
was used in all the Stehfest LTBE simulation. The value of M = 6 (Nyg = 13), which
was shown to result in an accuracy comparable to that of the Stehfest LTBE, was used
in the Deloog LTBE simulations.The simultaneous equations of the LTBE and BEM
methods were solved by a Gauss elimination. Linear space interpolation functions were
used in all cases. In the BEM simulator a constant time interpolation was employed.
Double precision variables with 20 significant figures were used in all simulations.

Verification & Test Case 1

Test case 1 represents the one-dimensional radial flow problem towards a well of radius
ry == 0 in a homogeneous circular aquifer with infinite boundaries, The aquifer had
a transmissivity T = 1000 m?/day, a storage coefficient S = 0.0001, and water was
pumped at a rate of @ = 1000 m3/day. A uniform thickness of 50 m was assumed,
and the initial aquifer pressure was taken as po = 6 x 10° Pa. A single observation
was made at t,,, = 10 days. A variable At was used for all test cases in the
BEM simulator, given by the recursive formula Af, = min{1.5 x At,_;,Atnas}, with

Almaz = 8.64 x 10* sec = 1 day . The number of time-steps was therefore a function of
the original time-step Atg.

The analytical solution was given by Theis [22]. Varying Atp in the BEM simulator,
the number of required time-steps to reach 1,5, was 1, 2, 3, 4, 6, and 18. The drawdown



results for both the analytical and the numerical solutions, as well as the difference
between the Theis solution and the numerical solutions, are presented in Figures 3(a)
and 3(b) respectively. The Theis solution and the two LTBE solutions (obtained using
a total of N; == 60 internal points) practically coincided, having a maximum difference
of 1.0 x 10~2 m at r = 0.01 m (where the maximum drawdown of 2.3487 m occurs).
As expected, the BEM solution tended towards the LTBE and the Theis solutions with
an increasing number of time-steps (smaller At’s). Both LTBE variants give extremely
accurate results. The Stehfest LTBE solution seems to be slightly more accurate, but the
difference between the two LTBE versions is too small to be of any practical significance.

Test Case 2

The second test problem involved flow towards a single well in a two-dimensional
axisymmetric cylindrical (r,z) system. The geometry, boundaries, and properties of
the simulated aquifer (i.e. the permeabilities k., k. in (r, z) and the porosities ¢), as
well as other general information, are shown in Figure 4, and describe an extremely
anisotropic and inhomogeneous layered system. Since no analytical solution is available,
a comparison was made between the LTBE and the BEM solutions. The initial pressure
and the boundary pressure at the constant head boundary were po = 6.0 x 10° Pa. All
other properties were as in the Test Case 1.

The formulation of the equations followed the procedure described by Liggett
and Liu [2]. The domain was subdivided into 5 subregions, and stretched coordinates
were used to describe the anisotropy of the problem, For the LTBI and the BEM
simulations the internal and external boundaries were divided in 160 unequally-sized
elements, resulting in a total of N = 154 nodes. A single observation was made at
tops = 12 hrs. Varying At in the BEM simulator, the number of required time-steps to
reach t,;, was 1, 2, 5, and 28. Comparisons of the drawdown estimated from the LTBE
and the BEM solutions were made along the z axis at r = (.15 m using a total of N; = 25
internal points. The comparison appears in Figure 5, in which the same pattern as in the
Test Case | is evident. The accuracy of the LTBE solutions was indicated by the fact
that the BEM solution for an increasing number of At’s (corresponding to a decreasing
At size, smzller truncation errors, and more accurate solutions) tended to the LTBE
solutions. The power of the LTBE methods is demonstrated in Figure 5 by its ability to
capture in detail the significant variations in drawdown due to the presence of wells and
zones of drastically different permeability. The standard BEM solution showed significant,
deviations and insufficient accuracy caused by the averaging effect of the treatment of the
time derivative for larger At's, deviations which decreased with smaller At’s. The two
LTBE solutions are extremely close. As is shown below (Figure 9), the Stehfest veusion
is more accurate, but the difference is negligible for any practical purposes.

Test Case 3

The third test problem was identical to the problem in Test Case 2 in properties,
initial and boundary conditions, and space discretization. The different features in
Test Case 3 are: (1) time-dependent well rates, obeying the linear relationship @ =
Qo(1 — 3.8580246 x 10~"t), where Qo is the initial rate (same as in Test Case 2), and
t is in seconds, and (2) tinie-variable boundary conditions (at the position of the time-
invariant boundary in Test Case 2) obeying the relationship py(t) = ps(0) +0.23148148 ¢,
where p;(t) is the time variable boundary pressure. A single observation was made at

1os, = 10 days. In the BEM simulation equal time step sizes were used, resulting in 1,
10, 20, 40, 120, and 240 L.s.

Comparisons of the potential (head) estimated from the LTBE and the BEM

10



solutions were made along the z axis at r = ( 15 m using the same N; = 25 internal
points. ' The results of the comparison appear 1n Figure 6, in which the same pattern
observed in all previous test cases is obvious: the two LTBE versions produced accurate
solutions, a fact indicated by the realization that the BEM solution for a decreasing At
size tended to the LTBE solutions. Compared to the BEM, the LTBE methods are better
equiped to accurately describe the effects of the presence of wells and zones of significantly
different permeability. These are identified by the existence of peaks and sharp variations
in potential, variations which decrease in rmagnitude with a decreasing At size in the BEM
solution. Both the Stehfest and the DeHoog LTBE versions produce extremely accurate,
virtually indistinguishable results; the Stehfest version has a slight accuracy advantage,
but for practical purposes the two versions produce identical solutions.

Test Case 4 ‘

Test case 4 was an anisotropic and inhomogeneous three-dimensional cartesian (z,y, z)
system of flow to two wells. The initial and boundary conditions, geometry, boundaries,
and properties of the aquifer, as well as the location and pumping rates of the two wells,
are shown in Figure 7. The aquifer had a time-variable boundary at z = 8,000 m. No
analytical solution was possible for this problem. Using the procedure of Liggett and
Liu’s 2], the domain was subdivided into 3 subregions, and stretched coordinates were
used to describe the heterogeneity of the problem.

The boundary of the solution domain was discretized into 772 unequally-sized
triangular (linear) elements, with N = 364. The interior domain was subdivided into 800
tetrahedral elements for the computation of B; and T;. A single observation was made
at to5, = 10 days. The LTBE methods were evaluated by comparing the solutions of the
potential (head) distribution along the x axis at y = 1050 m, z = 17.5 m and passing
through the well at (z,y, z) = 2000 m, 1050 m, 17.5 m). The potential distribution is
shown in Figure 8. The pattern observed in all previous test cases is present here. The
power of LTBE and the inability of BEM - caused by the averaging effect of the treatment
of the time derivetive for larger At’s - to accurately describe the effects of wells and time-

variable boundaries are reflected in the difference between the solutions. The location of
the well can be identified by the existence of a ‘valley’ in Figure 8. With increasingly fine

time discretization, the BEM solution approaches the two LTBE solutions. Both LTBE
versions vield very accurate solutions which are very close to each other. The Stehfest
LTBE method is more accurate, but not significantly so.

Mass Balance Error Considerations

A very important measure of (a) the validity and accuracy of the LTBE methods and
(b) their relative performance was provided by the determination of the mass balance
error Eg. Figure 9 chows Eg for the Stehfest and the DeHoog LTBE methods, as well
as the dependence of Eg on Ng and Ngy. The following conclusions can be drawn:
(1) the Stehfest LTBE version is consistently more accurate (and computationally more
efficient) for a smaller number of matrix solutions Ng, (2) as a mass balance error of 10-3
- 10~% is unacceptably high for most groundwater applications, the minimum acceptable
number of matrix solutions Ny in the DeHoog LTBE is 11 (M = 5), (3) an accuracy
comparable to that of the Stehfest LIBE version is attained for Ny > 13 (M > 6), (4)
the performance of the DeHoog LTBE seems to be far more adversely affected by the
complexity of the problem, (5) the performance of the Stehfest LTBE scheme improves
initially (but not monotonically) with an increasing Ng, and seems to be practically
insensitive to the value of Ng for 6 < Ng < 16, as the arithmetic differences of the
solutions are at or beyond the 4th or 5th decimal place, and (6) the performance of the
DeHoog LTBE method improves monotonically with an increasing Ny .

11



These last two observations confirm the theoretical background of the two inversion
methods. The Stehfest algorithm is based on coeflicients computed as ratios of factorials
(equation (23)), which may be theoretically correct but may introduce computational
errors because the rapidly increasing magnitudes and the resulting roundoff error may
overvthelm the machine accuracy after a certain N (which seems to be problem-specific).
This can be evidenced by the existence of a minimum in the mass balance error curve.
On the other hand, the IDeHoog method is based on the Pade' approximant of an infinite
sum, and its accuracy keeps increasing with the number of terms involved (M or Ny)
until the rachine accuracy is reached. This is indicated by the monotonically declining
mass balance error in the DeHoog LTBE curve, and is an advantage of the method in
the inversion of very steep functions of time such as step functions and spikes, This
seems to be the only case when the Stehfest algorithm is at a disadvantage, as it tends
to smear these steep fronts. Stehfest [17] identified this weakness, and cautioned against
using the algorithm in the inversion of extremely steep surfaces, Increasing Ns to 20 or
22 improves its performance, but small oscillations and some smearing persist. However,
such steep time functions may be encountered only if well rates or boundary conditions
are described by step functions or pulses. The Delloog method is ideally suited to the
inversion of sush st vep time functions, and returns extrernely accurate solutions with an
M 210 (Ny 2 21). Unless the simulated processes cannot be described otherwise (e.g.
by interrupting and restarting the simulation with a different well rate instead of using
a step function), the excessive storage and uxecution time requirements make the use of
the DeHoog LTBE methesd prohibitive,

Having determined the minimum M for an acceptable level accuracy of the DeHoog
LTBE scheme, the ratio of the total work for the two LTBE versions can be determined
as Rrw = Wour/Wsim, where the terms Wpy v and Ws o indicate the total work
needed for the solution of equation (17) Ng and Ny times respectively. Then

Wonr 2M Wpy + Wsy
Wser Ns Wsy '

Rrw = (40)

Considering a Ns = 6 and Ny = 13 (M = 6) as the minimum necessary for a
comparatle performance of the two LI'BE methods (meeting acceptable accuracy crieria),
a theoretical estimate of Ryw is given in Figure 10 for various computers. It is evident
that for the same discretization, the work (and consequently the execution time) for the
solution of the coefficient matrix equation (17) in the DeHoog LTBE method is at least
12 (and up to slightly over 16) times the work needed for the Stehfest LTBE version.
Conversely, Figure 10 indicates that if cornputer memory is not a limitation, the use of
the DeHoog LTBE version may be advantageous only if observations at more than 12-16
times are desired (since equation (17) does not need to be solved for more than one set, of
Av (v=1,..., Ng) in the range [0, T]). However, in practice this number is higher since
the considerable computational effort expended in the computation of the intermeciate
complex vectors A, B, d, g, € is not considered in equation (40).

SUMMARY

The Laplace Transform Boundary Element (L.TBE) method is a recently introduced
(Moridis and Reddel {10]) numerical method, and has been used for the solution of
diffusion-type PDEs. LTBE completely eliminates the time dependency of the problem
and the need for time discretization, yielding solutions numerical in space and semi-
analytical in time. It consists of 4 steps: 1) A Laplace transform is performed on the PDE,
2) the transformed PDE is approximated using the Boundary Element Method (BEM),
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3) the resulting system of simultaneous equations is solved and the transformed vector
of unknowns is determined in the Laplace space, and 4) the solution vector obtained in
step 3 is inverted numerically to yield the solution in time.

The Stehfest and the DeHoog formulations of LTBE, based on two different
numerical inversion algorithms, are investigated. Both formulations produce comparable,
extremely accurate solutions by combining the Laplace space solutions obtained for sets of
discrete values of the Laplace parameter A. The Stehfest formulation uses real values for
the A, (v =1,...,, Ng) parameters, combines linearly the Ns solutions without requiring
storage of the individual Ng solution vectors, but yields a solution at & single observation
time ¢ for each set of A. It is simple to code, and yields a very accurate solution for a
relatively small Ng (6 to 8).

The DeHoog formulation uses complex values for the A, (v = 0, ..., Ny ) parameters,
requires storage of the Ny individual solution vectors, uses non-linear combinations of the
Ny solutions, and needs a minimum of Ny = 11 matrix inversions. However, solutions
at a range of times t can be obtained from a single set of A,. Compared to the Stehfest
LTBE, an optimized DeHoog LTBE produces near-singular matricss 4 times as large (by
doubling the number of equations and the bandwidth), and increases (1) the execution
time requirements per matrix inversion by at least a factor of 12 and (2) the memory
requirements by at least a factor of 4. The Stelifest LTBE seems to have a clear overall
advantage, with the exception of cases when the sinks or sources involved ure very steep
functions of time (i.e. step functions or spikes).
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