[S-4991
UC-37

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy,
completeness or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States Government
or any agency thereof.

Printed in the United States of America

Available from

National Technical Information Service
U.S. Department of Commerce

5265 Port Royal Road

Springfield, VA 22161

IS--499]
DE90 011719

Artemis User Guide

Version 2.1

M. S. Gorbics

Ames Laboratory* and Department of Physics
Iowa State University
Ames, IA 50011

Date Transmitted: February, 1989

*Operated by Iowa State University for
the U. S. Departiment of Energy under Contract
No. W-7405-ENG-82.

. IR hee e s [g
Cee OO OF THIE DOCUNMINT iS UNLQ?"‘)
LR "]

February 16, 1989 Page ii

Table of Contents

Table of Contentsc.oviuiiiiiiiiiiii it iiiiiierennerennroernnneennnnss i
Abstract ... e e it e iii
1. Introductioncviiiiiiiiiiiiiiiiii ittt i retsnnnnttannnanaans 1
2. Program Organizationc.coiiiiiiiiiiiiiiiiiiiiiiitieeiinnernnans 2
2.1 Program Modules ..ottt iiiiieriiiiirenniaeaaeeaans 2
2.2 Menus and Displaysvvueiitiiniitiiiiiireneirenetineeneenneennns, 2
2.3 Plots, Graphs and Fitsoooiiiiiiiiiiiii ittt iiiiieieiiaieens 5
2.4 FASTBUS Interfaceccvvviiiiiiiiiiiiiiiiteiiiiiiereennneeeesrenanns (.
2.4.1 Softwarecviiiiiiiiii i i i e it e s 7
2.4.2 LeCroy 1821 Softwarecc.iiiiitiiineiiinreeenreeronerennaenanns 8
2.4.3 Common Interface Problemsccooiiiiviriiiiiiiiiiiiinnnnnn, 11
2.5 GPIB Interfaceouiiiiiiiiiiiiiiiiiiiriiineeeentennnnnennesennnns 11
3. Tests and Servicesoviniririiiiiriiiiiiiiieiriitiniteeernnatneenns 12
3.1 Re-initializationooiiiiiii ittt iiii e rennneeaas 12
3.2 FASTBUS Primitivescouiiiueeiniinteeeaeeennoeessrsnnnsnesannennans 13
3.3 Digitizer Primitivesoouiiiiiiiiii i 14
3.4 Motorola 68000 Primitivesccvviitiiiieiinnnreneenennonnacnennns 15
3.5 Board Testsvniiiiniiiiiii it ittt ettt e 17
3.5.1 Coupler Shakedownccoiiiiiiiiiiiiiiiiiiiiiiiierinnnennenns 17
3.5.2 Microprocessor Shakedowncoiiiiiiiiiiiiiiniiiiiinnnnn, 18
3.5.3 FEB Shakedownccooiiiiiiiiiiiiiiiiiiiieneaennneaneenns 19
3.6 Multi-scan Testooiiuiiiiiiii ittt iiie it ianneeenneaeananns 20
3.7 Linearity Testcooviiniiiiii ittt iiieeeriaranenssesannss 22
3.8 Sawtooth Testooviiiiriiii i it ittt ettt ee e e, 25
3.9 Pulse Test ...oonitiinniiiiiiiii ittt ienetnnnasaeerannseansoeenns 28
3.10 Delta Testueeiiieiii ettt ettt et reaeetatenannsnseraannnnans 30
3.11 BooKKeepIngc.vvuiiiniiiiiit i i i i e 32

DistribUtion List ..ottt ettt ittt teseaeroeesasennonnseensoneesananneens 33

February 16, 1989 Page iii

Abstract

This document describes a software package used to test the Ames Waveform
Digitizer. It is intended to help the user in setting up and operating a test bench
using the FASTBUS (IEEE-960) data acquisition protocol connected to a VAX'™

computer.

February 16, 1989 Page 1

1. Introduction

Artemis is the software part of a test bench used to evaluate the performance of
the Ames Waveform Digitizer. Artemis allows the operator to exercise the digitizer in a
variety of configurations. The testbench in Ames consists primarily of a FASTBUS crate
including a host interface to a VAX and a General Purpose Master (GPM), a VAX/VMS
system, and a Hewlett Packard 3314A function generator. The user directs Artemis to
perform tests by selecting menu options and results are displayed as tables and graphs.

This document is intended to aid both the users and implementors of this program.
In the next section we describe the structure of the program and its interfaces with the
hardware. This will facilitate additions and modifications to Artemis and the testbench
hardware. Because this program has been developed in a testing environment it has been
designed for easy modification. Once the structure is understood, it should be possible
to do many modifications without invalidating any of the testing programs. While the
user interface makes the addition of new tests and equipment easy, the Artemis program
is very specific to the VAX/VMS system.

The section on Tests and Services describes the tests which are currently available
in Artemis. These tests include primitive scope loops, measurements of linearity and
differential linearity, and general shakedown tests of the digital systems.

The user is presumed to be familiar with the Ames Waveform Digitizer Module User
Guide.

Correspondence about this document should be addressed to W. T. Meyer, Room 12
Physics, Iowa State University, Ames, IA 50011.

February 16, 1989 Page 2

2. Program Organization

Artemis consists of a group of relatively independent modules. Each module performs
a particular set of operations on the FASTBUS system. Depending on the task intended,
reasonable assumptions are made by the module. For example, the linearity testing module
expects the function generator to be connected to the digitizer input, the FASTBUS to be
initialized and the correct software already loaded to the digitizer’s microprocessor before it
begins. However, the FASTBUS primitives module will operate even without the digitizer
in the FASTBUS crate and can be very useful for testing other FASTBUS modules.

The main routine in Artemis presents a list of the options. Each option selects one
of the other modules. Most modules will, in turn, present their own menu of tasks which
can be performed. When the operator closes the module, it will terminate and restore
the terminal screen as it was when the module was initiated. In this way, Artemis runs
continuously, starting and stopping tests as directed.

2.1 Program Modules

The Artemis program is stored in a root directory with the logical name art$root. The
program is initiated with the command ‘§ run artemis/nodeb.” All of the files required
by Artemis are accessed with logical names. These logical names are usually directed to
a lower node in the directory tree.

The source code for the primary modules is stored in the directory art$root:[source].
Each source code file is a command file which creates a FORTRAN source file, menu text
file, and any include files needed by the module. This same command file then compiles
the source code and purges any excess files. All FORTRAN commons are implemented
as include files in the directory art$root:[source.common]. The text for menus is located
in the subdirectory art$root:[source.menutext]. These directories are referred to by the
logical names ‘common’ and ‘menutext.’

Finally the executable image is created, in the Ames testbench, with the command
‘¢ @ames.link’.

2.2 Menus and Displays

Menus and displays are generated using the screen management routines (SMG) of
the VAX/VMS system. This allows the Artemis menu system to be compatible with any
terminal known by the VAX/VMS system. Each module is expected to respect the SMG
system by restoring the contents of the terminal screen upon its termination.

’

The SMG system provides for the creation of ‘virtual displays.” Each display is like
a note card. The number of rows and columns in the display is determined when the
display is created. Users can put any characters they want in the display and save it in an

unseen place. Then, when desired, the note card can be posted in any desired position on

February 16,1989 Page 3

the terminal screen. When the card is removed, any cards that were covered will become
visible again.

Typically, the first time a module is activated, it will open its corresponding file in
the menutext directory and read all the text for its displays into memory. These displays
fall into three groups. First, there are the menus. In a menu display, the second column
contains the letter to type in order to select the option described to the right of the letter.
Second, there are the data displays, for which all the labels, units and explanation text
are in the text file and the numbers are filled in later as they are generated. Finally,
some displays contain only numbers and have little or no text to store in the text file. An
example would be the display of the contents of the microprocessor memory where the
display window is filled edge to edge with hexadecimal numbers. This type of display is
usually created and deleted as it is needed, rather than saved in the menutext file.

Table 2.1. Support Routines for Menus and Displays

MENU_PICK(ID) Wait for menu selection
DISPLAY WAIT Wait for any key

PLOT.WAIT Wait for any key

WARN(ID) Display simple warning
NEW_DISPLAYS(FILENAME) Open text file of display data
GET_DISPLAY(ID) Read text of one display
END_DISPLAYS Close display file
SHOW_X(ID,IR,IK,IV) Hexadecimal number
EDIT_X(ID,IR,IK,IV) Modify

SHOW_F (1D, IR,IK,AV,FMT,NCOL) Floating point number
EDIT_F(ID,IR,IK,AV,FMT,NCOL) Modify
SHOW_D(ID,IR,IK,IV,FMT,NCOL) Decimal integer
EDIT_D(ID,IR,IK,IV,FMT,NCOL) Modify
SHOW_C(ID,IR,IK,CV,FMT,NCOL) Character string
EDIT_C(ID,IR,IK,CV,FMT,NCOL) Modify
SHOW_A(ID,IR,IK,IV,OPTS,NOPT) Show one of a set of strings
EDIT_A(ID,IR,IK,IV,OPTS,NOPT) Select new option

Because these displays are common throughout Artemis many support routines, lo-
cated in the module named SMG have been written for them. Table 2.1 lists the primary
routines in this module along with a short description. The variable ID is a unique integer
assigned by the system to each display. IR and IK indicate the row and column where
the action is to take place. All row and column locations are relative to the upper left
corner of the display, not the terminal screen. IV, AV, and CV are integer, floating point
and character variables, respectively, and contain the current value of the variable being
modified or displayed. FMT is a character string containing the desired FORTRAN for-
mat specifiers in parenthesis and NCOL is the number of characters of output the format
will generate.

February 16, 1989 Page 4

The MENU_PICK routine takes the display indicated and highlights the second col-
umn (assuming these are the allowed options) and waits for the operator to select an
. option.

The routine DISPLAY _WAIT is used by MENU_PICK and waits for the user to type
a key. Most characters typed by the user are returned in the character variable ‘IC’ in
common ‘VDCOM’, but a few characters are interpreted immediately. The ‘Z’ option
(not listed in many menus, but always available) will cause the current text screen to be
saved to a file for printing. The ‘!’ option will cause a screen refresh.

The routine PLOT _WAIT is used for graphics displays. This routine insures that all
graphics characters are sent to the screen and waits. When the user presses a key, the
corresponding character is returned as described above. Again, the ‘Z’ option will save
the contents of the screen for printing. The graphics commands to generate the screen
are always saved in a file, but if the ‘Z’ option is not selected the file is deleted. Thus the
operator cannot print the same screen twice, unless it is erased and redrawn. This system
also allows access to any higher resolutions that may be available on the plotting device.

The routine WARN plants the indicated display in the middle of the screen and waits
for the user to type a character (returned in IC). Generally this is used to warn the
operator that something is not right.

The three routines named ‘xxx_DISPLAYS’ are used for retrieving text for displays
from the ‘menutext’ directory. The first opens the file indicated. The second reads one
display and stores a pointer to the display in the variable ‘ID’. This pointer must be used
anytime a reference to the display is made. Finally, the last routine closes the file.

Table 2.2 shows an example of the format for the menutext file. The first two numbers
indicate the number of rows and the number of columns. Experience has shown that
keeping the displays basically the same width is easier on the eyes, so the standard width
is 32 columns for small menus and displays and 80 for full screen monsters. The next line
in the menutext file is the title, which will be in the center of the upper edge of the display.
The following lines will be the initial text in the display. In this example, dots indicate
where numbers will show later.

The standard VAX routines in the SMG system are used for functions such as creating
displays, putting them on the screen (paste), and removing them. Consult the VAX
reference manual or the Artemis source code for details. The convention for positioning
the menus on the terminal screen is to overlap them like pages, so that the headers of
covered menus are still visible. This requires that each level of menus be lowered one
additional line and indented two additional columns. See section three for examples of
the terminal screen.

The group of routines ‘SHOW _x’ and ‘EDIT x’ is designed to modify numbers and
character strings in a display. The current contents of the display at the location given are
overwritten with the new data. In the case of the edit, the current value of the variable is
shown highlighted and the operator may accept the number as it is or enter a new value.

February 16, 1989 Page 5

Table 2.2. Example text for display routines

4 32
Menu Title
T Tic Tac Toe
C Chess
G Global Thermonuclear War
E Exit
4 32
Display Title
Temperature ... F
Pressure KPa
02 content ««.. PPM
Radiation rem/hr

These routines are fairly tolerant of entry errors. If the error is intercepted, the operator
is prompted to reenter the data.

2.3 Plots, Graphs and Fits

Plots and graphs are used throughout Artemis. The module PLOT provides routines
for drawing histograms and point plots. Additional options allow the user to select one
of several types of fits to be superimposed on the data. The same fits are available for
analysis of the data within the Artemis modules. Plot limits, plot type, fit type, and titles
are maintained in a data base which may be modified by the operator.

Table 2.3 lists the basic entry points for the plotting and fitting routines. The vari-
ables X and Y are arrays of NPTS points each. The variables BQ, BL, BIL, B, AL, AQ,
Al, A2, Bl, B2 are fit parameters in various formats. At present no uniform naming
convention for these variables exists. Consult the source code for the current usage of
these routines.

Table 2.3. Plotting and Fitting Routines

QPLOT(NPTS,X,Y,BOUNDS, IATTR,LABEL)
QPLOT.EDIT(BOUNDS, IATTR,LABEL, IPLOTS)

FUNCTION CHISQQ(X,Y,NPTS,BQ)

FUNCTION CHISQL(X,Y,NPTS,BL)

FUNCTION CHISQBL(X,Y,NPTS,BIL)

QFIT(X, Y, NPTS, BL, BQ)

TWOFIT(X, Y, NPTS, BREAK, B)

FOURFIT(X, Y, NPTS, IP, AL, AQ)

BIFIT(V, A,NPTS, BREAK, A1, B1, A2, B2, CHISQ)

The routine QPLOT generates a graphic display of the data given. Every plot is
marked with the currently selected channel and the saved timestamp string (presumably

February 16, 1989 Page 6

corresponding to when the data were collected). If a fit has been specified, it is done
only to the plotted data points and then displayed. Some parameters of the fit are also
displayed to the left of the plot. No provision is made to save the text on the terminal
screen. This must be done before a call to QPLOT. QPLOT returns as soon as all the
graphic output is generated. The calling routine may then add additional graphics to the
screen before calling PLOT_WAIT. After PLOT_WAIT returns, the calling routine must
either begin a new plot or restore the previous menu data to the screen (see SMG routine
SAVE_PHYSICAL_SCREEN).

The graphics support is obtained with a modified version of Mini GD3 on the VAX
system. The modifications are all associated with the implementation of the ‘Z’ option to
print graphic displays.

The variables BOUNDS, IATTR, LABEL, and IPLOT form the data base of plotting
parameters. Included are the plot limits, attributes and labels for all the plots in a single
Artemis test. Table 2.4 shows the format for these variables. The initial values of the
plotting data base are declared in each Artemis module. This data base can be modified
either by the Artemis module or a call to QPLOT_EDIT. The routine QPLOT_EDIT
puts up a data display of the current values and allows the operator to modify any of the
values.

Table 2.4. Plot database variables

BOUNDS (1,I) Lower x limit of I-th plot
(2,I) Upper x limit
(3,I) Lower y limit
(4,I) Upper y limit
(5,I) X grain size (not used)
(6,I) Y grain size (not used)

ATTR (1,I) Number of tick marks, x
(2,I) Number of tick marks, y
(3,0) Fit*100 + Autoscale
(4,I) Plot type

LABEL (1,I) Text label

IPLOT (1) Current plot to edit
(2) Total number of plots

Note that space has been allocated for autoscaling (grain size) but this has not been
implemented. This has not been a problem since many routines adjust the x-scale au-
tomatically. If it is implemented, it should be turned off and on by the parameter in
ATTR(3,]).

The different types of fits are simply numbered. If the fit number is nonzero then
the corresponding fit is done to the data between the upper and lower x-limits of the plot.
Not all fits will work on arbitrary data. Some require the data to cover some specific
ranges in either x or y. These fits are specialized to the FADC used on the digitizer.

February 16, 1989 Page 7

The basic fitting routines are listed in Table 2.3. The routine QFIT performs both a
linear and a quadratic fit to the data given. The variables BL and BQ are one dimensional
vectors of the fitted linear and quadratic coefficients respectively. The constant term is
first and the quadratic term is last. The routines TWOFIT and FOURFIT partition the
data according the multi-linear nature of the the FADC and perform fits (with QFIT) on
each partition separately. BIFIT is similar to TWOFIT except that the two partitions
are constrained to meet at the point defined by BREAK.

2.4 FASTBUS interface

Where possible Artemis uses subroutine calls which conform to the NIM FASTBUS
standard. Where the use of the LRS 1821 host interface made it necessary, special FAST-
BUS interface routines were developed to conform to this standard. These routines are
stored in a file called FB21.FOR. With the introduction of a similar set of FASTBUS rou-
tines and a few modifications Artemis should be able to use a different FASTBUS interface.
In many set-ups, Artemis should be able to use only the standard routines. An earlier
version of Artemis has been successfully run at CERN using the standard CERN libraries
and CFI to VAX interface.

2.4.1 Software

Artemis uses only a subset of the routines and features defined in the standard men-
tioned above. In this section, we describe the interface routines as implemented for use
with Artemis and the LeCroy 1821 FASTBUS master.

We use the arrays STATUS and CNTRL throughout the FASTBUS interface routines.
Their functions are as their names suggest. While the standard describes complex formats
for these arrays, our routines use only the second word in each of them for controlling and
reporting the results of a single operation. The standard also supplies two names for
each function, but we only use the short version. The names are made from code letters
which indicate Read, Write, Control space, Data space, Block transfer, and Multi-listener
(Broadcast operation). Table 2.5 is a list of subroutines defined in FB21.FOR.

The PRIMAD and SECAD variables indicate the primary and secondary address,
respectively. OUTBUF and INBUF are single word or array variables for the data being
handled. MAXLEN is the number of bytes for a block transfer. This version requires
that this number be an exact multiple of four to allow translation into FASTBUS cycles
(division by four).

The routine FWDBX is non-standard. This routine performs a block transfer write
operation, but only a single data word is accepted as input. This data word is written
multiple times to the target slave. In Artemis, this routine is used to zero large blocks
of the microprocessor program memory before the initial program load. This routine was
made necessary because of a bottleneck in the VAX to 1821 interface in Ames.

February 16, 1989 Page 8

Table 2.5. FASTBUS Interface Routines

FBINIT (STATUS, CNTRL)

FRD (STATUS, CNTRL, PRIMAD, SECAD, INBUF)
FWD (STATUS, CNTRL, PRIMAD, SECAD, OUTBUF)
FRC (STATUS, CNTRL, PRIMAD, SECAD, INBUF)
FWC (STATUS, CNTRL, PRIMAD, SECAD, OUTBUF)

FRDM (STATUS, CNTRL, PRIMAD, SECAD, INBUF)
FWDM (STATUS, CNTRL, PRIMAD, SECAD, OUTBUF)
FRCM (STATUS, CNTRL, PRIMAD, SECAD, INBUF)
FWCM (STATUS, CNTRL, PRIMAD, SECAD, OUTBUF)

FRDB (STATUS, CNTRL, PRIMAD, SECAD, INBUF, MAXLEN)
FWDB (STATUS, CNTRL, PRIMAD, SECAD,OUTBUF, MAXLEN)
FWDBX(STATUS, CNTRL, PRIMAD, SECAD,OUTBUF, MAXLEN)

Table 2.6 lists the function of the bits in the second word of the CNTRL array. For
compatibility, the first word of the control array should contain the value sixteen (indicating
a length of the array in bytes), but this is not checked in this version. '

Table 2.8. Meaning of bits in CNTRL(2)

FOGERR Leave bus state unchanged on ANY error abort
FONOAR No Arbitration Cycle

FONOPA No Primary Address Cycle

FOEG Master asserts EG (Geographic address)

FOGKUP Retain Bus Mastership at end of operation

FONOSA No Secondary Address Cycle (Internal Address)
FONDC No Data Cycle(s)

FOASUP Retain AS/AK lock at end of operation

FOBLKE Define SS=2 as Block Transfer error end

FOBUFE Define MAXLEN transfers as Block Transfer error end

© 00 ~3IO Ui W -O

Table 2.7 describes the meaning of the status bits in the second word of the STATUS
array. The first word of the status array should also contain the value of sixteen to indicate
the length of the array. This value is not checked in this version nor are any words, other
than the second, used or modified. A routine, FBCHECK, exists to allow the user to
check STATUS(2) and write an appropriate error message if it is non-zero.

2.4.2 LeCroy 1821 Software

The material in this section is specific to the LeCroy 1821 Segment Manager Interface,
which we use in Ames. Users of other systems may skip this section.

The software for the LeCroy 1821 FASTBUS interface is organized in five parts. The
FB driver is installed on the microVAX and provides the interpretation of QIO calls

February 16, 1989

Table 2.7. Meaning of bits in STATUS(2)

Page 9

0 FESSO SS0 line value
1 FESS1 SS1 line value
2 FESS2 SS2 line value
3 FEARB Failed to obtain Bus Mastership
4 FETMAK Timeout on AK handshake
5 FEAKSS Bad SS response with AK
6 FEREL Failed to release Bus Mastership
7 FETMDK Timeout on DK handshake
8 FEDKSS Bad SS response with DK -or-
FEPTRY Read Data parity error (SS=0)
9 FEASAK AS=1 or AK=1 before an address Cycle
10 FEASRL AS=1 or AK=1 after AS/AK disconnect
11 FEDSDK DS#DK before a data cycle
12 FEWTAC Timeout on WT in a Address Cycle
13 FEWTDC Timeout on WT in a Data Cycle
14 FEBLTR Block Transfer End error (user defined)
15 FEINT Inclusive OR of bits 3 and 4 or nonFASTBUS hardware error

directed to the FASTBUS “device.” The FASTBUS device is named FBAn:, where n
(normally zero) is selected by a switch on the front panel of the 1821. The file named
PORTS.COM contains the routines (QIO calls) for the most basic transactions with the
1821. These transfer data to and from the eight 16-bit registers of the 1821. The file
ROM_ISU.LRS contains the code necessary for the 1821 itself. The file U1821.COM con-
tains general purpose routines for transferring data to and from the 1821. These routines
will load and unload entire programs into the 1821 primary program or auxiliary memory.
Finally the file FB21.FOR contains the routines to implement FASTBUS operations as
described in the previous section.

The 1821 contains a high speed programmable sequencer (computer) specifically de-
signed to interact with the backplane of the FASTBUS. The state of FASTBUS signals
can be examined and changed every 5 ns. The connections to the VAX are done through
the AUX connector of the FASTBUS crate (higher number of the two possible slots). A
small card provides the connection to two 40 conductor ribbon cables which connect to a
DR11W. The DR11W is a standard unibus device but the microVAX requires an adapter
to connect the Q-bus to unibus.

The host computer controls the LeCroy 1821 either by downloading software or by se-
lecting software from one of several ROMs in the 1821 (only the download of ROM_ISU.LRS
is used in Artemis). The host then starts the 1821 in its idle loop. To execute an op-
eration on the FASTBUS, the host computer sends the transfer address of a subroutine
located in the program memory of the 1821. As soon as the 1821 returns to the idle loop,
after completing the previous operation, it executes a jump to the address sent.

February 16, 1989 Page 10

If the host computer were fast enough (or the 1821 slow enough), operations could
be lost due to a pileup effect. Hardware flags are provided to prevent this problem by
allowing the host to synchronize with the 1821. In practice, with conventional FASTBUS
operations, the microVAX is too slow for this to be a problem except possibly on block
transfers. Observed speeds for block transfers into the 1821 from the FASTBUS are more
than 4 MHz. Thus a kiloword transfer would complete in less than 300 microseconds.

Data transfer to the host is done by manipulating a pointer into the data memory
of the 1821. The host computer sets the address of the data memory pointer and reads
the data. When the 1821 is reading data from the host, this same pointer is used and
incremented as necessary.

The program memory of the 1821 is organized as 256 words containing 96 bits each.
Every instruction uses exactly one word in the program memory. The instruction word
is divided into various fields which control different subsystems of the 1821. For example
one field in the instruction word will determine the state of the FASTBUS control lines
(MS,SS,EG,RD, etc.) at the end of the instruction while another will independently
determine if data are received from the bus or asserted on the bus. Incorrect FASTBUS
protocols can be easily realized. For example, it is possible to assert data on the bus while
directing a slave device also to assert data on the bus. Appendix 1 is a summary of the
fields in the 1821 instruction word.

To help create new LRS-1821 software one major software tool was developed. Thisis
a cross dis-assembler which converts the machine language of the LRS-1821 into mnemon-
ics. While the LRS dis-assembler still requires the programmer to write in machine lan-
guage, it provides a rapid method of checking the code created. The disassembler operates
on a text file which lists each instruction and its location in hexadecimal. The output
has the exact same format except that mnemonics have been added after each instruction
word. Thus the programmer can make a chaﬁge with a text editor, put the result through
the dis-assembler, check the results, and either repeat the process or send the file to the
loader (which ignores the comments and mnemonics). An example of this format is shown
in appendix 2. Appendix 2 is the 1821 code developed for the test bench and supports all
forms of addressing in FASTBUS (ROM_ISU.LRS).

The 1821 code is arranged into three basic sections. The first is the idle loop in
locations 0-8 of the program memory. This loop allows the 1821 to watch for various
conditions while waiting for the next instructions. For example, service requests could be
monitored between FASTBUS operations. The second section, 9 through 3F(hex), is a
jump table. Each subroutine starts in this section and if more that one or two instructions
are required a jump is executed into the third section to reach a longer subroutine. This
is useful because many subroutines are the same except for the setting of some status bits.
For example both the geographic and logical primary address cycles are identical except
for some status bits which can be set by the single jump instruction. This arrangement
also allows the programmer to arrange the subroutines in the third section as necessary

February 16, 1989 Page 11

without changing the transfer addresses stored in the host computer.

2.4.3 Common Interface Problems

On the Ames test bench some common errors with the FASTBUS interface can cause
strange and confusing symptoms. In this section, we will describe some of the understood
problems and their solutions. We hope information in this section will help prevent some
head-scratching sessions in the lab.

Suppose the operator arrives in the morning and, after turning on the system, the
power is OK but FASTBUS won’t respond. The first thing to check is the status of the
FASTBUS driver with the VAX command ‘$ show device fba’. If the device is offline this
is the problem. Sometime during the night something caused the microVAX to reboot.
When the FASTBUS driver was installed it could not detect the 1821 and went offline.
There is no way to put the driver online. There are two possible solutions to this situation.
Simplest is to reboot the microVAX with the FASTBUS power on. Second is to create
another FASTBUS driver unit number. In other words, change the unit number on the
1821 and install FBA1l: as a new device. This requires an expert. '

Another situation is that everything is running smoothly and suddenly all transactions
with the FASTBUS fail. This may be caused by a problem with the DR11W in the unibus
interface. The easy solution is to turn the power to the DR11W off and then back on.
Take care to not do this while access to the FASTBUS is being attempted by the VAX.
This will cause a hard error and reboot by the VAX.

2.5 GPIB interface

The General Purpose Interface Bus (GPIB) is an IEEE standard now available on
many electronic devices on the market. In the Test Bench we use this bus to interface to a
HP 3314A function generator. This device provides the waveforms for most of the analog
tests done on the digitizer boards. The interface board attaches directly to the Q-bus of
the microVAX.

Software supplied with this interface allows a privileged user on the VAX to perform
any operation defined on the GPIB, using the QIO calls of the VAX. Simple software
modifications were required to allow a user access to the GPIB port without having exotic
privileges from the operating system.

Typically a software package is written for using each device in the desired mode.
For example the HP function generator is used as a millivolt source to drive DC levels to
the input of the digitizer. A single subroutine call makes the connection to the function
generator and selects the desired functions. Additional calls select only new DC levels to
avoid the overhead of resetting all the possible functions of the generator. Other routines
use the generator as a pulse generator and as a source of a sawtooth signal.

February 16, 1989 Page 12

3. Tests and Services

The purpose of Artemis is to test Ames Waveform Digitizers. This section describes
most of the basic services provided. Note that these tests are divided into three groups
by their level of complexity. The lowest level is the FASTBUS primitives section which
can operate even without the digitizer. The next level is other ‘primitives’ which do not
require the digitizer’s microprocessor to operate. At the highest level are the ‘tests’ which
require the microprocessor to operate and, in general, use it to process large amounts of
test data.

Access to these tests is through the menu system described earlier. Table 3.1 shows
the appearance of the terminal screen when Artemis begins. The top line of the display
is a time stamp from the last time data were read from a board and the serial number of
the board used to collect the data. The initialization routines may modify these values.

Table 3.1. Main Menu

+--- 21-NOV-88 13.37.10 #693 ----+
Re-initialize Stuff |
Fastbus Primitives |
Digitizer Primitives |
68000 Primitives |
Threshold set |
Linearity Test i
Board Tests |
|
|
I
|
|
I
|

=

Pulse Test

SawTooth Test
Delta test

Multi event scan
Bookkeeping
Snapshot (any menu)
Quit (any menu)

oNEE I OWnYTEAA X0

Note that the Z and Q options are displayed in this menu. These options are available
in all menus but often are not displayed. The output of the snapshot will be put in the

directory art$root:[output]. This output can be redirected to a printer with the logical
name LASER.

3.1 Re-initialization

Selecting the Re-initialization option will result in the screen shown in table 3.2. The
most frequently used option in this menu is the full initialization. The routine assumes
the power to the FASTBUS crate has just been turned on. The host interface and GPM

February 16, 1989 Page 13

are initialized and their programs reloaded. The digitizer board is initialized and its
microprocessor programs are reloaded. If all is working the operator should be able to go
directly to any of the tests at this point.

Table 3.2. Re-initialization services

+--- 21-NOV-88 13.37.10 #693 ----+

4-—----- Initialization Services -------- +
A Full initialization after power up |
B Init Host Interface only |
C Search Crate for Digitizer boards [
D Init all boards |
E Select primary board I
F Read and display 1821 Code |
G Init GPM only |
H SPECIAL |

|
|
|
I
|
|
|
|
l
l
The other options are used less often. Options B through E are subsets of A. Options

F and H are normally used to identify DR11W problems by reading parts of the 1821
program from the 1821. If these test work the problem is on the FASTBUS itself.

3.2 FASTBUS Primitives

The primitive FASTBUS operations allow the user to execute most “normal” FAST-
BUS operations. Selection of this option in the main menu will produce the screen display
shown in table 3.3.

The primary and secondary address are put in the data displays by the user and the
results of the operation are displayed below them. All forms of addressing are available.
Logical addressing can be done both with secondary address cycles (Logical I) or with an
internal address (Logical II). Note that the internal address format is only valid in data
space. Broadcast operations are done by specifying the broadcast address as the primary
address and selecting the Broadcast addressing mode. The broadcast address is complex
and generally a FASTBUS reference manual is required to construct the correct address.
Some of the more complex operations, for example pattern attach, are not possible with
this system. ALL values are displayed in hexadecimal.

Scope loops and other testing programs can be run in the GPM using software down-
loaded into the GPM program memory. Option G presents the user with a menu of the
currently available choices. The currently set primary address is used to select the target
board.

Scope loops can also be executed in the Lecroy 1821, if it is available. Usually, it is
preferable to run the loop in the GPM, but special circumstances may require the 1821.
Option L is used to select these scope loops. The code for the 1821 is found in the

February 16, 1989 Page 14

Table 3.3. FASTBUS Primitives

Z Snapshot (any menu) |
Q Quit (any menu) |

+~-- 21-NOV-88 13.37.10 #693 ----+

| 4--=-m- FASTBUS PRIMITIVES ---+----+ +--~- FASTBUS ADDRESSING ----+
	A Select Addressing Mode		Mode Geographic
	B Select Control/Data Space	ISpace Control	
	C Select Primary/Geographic Addr		Primary Addr 00000011
	D Select Secondary Addr/Data		Geographic Addr 00000011
	R Read		Secondary Addr 00000000
	W Write	IData 00000000	
	G GPM Scope Loops	IStatus 00000000	
	L 1821 Scope Loops	#mmmmm e +	
	P Primitive 1821 Function		

| | 0 Load data to 1821 |

| | I Unload data from 1821 l

I

|

|

subdirectory art$root:[LRS]. The convention for scope loops is that the code overwrites
the region 40 to 90 hex in the 1821 program memory and the initial transfer address is 40
hex. The format for code loaded into the 1821 has been discussed in a previous section.

Because the 1821 scope loops operate at a very primitive level, the primary address of
the target module is hard coded in the 1821 code. An interlock is provided such that if the
digitizer is not detected in the correct slot (19 decimal), a warning is displayed. Typing
a tab character at the warning will bypass this check.

At a deeper level, the operator may specify an address in the Lecroy 1821 FASTBUS
master, where execution is to begin (option P). This allows the users to execute parts
of addressing sequences or control individual FASTBUS signals. Data can also be loaded
and unloaded from the 1821 with options I and O. These options are primarily used for
debugging 1821 code and require an expert.

3.3 Digitizer Primitives

The digitizer primitives module uses the displays shown in table 3.4. This module
allows the user to examine the results of single triggers in three different formats.

A typical sequence for the examination of a single trigger might be as follows. First
select option A to set the desired channel, event, threshold and width. Threshold and
width are the zero suppression parameters. The board channel number is the physical
location of the channel on the board. Then the function generator is set with option G.
This assumes the function generator is active and used as input to the digitizer. Next,
option C (or both T and R) is selected. This causes a trigger to be sent to the board and

February 16, 1989 Page 15

Table 3.4. Digitizer Primitives

+--- 21-NOV-88 13.37.10 #693 ----+
| +---- DIGITIZER PRIMITIVES ----+ +---- DIGITIZER ADDRESSING ----+
	A Set Parameters		Channel 0
	C Trigger and Read		Event o
	D Display Previous Readout		Threshold 0
	E Display Current Data I IWidth o		
	F Plot Current Data I	Board Channel No. o	
	H Edit Plot parameters I	Target ADC Code 64	
	K Set all pedestals	{Upper Search Limit 2150 mV	
	G Edit Function Generator	et D +	
	T Trigger		
	R Read (no trigger)		
	S Pedestal Summary		
	L Search for ADC code		
#=—mmmm - +			
mmm e e e cm—aa +

a readout of part of the FEB. The data selected with option A are saved and available
for display. Option D shows the data exactly as read from the digitizer, in hexadecimal.
Option E shows the data in decimal, corrected for the effects of zero suppression. Finally,
option F display the data as a plot.

Notice that this program module can also be used to set the width and threshold for
single channels. The option K has been included to allow the operator to set the width
and threshold for all channels to the same value. There is also another module which will
set the width and threshold based on the pedestal of each channel.

As stated earlier, this entire section operates without the microprocessor. Thus the
analog functions and zero suppression functions can be examined even if the microprocessor
is not functioning. These services are also useful for other tests, to adjust the system before
starting a long or complex analog test.

Notice the option L, which will search for a DC offset corresponding to a particular
ADC code. This is useful in the preparation of other tests where the saturation or break-
point is needed in volts. The search is done with a primitive method called binary division.
The algorithm starts with the voltage range -100 mV to the ‘Upper Search Limit’. The
center value of the range is tested and the range is cut in half. This procedure is repeated
nine times. This method will always terminate. Do not attempt to search for the ADC
codes 255 or zero as this will not produce the desired result.

3.4 Motorola 68000 Primitives

Microprocessor primitives were developed to test the microprocessor and its programs.
These functions allow the user to test microprocessor memory, load a program, set param-

February 16, 1989 Page 16

eters, start program execution, initiate interrupts and examine the results of program
execution. It must be noted that user interactions with the microprocessor are at a very
primitive level. It would be prudent to develop complex software on a different 68000
system before attempting to use it in this system. Table 3.5 shows the terminal display
for this module.

Table 3.5. M68000 Primitives

+--- 21-NOV-88 13.37.10 #693 ----+

| ===~ 68000 PRIMITIVES ~---+----4 4-=—mw-w- 68K STATUS --------+
Zero 68K Memory | IM68000 State HALTED |
Test 68K Memory | |Program Name Artemis I
Display/Edit Comm Vector | |Last Interrupt 6 |
Load 68K Program | |Secondary Addr 0004000 |
Display 68K Memory I et D +
Reset 68K I

Halt 68K I
Interrupt 5 |
Interrupt 6 |
Interrupt 7 |
Scope Loop I
e it T ot

Q Quit (any menu) |

L7 IS e NS B S I B o B L -« I

Option A quickly zeroes the memory of the microprocessor. This is usually necessary
only for clarity when the operator will be scanning the memory to see the effects of a
program.

Option B is a memory test which does not use the microprocessor. A small display
is created with 128 characters. As each kilobyte of memory is checked a ‘P’ or ‘F’ is
displayed for ‘pass’ or ‘fail’. The test is slow and any keystroke will terminate the test
early. Faster and more thorough memory tests using the microprocessor are available in
other modules.

The established convention for programs in this embedded processor is to use a com-
munications vector begining at FASTBUS dataspace location 40 hex. Each word in the
vector has a general name for the type of information it is used for. Option C will read
this vector from the board and display it on the terminal. Typing a space will allow the
user to edit the numbers in the vector. If the edit option is used, the vector will be written
back to the same place.

Option L will load a program into the microprocessor memory. A file containing
S-code will be interpreted and loaded with FASTBUS operations into the microprocessor
memory. The default filename for S-code executables is art$root:(m68k].sex. This system
may also be used to load standard event data into the FEB.

 February 16, 1989 Page 17

Option D will display sections of memory a screenfull at a time. A space will cause
the next screenfull to be displayed. Any other key will terminate the display.

Option 2 will halt the microprocessor and hold it in the reset state. This is the initial
state of the processor. Option 1 will release the processor from this state and it will begin
executing at the reset vector. If the processor is not halted, option 1 has no effect.

Options 5, 6, and 7 will cause interrupts at those levels. The convention in programs
is that interrupt 5 is used for initialization and interrupt 6 is used for execution. Since
interrupt 7 occurs automatically at the end of a zero suppression cycle, several tests cause
the program to transfer control to the code for interrupt 6. This method gives faster data
collection.

The scope loop option causes the microprocessor to be reset and then initiates the
test program in the 1821. This is, of course, hardware dependent. The loop is effected in
the host VAX computer. This option is not needed when loops in the GPM are available.

The status display shows the state of the microprocessor according to the options
selected in this program module. The display is updated only by routines in this module
and not by examination of the microprocessor. Most of the processor control routines are
available for use by other modules. These routines will keep the status display up to date.

3.5 Board Tests

Board tests primarily consist of a series of shakedown tests, each of which consists of
a sequence of short tests. The shakedown test attempts to exercise quickly every known
function of the board. Table 3.6 shows the ‘board tests’ menu.

Table 3.6. Board Tests

+--- 23-NOV-88 10.59.45 #693 ----+
| 4---mmm- BOARD TESTS -------- +
Coupler Shakedown
FEB Shakedown
M68K Shakedown
Pedestal Summary

TR T QO

I
|
|
l
!
I

3.5.1 Coupler Shakedown

The coupler shakedown will put up the display shown in table 3.7. As the test pro-
ceeds either a ‘Pass’ or a hex number will be displayed. A hexadecimal number indicates
a failure. Bits which are set in this number show which bits were incorrect at the end of
the test. The three columns show the same test with different addressing modes. The
broadcasts are of the class N type, and at present this test will work correctly only with a
single digitizer board in the crate.

~ February 16, 1989 Page 18

Table 3.7. Coupler Shakedown Display

+--- 23-NOV-88 10.59.45 #693 ----+
| 4o BOARD TESTS -------- + |
bl 4o COUPLER SHAKEDOWN -----—=---—cmmmmmemee o +
| | |Addressing Mode GEO LOG BRO I
| | |Read CSR#0 (Mfg. Number) Pass Pass Pass l
| | |Read CSR#0 (Data Space) Pass Pass Pass |
| +-+Read CSR#1 (Serial Number) Pass Pass Pass |
| F |[Read CSR#1 (Data Space) Pass Pass Pass I
| R [R/W CSR#11 (Trigger Acc. Number) Pass Pass Pass |
| P |R/W CSR#11 (Data Space) Pass Pass Pass |
| S IR/W CSR#3 . (Logical Address) Pass NA Pass I
| G |R/W CSR#7 (Broadcast Class) Pass Pass NA I
| H |S/C Error flag Pass |
| W IS/C Logical addressing Pass |
| Z IS/C LED Pass |
| Q IS/C Zero Suppress Override Pass |
+---+Reset (clear error flag) Pass I
|Bus Reset (Clr Error Flag) Pass |
|General Broadcast to CSR#11 Pass |
|Sparse Data Scan (DTP) Pass |
IDevice available Scan (FFU) Pass |
|Device Present Scan Pass |
|Pattern Select Pass |
e e +

The coupler shakedown test attempts all forms of addressing and exercises most of
the bits that can be set and cleared. These tests include T-pin scans and pattern select.

3.5.2 Microprocessor Shakedown

The display for the microprocessor shakedown is shown in table 3.8. The test begins
with a short memory test to check the location where a test program is then loaded. The
‘interrupts’ test will check that all three interrupts function and that an interrupt 7 occurs
as a result of a trigger. The clock frequency is estimated by having the processor execute
a loop which is timed by the host VAX. This test will detect if any wait states occur
during instruction fetches by showing a low effective clock frequency.

The ‘correct sieve execution’ refers to a famous benchmark program which computes
all the prime numbers less than about sixteen thousand. This test executes this benchmark
a few times and the host computer checks that the microprocessor found the correct number
of primes. This test should detect any execution errors in the processor.

In the ‘coupler access’ test the microprocessor checks that it can access parts of the
coupler.

February 16, 1989 Page 19

Table 3.8. Microprocessor Shakedown

+--- 23-NOV-88 10.59.45 #693 ----+

I 4o BOARD TESTS -------- + |

N M68K SHAKEDOWN -+-+-----+
| | |Memory test (4Kb) Pass |
| | |Load test program Pass |
| | |Interrupts Pass I
| +-+Est. Clock Frequency 16.0824 |
| F ICorrect Sieve Execution Pass |
R	68K Coupler Access Pass
P	Memory tests Pass
S	FB Coupler Access Pass
G #4-~--mmmmmmm e 4= +	

The ‘memory tests’ does a ‘running bit’ test to all of the memory except that holding
the testing program, including the FEB and threshold memory. The bit pattern will
indicate which of these three failed and examination of the contents of memory shows
where the test was terminated.

‘FB Coupler Access’ checks that the microprocessor can operate correctly with in-
terference from the FASTBUS. The test program is just a loop counting in a particular
location. The host VAX program then accesses this location 100 times. Each FAST-
BUS access stops and starts the microprocessor by the required bus arbitration. If the
microprocessor fails to restart, an error will be indicated.

At the end of the entire shakedown test, the default program is reloaded. Because
this loading process is not particularly fast, there can be a somewhat mysterious delay in
the response of Artemis to new commands.

3.5.3 FEB Shakedown

The FEB shakedown tests several features of the FEB. Table 3.9 shows the display
during an FEB shakedown. The tests shown are not executed in the order shown. The
write to the FEB is last as it takes a long time. Any keystroke will terminate this part of
the test.

The first test executed is the FEB Event crosstalk. This tests the bits that select one
of four possible event areas in the FEB to insure that in writing a given event we do not
inadvertently overwrite one of the other events. The next test, FEB Channel crosstalk, is
in the same vein. It tests to see if writing to one channel causes trash to be written into
other channels. If a hex number is displayed as the result of the test, the bits set in the
word indicate which channels failed.

The ‘word count’ test runs twice. First the zero suppression thresholds are set to
zero, a trigger is given, and the word count for each channel is checked. Since no zero
suppression will occur, all word counts should be 2566. Note that this number is represented

February 16, 1989 Page 20

Table 3.9. FEB Shakedown

+--- 25-NOV-88 10.03.16 #669 ----+

I BOARD TESTS -------- + |

| | 4= e FEB SHAKEDOWN -~-~----memcmce e +
		Write to FEB Pass Pass Pass Pass
	IFEB Event Xtalk Pass	
		IFEB Channel Xtalk Pass
+-+Word Count Pass Pass		
F	Dump Count Pass	
R	valid Data Bit Pass	
P	Zero Suppress Override Pass	
I oo oo +

as a zero byte in the FEB. The second trial is with zero suppression thresholds set to 31,
the maximum. The zero suppression will leave only the pre-sample data and thus every
word count should be nine. A bit is set for any channel which fails.

At the same time the word count test is being done, the good dump counter is being
tested. Since triggers cannot be aborted in this test system, the counter should increment
with every trigger. The current value of the counter is read from channel zero and is
thereafter tracked by reading from a different channel after every trigger. This is done
until every channel has been checked. Each channel which fails will set its corresponding
bit.

The ‘valid data’ bit for FEB event area zero is checked in each test. If its value is
incorrect the corresponding bit is set and displayed. Normally, only event zero is used by
our clock trigger board so it is the only one tested.

The ‘zero suppress override’ bit is set and each channel is checked to see that it did
not suppress any data. This is checked only by examination of the word count.

Finally, the ‘write to FEB’ is started. This is just a memory test of the FEB space.
This is a complete, but slow, duplicate of the test done by the microprocessor during its
shakedown. Any keystroke will terminate this test early. The full test takes about ten
minutes on the Ames setup.

3.6 Multi-scan Test

The simplest of the higher level tests is the Multi-scan test, which uses the micropro-
cessor to collect data at each trigger. After all the data are collected in the microprocessor
meimory, it is read by the host VAX computer.

Each of these higher level tests has its own data format in the microprocessor memory.
Consult the documentation in the listing of the microprocessor program (art$root:[M68K]-
artemis.com) for detailed information. Each test produces exactly one block of data
beginning at the address of the board event buffer. Every block begins with a word count
followed by an identification word. Since there is only one common buffer for all the tests

February 16, 1989 Page 21

in Artemis, this identifier word is checked to insure that each test has the correct type of
data block.

Table 3.10 shows the terminal display used by this test.

Table 3.10. Multi-scan Display

+--- 23-N0V-88 10.59.45 #693 ----+
| +=--=- Multi scan test ----- + | tomm———— Basic Parameters ------- +
| | G Multi scan test i1 |Channel number 0]
| | D Display data I |# Points/Scans 100 |
| | S Data Summary I |Loop Delay 80 ms I
| | A Add Summary to Log 1 R e L DL DL DL RS LR LT +
| | L List data I
| | M Modify parameters I
| | F Function Generator | 1
I |

Multi-scan consists of one basic test. When Option G is selected the microprocessor
is directed to accumulate a histogram for each channel on the board. Each histogram
consists of 256 bins, one for each time bucket. The host computer then delivers a prescribed
number of triggers to the system and entries are made in the histograms after each trigger.
After all triggers are delivered the host computer reads the data and generates normalized
histograms for each channel. These histograms are of the value of each time slot, averaged
over many events.

Before starting a test, some parameters must be chosen. Option M is used to modify
the parameters in the ‘basic parameters’ display. The channel number selection selects the
first channel only for the display routines. Data values are always taken for all channels.
The next parameter is the number of scans to average. The operator must be aware that
the microprocessors uses only a 16 bit word for each bin of the histogram. This limits the
number of scans that will function correctly.

The loop delay is the amount of time the host computer waits for the microprocessor
to complete its program. This parameter is usually set once by the programmer and not
modified. To select this time, run the test with a large number of scans and examine the
programmed LED on the front panel with an oscilloscope. The LED is turned on and off
as the program on the microprocessor starts and stops. The loop delay is decreased until
a good duty cycle is achieved. Note that the smallest increment of time allowed on the
VAX is 10 milliseconds. This loop delay is used in many of the complex tests. In most
cases an acceptable value has been chosen as the default.

Option F will allow the operator to set the function generator. This is the same
subroutine as used in the digitizer primitives.

Options D, S and L display the data in various formats. Option D is a graphic
display, S is just the average value of each histogram, and L lists the data taken from the

February 16, 1989 Page 22

Multi scan 25-NOV-88 11.49.14 #669 Ch. 4
12.000 T T T

T
i

11.000

10.000 m%wwWMmmWmWM%MmwWM“%mMwWmWmmmmMmmwww%mmmmwww«mewmw

9.0000 |t | -
8.0000 + = =
0.0 256.00
Figure 3.1. Output of Multi-scan Test
IMiCroprocessor.

Figure 3.1 is the result of a multi-scan run with 800 triggers. In this run the input was
set to a sine wave with an amplitude of six millivolts and frequency of 500 kHz. The sine
wave serves to prevent the ADC from locking into a single code. The average of many
transitions from one code to the next provides a better measurement of the DC offset.
A ringing effect, associated with the start of the scan can be seen. The high frequency
(bin-to-bin) effects are most likely due to limitations of the FADC.

3.7 Linearity Test

The linearity test measures DC linearity of the analog buffer and Flash ADC com-
bination. This test is primarily useful for checking the flash ADC tap voltages and the
linearity of the analog buffers. Both linear and bilinear modes of the digitizer can be
tested.

The linearity test causes the function generator to produce DC levels as input to the
digitizer board and then triggers the system. The microprocessor will, in response to each
trigger, compute an average (sum) for each channel and store these averages sequentially
in the microprocessor memory. At the end of the test, the buffer is read out and various
fits and displays are computed. The operator may then select the channel and display

February 16, 1989 Page 23

Table 3.11. Linearity Testing Display

+--- 23-NOV-88 10.59.45 #693 -~--+ +-=--—=- LinTest Parameters -------- .
+---- FADC Linearity testing --+-+ |Channel number 0
C Channel Number I

| |
I |
| | D Display Data | INo. Voltage Steps 250 |
| | F Fit summary | IBreak pt. (ADC’s) 64.5 I
| | T Two Fit summary | |Break pt. (Volts) 0.145 I
| | A Adjustment summary | IRipple Below BP 7. mV |
| | G Edit function generator | IRipple Above BP 22. mv I
	L Linear Ramp Scan	ILinrear Fit Limits 0.000 2.150	
	M Modify Parameters		Voltage Range 0.000 2.150
	R Record Two Fit Summary		Time Bucket Limits 5 260
#mrmmmmrr e - R e Rt +			

desired. Table 3.11 shows the terminal display used by LinTest.

Option M is used to modify the ‘LinTest Parameters’. Again ‘channel number’ is only
for the display routines. ‘No. of voltage Steps’ is the number of DC levels used. Internal
arrays limit this to a maximum of 256 steps. ‘Break pt. (ADCs)’ is the breakpoint value
(in ADC counts) used by the constrained fitting routine. ‘Break pt. (Volts)’ is used by
the algorithm which computes the step sizes during the scan. The voltage step sizes are
computed such that equal size steps in ADC values will occur. A slope ratio of 3.8:1 is
assumed in this calculation. The break point value in volts will change with changes in
the gain of the system. ‘Ripple’ is the amplitude of a sine wave added to the DC levels.
This causes the FADC to output codes above and below the code corresponding to the DC
level in order to remove some of the digital quantization effects from the output. Everyone
should see the results of setting the ripples to zero at least once. ‘Linear Fit Limits’ are
the upper and lower limits of the data used by the fitting routines. ‘Voltage range’ is the
upper and lower limits of the generated DC levels. Changing the fit limits will change the
results of the fits for existing as well as new data.

Option L begins the data collection. The function generator will display the current
value of the DC offset. The time required to set the function generator is more than enough
to allow the microprocessor to finish its program. Thus a loop delay is not needed.

Options F, T and A generate summary displays of the data for all channels. The ‘fit
summary’ is the results of the fitting routine BIFIT. Because of the constraint on the
breakpoint, the data from BIFIT are sometimes hard to interpret. The ‘twofit summary’
shows the results of TWOFIT, where no breakpoint constraint is used. The computed
breakpoints are displayed with the fit results. See section 2.3 for more details on the
fitting routines.

The ‘adjustment summary’is an attempt to compute the desired change in one-quarter
and full-scale tap point voltages. At these two tap points it is possible to insert trim
resistors to adjust the response for each FADC individually, the goal being to compute

February 16, 1989 Page 24

the optimum value for each FADC. Measurements show the changes in the quarter and
full scale voltages are 4+6 mV per Ohm and -10 mV per Ohm, respectively. The current
algorithm does not seem to work well. It uses the results of the routine FOURFIT (fit to
each quadrant) and TWOFIT to compute the change in voltage required to make the fit
to a single quadrant (second and fourth only) cross the fit to three quadrants at the center
of each quadrant.

Option R records the results of the TWOFIT summary in a log file along with the
serial number of the board and the timestamp. This will (hopefully) be the source of
calibration constants, eventually. Naturally, these results are only worth saving if the
board is in its final configuration.

Option D initiates the graphics display menu shown in table 3.12. This menu provides
access to the data collected in LinTest.

Table 3.12. LinTest Display Menu

+--- 23-NOV-88 11.23.34 #693 ----+ +--=---~ LinTest Parameters -------- +
| +---- FADC Linearity testing --+-+ |Channel number 0 |
I Linear Scan -------- + 1 |
| 1 | 1 Display Linearity Plot | | INo. Voltage Steps 250 |
| | | 2 Display (Fit)-(Data) | | |Break pt. (ADC’s) 64.5 |
| I | 3 Display Diff Linearity | | |Break pt. (Volts) 0.145 I
| 1 | 4 Display RMS Plot | | JRipple Below BP 7. mV I
| 1 | 5 Display (Fit-Data) | | IRipple Above BP 22. mV I
1	E Edit plot parameters		lLinear Fit Limits 0.000 2.150		
		C Change Channel		IVoltage Range 0.000 2.150	
		F Toggle FITFLAG			Time Bucket Limits 5 250
+-+ L List Data on Screen R A e it b +					
H	M Modify parameters				

| W | R Repeat LINFIT on Data |

B Fitting Data ---~-------cc--comcccoon—o +
| 23-NOV-88 11.23.34 Voltages at: I
ISlope 1 = 353.65 Intercept 1 = 11.27 0 FS = -0.032 |
ISlope 2 = 93.40 Intercept 2 = 50.56 1/4 FS = 0.151 |
ICHISQ = 8.19 1/2 Fs = 0.824 |
[#Voltage Steps = 250 Break Pt. = 64.5 3/4 FS = 1.509 |
[Int. Volts = 0.151. and ADC counts = 64.66 1 Fs = 2.189 |
it e DT +

Options 1, 2 and 5 are the only plots currently implemented. The ‘linearity plot’ (1)
displays the average ADC code as a function of input voltage, as shown in figure 3.2. The
crosses are measured data points and the line is the result of using TWOFIT on the data
points shown. This is the classic bilinear plot describing the FADC response.

Option 2 displays the difference between the data and a fit to the data (residuals) as a

February 16, 1989 Page 25

vnominal vs ADC 8-DEC-88 11.45.03 #669 Ch. O
256.00 T T T
Two fit
Chisq 12.15
Break 64.39
192.00
128.00
64.000
0.0 — ! :
0.0 2.0000

Figure 3.2. Direct linearity

function of voltage. Because this display squeezes the first quadrant into only about one
twelfth of the horizontal scale, the plot on option 5 was created where the horizontal scale
is the actual ADC code from the data. This is the most frequently used plot in LinTest.
Figure 3.3 shows the plot generated by option 5 and the default setup shown in table 3.12.
The fit shown is FOURFIT where each quadrant is fit to a line. Note that several points
near each boundary are omitted from the fit. The step in the data near the center of the
plot is due to a minor flaw in manufacturing the FADC.

Options E, C, L, M, and R operate as described except that TWOFIT is the only
fitting routine used in LinTest.

The ‘Fitting Data’ display should also be revised. The slopes and intercepts are
correct except the units are not shown. For those of us who have forgotten, they are ADC
counts per volt.

3.8 Sawtooth Test

The ‘SawTest’ uses a sawtooth waveform to measure differential linearity. In a direct
linearity, the overall deviation from a straight line is measured, but good direct linearity
can be achieved with widely varying steps in voltage between consecutive ADC codes.
Differential linearity measures the step size between each ADC code.

February 16, 1989 Page 26

ADC vs dev. from fit 8-DEC-88 11.45.03 #669 Ch. 0
2.0000 T T T

T

1.0000 7

-1.0000 .

-2.0000 — . .
0.0 256.00

Figure 3.3. Deviation from Fit

To perform SawTest, the function generator is set (by the software) to a triangular
function with a slow rise and rapid fall (‘sawtooth’) at 70 kHz. This frequency is sufficient
to cause a complete cycle to occur within one trigger. The microprocessor identifies this
single cycle and tallies how often each ADC code appears in the rising part of the data.
In a perfectly linear flash ADC, each code should appear equally often because the linear
ramp covers the entire range uniformly. In the bilinear case, data in the lower quadrant
will appear less often due to the smaller step size (i.e., 5 mV/Count versus 19 mV/Count)
in this quadrant. The program corrects for the variation caused by the bilinear response
of the FADC before displaying the data.

Table 3.13 shows the menu display used by SawTest. Most of the options are very
similar to those used in the linearity testing. Option S begins the collection of data.

Access to the function generator is provided because a change in the gain of the system
may cause the programs to fail. The microprocessor program searches for both overflow
and underflow as markers of the beginning and end of cycle. If the input waveform does
not cause ADC codes zero and 255 to occur on every cycle, the program will tally the
wrong data.

Figure 3.4 is the final normalized differential linearity plot. A value of zero indicates
that the corresponding code (x-axis) is exactly as wide (in mV) as the average voltage step

February 16, 1989 Page 27

Table 3.13. SawTest Display

+--- 23-NOV-88 11.27.14 #693 ----+

| +---- FADC SawTooth testing ---+-+ +------ SawTest Parameters ------ +
	C Change Channel	IChannel number 0	
	D Display data	INo. Sawtooth Scans 100	
	G Edit Function Generator	IBreak pt. (ADC’s) 64.500	
	L List Data on Screen		Break pt. (Volts) 0.320
	M Modify parameters		Vref + (Volts) 4.000 I
	S SawTooth Scan	ILow bin No.(IWLO) 10 I	
	T Summary of D.Lin		High bin No.(IWHI) 250 [
#==-mmm e e e +-+	Loop Delay 60 ms I		
S SawTooth Test	i LT +		
G Delta test			

| H Multi event scan I

e DL DL L Calculated Parameters ---~-=--=-=--c--ec-w-- +

P slopel int1l slope2 int2 chng |

|

| Nominal values 219.130 -6.862 45.697 49,220 |
+-+ Adjusted values 185.626 -50.278 52.684 32.282 |

Table 3.14. SawTest Display Menu

+--- 25-NOV-88 12.54.03 #669 ----+ .

| +---- FADC SawTooth testing ---+-+ +------ SawTest Parameters ----- +
| I +------ SawTest Displays ------ +-+|Channel number 4 |
[1 | 1 Raw Tally | INo. Sawtooth Scans 100 I
} 1 | 2 Differences | IBreak pt. (ADC’s) 64.500 |
| t | 3 Normalized Tally | IBreak pt. (Volts) 0.320 |
| | | 4 Differential Linearity | 1Vref + (Volts) 4.000 I
| 1 |1 5 Code Centers |lLow bin No.(IWLO) 10 I
| | | 6 Integral Linearity Error 1 |[|High bin No.(IWHI) 250 |
| +-+ 7 Integral Linearity Error 2 ||Loop Delay 60 ms |
| S | E Edit plot parameters | 4= e e +
| G | C Change Channel |

| H 4=—=-mmmmmr e - +---+

size. A value of minus one indicates the code never appears in the output and the voltage
step size is zero. A value of plus one indicates that the step size is twice as large as the
average. The differential linearity can vary depending on the speed at which the FADC
is operated and the frequency of the input signal.

An interesting feature in this plot is the high bin at the ADC code 65. This is at
the point where the slope changes by a factor of about four. Data values to the left of
this point have been scaled differently from the data values to the right. The ‘dip-spike’

February 16, 1989 Page 28

D. Linearity Error 8-DEC-88 11.49.59 #669 Ch. 0O
2.0000 T T T

1.00007 7

T
1

-1.0000

-2.0000
g.0 256.00

Figure 3.4. Differential Linearity

feature in the center of the plot shows that some data which should have been code 127
appear as 128.

3.9 Pulse Test

The Pulse Test is similar to LinTest except that the amplitude of a pulse is measured
rather than a DC level. This allows the measurement of linearity through some of the
front end electronics which are not part of the digitizer module itself and are ac-coupled.
In this test it is also possible to use a LeCroy 9100 Arbitrary function generator in place of
the HP function generator. If the LeCroy 9100 is used, any waveform previously loaded
can be used, for example, a pulse with a 1/T tail. The HP will use a single cycle of a sine
wave, with the baseline set to the minimum value of the sine wave, to form a pulse. It
is also possible to use a square wave as input to a differentiation circuit to generate the
input pulse.

In this test the electronics must be set up to cause the function generator to trigger
with the system. In the Ames test bench a delay box is used to delay the synchronous
trigger from the clock trigger board to the function generator. This allows the centering
of narrow pulses on a single time slot in the readout.

Table 3.15 is the display shown by Pulse Test. Many of the options are similar to

February 16, 1989 Page 29

those of LinTest. Note that the ‘ripple voltage’ of LinTest is gone. This is usually not
necessary once the digital effects are understood.

Table 3.15. Pulse Test Menus

+--- 23-NOV-88 11.27.14 #693 ----+
| +--mmmmmee- Pulse test -------- e bt Basic Parameters ------- +
	P Pulse test		Channel number 0
	S Pulse test(68k)		# Points/Scans 25
	R Voltage Ramp		Low bin No.(IWLD) 65 bkt
	F Fit Summary	IHigh bin No.(IWHI) 70 bkt	
	T TwoFit Summary I +		
	D Display data		
	L List data b Pulse test data -------- +		
	C Change Chanrnel I [Pulse height avg 44.00 cts		
	M Modify Parameters		Pulse height rms 0.00 cts
	0 Modify Ramp I	Pedestal avg 11.00 cts	
	G Pulse generation		Pedestal rms 0.00 cts
4= e - +-+ R e L e +			
Z Snapshot (any menu)	e Voltage Ramp --------- +		
Q@ Quit (any menu) I	Lower Voltage 5. mV		
e e L LD LD L L L L D Dt +	Upper Voltage 2150. mV		
[No. of steps 100			
Break voltage 145. mv			
Loop Delay 0. ms I			
e Tt +

One display, not in LinTest, is the ‘Pulse Test Data’ which shows the result of some
number of scans at a single amplitude. This is useful to see that the electronics are set
correctly. Note that the microprocessor program will search for the pulse only in the range
specified. Thus a narrow range will reduce the required time to execute the program and
hence the necessary loop delay. The pedestal is computed from five consecutive time
buckets beginning ten buckets away from the peak. Thus, very wide pulses will not work
correctly. The pedestal is computed and displayed but not subtracted from the peak value
or used in any way.

Options P and S generate data for a single amplitude. Option P does not use the
microprocessor and is thus very slow. Option R does a ramp of the amplitude in LinTest
fashion. The generated data are put in the displays.

Option G is used to set up the pulse used in the test. With this menu the switch to
the LeCroy 9100 can be made. This option is general enough to permit arbitrary GPIB
commands to be sent to either function generator.

Figure 3.5 shows the residuals from a pulse test. Note that the regular pattern of
deviations from the fit is the result of the digital quantization by the FADC. This effect

February 16, 1989 Page 30

Residuals 8-DEC-88 12.02.06 #669 Ch. ©
2.0000 T T T

T
1

1.0000

-1.0000

-2.0000 . : :
0.0 256.00

Figure 3.5. Pulse test Results

can be clearly seen in LinTest by setting the ‘ripples’ to zero.

3.10 Delta Test

One of the common flaws in the performance of the FADC is incorrect codes in the
output. Delta Test is a powerful tool to search for the occurrence of this problem at very
low levels. The Delta test generates a histogram of the differences between consecutive
values in the data. Thus if an input signal is chosen in which only ADC steps of one count
are expected in the output, a step of two counts is an error. Table 3.16 is the display used
by Delta Test.

To run Delta Test an input wave form is chosen and the number of scans and the range
of time slots is set. Note that the pre-sample data must not be included in the range of
time slots. Then the test is initiated. In about twenty minutes, ten thousand scans can be
executed. This corresponds to about 2.5 million ADC conversions per channel examined
by the microprocessor.

Figure 3.6 is the result of a Delta Test for a single channel. The input wave form is a
triangle wave at 250 kHz with an amplitude of 200 mV. The offset is set to 830 mV which
makes the average code 128. This waveform should never require a step in the output of
more than one ADC count. Thus the single datum in the wings is probably the result of

February 16, 1989 Page 31

Table 3.16. Delta Test Displays
+--- 23-NOV-88 11.27.14 #693 ----+

| +---==-- Delta test -------- + | oo Basic Parameters ------- +
| | G Delta test Il [Channel number 0 |
| | H Delta search | |# Points/Scans 100 I
	D Display data It	Low bin No.(IWLD) 10 bkt
	S Data Summary I	High bin No.(IWHI) 260 bkt
	L List data b1 [Loop Delay 80 ms	
	M Modify parameters I D et +	
	F Function Generator	
o e +		
LOG Delta Code freq 8-DEC-88 12.21.00 #669 Ch. 2
6.0000 T T T
5.0000r - B
4.0000r 1
3.0000 1
2.0000 | -
1.0000 .
0.0 H H 1
-1.0000 . ! ‘
-31.000 32.000

Figure 3.8. Delta Test Results

an incorrect bit (03) in the output of a single time slot. The center bin represents about
one hundred thousand steps of zero ADC counts.

The data summary lists the log of the sum of the contents of the center three bins of
the histograms (steps 0, +1, and ~1) divided by the sum bins for steps sizes greater than
1, 2 or 5 (plus one to avoid divide by zero). Thus if the number displayed is 4.0, the error
occurs at a rate of less than 1 in 104,

Option H provides a search for errors. While the test may count errors quickly, an

February 16, 1989 Page 32

example of the error may sometimes be hard to find. This option will execute Delta Test
until an error occurs on the channel shown in the ‘basic parameters’ display. This is much
slower than the actual test since the result of each trigger must be checked by the host.
When the search terminates on an error (termination will also occur when the number of
scans indicated is reached) the operator must go to the digitizer primitives to read data
without triggering the system, in order to see the error. The operator could also examine
other channels to see if the error extends beyond the single FADC. This would indicate a
different type of problem.

3.11 Bookkeeping

The bookkeeping options allows the user to enter notes regarding the board or FADCs
being tested. Table 3.17 is the menu displayed by the bookkeeping module.

Table 3.17. Bookkeeping Menu

+--~ 23-NOV-88 11.27.14 #693 ----+
| 4= Bookkeeping ~-------- +-
| E Edit Log 693
| F Edit Log 0

| L LDUMP

| Vv VAX DCL

| A Add data FADC Stats
| D Display FADC Stats

e — — —— 4

+
1
!
I
]
I
i
1
1
L}
)
!
1
]
1
i
1
[}
)
!
]
!
i
1
i
)
)
]
]
i
]

+
)

The log file is maintained as a simple text file. The entry for each board begins with
the line “Digitizer #nnn”. Where ‘nnn’ is the serial number of the board. When option
E or F is selected, the EDT editor is entered and this header is found. Next the string
“Comments:” is found. After this string the current time and date are written, followed
by the board’s serial number. The cursor is placed on the next line and the operator may
type any text desired. After entering all the information the editor may be exited and the
log file updated by the standard EDT ‘exit’ sequence. If you wish to leave the contents
of the log file unchanged, use the EDT ‘quit’ sequence, instead. Other modules can enter
data in this log file. The best example is LinTest. In LinTest all of the current TWOFIT
results are recorded as if the operator had typed them in.

DCL commands are also available. This avoids the necessity of exiting the test bench
and losing collected or entered data. Option L executes the command file LDUMP to
print the saved plots and displays.

Options A and D were added to study samples of FADC. In this case the results
of FOURFIT in LinTest are recorded according to the FADC production lot numbers in
separate log files.

