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Abst rac t  

A semi-analyt ical  model has been developed t o  desc r ibe  the  boundary 

reg ion  between t h e  plasma and t h e  wa l l  i n  the  presence of a  moving n e u t r a l  

gas  blanket .  This  s tudy shows t h a t  the v e l o c i t y  of the  g a s  b lanket  i s  

determined by t h e  p a r t i c l e  and h e a t  f l u x e s  out of t he  plasma,' the  t h i ckness  

of t h e  n e u t r a l  gas  b lanket  and the  c r o s s  f i e l d  d i f fus ion .  I n  o rde r  f o r  t h e  

gas  b lanket  t o  be small ,  a s  requi red  by r e a c t o r  cons ide ra t ions ,  t h e  gas  

b lanket  v e l o c i t y  has  t o  be r e l a t i v e l y  l a rge .  The v a r i a t i o n  of t h e  n e u t r a l  

gas  blanket  performance a s  a func t ion  of t h e  plasma, wa l l  and gas  blanket  

parameters  i s  examined and numerical examples a r e  given. 



I. In t roduc t ion  

Various methods have been proposed t o  c o n t r o l  t he  impuri ty  i n f l u x  

i n s i d e  t h e  plasma. One of t hese  i s  t h e  n e u t r a l  gas  blanket.  (1,5) * 
simple model f o r  t h e  t r a n s p o r t  of p a r t i c l e  a c r o s s  the  boundary reg ion  

i n  t he  presence of a  s t a t i c  n e u t r a l  gas  b lanket  was discussed i n  Refs. 

6,  7 and 8. From t h e  s tudy  on the  s t a t i c  gas b lanket  one can draw t h e  

conclusion t h a t  the  s t a t i c  gas b lanket  i s  a  good means f o r  

impur i ty  c o n t r o l  only f o r  low hea t  and high p a r t i c l e  f l u x e s  ou t  of t he  

plasma. For a  f i x e d  p a r t i c l e  f l u x  out  of t he  plasma, a s  the  hea t  f l u x  

i n c r e a s e s ,  t h e  th ickness  of t he  gas blanket  should inc rease  t o  a  po in t  

where i t  becomes impossible  t o  inc lude  i t  i n  a fus ion  r eac to r .  The pur- 

pose of t h i s  paper i s  t o  s tudy t h e  performance of a  moving gas  b lanket  

and t o  determine t h e  requi red  v e l o c i t y  of t he  gas  b lanket  i n  order  t o  have 

a  p r a c t i c a l  boundary reg ion  thickness .  The model of Ref. 6 was extended 

t o  i nc lude  a moving gas b lanket  w i th  v e l o c i t y  v  . I n  s e c t i o n  I I , . , t h e  
g  

d i f f e r e n c e  between t h e  s t a t i c  and moving gas b lanket  i s  discussed.  A 

s tudy  of t h e  requi red  v e l o c i t y  of t h e  gas b lanket  v e l o c i t y  a s  a  func t ion  

of t h e  p a r t i c l e  and hea t  f l u x e s  out  of t h e  plasma, t he  n e u t r a l  gas b lanket  

s t r e n g t h  and th ickness ,  and the  n e u t r a l  r e f l e c t i o n  c o e f f i c i e n t  from the  

wal l  i s  presented i n  s e c t i o n  111. This  s tudy determines the  c h a r a c t e r i s t i c  

of the n e u t r a l  gas  b lanket  ( n e u t r a l  source,  t h i ckness  and v e l o c i t y )  t h a t  

a r e  requi red  t o  e f f i c i e n t l y  s h i e l d  t h e  plasma. 

11. Model Descr ip t ion  

The model of Ref. 6  i s  extended t o  inc lude  a  moving gas  b lanket  wi th  

v e l o c i t y  v  . I n  o rde r  t o  model t h e  p a r a l l e l  l o s s  i n  t h e  boundary reg ion  
g  

we  p o s t u l a t e  t h a t  t h e  r e s idence  t i n e ,  
L 

' I l l '  
f o r  a n  i o n  i s  g iven  by T = - 

I I Vg 
where L i s  t he  mean d i s t a n c e  t r a v e l l e d  along wi th  the  gas b l anke t ,  

i .e.  t h e  d i s t a n c e  where i t  i s  introduced t o  t h e  po in t  of i t s  c o l l e c t i o n ,  

and v_ i s  t h e  gas b lanket  flow v e l o c i t y .  This  s i t u a t i o n  holds f o r  t h e  
5 

which i n  t u r n  should be h igher  case  where v and v a r e  g r e a t e r  than  - 
cn i n  v 

t h 



S' than - , where v and v a r e  t he  e l e c t r o n  and i o n  n e u t r a l  c o l l i s i o n  
v  en  i n  
D, 
I 

frequency,6:. i s  t h e  boundary reg ion  th ickness  and v  i s  the  p a r t i c l e  
S I 

I 

drift:ve&oci.ty.  This  cond i t i on , imp l i e s . t hab  bo th . e l ec t rons . and  ions  w i l l  

have enough c o l l i s i o n s  wi th  the  n e u t r a l  p a r t i c l e  and move along wi th  the  

same v e l o c i t y  v  of t h e  gas blanket .  
g  

The i o n  dens i ty  s a t i s f i e s  

where Dl i s  t h e  c ros s  f i e l d  d i f f u s i o n  which i s  taken t o  be Bohm d i f f u s i o n  

wi th  a  v a r i a b l e  c o e f f i c ? e n t ,  r l l  i s  t h e  i o n  r e s idence  time, n  e '  n  i' n  c  and 

n  a r e  t he  e l e c t r o n ,  i on ,  co ld  and hot  n e u t r a l  d e n s i t i e s  r e s p e c t i v e l y ,  
h  

<uv>. and <av> a r e  t he  e l e c t r o n  i m p a c t . i o n i z a t i o n  and recombination r a t e .  
1 R 

The ion  c o n t i n u i t y  equat ion  can be w r i t t e n  a s  

T  D 
where 1 2  = I l i  li 

(1 - T c < o ~ > ~ ~  - T I l i  R, n h  <OV> i h  ] 

D n  
1 i e  

y 2  = , and R, = - 
R1 < O V > ~  n  i 

The s o l u t i o n  i s  expressed a s  

3 2  
where 6 - . . .  X- 

2 l 2  

The s o l u t i o n  i s  an e l l i p t i c  func t ion  where the  cons tan t  c  and n  a r e  
0 0 

determined from the  following boundary cond i t i ons  : a )  t o t a l  plasma f l u x  

ac ros s  t h e  plasma boundary has  t o  equal  t h e  t o t a l  l o s s  of confined plasma 

and b) zero  i o n  d e n s i t y  o r  f l u x  a t  t he  f i r s t  wal l .  



Similar  t o  Ref. 6, t he  problem of p e n e t r a t i o n  and i n t e r a c t i o n  of cold 

and hot  n e u t r a l s  w i t h  plasma i s  solved using a  one group neutron t r a n s p o r t  

equat ions.  

The n e u t r a l  impur i ty ,  n  and t h e  impuri ty  i on ,  n  , s a t i s f y  t h e  
nz ' z  

fol lowing equat ions.  

and 

S cosh (K x  ) s i n h  K (6  - x )  S(x ) dxo 
z  0 Z s 0 

n z ( x )  = D K cosh K 6s + 
l z  z  Z 

0 

s i n h  KZ (6s - x  ) cosh K x  S(x dx 
0 Z 0 0 

J D K cosh K b Z  
X l z  z  Z 

where K - -112 
Z 

The hea t  flow equat ions  f o r  i o n s  and e l e c t r o n s  a r e  

where Q i s  t h e  h e a t  f l u x ,  Wrad i s  t h e  r ad i a t ed  power by bremstrahlung, 

l i n e  and recombination processes ,  a i s  t h e  energy r e f l e c t i o n  c o e f f i c i e n t  
e  

of the wal l ,  EL and ER a r e  t he  t o t a l  energy l o s s  due t o  i o n i z a t i o n  and 

recombination. In  t h e  ion  hea t  equat ion ,  an a d d i t i o n a l  term, which 

r ep resen t s  t he  hea t  l o s s  by e l a s t i c  c o l l i s i o n  wi th  n e u t r a l s  i s  incorpora ted .  



This term i s  equal  t o  (T - Tn) ni v f  where v i s  the  c o l l i s i o n  
i i n  i n  ' i n  

frequency of i ons  wi th  n e u t r a l s ,  f  r e p r e s e n t s  the  f r a c t i o n  of hea t  being 
i n  

l o s t  by e l a s t i c  c o l l i s i o n ,  T. and T a r e  t he  ion  and n e u t r a l  temperature,  
1 n 

r e spec t ive ly .  The hea t  equat ions  a r e  i n t e g r a t e d  over t h e  boundary reg ion ,  

assuming average temperature T  and T f o r  t h e  e n t i r e  zone and t h a t  
e  i 

Q (6s) vanishes  a t  t h e  wall ,  and then solved f o r  t he  average temperature 

i n  t h e  boundary region. 

111. Analysis  

For t h e  purpose of t h i s  a n a l y s i s ,  t h e  main gas  blanket  parameters 

a r e  taken t o  be: t o r o i d a l  magnetic f i e l d ,  30 kg, r e f l e c t e d  n e u t r a l  and 

n e u t r a l  gas b lanket  temperature,  1 eV; impur i ty  temperature,  4 eV; 

p a r t i c l e  f l u x  out  of t h e  plasma, 2.5 x l o Z 0  #/m2sec; h e a t  f l u x  out  of t he  

plasma ranges from 1 x l o5  t o  1 x 10' w/m2; and carbon o r  s t a i n l e s s  s t e e l  

f i r s t  wall .  The i o n  and e l e c t r o n  hea t  f l u x e s  a r e  chosen t o  behave 

n e o c l a s s i c a l l y  s i n c e  t h e  presence of a  n e u t r a l  gas b lanket  i s  found t o  

e a s i l y  s t a b i l i z e  t h e  trapped i o n  modes and t o  render  i n e f f e c t i v e  t h e  

d e s t a b i l i z i n g  VB d r i f t  resonances f o r  t h e  trapped e l e c t r o n  modes. I n  o rde r  

t o  d i sp l ay  examples of t he  performance of t h e  n e u t r a l  gas  b lanket ,  we 

i s  t h e  f r a c t i o n  of t he  hea t  choose the  fol lowing parameters:  (1 )  - 
QP 

energy flowing from t h e  plasma i n t o  t h e  "scrape-off" reg ion  t h a t  subsequent ly 

reaches t h e  f i r s t  wa l l  e i t h e r  a s  r a d i a t i v e  energy o r  by charge exchange 
r 

, CXW 
n e u t r a l s .  ( 2 )  

+ r i w  i s  t h e  r a t i o  of t he  sum of t h e  p a r t i c l e  f l u x e s  r 
P  

which h i t s  t h e  wa l l  a s  charge exchange n e u t r a l ,  r , and ions ,  r , t o  
cxw i w  

t h e  ion  f l u x  r , excaping from t h e  plasma. ( 3 )  n (0 )  i s  the  impuri ty  
P  z  

concen t r a t ion  a t  t he  plasma boundary, x  = 0. Thus, n  ( 0 )  provides  a  
z  

r e l a t i v e  measure of t h e  impuri ty  concen t r a t ion  i n  the  plasma, normalized 

t o  t h e  magnitude of t h e  p a r t i c l e  f l u x  out  of t h e  plasma. 
i 

The i o n i z a t i o n  p r o b a b i l i t y ,  P , def ined  a s  t he  p r o b a b i l i t y  t h a t  a  
z  

n e u t r a l  impuri ty  coming from t h e  wa l l  w i l l  be ion ized  before  reaching the  

s e p a r a t r i x  i s  almost 100%. 



1. Heat Flux out of t he  Plasma 

The hea t  f l u x  out of t h e  plasma, , i s  t h e  most important parameter B 
which determines t h e  th ickness  and t h e  v e l o c i t y  of the  gas  blanket.  The 

main conclus ions  drawn from t h e  s tudy conduc,ted i n  Refs. 6 ,  7 and 8 a re :  

1) f o r  a  f i xed  e x t e r n a l  co ld  n e u t r a l  source ,  S , p a r t i c l e  f l u x  escaping 
ex 

from the  plasma, I' , and n e u t r a l  gas  b lanket  th ickness ,  6 t h e r e  e x i s t s  
P s ' 

a minimum hea t  f l u x ,  Q , below which no s t eady  s t a t e  s o l u t i o n  e x i s t s ;  and 
P 

2 )  t h a t  t h e  higher  t he  hea t  f l u x  out  of t h e  plasma, t h e  wider should be 

t h e  s t a t i c  gas  b lanket  thickness .  These conclusions have been obtained 

under t h e  assumption of cons tan t  average boundary reg ion  temperature.  

Figure 1 shows Q a s  a  func t ion  of 6 f o r  an e x t e r n a l  n e u t r a l  source of 
P s 

4 l o2 '  #/m2sec and a g r a p h i t e  l i n e r .  Steady s t a t e  s o l u t i o n  e x i s t s  

only i n  t h e  shaded area.  Curve (b )  i s  determined from the  cond i t i on  t h a t  

the  hea t  f l u x  out of t h e  plasma should be g r e a t e r  than the  l o s s e s  due t o  

r a d i a t i o n ,  heat ing the  co ld  n e u t r a l ,  etc... Line ( a )  comes from the  f a c t  

t h a t  t he  p a r t i c l e  dens i ty  i s  low so  t h a t  t h e  ion  e l e c t r o n  e q u i l i b r a t i o n  

term i s  i n s u f f i c i e n t  t o  exchange t h e  a v a i l a b l e  l a r g e  energy between 

e l e c t r o n s  and ions ;  s teady  s t a t e  s o l u t i o n  probably e x i s t s  wi th  s u f f i c i e n t l y  

h igh  e l e c t r o n  temperature,  but t h i s  would not  be  a r e a l i s t i c  cool  gas 

blanket .  Line ( a )  i s  given roughly by Q ' a r5 l3  s1l3 6 (8), where 
'max P n s 

a i s  a  cons t an t ,  r , S and 6 a r e  t he  part . icle: 'f lux out  of t h e  plasma, 
P n s 

the  e x t e r n a l  n e u t r a l  source of t h e  gas b lanket  and the  th ickness  of the  

gas b lanket  r e spec t ive ly .  For a  t y p i c a l  fu s ion  r e a c t o r  wi th  hea t  f l u x  

1 x 10' w/m2 and p a r t i c l e  f l u x  -1 x l o 2  ' #/m2sec, s t eady  s t a t e  s o l u t i o n  

e x i s t s  i f  t h e  th ickness  of t h e  gas b lanket  i s  g r e a t e r  than  1 m. It i s  

c l e a r  from equat ion  8 t h a t  t he  upper l i m i t  of Q depends on the  n e u t r a l  
P 

source s t r e n g t h  of t h e  gas b lanket  t o  t he  power one t h i r d ,  however, by 

inc reas ing  t h e  e x t e r n a l  n e u t r a l  source the  s lope  of l i n e  ( a )  i n c r e a s e s  

but a t  t he  same time curve (b) i s  r a i s e d  and it i s  hard t o  f i n d  a  s teady  

s t a t e  s o l u t i o n  only by changing t h e  n e u t r a l  dens i ty  of t h e  gas  blanket.  

For po in t  ( 3 )  no s o l u t i o n  e x i s t s  un le s s  t h e  p a r t i c l e  f l u x  o u t - o f  tkie - 
plasma inc reases  o r  t he  gas b lanket  flows wiEh a g iven  minimum v e l o c i t y  

v .  
6 



I n  Fig. 2 we p l o t t e d  the  minimum gas  blanket  v e l o c i t y ,  v  a s  a  
g  ' 

func t ion  of t h e  hea t  f l u x  ou t  of t h e  plasma f o r  two d i f f e r e n t  wall 

r e f l e c t i o n  c o e f f i c i e n t ,  R . From t h i s  f i g u r e  one can draw t h e  fol lowing 
W 

conclusions:  (a) The higher  t he  hea t  f l u x  out of t h e  plasma, t h e  

h igher  v  should be; (b)  The minimum n e u t r a l  gas  v e l o c i t y  i n c r e a s e s  
g  

w i th  t h e  inc rease  of R . 
W 

Figure 3 shows the  hea t  l o s s  i n  the  boundary reg ion  due t o  charge 

exchange wi th  co ld  n e u t r a l ,  Q due t o  r a d i a t i o n ,  Q and by t r a n s p o r t  
cx ' rad  ' 

along the  gas b l anke t ,  QB, a s  a  func t ion  of t h e  n e u t r a l  gas  b lanket  

v e l o c i t y ,  v  . For low v  the  major hea t  l o s s  i s  by charge exchange 
g  g  ' n 

Y 
CX 

wi th  co ld  neu t r a l s .  The r a t i o  - i n c r e a s e s  a s  v d e c ~ a s e s .  This  B? g 
f i g u r e  i n d i c a t e s  a l s o  t h a t  r a d i a t i o n  l o s s e s  a r e  n e g l i g i b l e  f o r  graphi te .  

Tables 1 and 2 show t h e  n e u t r a l  gas  b lanket  parameters a s  a  func t ion  of 

Q f o r  carbon and s t a i n l e s s  s t e e l  f i r s t  wall. From column 2 of t hese  
P  

t a b l e s  we n o t i c e  t h a t  the  f r a c t i o n  of hea t  which w i l l  reach the  f i r s t  

wa l l  through r a d i a t i v e  energy o r  by charge exchange n e u t r a l s  i s  smal le r  

t han  the case  of s t a t i c  gas  b l anke t ,  but s t i l l  higher  than  the  d i v e r t o r .  

The heat  given t o  the  wal l  decreases  as Q increases .  This i s  due t o  the 
P 

decrease  i n  t he  r ad i a t ed  power. 

From column 3 ' iw  + rcxw i s  g r e a t e r  than 1, t h i s  i s  due t o  charge 
TI 

' P 
exchange recyc l ing  i n  t h e  gas blanket .  

The s p u t t e r i n g  c o e f f i c i e n t  i n c r e a s e s  a s  Q i n c r e a s e s  i n  t h i s  ca se ,  
P 

rrhis exp la ins  t he  behavior of t h e  impuri ty  concen t r a t ion  i n  t he  plasma. 

2. P a r t i c l e  Flux out of t h e  Plasma 

Table 3 shows the  e f f e c t  of decreasing the  p a r t i c l e  f l u x  out of the  

plasma, r , on t h e  boundary reg ion  parameters. A s  r inc reases ,  t h e  
P  P  

hea t  and p a r t i c l e  f l u x e s  a s  we l l  a s  t he  impuri ty  concen t r a t ion  increases .  

The h igher  the  p a r t i c l e  f l u x  out of the  plasma the  lower will be t h e  

minimum n e u t r a l  gas ve loc i ty .  



7. Nelitral Gas Blanket Veloci ty 

In Fig. 4 we p lo t t ed  t h e  average i o n  temperature a s  a  func t ion  of 

S  f o r  t h r e e  d i f f e r e n t  n e u t r a l  gas  b lanket  v e l o c i t y  f o r  graphi te .  Figure 
n  

4 shows t h a t  t h e  average temperature i s  almost cons tan t  f o r  low n e u t r a l  

source  and t h e r d r o p s  a s  S  increases .  The f l a t  po r t ion  of t he  curve i s  
.n 

due t o  t h e  f a c t  t h a t  S  i s  s t i l l  n e g l i g i b l e  compared t o  t he  r e f l e c t e d  
n  

n e u t r a l  from t h e  wa l l  due t o  i o n  bombardment. It i s  c l e a r  from t h i s  

f i g u r e  t h a t  1 )  t h e  higher  t he  n e u t r a l  gas b lanket  v e l o c i t y  t he  higher  

w i l l  be the  average ion  temperature of t he  boundary reg ion ,  2)  and 

f o r  a  given temperature,  t h e  n e u t r a l  sources decreases  a s  v  decreases .  
g 

From t h i s  f i g u r e  one can a l s o  exp la in  why the  r e s u l t s  of ~ i g .  2. 

Suppose t h a t  we s t a r t  wi th  p o i n t  (1 )  i n  t h i s  f i g u r e ,  we n o t i c e  t h a t  

no s o l u t i o n  e x i s t s  wi th  v  = 8 x 1 0 ~  cmlsec and i n  o rde r  t o  g e t  a  s teady  
g  

s t a t e  s o l u t i o n  S  o r  Q have t o  decrease. Another a l t e r n a t i v e  is  t o  
n  D 

i n c r e a s e  the  n e u t r a l  gas b lanket  v e l o c i t y  v  . 
g 

Figure 5 shows t h e  average e l e c t r o n  and i o n  temperature i n  t h e  

boundary reg ion  a s  a  func t ion  of v  . The c a l c u l a t i o n s  r evea l  t h a t  T  
g  e  

i s  comparable t o  T  f o r  a  s t a t i c  gas  b lanket  and g raph i t e  l i n e r  and t h a t  
i 

t h e  d i f f e r e n c e  ( T  - T ) i s  small  f o r  low v  . 
i e  g 

In  Fig. 6 t h e  minimum n e u t r a l  gas  b lanket  v e l o c i t y  has  been drawn 

f o r  two d i f f e r e n t  va lues  of gas  b lanket  t h i ckness  a s  a  func t ion  of t h e  

h e a t  flux out  of t h e  plasma, f o r  s t a i n l e s s  s t e e l  f i r s t  w a l l .  Wider gas  

b lanket  t h i ckness  r e q u i r e s  a  lower b lanket  ve loc i ty .  

Tables  4 and 5 show t h e  v a r i a t i o n  i n  t he  boundary reg ion  performance 

parameters  wi th  v . The r e s u l t s  i n  Table 4 a r e  f o r  g r a p h i t e  l i n e r ,  whi le  
g  

i n  Table 5 a r e  f o r  s t a i n l e s s  s t e e l  f i r s t  wall. The explana t ion  of t h e  

r e s u l t s  i n  Tables 4 and 5 fo l lows:  

a. The f r a c t i o n  of hea t  energy and p a r t i c l e  f l u x  t h a t  reach the  

f i r s t  wa l l  decreases  a s  v  increases .  This behavior  i s  due t o  t h e  decrease  
g 

of t h c  ion  dens i ty  i n  the-boundary region. 

b. The impuri ty  concent ra t ion ,  n Z ( o ) ,  decreases  a s  v  increases .  
g  

This  i s  mainly due t o  t he  f a c t  t h a t  t h e  ion  d e n s i t y  decreases ,  which i n  

t u r n  w i l l  decrease the  i o n i z a t i o n  p r o b a b i l i t y  and consequently t h e  impur i ty  

source. 



c. Steady s t a t e  s o l u t i o n  e x i s t s  on ly  f o r  v  > 5 x lo3  cm/sec f o r  
g  

r e a c t o r  type f luxes .  

4. Blanket Thickness 

Figure 6 shows the  e f f e c t  of t h e  n e u t r a l  gas  b lanket  th ickness ,  
s ' 

dn t h e  minimum irei.ocf.ty v .. ;..For .a .given .heat £;lux ou t .  of , the ~ . p l a s m a : - ~ i < ~ ~  
g  

i's . c l ea r  . t h a t  .8 :decreas'es : a's:, . the lneutr-a1 g a s .  veloc-i ty  increases .  
s 

5. Neutral Return from t h e  Wall 

As  shown i n  Fig. 2 t h e  minimum blanket  v e l o c i t y  decreases  a s  t he  

r e f l e c t i o n  c o e f f i c i e n t  decreases .  Table 6 shows t h e  v a r i a t i o n  of t h e  

boundary r eg ion  c h a r a c t e r i s t i c s  as a  func t ion  of t h e  wa l l  r e f l e c t i o n  

c o e f f i c i e n t ,  R . A s  R decreases ,  t h e  p a r t i c l e  dens i ty  i n  the  boundary 
W W 

r eg ion  decreases ,  t h i s  i n  t u r n  w i l l  decrease  both t h e  hea t  and p a r t i c l e  

f l u x e s  t o  t h e  wall  a s  we l l  a s  t h e  impuri ty  concen t r a t ion  i n  t he  plasma. 

6. Neut ra l  Gas Blanket Source 

A s  t h e  gas  b lanket  source,  
'n' 

i nc reases  t h e  i o n  d e n s i t y  i n  t he  

boundary reg ion  increases .  This exp la ins  t h e  behavior of t h e  p a r t i c l e  

and hea t  f l uxes  t o  t he  w a l l  and t h e  impuri ty  concent ra t ion  a s  shown i n  

Table 7 ,  8. The impurity l e v e l  decreases  f o r  i r o n  a s  S changes from 
n  

5 x l o 2 '  t o  1  x l o 2 '  because of t h e  decrease i n  t he  average e l e c t r o n  

temperature of t h e  boundary region. 

7. Cross F i e l d  Dif fus ion  Coef f i c i en t  

As t h e  c ros s  f i e l d  d i f f u s i o n  c o e f f i c i e n t ,  D decreases ,  the  i o n  
1' 

d e n s i t y  i n  the  n e u t r a l  gas  b lanket  increases .  This  i nc rease  i s  due mainly 

t o  t he  low temperature of t h e  boundary reg ion  and high i o n i z a t i o n  r a t e ,  

and due t o  t he  f a c t  t h a t  t h e  p a r t i c l e  f l u x  out of t h e  plasma i s  constant .  

As  D decreases ,  t h e  impuri ty  concen t r a t ion  i n c r e a s e s  a s  a  r e s u l t  of high 
1 

p a r t i c l e  dens i ty ,  i .e .  h igh  i o n i z a t i o n  p robab i l i t y .  The hea t  f l u x  t o  the  

wall  i s  almost cons t an t ,  and the  p a r t i c l e  f l u x  t o  t he  wa l l  i nc reases  due 

t o  t he  inc rease  of the  i o n i z a t i o n  r a t e .  These conclusions a r e  deduced 

from Table 9. 



IV.  -. Conclusion 

The model of Ref. 6,was extended t o  r ep re sen t  a moving n e u t r a l  gas  

blanket .  We have used t h i s  model t o  s tudy t h e  requirements on the  

n e u t r a l  gas b lanket  parameters such a s  t h e  v e l o c i t y ,  t h e  n e u t r a l  source 

s t r e n g t h  and t h e  th ickness  of t h e  gas b lanket  i n  o rde r  t o  e f f i c i e n t l y  

s h i e l d  t h e  plasma. Under t he  assumption of a cons t an t  average boundary - 

reg ion  temperature,  t h i s  s tudy shows t h a t  f o r  a near  term fus ion  r e a c t o r  

t h e  n e u t r a l  gas  b lanket  v e l o c i t y  ranges between 50 and 100 m/sec i n  o rde r  

t o  o b t a i n  a reasonable  boundary reg ion  thickness .  Speeds on the  order  

of 50 t o  100 m/sec a r e  f e a s i b l e  f o r  gas  puf f ing  but a r e  ques t ionable  f o r  

s teady  s t a t e  n e u t r a l  gas  flow and more r e sea rch  i s  requi red  i n  t h i s  

r e spec t .  We expect  t h a t  by r e f i n i n g  the  model and taking a space 

dependent temperature t he  minimum requi red  n e u t r a l  gas  v e l o c i t y  w i l l  be 

lower. From t h i s  s tudy one can draw t h e  fol lowing conclusions. 

1. The v e l o c i t y  of t he  n e u t r a l  gas b lanket ,  v , i n c r e a s e s  a s  t h e  
g 

hea t  f l u x  out of t he  plasma increases .  

2. The h igher  t he  p a r t i c l e  f l u x  out  of t he  plasma, t h e  lower w i l l  

be v . 
g 

3. As  v inc reases ,  both t h e  hea t  l o s s  by charge exchange wi th  t h e  
g 

co ld  n e u t r a l  and t h e  hea t  l o s s  t o  . the  wa l l  decrease. 

4. The th ickness  of t h e  boundary reg ion  i s  determined by & t h  the  

c r o s s  f i e l d  d i f f u s i o n  c o e f f i c i e n t  and the  n e u t r a l  gas  b lanket  ve loc i ty .  

5. The d i f f e r e n c e  between the  average i o n  and e l e c t r o n  temperature 

i n c r e a s e s  a s  t h e  gas blanket  v e l o c i t y  o r  t he  r a d i a t i o n  l o s s e s  increases .  

6. The impuri ty  l e v e l  i n  t he  plasma decreases  a s  v increases .  
j g 
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Table 1 

Blanket parameters as a function of heat flux out of the plasma 

(r = 2.5 x 1016 ///cm2, 6 = 30 cm,$ = 5 x 1016, vf3= 1 x lo4 cm/sec, graphite liner) 
P n g 

I 

r 
cxw + ria. 

Blanket parameters as a function of heat flux out60f the plasma 

(r = 2.5 x 1016 # / c m 2 ,  6 = 30 cm,@ = 1 x 1016, IT&?= 1 x lo4 cm/sec, stainless steel) 
P n 

r + r .  
cxw 5w7 

r 



Table 3 
/ ~- . ~ ,,. ,-.~, .. , t,. 2-C ! 

Blanket parameters as a function of confinement time 

(Qp = 1 x lo5 w/m2i< 6 = 30 cm, $;= 1 x lo4 cm/sec, ,:$a = 1 x 1021, graphite) 

r + riw 
CXW 

r 

Table 4 

. ..Blanket parameters as a function of blanket velocity 

(Qp = 1 x lo5 w/m2, r = 2.5 x 1016 (l/cm2, 6 = 30 cm, S] = 5 x 1016, graphite) 
P n 

r + r  . . 
cxw iw 

r 
P 



Table 5 
. . 

Blanket parameters as a function of neutral.blanket velocity 
/'.~ (Qp = 1 x lo5 w/m2, 1. = 2.5 x 1016 il/cm2, 6 = 30 cm, ,yn = 1 x 1016, stainles; steel) 

P 

. Table 6 

Blanket parameters as a fGnction of the neutral source strength 

($= 1 x lo5 w/m2, I. = 2.5 x 1016 #/cm2 sec, 6 = 30 cm, Vg = lo4 cm/sec, graphite) 
P 

,% illcmZ sec r + r  &... 
cxw iw 

n 



Table 7 ' 

Blanket parameters as a function of external neutral source 

(Qp = 1 x lo5 w/m2, r  = 2.5 x 1016 ii/cm2 sec, 6 = 30 cm, vg = lo4 cm/sec, graphite) 
P 

r  + r  
cxw iw 

r  
P 

Table 8 

Blanket parameters as a function of wall reflection coefficient 

(97  = lo5 w/m2, r  = 2.5 x 1016 iilcm2 sec,zf = 5 x 1016 ii/cm2 sec, V 7  = lo4. cm/sec, graphite) 
P .  P g 

r  + r  
cxw iw 

I- 



Table 9 

Blanket parameters as a function of cross field diffusion coefficient 

(Q = 1 x lo5 w/m2, I. = 2.5 x 1016 il/crn2 s e c , a  = 5 x 1016 i//cm2 sec, Rw = 1, graphite) 
P 
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Fig. 1. Heat flux out of the plasma as a function of the neutral 
gas blanket thickness 
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Fig. 2. Minimum flow velocity as a function of the heat flux out of the plasma 
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Fig. 4. Average boundary reg ion  temperature a s  a  func t ion  of t he  n e u t r a l  gas  b lanket  

s Lrellg L11 
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Heat f l u x  ou t  of t h e  plasma i n  w/m2 s e c  

Fig. 6. Minimum n e u t r a l  gas b lanket  v e l o c i t y  as. a func t ion  df  t h e  h c a t  
f l u x  ou t  of the plasma f o r .  two d i f f e r e n t  n e u t r a l  gas  b lanket  
th ickness  




