

CONF-901101-9

CONF-901101--9

DE90 012948

VALIDATION OF SCALE-4 FOR LWR FUEL
IN TRANSPORTATION AND STORAGE CASK CONDITIONS

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Stephen M. Bowman
Cecil V. Parks

Computing and Telecommunications Division
at Oak Ridge National Laboratory*
Post Office 2008
Oak Ridge, Tennessee 37831-6370

Sidney R. Bierman
Batelle Pacific Northwest Laboratory

To be presented at the American Nuclear Society
Meeting, Washington, D.C., November 11-15, 1990;
to be published in the Proceedings.

"The submitted manuscript has been
authored by a contractor of the U.S.
Government under contract No. DE-
AC05-84OR21400. Accordingly, the U.S.
Government retains a nonexclusive,
royalty-free license to publish or reproduce
the published form of this contribution, or
allow others to do so, for U.S. Government
purposes."

*Operated by Martin Marietta Energy Systems, Inc.
under contract DE-AC05-84OR21400 with the U.S. Department of Energy.

MASTER

Validation of SCALE-4 for LWR Fuel in Transportation and Storage Cask Conditions

Stephen M. Bowman, Oak Ridge National Laboratory
Sidney R. Bierman, Battelle Pacific Northwest Laboratory
Cecil V. Parks, Oak Ridge National Laboratory

This paper presents the results of criticality calculations performed to validate the recently released SCALE-4 modular code system¹ for light water reactor (LWR) fuel under various conditions typical of transportation and storage casks. The modifications in SCALE-4 include NITAWL-II², an updated version of the NITAWL code that performs resonance self-shielding calculations using the Nordheim Integral Treatment. In order to validate SCALE-4 with the new resonance self-shielding treatment, the CSAS4 control module was used to calculate the effective neutron multiplication factor (k_{eff}) via the BONAMI³, NITAWL-II, and KENO V.a⁴ codes. The cross section library used was the 27 group ENDF/B-IV library, which has been updated for use with NITAWL-II.

Sixteen experiments from eight references were modeled in order to examine eight different criticality aspects related to fuel storage in transportation and storage casks:

- 1) Neutron interaction between fuel assemblies
- 2) The effectiveness of neutron flux traps between fuel assemblies to reduce reactivity
- 3) The effect of voiding on the effectiveness of neutron flux traps
- 4) The effectiveness of neutron absorber plates and rods to reduce interaction between fuel assemblies
- 5) The reactivity effect of commonly used biological shielding materials
- 6) Neutron spectra shift or relative neutron moderation caused by dissolved boron
- 7) Plutonium buildup and uranium depletion
- 8) Subcritical neutron multiplication in a cask configuration, including neutron poison baskets.

Table I lists the experiments modeled, their distinctive characteristics as related to the eight aspects of criticality listed above, and the calculated k_{eff} 's. All experiments were water moderated and reflected, unless otherwise noted.

The first set of experiments⁵ listed in Table I consisted of four fuel assemblies of 4.31 weight percent (wt%) UO_2 rods in a 1.891 cm square lattice pitch arranged in a 2 x 2 array. The assemblies were separated by a 3.73 cm wide neutron flux trap created by 0.673 cm thick Boral™ plates. Voids were created in the flux trap region of experiment # 214V3 by inserting three 0.63 cm thick aluminum plates. This resulted in voiding of 51% and decreased the critical size of the experiment by approximately 9.5%.

The second experimental set⁶ consisted of three fuel assemblies of 2.35 wt% UO_2 rods in a 2.032 cm square lattice pitch arranged in a row. Plates of Boral™, aluminum, or stainless steel were inserted between the fuel assemblies (0.645 cm from the center assembly) to determine the effect on the critical separation between the fuel assemblies.

The third set^{7,8} consisted of three fuel assemblies of 4.31 wt% UO_2 rods in a 1.892 cm square lattice pitch arranged in a row, similar to the setup of the second set. Reflecting walls of depleted uranium, lead, or steel were positioned on both sides of the fuel assemblies, 1.956 cm from the cell boundary of the assemblies.

The fourth set⁹ examined the effects of adding soluble boron to the water moderator. These experiments used a single array of 4.31 wt% UO_2 rods at two different lattice pitches, 1.890 cm and 1.715 cm, in order to study the effect of water-to-fuel volume ratios on highly borated systems. Although the wide pitched assembly required less rods (357) to achieve criticality than the narrow

pitched one (509) with no boron in the system, the opposite was true for the borated cases (1237 versus 1192 rods, respectively).

The next experiment¹⁰ consisted of nine fuel assemblies of 2.46 wt% UO₂ in a 1.636 square lattice pitch arranged in a 3 x 3 array. The assemblies were separated by a water gap containing 84 equally spaced B₄C rods.

The experiment from Reference 11 had 583 mixed oxide pins (2 wt% PuO₂, 98 wt% natural UO₂) and 1174 4.31 wt% UO₂ rods distributed uniformly in a close packed triangular pitch of 1.598 cm to obtain a Pu/U²³⁵ ratio approximating that of 20,000 MWD/MTU burnup. The final experiment¹² consisted of seven assemblies of 4.31 wt% UO₂ rods encased in AlB₂ alloy sleeves arranged in a subcritical shipping cask geometry. The measured k_{eff} of this experiment was 0.92±0.005.

The mean k_{eff} for the fifteen critical experiments is 0.9931. However, more insight may be gained by separating the results into four categories:

- 1) UO₂ fuel reflected by water
- 2) UO₂ fuel reflected by metal walls
- 3) mixed oxide fuel
- 4) subcritical experiments.

The eleven water reflected UO₂ cases have a mean k_{eff} of 0.9921 for a bias of 0.8% k, while the three UO₂ cases with reflecting walls have a mean k_{eff} of 0.9999, exhibiting no bias. The mixed oxide case has a lower calculated k_{eff} than any of the UO₂ cases and has a bias of 1.6% k. The subcritical case underpredicts the measured k_{eff} by 1.5% k.

Although there were other experiments in the above references which were not modeled, this study covers a large scope of typical transportation and storage cask conditions. SCALE-4 with the 27 group ENDF/B-IV cross section library produces satisfactory results for unirradiated LWR fuel stored in cask conditions. Analysis of additional mixed oxide critical experiments is planned in order to substantiate the bias observed for the mixed oxide cask in this study.

TABLE I
EXPERIMENT DESCRIPTIONS AND CALCULATED RESULTS

<u>Reference/Experiment</u>	<u>Characteristics</u>	<u>Results</u>
5 / 214R	Flux traps	0.98935 ± 0.00215
5 / 214V3	Flux traps with voids	0.99713 ± 0.00222
Mean k_{eff}		0.9932
<hr/>		
6 / 005	No plates	0.99498 ± 0.00205
6 / 017	Boral™ plates	0.99697 ± 0.00221
6 / 024	Aluminum plates	0.99433 ± 0.00198
6 / 028	SS304 plates	0.98903 ± 0.00285
Mean k_{eff}		0.9938
<hr/>		
7 / N/A	Depleted uranium walls	0.99711 ± 0.00201
7 / N/A	Lead walls	1.00461 ± 0.00236
8 / N/A	Steel walls	0.99787 ± 0.00228
Mean k_{eff}		0.9999
<hr/>		
9 / 173	No boron, wide pitch	0.99196 ± 0.00237
9 / 177	2.55 g/l boron, wide pitch	0.99252 ± 0.00156
9 / 178	No boron, narrow pitch	0.99028 ± 0.00233
9 / 181	2.55 g/l boron, narrow pitch	0.98695 ± 0.00147
Mean k_{eff}		0.9904
<hr/>		
10 / 2282	B_4C rods between fuel assemblies	0.98929 ± 0.00217
<hr/>		
11 / 196	Ass'y of mixed oxide and UO_2 rods arranged in an uniform pattern to approximate 20,000 MWD/MTU burnup	0.98396 ± 0.00198
<hr/>		
12 / TTC-5	7 assemblies encased in AlB_2 alloy sleeves arranged in a subcritical shipping cask geometry ($k_{\text{eff}}=0.92$)	0.90509 ± 0.00196
<hr/>		

REFERENCES

1. C. V. Parks, Ed., "SCALE : A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation," NUREG/CR-0200, Rev. 4 (ORNL/NUREG/CSD-2/R4) Vols. I, II, and III (Draft January 1990).
2. N. M. Greene, et al., "NITAWL-II: SCALE System Module for Performing Resonance Shielding and Working Library Production", NUREG/CR-0200, Rev. 4, ORNL/NUREG/CSD-2, Vol. 2, Sec. F2 (Draft January 1990).
3. N. M. Greene, "BONAMI-S: Resonance Self-Shielding by the Bondarenko Method", NUREG/CR-0200, Rev. 4, ORNL/NUREG/CSD-2, Vol. 2, Sec. F11 (Draft January 1990).
4. L. M. Petrie, N. F. Landers, "KENO V.a: An Improved Monte Carlo Criticality Program with Supergrouping", NUREG/CR-0200, Rev. 4, ORNL/NUREG/CSD-2, Vol. 2, Sec. F11 (Draft January 1990).
5. S. R. Bierman, "Criticality Experiments with Neutron Flux Traps Containing Voids", PNL-7167 (April 1990).
6. S. R. Bierman, et al., "Critical Separation Between Subcritical Clusters of 2.35 Wt% ^{235}U Enriched UO_2 Rods in Water with Fixed Neutron Poisons", PNL-2438 (October 1977).
7. S. R. Bierman, et al., "Criticality Experiments with Subcritical Clusters of 2.35 Wt% and 4.31 Wt% ^{235}U Enriched UO_2 Rods in Water with Uranium or Lead Reflecting Walls", PNL-3926 (December 1981).
8. S. R. Bierman, E. D. Clayton, "Criticality Experiments with Subcritical Clusters of 2.35 Wt% and 4.31 Wt% ^{235}U Enriched UO_2 Rods in Water with Steel Reflecting Walls", PNL-3602 (April 1981).
9. B. M. Durst, et al., "Critical Experiments with 4.31 Wt% ^{235}U Enriched UO_2 Rods in Highly Borated Water Lattices", PNL-4267 (August 1982).
10. M. N. Baldwin, et al., "Critical Experiments Supporting Close Proximity Water Storage of Power Reactor Fuel", BAW-1484-7 (July 1979).
11. S. R. Bierman, et al., "Criticality Experiments with Low Enriched UO_2 Fuel Rods in Water Containing Dissolved Gadolinium", PNL-4976 (February 1984).
12. S. R. Bierman, "Reactivity Measurements on an Experimental Assembly of 4.31 Wt% ^{235}U Enriched UO_2 Fuel Rods Arranged in a Shipping Cask Geometry", PNL-6838 (October 1989).