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1. INTRODUCTION

The Toroidal Fusion Core Experiment (TFCX) is proposed to be a
tokamaX ignition device with a low safety factor (q = 2.0), rf or rf-
assisted startup, loig inductive burn pulse (300 s}, and an elongated
plasma cross section (x = 1.6) with moderate triangularity (& = 0.3).
Design options include all-superconducting toroidal field (TF) coils
(TECX-S) or possibly a hybrid TF coil system with copper insert coils
(TFCX-H) to increase the field on-axis. The current-drive assumption
implies the possibility of quasi-steady-state operation through the
periodic recharging of an ohmic heating (OH) solenoid. System trade
studies are in progress to assist in choosing an appropriate candidate
for the TFCX conceptual desizn. Reference design points for the ail
superconducting and hybrid options have been chosen. In this work, an
analysis is presented of the poloidal field (PF) configurations, coil
locations, and coil current waveforms consistent with the magnetohydro-
dynamic (MHD) equilibrium and plasma volt-second requirements for the
reference TFCX options of this trade study. Major plasma and machine
parameters for the TFCX are the result of a systems analysis [1], which
inciudes the PF system analysis as an important element.

Given the plasma gecmetry and a set of performance parameters
je.g., maximum stable beta Boay = 0-117a(1 + KZ)/ROQ] from a Fusion
Engineering Design Center (FEDC) tokamax systems code [2] simulation
with an assumed constant ignition margin (Ig) of 1.0, the purpose of
this analysis is to determine a PF coil system that satisfies (1) volt-
second requirements, (2) mechanical configuration constraints,

(3) maximum field constraints at the¢ superconducting PF coils, and
(4) plasma shape requirements for eiach TF coil option. The methods of
analysis are discussed in Sect. 2.

In this analysis, a PF system consists of three coil groups
(Fig. 1)—an OH central solenoid, shaping field (GF) coils, and outboard
equilibrium field (EF) coils, PF coils are assumed to be superconducting
and are positioncd extcrnal to the TF coils and associated structures.

Coil locations are also constrained by maintenance and machine access
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Fig. 1. Elevation view of the TFCX-S poloidal field coil system
showing tne coil numbering scheme.



considerations. The fields of the three sets of coils are coupled — a
concept that reduces the total ampere-turns and allows tiie magnetic
energy stored in the system to be used for both plasma current buildup
and MHD ecquilibrium. The coupled-coil concept may, however, present
additional plasma control problems not addressed in this study. PF coil
systems for the reference cases (TFCX-S and TFCX-H) are presented ir
Sect. 3.

Poloidal coil current waveforms for the TFCX consistent with the
plasma startup, heating, and burn phases are discussed in Sect. 4. The
prospect of current drive at relatively low density also leads to a
possible scenario for quasi-steady-state operation in which, following
a current initiation and ramp phase, the OH solenoid is alternately
(1) discharged during a 150- to 200-s, high-beta, inductive burn cycle
and (2) recharged during a approximate 30-s rf current-drive cycle at
low beta. PF coil currents consistent with this mode of operation also
need to satisfy the flux requirements of a plasma cool-down period prior

to solenoid recharge, and one such possible set of waveforms is presented.

2. METHOD OF ANALYSIS
2.1 THE POLOIDAL FIELD COIL DESIGN rROCESS

The design configuration for a given TFCX option is the result of
an iterative process involving the use of the FEDC MHD equilibrium code,
the EFF1 [3] magnetics code, and the FEDC tokamak systems code. The
systems code is used to establish an operating point (i.e., parameters
such as the plasma major radius Ro’ minor radius a, vacuum toroidal
field Bt’ and maximum volume-averaged beta <B>) consistent with the TFCX
assumptions of q = 2.0, zn ignition margin (Ig) of 1.0, and a radial
build that satisfies volumetric heating requirements and TF ripple
constraints. These data lead to a mechanical configuration that defines
a set of possible regions in which to locate PF coils. The FEDNC cqui-
librium code and the EFF] code are used to actually locate these coils
and to determine if the system is feasible with respect to volt-second,

maximum field, and plasma shape requirements.



The first step in defining PF coil locations is to compute the
maximum radial position and size of the OH solenoid. These are deter-
mined by magnetic field and MHD equilibrium calculations for an assumed
oy = 15 x 107 A/m?.  For 2 totally
discharged solenoid at the end of the plasma burn phase (t = tF), the

solenoid current density, typically J

maximum polcidal magnetic field at a PF coil occurs near the midplane on
the inboard side of the solenoid and is modeled by computing the field

of the OH and outboard EF coils only. This is a comnservative estimate
because the plasma and SF coil currents run in a different direction and
because including these fields would tend to reduce the total field.

The maximum solenoid mean radius and width are determined by the condition
ma
B
P

cuil) and by configurational constraints set by the TF coil structure

X < 8T (i.e., the maximum allowable field at a superconducting PF

and bucking cylinder. Typically, one MHD ecuilibrium is necessary teo
approximate the outboard EF coil currents for use in this end of the
burn field calculation,

For an assumed solencid current (IOH) at the initiation of the

plasma burn t = t_, the SF coil locations are adjusted in a series of

r’
MHD cquilibrium c;lculations in order to achieve the desired plasma
shape {i.e., an elongation satisfying [K - Ko[ < € and triangularity

le - 60[ < €c). The outboard EF coil iocations are usually fixed by the
machine design configuration. An iteration over the current IOH(tI) is
generally necessary to ensure that Bgax < 8 T in the OH and SF coils at
t=t. Here the OH, SF, and plasma currents usually run in the same
direction, and cll arc included in the magnetic field calculation. The
plasma is modeled in the EFFI calculation as having a rectangular

cross scction with an appropriate uniform current density, A final set
of MHD equilibrium calculation~ is r.dc at t = te during which SF coil
currents arc found that approximate the prescribed plasma shape at the
end of the inductive burn phase, Volt-seconds provided by the PF system
and t. to determine

1 F
if ti.e configuration and PF coil system are feasible with respe:t to

during burn are computed from the equilibria at t

plasme flux requirements.
If volt-seconds are inadequate, these iterations are nested inside

an outermost loop involving systems code calculations at various Ro in



order to determine the minimum radius at which all PF system require-
ments are satisfied. The PF coil design procedure is summarized in
Fig. 2.

2.2 THE FEDC MHD EQUILIERIUM CODE

For a fixed OH solenoid current, estimates of SF and EF coil cur-
rents necessary to maintain a plasma of prescribed shape are obtained
with the FEDC MHD equilibrium code solving the axisymmetric equilibrium

equation in cylindrical (R,¢,Z) coordinates:

A%y = R2V - RT2V) = -uRJ, . (1)

Here, J¢ is the toroidal plasma currert density, and the poloidal flux
function § = wp + ¢e (whexe ¢p is the: flux due to the plasma current and

¢e the flux due to external sources) satisfies
P>~ - + > >
v (xb) //Q G(xb,X)J¢(x)dQ (2)

for §5 = (Rb,Zb) on the boundary of a rectangular region Q2. The Green's
function G relates y at a point on the boundary to a unit current
density at a point in 9 [4].

For fixed boundary values w(;b) = ¢P(§5) + ¢e(§b) and current
profile J¢, the resulting elliptic partial differential equation
[Eq. (1)] is discretized on a rectangular mesh (with typical dimensions
33 by 65 or 65 by 129), and the resulting linear equations are solved by
a direct, cyclic reduction method using SEPX4 [S]. The itarative

procedure

A*l’r’(n+1)= -4R GJ4(>n+l) + (1 - G)thn) y 0<as1, (3)

is used to solve for the current density
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Fig. 2. The PF ccil design process applied in the preconceptual
design analysis of the TFCX.
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J =R_+__-; (4)

which depends nonlinearly on § through assumed plasma pressure P(Yy)

and toroidal magnetic flux, F(¥) = RBt’ profiles, Prior to recomputing
J¢ in this iteration, a correction in the external flux function We is
made by adjusting some subset of the coil currents Ij so that the total
flux at points on a prescribed plasma boundary, 3P. is approximately
constant. More specifically, if 3P = (RE,ZE) is a set of points
describing a desired plasma shape and including a limiter point (RL’ZL)’

the approximation problem

’ 2
. € 2 _ mini
E [sz(Rj’zj’ Ri’zi)lj - ¥ (Ri’zi) + ujz Ij = minimum (5)

1

is solved for the variable coil currents I.. Here the desired we is
determined at the given plasma boundary points by we(Ri,Zi) =

¢L - ¢p(Ri,Zi), where wL = w(RL,ZL) is the poloidal flux at a limiter
point, Thus, the final coil cu:rents Ii determined by the equilibrium
code depend largely on coil locations (Rj,Zj), j=1, 2, «uoy Nc; the
plasma boundary points (Ri’zi)’ i=1, 2, ..., Np; and the regulari-
zation parameter a, which gives some weight to minimizing totesl ampcre-
turns. Some subset of the ccil currents may be fixed during an equi-
librium calculation, as is the case with the current loops representing
the OH solenoid in the TFCX analysis.

Without the smoothing parameter o, coil currents often tend to
oscillate in sign and vary widely in magnitude (compared to a practical
solution). In practice, ¢ is varied until the error in the flux values
at the prescribed plasma boundary points

€ = %{wi-?c..r.]z/ E[wf]?'

i

meets a specified criterion or until some global plasma shaping parameters

(e.g., v and &) are sufficiently close to the desired values. This



condition is demonstrated by Fig. 3, in which the dependence of ¢ and §
on changes in a are shown for a coil system consisting of 32 coils with
centers equally spaced in arc leagth on a given curve in the poloidal
plane.

The "limiter" value of the poloidal flux, ¢L’ is taken to be the
minimum of the flux values at a prescribed point (RL,ZL) in the compu-
tational domain Q and at a poloidal separatrix created by SF coils
carrying current in the same direct_on as the plasma current. The
latter situation occurs in modeling the equilibrium configuration of a
poloidal divertor [6].

For the 7,CX analysis, plasma pressure and toroidal magnetic flux
profiles input to the FEDC equilibrium code through Eq. (4) are of the

form:
@ _ (e'“ - e )
dx °\ e
-Bx -B
9F _ amp2p (L. 9___8_'_9_> , (6)
dx 0Oo\s e -1
J
and
. v - wo
wL = ‘po

where wo is the poloidal fiux at the magnetic axis. Integrals of these
profi’es are chosen such that P = 0 and | = R,B, at the plasma edge.
During the iterative procedure described by Eq. (3), Po is scaled by o2,
=1 J
where o p/ff 6

In the design process, the constants A and B in Eq. (6) are deter-

dQ, to fix the plasma current I_.

mined by calling the equilibrium code as a subroutine from the objective
function used in the software package VMTON [7], a routine for numerical
nonlinear optimization with constraiats (possibly nonlinear). That is,

the objective function Q = (q;/q - ¢)? is minimized with respect to
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increasing o (Eq. 5).
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A and B. These values are not unique [i.e., for each value of BJ, a
set of parameters (A,B) gxist for which q, = 1.0 and q = 2.0, as shown
in Fig. 4]. The optimization procedure converges to different points,
depending on starting values (A,B) for fixed safety factor at the edge,
which leaves some freedom for choice of profile shape.

Ii this PF analysis, different points in the time-dependent plasma
operation scenario are simulated by equilibria with specific properties.
For example, equilibria representing the plasma at the initiation and at
the end of the burn interval are required to have constant shape, plasma
current, and beta and to meet some flux swing requirement. This volt-

second requirement takes the form

Bbpe = Moo + B0 (7)

representing the balance between the externally applied flux due to the
PF system and the resistive and inductive plasma flux requirements. The
flux A%, . is comruted from two equilibrium solutions with different

PF
fixed currents, usually in coils modeling the OH solenoid, as

BOye =2i: AT (8)

l

Here, Mip is the mutual! inductance between the ith coil and the plasma

and is computed in the FEDC equilibrium code as
M. = M. J J. ., 9
ip }E ip. ¢ / }E . (9)

where J¢ is the current density at the jth node in the solution of
J
Eq. (1), and Mip is the mutual inductance between axisymmetric current
j
loops (filaments) at the center of coil i and at node j [4]. This model
therefore accounts for changes in inductance due to a shift in the

current profile during, for exampie, heating to high beta.
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these contours.
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2.3 PLASMA FLUX REGUIREMEnTS

The volt-second requirements for inducing and maintaining the
plasma current through the varii...s stages of a discharge [Eq. (7)]

include components accounting for resistive losses, A® S? and plasma

RE

inductance, A% The resistive term is given by

IND®

ty
Moo = ) f RI dt, (10)
(o]

with the plasma resistance expzessed as follows (mks units with Te in
keV):

2 -9
- 3.3 x 10 aNZeffRo In A an
P a2¢T3/2 ’
e
= - 1n(ml/2
In A = 37.8 ln(ne /Te) .
Here, the factors ay = 2 and Zeff = 1.5 are assumed to account for

trapped electron effects and impurities, respectively. For the inductive

component, tl.~ large aspect ratio approximation

= 1
A¢END A(“pIp)

and

8R0 Ei
L = uRo In + — -2 1, (12)
P akl/2/ 2

with a correction for noncircularity (1/«}/? in the logarithmic argument),

is assumed. Here, Ei is the plasma internal inductance.
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2.4 PLASMA SCRAPEOFF CONSIDERATIONS

For elongated plasmas (x ‘v 1.6) of even moderate triangularity
(6 ~ 0.2-0.3), the shape of field lines in the scrapeoff region (i.e.,
flux surfaces immediately outside the limiter flux surface, ¢ = *L)
is of particular interest in PF configuration design. The size of this
region is dependent on plasma density and temperature profiles, but for
design purposes it is generally assume& to have a width ¢~ about 5% of
the plasma minor radius along the midplane on the laige major radius
side. For high-beta equilibria, where flux surfaces are considerably
expanded on the small major radius side of the plasma, the inboard
scrapeoff width can be a factor of 2 to 3 larger. The shape of this
region has an influcnce on the design of tokamak comnonents, such as the
first wall and impurity control systems.

Figure 5 demonstrates a potential problem with highly elongated and
D-shaped plasma cross sections. Significuntly, the null point lies
within the scrapeoff regica and causes part of the region to be dis-
connected in the sense that some fraction of the field lines in the
scrapeoff are diverted outside of the plasma chamber. This is a problem
in tokamak designs that assume a pumped limiter or a single-null poloidal
divertor as a means of impurity control.

Broad current profiles, characteristic of TFCX with q = 2.0, are
desirable for increased scrapeoff width. A further improvement can
be realized through optimization of the plasma shape. For an idealized
PF coil system consisting of a large number of equally spaced conductors,
implying precise plasma shaping capability, this is demonstrated by
considering two different parameterizations of the plasma boundary shape

given by the radial coordinates

1 .
R£ ) Ro + a cos(ei + § sin ei) (13)

and

r(?)
1

Ro + a(cos ei + 0 cos zei - 0) (14)
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D-shaped plasmas.
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and the vertical coordinates Z(l) = Ziz)

i
scrapeoff regions of equilibria with the same elongation (< = 1.60) and

= ak sin ei. Compariag the

triangularity (8§ = 0.38) as in Fig. 6, the boundary shape given by
Eq. (14) is slightly more rounded, resulting in a broader scrapeoff.

In practice, hcwever, these detailed shapes would require a more
complex PF coil configuration, and a better solution may be to simply
Teduce the elongation or triangularity of the plasma, depending on the
implications in terms of plasma performance [8]. In the analysis of
TFCX coupled PF coil systems, plasmas with elongation x = 1.6 and
triangularity 6 = 0.3 seem to, at best, marginally satisfy the scrapeoff

width requirements of a pumped limiter approach to impurity control.
3. POLOIDAL COIL DESIGN OPTIONS FOR TFCX

3.1 IMPACT ON SYSTEM TRADE STUDIES

Trade studies are under way to choose an appropriate concept for
the TFCX conceptual design. The goal of these studies is to determine
the sensitivity of machine size, cost, and performance to such design
fac.ors as plasma triangilarity, maximum field strength at the TF coils,
safety factor, and ignition parameter. The procedure through which the
various design points are derived is heavily dependent on.the PF coil
design process described in Sect. 2, This model allows thg evaluatior.
of different concepts to be made based on a consistent set of criteria.

Although the deta’ s Of the trade and evaluation studies (many of
which are still in progress) are presented in ref. [1], the charac-
teristics of the PF systems of the reference design points (TFCX-S and
TFCX-H) are summarized here. In general, the size of devices increases
with maximum field at the TF coils du. tc nigher shielding rcquirements,
largé} TF coil widths, and smaller plasma minor radii, forcing the
external PF coils to be further away from the plasma boundary. For
fived plasma shape, this enhanced distance increases shaping coil
currents and, in turn, the fields at the SF coils, driving the machine

design to a larger major radius.
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and triangularity (8§ = 0.38), the sensitivity of the shape of field lines
in the plasma scrapeoff region to different boundary shape parameteriza-

tions is shown using (a) Eq. (13) and (b) Eq. (14).
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In the hybrid devices, a fixed plasma-triangularity of § = 0.3
implies even larger major radii. Here OH solenoid currents in the same
direction as the plasma current, needed to satisfy plasma volt-second
requirements, combine additively with large SF coil currents to create
excessive fields at the SF coils. The result is that to satisfy the
field limits, the plasma and OH solenoid radii are so large that volt-
seconds for a 300-s burn are satisfied with only a partial discharge of
the OH solenoid. That is, the OH current rums ccunter to the plasma
current, reducing fields at the SF coils and assisting in plasma shaping

during the entire burn.

3.2 TFCX-S

The proposed ail-SC coil reference point device for trade studies
(TFCX-S) assumes a maximum field of 10 T at the TF coils. Following the
design process of Sect. 2, a major radius of Ro = 3,75 m was found to be
minimum with rcspect to satisfying the four PF system requirements
listed in Sect. 1. Configurations at smaller radii satisfied maximum
field constraints at the SF coils only when 6 < 0.3. At Ro = 3,75 m,
the systems code analysis resulted in the plasma and design parameters
listed in Table 1.

The OH solenoid and outboard EF coil locations are generally fixed
by device radial build and access considerations., The SF coil locations
are varied within the constraints of the configuration to satisfy the
plasma shape requirement at the initiation of burn. With a coupled coil
system, it is usually most difficult to shape the plasma when the current
in the OH solenoid is either near zero or in the same direction as the
plasma current. A summary of coil locations, currents, and volt-seconds
is given in Table 2 for equilibria simulating the initiation and end of
the 300-s burn pulse., The associated equilivrium plasma parameters are
listed in Table 3. Figure 7 shows the TFCX-S high-beta equilibrium
poloidal flux surfaces.
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Table 1. TFCX-S data from systems code

Parameler Value
Major radius (m) _ 3.75
Minor radius (m) 1.07
Field on-axis (T) 4,34
Beta, volume averaged (%) 5.9
Plasma current (MA) 7.70
Safety factor-axis 1.00
Safety factor-—edge 2.00
Loop voltage (V) 0.06

Bucking cylinder inner radius (m) 0.87




Table 2. TFCX-S coil locations and currents

t =40 s t =340 s t =40 s t = 340 s At = 300 s
(start (end of (start (end of (during
Mean Jiean of burn) burn) of burn) burn) burn)
radius, distance,?
Coil Rm (m) Zm (m) (MA-turn) (V-s)
1 1.50 3.50 9.34 5.00 4,31 2.31 -2.00
2 1.50 -3.50 9.34 5.00 4,31 2.31 ~2.00
3 2.60 4.20 9.34 8.26 8.91 7.88 -1.03
4 2.60 -4.20 9. 34 8.26 8.91 7.88 -1.03
5 6.70 3.50 -6.16 -6.45 -18.43 -19.31 -0.88
6 6.70 -3.50 -6.16 -6.45 -18.43 -19.31 -0.88
7 3.66 b 23.62 -28.37 4,42 -5.30 -9,72
73.30° 67.79° -5.99 -23.54 -17.55

£

Values refer to mean distance from plasma midplane.
Equal current centers at Z = +0.20, 20.60, *1.00, *1.40, *1.80, and £2.20 m.

O o

Sum of absolute currents.

61
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Table 3. TFCX-S plasma parameters

Parameter t=40s t=340 s

Major radius (m) 3.75 3.75
Minor radius (m) 1.07 1.07
Beta, volume averaged (%) 6.09 6.06
Plasma current (MA) 7.70 7.70
Safety factor-axis 0.95 0.95
Safety factor—edge 1.96 1.98
Elongation 1.60 1.60
Upper triangularity 0.30 0.30
Lower triangularity 0.30 c.30
Volt-seconds (resistive) 17.1

Volt-seconds (PF system) 17.5
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Fig. 7. High beta (<B> = 6.1%) TFCX-S equilibrium poloidal flux
surfaces for a fully discharged OH solenoid (10H = -28 MA) at the end of

burn t = tF.
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3.3 TFCX-H

The proposed reference device for the hybrid concept (TFCX-H)
assumes superconducting TF coils with a2 maximum field of 8 T, together
with copper-insert TF coils providing for an increased field on-axis.
The minimum major radiuvs (R0 = 3.6 m) satisfying PF system requirements
is again limited by the triangularity condition in the sense that
designs of smaller major radius exceed the 8-T PF constraint at the SF
coils when § = 0.3. The data from the systems code analysis at this
radius are given in Table 4, followed by the results of the equilibrium
analysis in Tables 5 and 6. Figures 8 and 9 show the TFCX-H coil
locations and typical high-beta poioidal flux surfaces.

In previous tokamak designs, the OH solenoid current has been
assumed to discharge from some maximum value to the same current in the
opp site direction. When waximum _-21ds in the SC coils are taken into
consideration, design configurations of smaller major radii are possible
when the solenoid is allowed to discharge asymmetrically. For the
TFCX-H at Ro = 3.6 m, volt-seconds during burn (4% = -19.4 V-s) are due

mainly to the solenoid swing (A¢., = -10.9 /-s) and are provided by

OH
starting the solenoid at the initiation of burn with zero current

[IOH(tI) = 0 MA] and ramping it down to I -30.24 MA.

on(tp) =

4, POLOIDAL COIL CURRENT SCENARIOS FOR THE TFCX

4.1 PLASMA STARTUP

Options under consideration for TFCX current initiation and startup
include totally rf startup (current drive) and rf-assisted (partially
inductive) startup. The implications in terms of the PF system have to
do mainly with the OH solenoid current waveform.

The TFCX startup scenario is based on the assumption of major
radius compression with the plasma growing in minor radius while in
contact with an outboard limiter [9]. The plasma current and SF coil
currents are preprogrammed to increase linearly from values consistent

with a circular plasma immediately following current initiation to

o e ———
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Table 4. TFCX-H <cata from systems code

Parameter Value
Major radius (m) 3.60
Minor radius (m) 0.97
Field on-axis (T) 4.t
Beta, volume averaged (%) 5.6
Plasma current (MA) 7.23
Safety factor—axis 1.00
Safety factor-edge 2.00
Loop voitage W) 0.06
Bucking cylinder inner radius (m) 1.12
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Table 6. TFCX-H plasma parameters
Parameter t=40s t =340 s
Major radius (m) 3.60 3.60
Minor radius (m) 0.97 0.97
Beta, volume averaged (%) 5.29 5.27
Plasma current (MA) 7.23 7.23
Safety factor-axis 0.97 0.97
Safety factor-edge 1.96 1.97
Elongation 1.60 1.60
Upper triangularity 0.30 0.30
Lower triangularity 0.30 0.30

Volt-seconds (resistive)

Volt-seconds (PF systei)

18.9
19.4
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The TFCX-H poloidal field coil system.




27

ORNL-DWG 83-3°220 FED

¥ T L3 A D
]
E
= 1
5 6 7 8
Fig. 9. High beta (<B> = 5.3%) TFCX-H equilibrium poloidal flux
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those of a low-beta, elongated, and D-shaped plasma {x = 1.6, § = 0.2)
prior to bulk heating. Outboard EF coil currents are determined such
that q = 2.0 is maintained at the plasma edge during the minof radius
L¥pansion.

For the case of totally rf startup, a steady-state OH solenoid
current is maintained at a level defined by the flux requirements during
bulk heating to high beta and at the initiation of burn. For partially
inductive startup, the OH solenoid is discharged from some maximum
current to zero cwrrent in 2 s, then recharged to a level consistent
with flux requirements during auxiliary heating and at the initiation of
burn. 1In either case, the only startup current waveform to be coaputed
with the equilibrium code is that of the outer EF coils.

Assuming a 30-s interval for totally rf current initiation and
startup, plasma parameters and PF coil currents for TFCX-S and TFCX-H at
t=1, 2, 10, 20, and 30 s into a discharge are given in Tables 7-10 and
in Figs. 10 and 11. The parameters and coil currents for TFCX-S,
assuming an rf-assisted startup, «.e given for t = 1, 2, 10, and 20 s in
Tables 11 and 12. The current waveforms for an rf-assisted startup
scenario on TFCX-S are shown in Fig. 12. In these calculations, the
current in the copper-insert TF coils produces about 1.4 T on-axis and

is assumed to be constant during startup.

4.2 PLASM‘ HEATING

Plasma bulk heating on TFCX is characterized, for the purpose of PF
system design, by an assumed linear increase in electron temperature
(i.e., an increase in beta) from 1.5 to 13.0 keV over a 10-s interval.
Using Eqs. (10)—(12), the resistive plus inductive flux requirements for
TFCX-S and TFCX-H are approximately 2¢ = -5.9 V-s and A$ = -5.,1 V-s,
respectively. Meeting these values with the externally applied flux due
to the PF coils actually requires a slight recharge of the OH solenoid
current because the outward shift of the plasma current profile during
the transition to high beta better couples the plasma columm to the
outboard EF coils, producing more than the necessary flux swing.

PF coil current waveforms and flux swing capability for TFCX-S and

TFCX-H (for a 300-s inductive burn) are shown in Figs. 10 and 11.
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Table 7. TFCX-S coil currents for totally rf startup

Coil

(4.5] 1 2 3 4 5 6

Radius, R (m)
0.66  1.50 1.50  2.60 6.70 6.70 6.70

Distance from plasma midplane, Z (m)
a 3.50 -3.50 4.20 -4.20 3.50 -3.50
Current (MA-turns)
=1s 20.64 0.64  0.64 0.6  0.64 -0.21  -0.21
=2s 20.64 0.91  0.91 .91 0.91 -0.37  -0.37
=10 s 20.66  3.20  3.20  3.20 3.20 -1.70  -1.70
=20s 20.64 6.09  6.09  6.09 6.09 -3.42  -3.42
=30 s 20.64 9.10  9.10 9.10 9,10 -5.09  -5.09
=40 s 23.62 9.34 9.3 9.34  9.34 -6.16 -6.16

= 340 s -28.37 5.00 5.00 8.26 8.26 -6.45 -6.45

Q| & & o+t o+ ot ot

Equal current centers at Z = +0,20, *0.60, +1.00, +1.40, +1.80, and
£2.20 m.
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Table 9. TFCX-H coil currents for totally rf startup
Coil
i 1 2 3 4 5 6
Radius, R (m)
0.90 1.70 1.70 2.65 2.65 6.23 €.:3
Distance from plasma midplane, Z (m)
a 3.30 -3.64 3.85 -4.19 3.20 -3.54
Current (MA-turns)

t=1s -1.98 -0.16 -0.16 -0.16 -0.16 -0.37 -0.42
t=2s -1.98 0.08 0.17 0.08 0.17 -0.52 -0.62
t=10s -1.98 2.02 2.76 2.02 2.76 -1.76 -2.22
t=20s -1.98 4.49 6.01 4.49 6.01 -3.38 -4.27
t=30s -1.98 6.96 9,22 6.96 9.22 -4.95 -6.22
t=40s 0.00 7.05 9.39 7.05 9.39 -5.85 -7.25
t=340s -30.24 2.75 2.75 6.70 9.98 -6.26 -7.69

aEqual current centers at Z = +0.20, *0.60, *1.00, *1.40, +1.80, and

+2.20 m.

-
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Table 11. TFCX-S coil currents for rf-assisted startup

+2.20 m.

bValues at t = 30, 40, and 340 s are the same as in Table 7.

Coil
oH 1 2 3 4 5 6
Radius, R (m)
0.66 1.50 1.50 2.60 2.60 6.70 6.70
Distance from plasma midplane, Z (m)
a 3.50 -3.50 4,20 -4.20 3.50 -3.50
Current (MA-turns)

t=1s 14.16 0.41 0.41 0.41 0.41 -0.24 -0.24
t=2s 0.00 0.10 0.10 0.10 0.10 -0.47 -0.47
t=10s 5.76 2.58 2.58 2,58 2.58 -1.76 -1.76
t=20s 13.20 5.79 5.79 5.79 5.79 -3.45 -3.45
t =30 sb 20.64 9.10 9.10 9.10 9.10 -5.09 -5.09
aEqual current centers at Z = #0,20, *0.60, *1.00, *1.40, *1,80, and



Table 12. TFCX-S plasma parameters for rf-assisted startup
Time (s) Ro (m) a (m) Elongation Triangularity Ip MA) <B> (%) ¢ (V-s)a
4,38 0.44 1.00 0.00 0.48 0.03 1.87
2 4.30 0.52 1.01 0.01 0.70 0.05 -3.12
10 3.95 0.87 1.15 0.06 2.55 0.19 -2.75
20 3.80 1.02 1.36 0.14 4.89 0.72 -1.80
30b 3.75 1,07 1.60 0.25 7.27 1.19 -0.01
a
6 (V-5) =izMipIi .

bValues at t = 30, 40, and 340 s are the same as in Table 9.
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4.3 QUASI-STEADY-STATE OPERATION

The pulsed nature of an inductively driven tokamak tends to limit
its lifetime and availability through the effects of large cyclic
electromagnetic forces. The assumption of successful rf current drive
a- relatively low density leads to the possibility of demonstrating (on
TFCX) a quasi-steady-state mode of operation in which the plasmz current
is maintained at some substantial level as the solenoid current is
periodically recharged. The changes in the PF coil current waveforms
necessary to accommod:ite such an operating scenario are discussed in
this section.

The TFCX is designed such that the application of its fvll OH
induction flux capability at high beta (i.e., subject to the constraints
imposed by maximum fields at the PF coils) results in a 300-s burn.

This burn phase will have to be shortened somewhat for cyclic operation
in order to reserve sufficient volt-seconds for a plasma cool-down
phase. During heating, the outward shift of the plasma cur—-ent profile
contributes to the flux due to the PF system (Aépp), but during cool-
down the mutual coupling between the plasma and the outer EF coils
decreases. This flux loss, together with the required A% = AQRES + AQIND’
must be overcome through some OH solenoid swing.

Because there is about a 5% decrease in plasma current during
cooling, AéIND changes sign relative to its value during heating, and
the approximate flux requirements for a 10-s cool-down period on TFCX-S
total A9 = 1.1 V-s. This implies a maximum burn cycle of *160 s; tne
resulting currcnt wavefcrms for quasi-steady-state operation of TFCX-S
are presented in Fig, 13,

5. CUMMARY AND CONCLUSIONS

The FEDC eanilibrium code is used, toge:er with the EFFI magnetics
code, to determine the feasibility of tokamak configurations with
respect to poloidal magnetics requirements in the preconceptual design
of the TFCX. Given an operating point defined in an FEDC tokamak
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systems code analysis, these computational tools are used to locate PF
coils with respect to mechanical and magnetic constraints, while
attempting to satisfy plasma flux and shape requirements. Simultaneously
satisfying these constraints and performance criteria indicates that the
PF system has a great impact on machine size. In particular, fixed
plasma shape may make it difficult to obtain objective comparisons among
different TFCX concepts. Trade studies, using the PF system design
process discussed in Sect. 2, are under way to determine the dependence
of machine cost and size on plasma shape and other performance factors.
PF coil locations and current waveforms are presented for the
reference design points of two possible options (TFCX-S and TFCX-H),
both with minimum major radivs and both satisfying the PF requirements.
It is demonstrated that plasi'a <crapeoff considerations may place upper
bounds on TFCX shaping parameters under present impurity control system
assumptions. Finally, coil! currents consistcnt with equilibrium and
volt-second requirecents are given for TFCX startup and for a possible
scenario of quasi-steady-state operation. ‘The burn time during each
cycle in a quasi-steady-state mode will have to be considerably shorter
than 300 s in order to reserve a sufficient OH solenoid current swing to
inductiveiy maintain the plasma current during a cool-down period prior

to solencid recharge.
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ABSTRACT

The Toroidal Fusion Core Experiment (TFCX) is proposed to be an
ignition device with a low safety factor (q ~ 2.0), rf or rf-assisted
startup, long inductive burn pulse (2300 s), and an elongated plasma
cross section (x = 1.6) vith moderate triangularity (6 = 0.3). System
trade studies hai.e been carried out to assist in choosing an appropriate
candidate for TFCX conceptual design. This report describes an important
element in these system strdies — the magnetohydrodynamic (MHD) equilibrium
modeling of the TFCX poloidal field (PF) coil system and its impact on
the choice of machine size. Reference design points fur the all-super-
conducting toroidal field (TF) coil (TFCX-S) and hybrid (TFCX-H) options
are presented that satisfy given PF system criteria, including volt-
second requirements during burn, mechanical configuration constraints,
maximum field constraints at the superconducting PF coils, and plasma
shape parameters. Poloidal coil current waveforms for the TFCX-S and
TFCX-H reference designs consistent with the equilibrium requirements of
the plasma startup, heating, and burn phases of a typical discharge
scenario are calculated. Finally, a possible option for quasi-steady-

state operation is discussed.
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INSTRUCTIONS

Who uses this form: All DOE and DOE contractors except those
contractors and grantees s xcifically instructed by their DOE con-
tract administrator to -1se the sharter Form RAA427.

¥When to use: Submit one copy of this formn with each document
that is sent to the DOE Technical Information Center (TIC) in
accordance with the requirements of DOE Order 1340.1.

" Where to send: Forward this form and the document(s) to:

USDOE-TIC
P.O. Box 62
- Oak Ridge, TN 37830

Item instructions:

Item 1. The DOE report number will be constructed as follows:

{a) Major DOE L:voratories and contractors that

have been assigned TIC-approved codes will use their

approved system e.g., BNL, BMI, PNL. Sequentia

numbers wii! be assigned to each report by the originating
laboratory or Lontractor.

{b) Contractors that do not have TiC-approved
identifying codes will create their unique numbers by
(3) identifying the report with code DOE, (2) selecting
the basic seven characters (two alphabetic and five nu-
meric) for the applicable contract number, and (3)
adding sequential numbers for each report generated
under the contract. Slash marks and hyphens should be
applied as shown in the examples below.

Reports issued in more than one binding or reissued as
revisions or later editions will be identified by adding
<ne additional suffixes to the basic number, e.g., Rev.,
Revision; Vol., Volume; Pt., Part; Add., Addendum; Ed.,
Edition,

Examples:

Major laboratories and contractors with approved codes
" BNL-1874

Contractors without approved codes
For Contract DE-ACO1-78RA01834.M002

DOE/RA/01834-1

DOE/RA/01834-2

DOE/RA/01834-2 Rev. 1
(The modification numbcr, if any, normally shown as
.M002, etc., following the basic five-digit number, is not
used in the report number.)

item 2.  Self-explanatory.

1tum 3. Insert the appropriate subject category from DOE/TIC-
4500 (’Standard Distribution for Unclassified Scientific
and Technical Reports’”} or M-3679 (“Standard Distribu-
tion for Classified Scientific and Technical Reports’ ) for
both classified and unclassified documents, whet! er or
not printed fo; standard disribution.

item 4.  Give title exactly as on the docurnent itself unless tit.e
is classi‘iad. In that case, omit title and state ‘“classified
title’” in the space for item 4.

Item 5.  Self explanatory.

Item 6. a2 if box 2 is checked, the number of copies specified for
the appropriate category of categories in M-3679 or
DOE/TIC-4500 will be forwarded 10 TIC for distribution.

b. If box b is checked, a complete addres list must be
provided TiC.

Item 7.

Item 8.

Item 9.

Item 10.

Item 1.

ftem 12.

tem 3.

Item 14.

c. If box c is checked, at lesst one copy will be original
ribbon or offset and be completely legible. A clear carbon
copy is ar~sptable as a second reproducible copy. Classi-
fied documents, send one copy except where special
distributic.: “equires morse copies,

d. If box d is checked, 27 copies will be forwarded to
TIC, 2 will be retained for processing and 25 will be
sent to NTIS for public availability.

If box a is checked for an unclassified document, it may
be distributed by TIC (after patent clearance) to ad-
dressees listen in DOE/TIC 4500 for the appropriate
subject category, to libraries in the U.S. and abroad which
through purchase of microfiche maintin coliections of
DOE reports, and to the National Technical Informatic:.
Service for sale to the public.

If box a is checked for a classified document, it may be
distributed by TIC to addressees listed in M-3679 for

the approgpriate subject category.

I¥ 3 box other than a is checked, the recommended
fimitaticn will be followed unless TIC receives other
instructions from the responsible DOE program division.

Box f may be checked in order to specify special instruc-
tions, such as “‘Make svailable only as specifically approved
by the program division.*

a. F.nnouncement procedures are normally determined
by the distribution that is to be given a document. If
box a in item 7 is checked for an unclassified document,
it will nomally be listed in the weekly ‘‘Accessions of
Unlimited Distribution Reports by TIC” (DOE/TiC-4401)
and may be abstracted in Energy R-iearch Abstracts
{ERA).

A classified document, or an unclassified document for
which box b, ¢, d, e, or fi. item 7 is checked, may be
cited with appropriate sutject index terms in Abstracts
of Limited Distribution Reports (ALDR).

b. If the normal announcement procedures described in
83 are not aporopriate, check 86 and indicate recorn-
mended announcement limitations.

Self-explanatory.

It is assumed that there is no objection to publication
from the standpoint of the originating organization’s
g£atent interest. Otherwise explain in item 13,

'i box a is checked, the document canrot be made
availgble to Access Permit holders (Code of Federal
Regulation 10 CFR, Part 26, subpart 26.6), if box b
is checked, TIC will determine whether or not to make
it available to them.

Seif-explanatory.
Self-explanatory.

Enter name of psrson to whom inquiries concerning the
recommendations un this form may be addressed.



