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1. INTRODUCTION 

The Toroidal Fusion Core Experiment (TFCX) is proposed to be a 
tokamox ignition device with a low safety factor (q = 2.0), rf or rf-
assisted startup, long inductive burn pulse (̂ 300 s), and an elongated 
plasma cross section (K = 1.6) with moderate triangularity (6 = 0.3). 
Design options include all-superconducting toroidal field (TF) coils 
(TFCX-S) or possibly a hybrid TF coil system with copper insert coils 
(TFCX-H) to increase the field on-axis. The current-drive assumption 
implies the possibility of quasi-steady-state operation through the 
periodic recharging of an ohaiic heating (OH) solenoid. System trade 
studies are in progress to assist in choosing an appropriate candidate 
for the TFCX conceptual design. Reference design points for the ail 
superconducting and hybrid options have been chosen. In this work, an 
analysis is presented of the poloidal field (PF) configurations, coil 
locations, and coil current waveforms consistent with the magnetohydro-
dynamic (MHD) equilibrium and plasma volt-second requirements for the 
reference TFCX options of this trade study. Major plasma and machine 
parameters for the TFCX are the result of a systems analysis [1], which 
includes the PF system analysis as an important element. 

Given the plasma geometry and a set of performance parameters 
[e.g., maximum stable beta 6 = 0.117a(l + K 2 ) / R q] from a Fusion 

IT13X O 

Engineering Design Center (FLDC) tokamak systems code [2] simulation 
with an assumed constant ignition margin (I ) of 1.0, the purpose of 
this analysis is to determine a PF coil system that satisfies (1) volt-
second requirements, (2) mechanical configuration constraints, 
(3) maximum field constraints at the superconducting PF coils, and 
(4) plasma shape requirements for each TF coil option. The methods of 
analysis are discussed in Sect. 2. 

In this analysis, a PF system consists of three coil groups 
(Fig. l)-an OH central solenoid, shaping field (GF) coils, and outboard 
equilibrium field (EF) coils. PF coils are assumed to be superconducting 
and aro positioned external to the TF coils and associated structures. 
Coil locations arc also constrained by maintenance and machine access 

1 
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Fig. 1. Elevation view of the TFCX-S poloidal f i e ld coi l system 
showing the co i l numbering scheme. 
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considerations. The fields of the three sets of coils a?e coupled — a 
concept that reduces the total ampere-turns and allows the magnetic 
energy stored in the system to be used for both plasma cuirrenc buildup 
and MHD equilibrium. The coupled-coil concept may, however, present 
additional plasma control problems not addressed in this study. PF coil 
systems for the reference cases (TFCX-S and TFCX-H) are presented in 
Sect. 3. 

Poloidal coil current waveforms for the TFCX consistent with the 
plasma startup, heating, and burn phases are discussed in Sect. 4. The 
prospect of current drive at relatively low density also leads to a 
possible scenario for quasi-steady-state operation in which, following 
a current initiation and ramp phase, the OH solenoid is alternately 
(1) discharged during a 150- to 200-s, high-beta, inductive burn cycle 
and (2) recharged during a approximate 30-s rf current-drive cycle at 
low beta. PF coil currents consistent with this mode of operation also 
need to satisfy the flux requirements of a plasma cool-down period prior 
to solenoid recharge, and one such possible set of waveforms is presented. 

2. METHOD OF ANALYSIS 

2.1 THE POLOIDAL FIELD COIL DFSIGN PROCESS 

The design configuration for a given TFCX option is the result of 
an iterative process involving the use of the FEDC MHD equilibrium code, 
the EFFI [3] magnetics code, and the FEDC tokamak systems code. The 
systems code is used to establish an operating point (i.e., parameters 
such as the plasma major radius R , minor radius a, vacuum toroidal 
field B , and maximum volume-averaged beta <B>) consistent with the TFCX 
assumptions of q = 2.0, an ignition margin (I ) of 1.0, and a radial 
build that satisfies volumetric heating requirements and TF ripple 
constraints. These data lead to a mechanical configuration that defines 
a set of possible regions in which to locate PF coils. The FF.DC equi­
librium code and the EFFI code are used to actually locate these coils 
and to determine if the system is feasible with respect to volt-second, 
maximum field, and plasma shape requirements. 
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The first step in defining PF coil locations is to compute the 
maximum radial position and size of the OH solenoid. These are deter­
mined by magnetic field and MHD equilibrium calculations for an assumed 
solenoid current density, typically J-„ = 1.5 x 10 7 A/m2. For a totally 
discharged solenoid at the end of the plasma burn phase (t = t_), the 

r 
maximum polcidal magnetic field at a PF coil occurs near the aidplane on 
the inboard side of the solenoid and is modeled by computing the field 
of the OH and outboard EF coils only. This is a conservative estimate 
because the plasma and SF coil currents run in a different direction and 
because including these fields would tend to reduce the total field. 
The maximum solenoid mean radius and width are determined by the condition 
B ' < 8 T (i.e., the maximum allowable field at a superconducting PF 
coil) and by configurational constraints set by the TF coil structure 
and bucking cylinder. Typically, one MHD equilibrium is necessary tc 
approximate the outboard EF coil currents for use in this end of the 
burn field calculation. 

For an assumed solenoid current (I„„) at the initiation of the 
un 

plasma burn t = t T, the SF coil locations are adjusted in a series of 
MHD equilibrium calculations in order to achieve the desired plasma 
shape (i.e., an elongation satisfying |K - K | < e and triangularity 
|6 - 6 | < e.). The outboard EF coil locations are usually fixed by the 
machine design configuration. An iteration over the current I r t U(t T) is 

Un I 
generally necessary to ensure that B < 8 T in the OH and SF coils at 
t = t y. Here the OH, SF, and plasma currents usually run in the same 
direction, and all arc included in the magnetic field calculation. The 
plasma is modeled in the EFFI calculation as having a rectangular 
cross section with an appropriate uniform current density. A final set 
of MHD equilibrium calculation is r..Jc at t = t c, during which SF coil 

r 

currents are found that approximate the prescribed plasma shape at the 
end of the inductive burn phase. Volt-seconds provided by the PF syst.em 
during burn are computed from the equilibria at t. and t_ to determine 
if ti.e configuration and PF coil system are feasible with respect to 
plasmr flux requirements. 

If volt-seconds are inadequate, these iterations are nested inside 
an outermost loop involving systems code calculations at various R in 
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order to determine the minimum radius at which all PF system require­
ments are satisfied. The PF coil design procedure is summarized in 
Fig. 2. 

2.2 THE FEDC MHD EQUILIBRIUM CODE 

For a fixed OH solenoid current, estimates of SF and EF coil cur­
rents necessary to maintain a plasma of prescribed shape are obtained 
with the FEDC MHD equilibrium code solving the axisymmetric equilibrium 
equation in cylindrical (R,<1>,Z) coordinates: 

A** = R 2V • R~2V<J< = -uRJA . (1) 

Here, J is the toroidal plasma current density, and the poloidal flux 
function ty = i(r + ty (where ^" is the flux due to the plasma current and 
jt> the flux due to external sources) satisfies 

*P(^) =// GCx^x^&dP. (2) 

for x, = (R, ,Z,) on the boundary of a rectangular region ft. The Green's 
function G relates ij> at a point on the boundary to a unit current 
density at a point in ft [4], 

For fixed boundary values <K*v) = 4» (x, ) + \\> (x.) and current 
profile J , the resulting elliptic partial differential equation 
[Eq. (1)] is discretized on a rectangular mesh (with typical dimensions 
33 by 65 or 65 by 129), and the resulting linear equations are solved by 
a direct, cyclic reduction method using SEPX4 [5]. The iterative 
procedure 

A*,(n+1) _ T(n+1) ,. > T(n) A*^ v J » _uR ctJ; ' + (1 - a) J) ' 
9 <P 

is used to solve for the current density 

0 < a < 1 , (3) 
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j - R d P + F _ d F 
$ d* uR d* (4) 

which depends nonlinearly on if/ through assumed plasma pressure P(i{0 
and toroidal magnetic flux, FOf;) = RB , profiles. Prior to recomputing 
J, in this iteration, a correction in the external flux function i> is 
9 

made by adjusting some subset of the coil currents I. so that the total 
flux at points on a prescribed plasma boundary, 3P. is approximately 
constant. More specifically, if 3P = (R?,Z?) is a set of points 
describing a desired plasma shape and including a limiter point (RT,Z ), 
the approximation problem 

I 
i 

£.G(R.,Z.; R.,Z.)I- - * e(R.,Z.) • 3 3 l l j l l a E i ; = minimum (5) 

is solved for the variable coil currents I,. Here the desired ty is 
J e 

determined at the given plasma boundary points by tj; (R.,Z.) = 
*i - 4* ( R ^ J Z . ) > where ip. = tf;(RT,ZT) is the poloidal flux at a limiter 
L 1 1 L u Li 

point. Thus, the final coil cu;*rents I. determined by the equilibrium 
code depend largely on coil locations (R.,Z.), j = 1, 2, ..., N ; the 

3 1 c 
plasma boundary points (R.,Z.)> i = 1, 2, ..., N ; and the regulari-
zation parameter a, which gives some weight to minimizing tot?l ampere-
turns. Some subset of the coil currents may be fixed during an equi­
librium calculation, as is the case with the current loops representing 
the OH solenoid in the TFCX analysis. 

Without the smoothing parameter a, coil currents often tend to 
oscillate in sign and vary widely in magnitude (compared to a practical 
solution). In practice, a is varied until the error in the flux values 
at the prescribed plasma boundary points 

*? - £ G. .1. 7 I f .e *i 

meets a specified criterion or until some global plasma shaping parameters 
(e.g., K and 5) are sufficiently close to the desired values. This 
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condition is demonstrated by Fig. 3, in which the dependence of e and 6 
on changes in a are shown for a coil system consisting of 32 coils with 
centers equally spaced in arc le.igth on a given curve in the poloidal 
plane. 

The "limiter" value of the poloidal flux, \|\, is taken to be the 
minimum of the flux values at a prescribed point (IL^Zj) in the compu­
tational domain £2 and at a poloidal separatrix created by SF coils 
carrying current in the same direction as the plasma current. The 
latter situation occurs in modeling the equilibrium configuration of a 
poloidal divertor [6], 

For the TrCX analysis, plasma pressure and toroidal magnetic flux 
profiles input to the FEDC equilibrium code through Eq. (4) are of the 
form: 

J n / -Ax -A df_ _ p I e - e 
J o \ -A , dx \ e - 1 

^•MCr-er)' 
and 

* - * 0 x = 
* L " * o ' 

where t|» is the poloidal flux at the magnetic axis. Integrals of these 
profiles are chosen such that P = 0 and F = R B at the plasma edge. 
During the iterative procedure described by Eq. (3), P is scaled by a2, 

where a = I /// J.dfi, to fix the plasma current I . 
p <j> r p 

In the design process, the constants A and B in Eq. (6) are deter­
mined by calling the equilibrium code as a subroutine from the objective 
function used in the software package VMCON [7], a routine for numerical 
nonlinear optimization with constraints (possibly nonlinear). That is, 
the objective function Q = (lr/R0 - c ) ? is minimized with respect to 
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A and B. These values are not unique [i.e., for each value of 3., a 
set of parameters (A,B) exist for which q =1.0 and q = 2.0, as shown 
in Fig. 4]. The optimization procedure converges to different points, 
depending on starting values (A,B) for fixed safety factor at the edge, 
which leaves some freedom for choice of profile shape. 

In this PF analysis, different points in the time-dependent plasma 
operation scenario are simulated by equilibria with specific properties. 
For example, equilibria representing the plasma at the initiation and at 
the end of the burn interval are required to have constant shape, plasma 
current, and beta and to meet some flux swing requirement. This volt-
second requirement takes the form 

M P F ' M R E S + A*IND - ( 7 ) 

representing the balance between the externally applied flux due to the 
PF system and the resistive and inductive plasma flux requirements. The 
flux A$__ is commuted from two equilibrium solutions with different 
fixed currents, usually in coils modeling the OH solenoid, as 

Here, M. is the mutual inductance between the i ' coil and the plasma 
lp v 

and is computed in the FEDC equilibrium code as 

M i P - X M i P . V ^ V ' C 9 ) 

where J is the current density at the j node in the solution of 
3 

Eq. (1), and M. is the mutual inductance between axisymmetric current 
P j 

loops (filaments) at the center of coil i and at node j [4]. This model 
therefore accounts for changes in inductance due to a shift in the 
current profile during, for example, heating to high beta. 
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2.3 PLASMA FLUX REQUIREMENTS 

The volt-second requirements for inducing and maintaining the 
plasma current through the varii ..s stages of a discharge [Eq. (7)] 
include components accounting for resistive losses, A* , and plasma 
inductance, A $ T N n . The resistive term is given by 

A* / R I dt , J P P RES J p p 
o 

(10) 

with the plasma resistance exptessed as follows (mks units with T in 
keV): 

R = P 
3.3 x 10 y CL.Z ~~R In A N eff o 

a 2KT 3/ 2 

e 
(11) 

In A = 37.8 - ln(n l / 2/T ) . 
c e eJ 

Here, the factors ex., = 2 and Z __ = 1.5 are assumed to account for 
N etf 

trapped electron effects and impurities, respectively. For the inductive 
component, tl. ̂  large aspect ratio approximation 

A*. M n = A(L I ) 

and 

uR In 
/ 8R \ %. 

W/ 2/ 2 (12) 

with a correction for noncircularity ( 1 / K 1 / 2 in the logarithmic argument), 
is assumed. Here, l. is the plasma internal inductance. 
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2.4 PLASMA SCRAPEOFF CONSIDERATIONS 

For elongated plasmas (K *« 1.6) of even moderate triangularity 
(6 *v 0.2-0.3), the shape of field lines in the scrapeoff region (i.e., 
flux surfaces immediately outside the limiter flux surface, • = •.) 
is of particular interest in PF configuration design. The size of this 
region is dependent on plasma density and temperature profiles, but for 
design purposes it is generally assumed to have a width c" about 5% of 
the plasma minor radius along the midplane on the laige major radius 
side. For high-beta equilibria, where flux surfaces are considerably 
expanded on the small major radius side of the plasma, the inboard 
scrapeoff width can be a factor of 2 to 3 larger. The shape of this 
region has an influence on the design of tokamak components, such as the 
first wall and impurity control systems. 

Figure 5 demonstrates a potential problem with highly elongated and 
D-shaped plasma cross sections. Significantly, the null point lies 
within the scrapeoff region and causes part of the region to be dis­
connected in the sense that some fraction of the field lines in the 
scrapeoff are diverted outside of the plasma chamber. This is a problem 
in tokamak designs that assume a pumped limiter or a single-null poloidal 
divertor as a means of impurity control. 

Broad current profiles, characteristic of TFCX with q. = 2.0, are 
desirable for increased scrapeoff width. A further improvement can 
be realized through optimization of the plasma shape. For an idealized 
PF coil system consisting of a large number of equally spaced conductors, 
implying precise plasma shaping capability, this is demonstrated by 
considering two different parameterizations of the plasma boundary shape 
given by the radial coordinates 

R^ = R + a cos(6i + 6 sin 6.) (13) 

and 

1 R + a(cos 0. + o cos 29. - a) (14) 
o v i l ' *• ' 
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and the vertical coordinates Z. = Z. = a* sin 6.. Comparing the 
scrapeoff regions of equilibria with the same elongation (< = 1.60) and 
triangularity (6 = 0.38) as in Fig. 6, the boundary shape given by 
Eq. (14) is slightly more rounded, resulting in a broader scrapeoff. 

In practice, hcvever, these detailed shapes would require a more 
complex PF coil configuration, and a better solution may be to simply 
reduce the elongation or triangularity of the plasma, depending on the 
implications in terms of plasma performance [8]. In the analysis of 
TFCX coupled PF coil systems, plasmas with elongation K = 1.6 and 
triangularity 6 = 0.3 seem to, at best, marginally satisfy the scrapeoff 
width requirements of a pumped limiter approach to impurity control. 

3. P0LOIDAL COIL DESIGN OPTIONS FOR TFCX 

3.1 IMPACT ON SYSTEM TRADE STUDIES 

Trade studies are under way to choose an appropriate concept for 
the TFCX conceptual design. The goal of these studies is to determine 
the sensitivity of machine size, cost, and performance to such design 
factors as plasma triangularity, maximum field strength at the TF coils, 
safety factor, and ignition parameter. The procedure through which the 
various design points are derived is heavily dependent on.the PF coil 
design process described in Sect. 2. This model allows the evaluation 
of different concepts to be made based on a consistent set of criteria. 

Although the deta.' s 6f the trade and evaluation studies (many of 
which are still in progress) are presented in ref. [1], the charac­
teristics of the PF systems of the reference design points (TFCX-S and 
TFCX-H) are summarized here. In general, the size of devices increases 
with maximum field at the TF coils du^ tc higher shielding requirements, 
larger TF coil widths, and smaller plasma minor radii, forcing the 
external PF coils to be further away from the piasma boundary. For 
fi.red plasma shape, this enhanced distance increases shaping coil 
currents and, in turn, the fields at the SF coils, driving the machine 
design to a larger major radius. 
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In the hybrid devices, a fixed plasma-triangularity of 6 = 0.3 
implies even larger major radii. Here OH solenoid currents in the same 
direction as the plasma current, needed to satisfy plasma volt-second 
requirements, combine additively with large SF coil currents to create 
excessive fields at the SF coils. The result is that to satisfy the 
field limits, the plasma and OH solenoid radii are so large that volt-
seconds for a 300-s burn are satisfied with only a partial discharge of 
the OH solenoid. That is, the OH current runs ccunter to the plasma 
current, reducing fields at the SF coils and assisting in plasma shaping 
during the entire burn. 

5.2 TFCX-S 

The proposed ail-SC coil reference point device for trade studies 
(TFCX-S) assumes a maximum field of 10 T at the TF coils. Following the 
design process of Sect. 2, a major radius of R = 3.75 m was found to be 
minimum with respect to satisfying the four PF system requirements 
listed in Sect. 1. Configurations at smaller radii satisfied maximum 
field constraints at the SF coils only when 6 < 0.3. At R = 3.75 m, 

o 
the systems code analysis resulted in the plasma and design parameters 
listed in Table 1. 

The OH solenoid and outboard EF coil locations are generally fixed 
by device radial build and access considerations. The SF coil locations 
are varied within the constraints of the configuration to satisfy the 
plasma shape requirement at the initiation of burn. With a coupled coil 
system, it is usually most difficult to shape the plasma when the current 
in the OH solenoid is either near zero or in the same direction as the 
plasma current. A summary of coil locations, currents, and volt-seconds 
is given in Table 2 for equilibria simulating the initiation and end of 
the 300-s burn pulse. The associated equilibrium plasma parameters are 
listed in Table 3. Figure 7 shows the TFCX-S high-beta equilibrium 
poloidal flux surfaces. 
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Table 1. TFCX-S data from systems code 

Parameter Value 

Major radius (m) 3.75 
Minor radius (m) 1.07 
Field on-axis (T) 4.34 
Beta, volume averaged (%} 5.9 
Plasma current (MA) 7.70 
Safety factor-axis 1.00 
Safety factor-edge 2.00 
Loop voltage (V) 0.06 
Bucking cylinder inner radius (m) 0.87 



Table 2. TFCX-S coil locations and currents 

Mean 
radius, 
R (m) 

:;ean 
distanced 

t M O s t = 340 s 
(start (end of 

of burn) burn) 
(MA-turn) 

t = 40 s 
(start 

of burn) 

t • 340 s 
(end of 
burn) 

At » 300 S 
(during 
burn) 

Coil 
Mean 
radius, 
R (m) 

:;ean 
distanced 

t M O s t = 340 s 
(start (end of 

of burn) burn) 
(MA-turn) (V-s) 

1 1.50 3.50 9.34 5.00 4.31 2.31 -2.00 
2 1.50 -3.50 9.34 5.00 4.31 2.31 -2.00 
3 2.60 4.20 9.3" 8.26 8.91 7.88 -1.03 
4 2.60 -4.20 9.34 8.26 8.91 7.88 -1.03 
5 6.70 3.50 -6.16 -6.45 -18.43 -19.31 -0.88 
6 6.70 -3.50 -6.16 -6.45 -18.43 -19.31 -0.88 
7 0.66 b 23.62 -28.37 4.42 -5.30 -9.72 0.66 b 

73.30° 67.79° -5.99 -23.54 -17.55 

Values refer to mean distance from plasma midplane. 
^Equal current centers at Z = ±0.20, ±0.60, ±1.00, ±1.40, ±1.80, and ±2.20 m. 
Q 
Sum of absolute currents. 

CO 
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Table 3. TFCX-S plasma parameters 

Parameter t = 40 s t = 340 s 

Major radius (m) 3.75 3.75 
Minor radius (m) 1.07 1.07 
Beta, volume averaged (%) 6.09 6.06 
Plasma current (MA) 7.70 7.70 
Safety factor-axis 0.95 0.95 
Safety factor-edge 1.96 1.98 
Elongation 1.60 1.60 
Upper triangularity 0.30 0.30 
Lower triangularity 0.30 0.30 
Volt-seconds (resistive) 17. .1 
Volt-seconds (PF system) 17. 5 
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Fig. 7. High beta (<6> = 6.1%) TFCX-S equilibrium poloidal flux 
surfaces for a fully discharged OH solenoid (ln„ = -28 MA) at the end of 
burn t = t_. U H 
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3.3 TFCX-H 

The proposed reference device for the hybrid concept (TFCX-H) 
assumes superconducting TF coils with a maximum field of 8 T, together 
with copper-insert TF coils providing for an increased field on-axis. 
The minimum major radii's (R =3.6 m) satisfying PF system requirements 
is again limited by the triangularity condition in the sense that 
designs of smaller major radius exceed the 8-T PF constraint at the SF 
coils when 6 = 0.3. The data from the systems code analysis at this 
radius are given in Table 4, followed by the results of the equilibrium 
analysis in Tables 5 and 6. Figures 8 and 9 show the TFCX-H coil 
locations ant1 typical high-beta poioidal flux surfaces. 

In previous tokamak designs, the OH solenoid current has been 
assumed to discharge from some maximum value to the same current in the 
opp site direction. When maximum _̂ ,jlds in the SC coils are taken into 
consideration, design configurations of smaller major radii are possible 
when the solenoid is allowed to discharge asymmetrically. For the 
TFCX-H at R = 3.6 m, volt-seconds during burn (A$ = -19.4 V-s) are due 
mainly to the solenoid swing (A$0„ = -10.9 V-s) and are provided by 
starting the solenoid at the initiation of burn with zero current 
[I0H(tj) ••- 0 MA] and ramping it down to I 0 H(tp) = -30.24 MA. 

4. P0L0IDAL COIL CURRENT SCENARIOS FOR THE TFCX 

4.1 PLASMA STARTUP 

Options under consideration for TFCX current initiation and startup 
include totally rf startup (current drive) and rf-assisted (partially 
inductive) startup. The implications in terms of the PF system have to 
do mainly with the OH solenoid current waveform. 

The TFCX startup scenario is based on the assumption of major 
radius compression with the plasma growing in minor radius while in 
contact with an outboard limiter [9], The plasma current and SF coil 
currents are preprogrammed to increase linearly from values consistent 
with a circular plasma immediately following current initiation to 
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Table 4. TFCX-K data from systems code 

Parameter Value 

Major radius (m) 3.60 
Minor radius (m) 0.97 
Field on-axis (T) 4.f 
Beta, volume averaged (%) 5.6 
Plasma current (MA) 7.23 
Safety factor-axis 1.00 
Safety factor-edge 2.00 
Loop voltage (V) 0.06 
Bucking cylinder inner radius (m) 1.12 
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Table 6. TFCX-H plasma parameters 

Parameter t = 40 s t = 340 s 

Major radius (m) 3.60 3.60 
Minor radius (m) 0.97 0.97 
Beta, volume averaged (*) 5.29 5.27 
Plasma current (MA) 7.23 7.23 
Safety factor-axis 0.97 0.97 
Safety factor-edge 1.96 1.97 
Elongation 1.60 1.60 
Upper triangularity 0.30 0.30 
Lower triangularity 0.30 0.30 
Volt-seconds (resistive) 18. .9 
Volt-seconds (PF syste ml 19. ,4 
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Fig. 8. The TFCX-H poloidal field coil system. 
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Fig. 9. High beta (<3> = 5.3%) TFCX-H equilibrium poloidal flux 
surfaces for a fully discharged OH solenoid (I 
burn t * t. OH •30 MA) at the end of 
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those of a low-beta, elongated, and D-shaped plasma (K = 1.6, 6 = 0.2) 
prior to bulk heating. (Xitboard EF coil currents are determined such 
that q = 2.0 is maintained at the plasma edge during the minor radius 
t. "pans ion. 

For the case of totally rf startup, a steady-state OH solenoid 
current is maintained at a level defined by the flux requirements during 
bulk heating to high beta and at the initiation of burn. For partially 
inductive startup, the OH solenoid is discharged from some maximum 
current to zero current in 2 s, then recharged to a level consistent 
with flux requirements during auxiliary heating and at the initiation of 
burn. In either case, the only startup current waveform to be computed 
with the equilibrium code is that of the outer EF coils. 

Assuming a 30-s interval for totally rf current initiation and 
startup, plasma parameters and PF coil currents for TFCX-S and TFCX-H at 
t = 1, 2, 10, 20, and 30 s into a discharge are given in Tables 7—10 and 
in Figs. 10 and 11. The parameters and coil currents for TFCX-S, 
assuming an rf-assisted startup, <~e given for t = 1, 2, 10, and 20 s in 
Tables 11 and 12. The current waveforms for an rf-assisted startup 
scenario on TFCX-S are shown in Fig. 12. In these calculations, the 
current in the copper-insert TF coils produces about 1.4 T on-axis and 
is assumed to be constant during startup. 

4.2 PLASM.* HEATING 

Plasma bulk heating on TFCX is characterized, for the purpose of PF 
system design, by an assumed linear increase in electron temperature 
(i.e., an increase in beta) from 1.5 to 13.0 keV over a 10-s interval. 
Using Eqs. (10)—(12), the resistive plus inductive flux requirements for 
TFCX-S and TFCX-H are approximately A* = -5.9 V-s and A* = -5.1 V-s, 
respectively. Meeting these values with the externally applied flux due 
to th*> PF coils actually requires a slight recharge of the OH solenoid 
current because the outward shift of the plasma current profile during 
the transition to high beta better couples the plasma column to the 
outboard EF coils, producing more than the necessary flux swing. 

PF coil current waveforms and flux swing capability for TFCX-S and 
TFCX-H (for a 300-s inductive burn) are shown in Figs. 10 and 11. 
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Table 7. TFCX-S coil currents for totally rf startup 

Coil 

OH 

Radius, R (m) 
0.66 1.50 1.50 2.60 6.70 6.70 6.70 

Distance from plasma midplane, Z (m) 
a 5.50 -3.50 4.20 -4.20 3.50 -3.50 

Current (MA-turns) 
t = 1 s 20.64 0.64 0.64 0.64 0.64 -0.21 -0.21 
t = 2 s 20.64 0.91 0.91 0.91 0.91 -0.37 -0.37 
t = 10 s 20.64 3.20 3.20 3.20 3.20 -1.70 -1.70 
t = 20 s 20.64 6.09 6.09 6.09 6.09 -3.42 -3.42 
t = 30 s 20.64 9.10 9.10 9.10 9.10 -5.09 -5.09 
t = 40 s 23.62 9.34 9.34 9.34 9.34 -6.16 -6.16 
t = 340 s -28.37 5.00 5.00 8.26 8.26 -6.45 -6.45 

Equal current centers at Z = ±0.20, ±0.60, ±1. .00, ±1. 40, ±1.80, and 
±2.20 m. 
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Table 9. TFCX-H coil currents for totally rf startup 

Coil 

OH 1 2 3 4 5 6 

Radius, R (m) 
0.90 1.70 1.70 2.65 2.65 6.23 6.LZ 

a 
Distance from plasma midplane, Z (m) 

a 3.30 -3.64 3.85 -4.19 3.20 -3.54 

Current (MA-turas) 
t = 1 s -1.98 -0.16 -0.16 -0.16 -0.16 -0.37 -0.42 
t = 2 s -1.98 0.08 0.17 0.08 0.17 -0.52 -0.62 
t = 10 s -1.98 2.02 2.76 2.02 2.76 -1.76 -2.22 
t = 20 s -1.98 4.49 6.01 4.49 6.01 -3.38 -4.27 
t = 30 s -1.98 6.96 9.22 6.96 9.22 -4.95 -6.22 
t = 40 s 0.00 7.05 9.39 7.05 9.39 -5.85 -7.25 
t = 340 s -30.24 2.75 2.75 6.70 9.98 -6.26 -7.69 

^qual current centers at Z = ±0.20, ±0.60, ±1.00, ±1.40, ±1.80, and 
±2.20 m. 

\ 
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Table 11. TFCX-S coil currents for rf-assisted startup 

Coil 

OH 1 2 3 4 5 6 

Radius, R (m) 
0.66 1.50 1.50 2.60 2.60 6.70 6.70 

Distance from plasma midplane, Z (m) 
a 3.50 -3.50 4.20 -4.20 3.50 -3.50 

Current (MA-turns) 
t = 1 s 14.16 0.41 0.41 0.41 0.41 -0.24 -0.24 
t = 2 s 0.00 0.10 0.10 0.10 0.10 -0.47 -0.47 
t = 10 s 5.76 2.58 2.58 2.58 2.58 -1.76 -1.76 
t = 20 s 13.20 5.79 5.79 5.79 5.79 -3.45 -3.45 
t = 30 sb 20.64 9.10 9.10 9.10 9.10 -5.09 -5.09 
aEqual current centers at Z = ±0.20, ±0.60, ±1.00, ±1.40, ±1.80, and 
±2.20 m. 
Values at t = 30, 40, and 340 s are the same as in Table 7. 



Table 12. TFCX-S plasma parameters for rf-assisted startup 

Time (s) R o (m) a (m) 

1 4.38 0.44 
2 4.30 0.52 

10 3.95 0.87 
20 3.80 1.02 
30* 3.75 1.07 

+ (V-s) = S M i pI. . 

Values at t - 30, 40, and 

Elongation Triangularity 

1.00 0.00 
1.01 0.01 
1.15 0.06 
1.36 0.14 
1.60 0.25 

s are the same as in Tabl 

Ip (MA) <B> (%) 4> CV-s) a 

0.48 0.03 1.87 
0.70 0.05 -3 .12 
2.55 0.19 -2 .75 
4.89 0.72 -1 .80 
7.27 1.19 -0 .01 
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4.3 QUASI-STEADY-STATE OPERATION 

The pulsed nature of an inductively driven tokamak tends to limit 
its lifetime and availability through the effects of large cyclic 
electromagnetic forces. The assumption of successful rf current drive 
a -. relatively low density leads to the possibility of demonstrating (on 
TFCX) a quasi-steady-state mode of operation in which the plasma current 
is maintained at some substantial level as the solenoid current is 
periodically recharged. The changes in the PF coil current waveforms 
necessary to accommodate such an operating scenario are discussed in 
this section. 

The TFCX is designed such that the application of its full OH 
induction flux capability at high beta (i.e., subject to the constraints 
imposed by maximum fields at the PF coils) results in a 300-s burn. 
This burn phase will have to be shortened somewhat for cyclic operation 
in order to reserve sufficient volt-seconds for a plasma cool-down 
phase. During heating, the outward shift of the plasma current profile 
contributes to the flux due to the PF system (A* p p), but during cool-
down the mutual coupling between the plasma and the outer EF coils 
decreases. This flux loss, together with the required A$ = £*___ + AC> 
must be overcome through some OH solenoid swing. 

Because there is about a 5% decrease in plasma current during 
cooling, A * T N n changes sign relative to its value during heating, and 
the approximate flux requirements for a 10-s cool-down period on TFCX-S 
total A$ = l.l V-s. This implies a maximum burn cycle of ^160 s; the 
resulting current waveforms for quasi-steady-state operation of TFCX-S 
are presented in Fig. 13. 

5. SUMMARY AND CONCLUSIONS 

The FEDC equilibrium code is used, togc >er with the EFFI magnetics 
code, to determine the feasibility of tokamak configurations with 
respect to poloidal iaagnetics requirements in the preconceptual design 
of the TFCX. Given an operating point defined in an FEDC tokamak 
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systems code analysis, these computational tools are used to locate PF 
coils with respect to mechanical and magnetic constraints, while 
attempting to satisfy plasma flux and shape requirements. Simultaneously 
satisfying these constraints and performance criteria indicates that the 
PF system has a great impact on machine size. In particular, fixed 
plasma shape may make it difficult to obtain objective comparisons among 
different TFCX concepts. Trade studies, using the PF system design 
process discussed in Sect. 2, are under way to determine the dependence 
of machine cost and size on plasma shape and other performance factors. 

PF coil locations and current waveforms are presented for the 
reference design points of two possible options (TFCX-S and TFCX-H), 
both with minimum major radios and both satisfying the PF requirements. 
It is demonstrated that plasma *crapeoff considerations may place upper 
bounds on TFCX shaping parameters under present impurity control system 
assumptions. Finally, coil currents consistent with equilibrium and 
volt-second requirements are given for TFCX startup and for a possible 
scenario of qua si-steady-state operation. The burn time during each 
cycle in a quasi-steady-state node will have to be considerably shorter 
than 300 s in order to reserve a sufficient OH solenoid current swing to 

inductively maintain the plasma current during a cool-down period prior 
to solenoid recharge. 
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ABSTRACT 

The Toroidal Fusion Core Experiment (TFCX) is proposed to be an 
ignition device with a low safety factor (q ̂  2.0), rf or rf-assisted 
startup, long inductive burn pulse (/v»300 s), and an elongated plasma 
cross section (K = 1.6) v.ith moderate triangularity (6 = 0.3). System 
trade studies ha»e been carried out to assist in choosing an appropriate 
candidate for TFCX conceptual design. This report describes an important 
element in these system sti'dies — the magnetohydrodynamic (MHD) equilibrium 
modeling of the TFCX poloidal field (PF) coil system and its impact on 
the choice of machine size. Reference design points for the all-super­
conducting toroidal field (TF) coil (TFCX-S) and hybrid (TFCX-H) options 
are presented that satisfy given PF system criteria, including volt-
second requirements during burn, mechanical configuration constraints, 
maximum field constraints at the superconducting PF coils, and plasma 
shape parameters. Poloidal coil current waveforms for the TFCX-S and 
TFCX-H reference designs consistent with the equilibrium requirements of 
the plasma startup, heating, and burn phases of a typical discharge 
scenario are calculated. Finally, a possible option for quasi-steady-
state operation is discussed. 
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