

DOE/MC/27115-95/C0478

Conf 950494--20

Zeolite Membranes for Gas Separations

Authors:

John Falconer
Richard Noble

Contractor:

University of Colorado at Boulder
Department of Chemical Engineering
Boulder, Colorado 80309-0424

Contract Number:

DE-FG21-90MC27115

Conference Title:

Natural Gas RD&D Contractor's Review Meeting

Conference Location:

Baton Rouge, Louisiana

Conference Dates:

April 4 - 6, 1995

Conference Sponsor:

Co-Hosted by Department of Energy (DOE)
Morgantown Energy Technology Center
Morgantown, West Virginia
and
Southern University and
Agricultural and Mechanical College
Baton Rouge, Louisiana

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, 175 Oak Ridge Turnpike, Oak Ridge, TN 37831; prices available at (615) 576-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161; phone orders accepted at (703) 487-4650.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Zeolite Membranes for Gas Separations

CONTRACT INFORMATION

Contract Number DE-FG21-90MC27115

Contractor
Department of Chemical Engineering
University of Colorado at Boulder
Boulder, CO 80309-0424
(303)-492-7472 (telephone)
(303)-492-4341 (telefax)

Other Funding Sources
Center for Separations using Thin Films
Chevron Research and Technology Company

Contractor Project Manager Richard D. Noble

Principal Investigators
John L. Falconer
Richard D. Noble

METC Project Manager Venkat K. Venkataraman

Period of Performance July 19, 1990 - 12/31/1994

OBJECTIVES

To form zeolite films on inorganic supports, and test them for CO₂/H₂, CO/H₂, and H₂O/H₂ separations. The separation conditions will be studied up to 773 K and 3 MPa pressure.

BACKGROUND INFORMATION

Gasification of coal and other organic fuel sources produces H₂ as well as CO, CO₂, and H₂O. The use of these gasification products as a source of H₂ for fuel cells requires gas separations at high temperatures and high pressures. The separation process must also be able to work in

the presence of H₂S, COS and mercaptans. Zeolite membranes can meet these requirements.

Zeolites are crystalline inorganic materials with well-defined pore openings that are on the order of molecular dimensions. Zeolite particles are presently used as selective sorbents for various gas separations based on their sorptive and molecular sieving properties. They can tolerate very high temperatures and sulfur compounds due to their inorganic structure. A very recent development is to fabricate a dense zeolite layer on a tubular support which can be used as a membrane. This configuration allows one to operate the separation step continuously. Also, a membrane structure allows one to vary the temperature, pressure and feed composition without interruption.

-/-

MASTER
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DLC

PROJECT DESCRIPTION

We proposed to demonstrate the effectiveness of a catalytic membrane reactor (a ceramic membrane combined with a catalyst) to selectively produce methanol by partial oxidation of methane. Methanol is used as a chemical feed stock, gasoline additive, and turbine fuel. Methane partial oxidation using a catalytic membrane reactor has been determined as one of the promising approaches for methanol synthesis from methane. Methanol synthesis and separation in one step would also make methane more valuable for producing chemicals and fuels. Another valuable fuel product is H₂. Its separation from gasification products would be very valuable as a chemical feedstock and a clean fuel for fuel cells.

RESULTS

Silicalite-alumina composite membranes prepared in our laboratory by an in-situ zeolite synthesis method were used in the gas permeation experiments. The preparation procedure is discussed elsewhere [1]. Silicalite-1 is a pure-silica zeolite with a cage size of 0.58 nm, and it was deposited on a tubular, asymmetric, γ -alumina support. The γ -alumina layer had a pore size of 5 nm. Both single-gas permeation and gas-mixture separation experiments were conducted.

As a first step in evaluating the membrane for gas separations, single gas permeation experiments with N₂, CH₄, and CO₂ were carried out, and permeation flux versus temperature data were obtained at 1.3 bar from 300-600 K. These data are plotted in Fig. 1. The data show that the permeance of each gas went through a minimum. The temperatures at which the minimum occurs are 400 K, 450 K, and 450 K for N₂, CH₄, and CO₂ respectively. Researchers at Kyushu university [2] also observed a minimum permeance of N₂ through silicalite-1 at 400 K, but they did not report minimums for the other gases.

Transport of all gases was activated at higher temperatures, and the activation energies were 4.1, 3.8, and 6.3 kJ/mol for N₂, CH₄, and CO₂ respectively. Permeances at 600 K for CH₄ and CO₂ were lower than those at 300 K, and the N₂ permeances at 300 K and 600 K were the same. Therefore, to exceed the productivity at room temperature, temperatures higher than 600 K are required.

Separation experiments for N₂/CH₄ mixtures were also conducted. The feed mixtures contained 10 - 30 mol% N₂ in CH₄, because these are typical N₂ concentrations in natural gas. The separation selectivities were about 1.5, and CH₄ permeated faster than N₂ through the membrane.

Single-gas permeation of H₂, and separation of H₂/SF₆ mixture were also carried out with the silicalite-1 membrane. Flux of H₂ with the silicalite-alumina composite membrane was 8 times lower than the flux with the alumina membrane. Separation selectivity for H₂/SF₆ was 11.9, and the selectivity increased slightly as the temperature increased from 361 to 583 K.

Composite membranes of silicalite and Ni-SAPO-34 on the γ -alumina supports were also prepared. Initially, reproducible data for gas permeances could not be obtained. The stability of SAPO-34 membranes has been reported to be affected by H₂O vapor. When the feed gases were passed through CaSO₄, a desiccant made by Drierite, stable and reproducible permeances were obtained. Ratio of CO₂ to N₂ single-gas permeance was 4.3. When the gases were not dried, ratios as high as 9.5 were observed. Permeation experiments for CO₂ and H₂ were performed, but no significant single-gas selectivity was obtained. Compared to the reported promising selectivities for CO₂/N₂, this lack of selectivity was not expected.

FUTUER WORK

For better understanding of the single gas permeation, high pressure permeation experiments for N₂, CH₄ and CO₂ with the silicalite-1 membranes are planned. Pressure in these experiments will be up to 10 bar, and the temperature will be 300-600 K. Also, we plan to continue the preparation of Ni-SAPO-34 and silicalite-1 membranes using different gel compositions as well as other supports such as SAPO membranes, stainless steel, and silica. We will then perform permeation and separation experiments for these membranes for the following gas mixtures: CO₂/H₂, CO/H₂, and H₂O/H₂.

REFERENCES

3. M. D. Jia, B. Chen, R. D. Noble, and J. L. Falconer, Ceramic-zeolite composite membranes and their application for separation of vapor/gas mixtures, *J. Mem. Sci.*, 90 (1994) 1
2. Katsuki Kusakabe, Atsushi Murata, and Shigeharu Morooka, Permeation of Inorganic Gases Through Zeolite Membrane at High Temperature

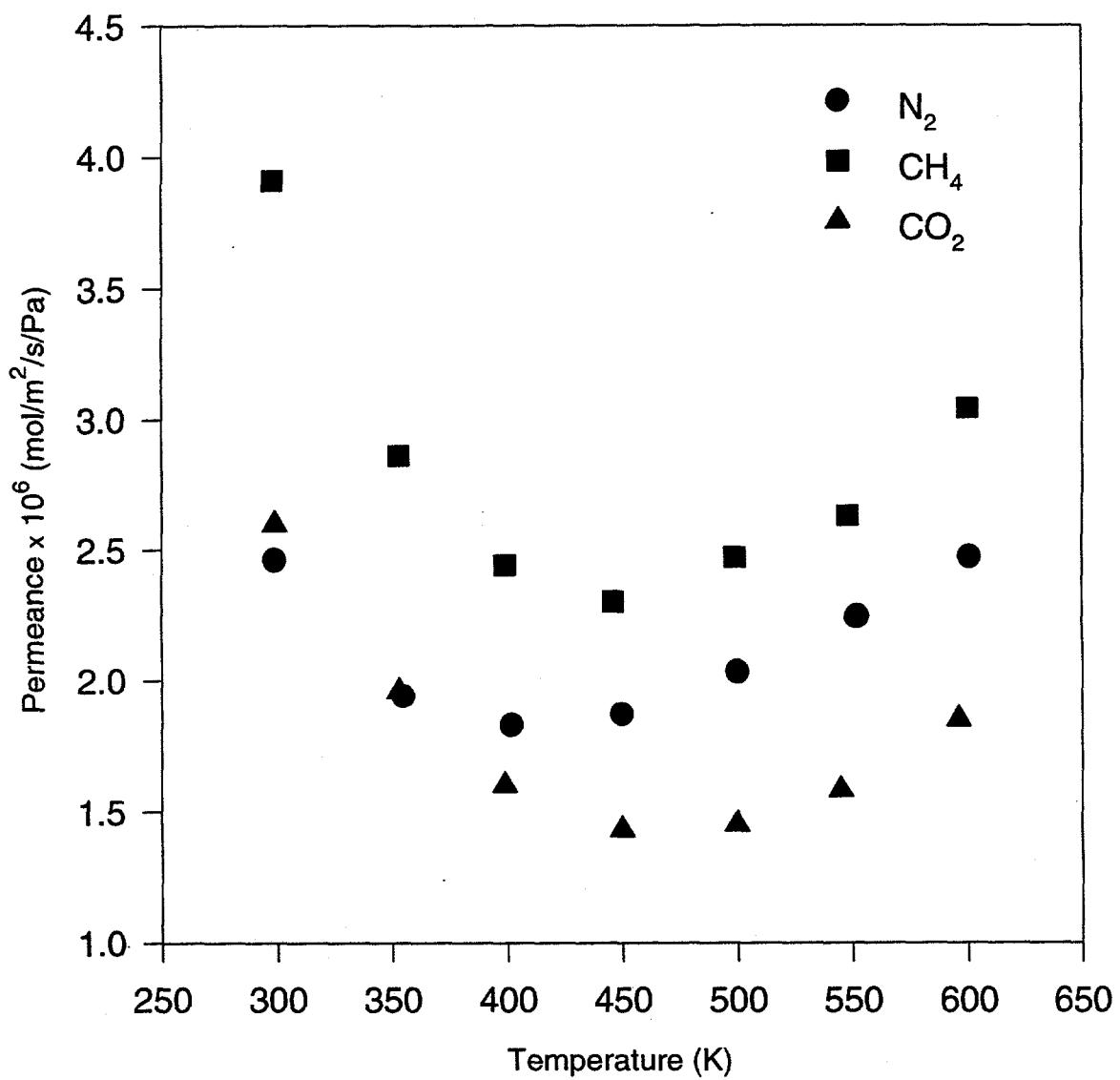


Figure 1. Single Gas Permeances Versus Temperature For A Silicalite-1 Membrane