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DYNAPCON A COMPUTER CODE FOR DYNAMIC ANALYSIS OF
fRESTRESSED CONCRETE STRUCTURES

by

A. H. Marchertas

ABSTRACT

A finite element computer code for the transient analysis of
prestressed concrete reactor vessels (PCRVs) for LMFBR containment
1s described. The method assumes rotational symmetry of the
structure. Time Integration 1s by an explicit method. The quasi-
static prestressing operation of the PCRV model 1s performed by a
dynamic relaxation technique. The material model accounts for the
crushing and tensile cracking In arbitrary direction In concrete
and the elastic-plastic behavior of reinforcing steel. The varia-
tion of the concrete tensile cracking and compressive crushing
limits with strain rate Is taken into account. Relative slip is
permitted between the concrete and tendons.

Several example solutions are presented and compared with
experimental results. These sample problems range from simply
supported beams to small scale models of PCRV's. It is shown that
the analytical methods correlate quite well with experimental
results, although in the vicinity of the failure load the response
of the models tend to be quite sensitive to Input parameters.

I. INTRODUCTION

The analysis of reinforced concrete has been the topic of many investiga-
tions, beginning with the original work of Nil son [1] who duplicated the
cracking pattern in a point loaded, simply supported beam. Recently, a defi-
nitive paper describing the use of a Mohr-Coulomb model was published by
Argyris, et al. [2], which demonstrated the application of a finite element
procedure to a large variety of static problems.

The analysis of prestressed concrete under Impulsive loads such as In the
safety analysis of a hypothetical core disruptive accident (HCDA), however,
poses additional difficulties. An efficient solution under such conditions



makes an explicit technique preferable, both because of economy and because it
facilitates the use of a realistic model of the interaction of prestressing
tendons with the concrete through the slide line option; the latter are very
difficult to program in implicit, Newton type codes. However, this necessi-
tates an efficient solution procedure for the static prestressing. Dynamic
relaxation procedures provide a natural method for obtaining static solutions
by explicit, transient codes, and finite difference procedures for its imple-
mentation have been published by Otter [3], and Holland [4] and the group at
Imperial College [5]. However, little was available for enhancing the effi-
ciency of dynamic relaxation in a finite element context, so we have developed
such procedures, and describe them in Section III.A.

Another difficulty which has plagued our treatment of concrete models
with cracking in a dynamic setting is the chain reaction of cracks introduced
by cracking in a single element [6,7]. This often leads to complete failure
of the structure in situations where experiments do not indicate failure. One
of the culprits in our initial models was the complete elimination of tensile
normal stress across the crack immediately after cracking. We have now re-
fined this model by introducing a gradual decay in tensile stress and found
experimental evidence for this phenomenon in the literature [8]. In addition
we have incorporated the strain rate dependence of the tensile strength of
concrete. The incorporation of these factors has led to reasonable agreement
between our model and many experiments; some of these comparisons are reported
here.

II. BASIC FEATURES OF THE ANALYTICAL METHOD

In view of the significant advantages of the finite-element technique for
engineering analysis, it was adopted for these models. Rather than developing
a completely new code, the WHAMS [9] code is used as a basis. One feature
which sets this family of codes apart from other codes is its use of convected
coordinates. In the use of convected coordinates, each element Is associated
with a coordinate system that rotates but does not deform with the element.
For problems with small strains but large rotations, which probably encom-
passes a large portion of nonlinear engineering problems, it can be shown that
the strains are linearly related to what are termed "deformation displace-
ments". The latter are simply the displacements of the element relative to



the convected coordinates. The deformation nodal forces are similarly related
to the stresses by linear expressions. The Important nonlinear!ties which
arise from large rotations are accounted for entirely by transformations
between the global and convected coordinates and the omission of the rigid
body motion in the strain-displacement relations. Hence, the computation of
nodal forces is considerably simplified, particularly in elements where numer-
ical quadrature is required.

For treating prestressed concrete structures, this parent code has been
supplemented by a material law that models cracking and reinforcement distri-
buted within a continuum finite element. In programs with explicit time
Integration, the material properties are used exclusively to calculate stress
increments from strain increments, and the implementation of constitutive
equations must be arranged accordingly.

Three basic components are needed for modeling reinforced and prestressed
concrete structures. These are:

• a means of representing concrete behavior under an applied load,

• a method of accounting for the contribution of concrete reinforce-
ment,

• the provision for a prestressing capability.

The first two items, concrete and reinforcement, are modeled by a homogination
approach, so that the stresses of both concrete and steel are averaged to
obtain the element stress. Thus, the formulation provides the equivalent
components of stress {orr, o2Z, orz, oee) from a known state of strain (e^,
Hi* Yrz» eeo)' A tota^ stress-strain formulation, as opposed to an incre-
mental one, Is used. The prestressing capability is handled outside of the
reinforced concrete formulation. This 1s accomplished by the use of separate
elements representing prestressing tendons. A detailed description of the
analytical models Is provided in the following paragraphs.



A. Time Integration

Time Integration 1s carried out by the central difference explicit meth-
od. For the central-difference method, the velocities and displacements are
updated by the formulas

J(t + at/2) = J(t - At/2) + At £(t) (1)

and

iu(t + At) = u U ) + At u U + At/2) , (2)

where superscript dots denote time derivatives and At 1s the time step. For
purposes of numerical stability the time step Is limited by

2At < — — (/I + y2 - y) , (3)

max

where u ^ is the maximum frequency in the mesh, and y is the fraction of
critical damping In the highest frequency due to the stiffness proportional
damping; y is Independent of any mass-proportional (diagonal) damping.

To estimate At for a run, we use the result of Hughes, et al. [10] that
the maximum frequency of the mesh is bounded by the maximum frequency of any
Individual element In the mesh. For constant-strain elements the highest
frequency may be estimated by the formula

u> = — , (4)
max i

where c is the maximum elastic or the acoustic-wave speed in the material and
i the minimum element dimension. This estimate also applies to the axial mode
of the beam and shell elements, but in addition a bending mode must be consi-
dered for which the frequency estimate Is

12cr.

"max ~

where rg 1s the radius of gyration of the cross section. For a uniform cross
section, the radius of gyration Is given by r 2 = h2/l2, where h Is the thick-
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ness. Since both Eqs. (4) and (5) pertain to a beam or shell, the time step
Is governed by whichever of these frequencies 1s larger. Thus Eq. (4) governs
for a beam or shell of uniform cross-section as long as

& > /3h . (6)

It is Important to keep the beam or shell elements long enough so that Eq. (6)
is not violated by much, for otherwise Eq. (5) governs and At decreases with
the square of element length.

The dilatational elastic wave speed c 1s given by

c =

c =

E
P

pd

E
- V*)

E(l -
- 2v)(l

v)
+ v)

for

for

for

beam and shel

plane stress

plane strain

1 element

continuum

continuum or
axi symmetric element

(7)

where E Is Young's modulus, v is Poisson's ratio, and p the density.

B. Elements

Two elements have been used for
the analysis of reinforced/pre-
stressed concrete structures: a
linear displacement, triangular,
toroidal (or plane) continuum ele-
ment and a conical shell (or beam)
element. Both elements have been
programmed so that they automatical-
ly reduce from axisymmetric to plain
geometry. Consequently, only the
axisymmetric elements will be des-
cribed here. These elements are
shown In Fig. 1 along with the
nomenclature used In this report.

Fig. 1. The Axisymmetric Three
Dimensional Continuum
Element and the Axisym-
metric Shell Element.



The triangular element Is the standard simplex element; Its displacement

field relative to node 1 1s given by

u

u

r

z La3

J *. \

r
(8)

The angle of rigid body rotation o 1s constant 1n the element and computed by
the formula:

tan a =
a 3 - d 2
+ a, + a,

23°z2 " z2Dz3 + r3°r2 " r2Dr3
(9)

4A + Z3°r2 " r3Dz2

where A 1s the area of the element, (r^, z^) the nodal coordinates relative to

node 1 , and (D r^, Dz1) the nodal displacements relat ive to the displacement of

node 1 . The deformation nodal displacements are found at each node by sub-

tracting the nodal displacements which correspond to the r igid body rotation

a, yielding

def
r1

{[X] - [ ! ] )< (10)

where

Cx] =
" COS a Sin a"

-sin a cos a
(U)

The convected strains are then given 1n terms of the deformation displacements

by



rz

3/ar

a/dz

0

d/dz

* A

3/3r_

<

' Adef•I

u
r

Adef
uz

(12)

Since the rigid body motion has been eliminated In obtaining the deformation
displacements, as long as the strains are small, the above formulas are appli-
cable regardless of the magnitude of the rotations.

Using Eq. (12), 1t follows that the r-z strains 1n the convected coordi-
nates are then related to the deformation nodal displacements by

rz

1_
2A

0

-z.

'2

r

2J

A ̂def

r3

z3

(13)

The circumferential strains are computed by the linear relation

(14)

Stresses and strains are measured In the convected coordinates, so they are

Independent of the rotation.

We define Internal nodal forces due to planar and circumferential stres-

ses by

(15)



(16)

The nodal forces ( f p ) j are self-equilibrated.

The [Ep] matrix is defined by Eq. (13), while the standard relation
between ce and u r defines the [E ] matrix. The nodal forces can then be found
by a direct application of Eq. (15), which yields

2x

U3,

CO]

CO]

Cx]1
(17)

• V -

V-
(18)

The integrands in Eq. (17) are not constant, but a one point integration has
been found sufficient.

In the conical shell element the convected x axis Is taken to lie along
the line joining the nodes. Cubic polynomial shape functions in x are used
for the transverse displacements, linear shape functions for the axial dis-
placements. The rotation 1s not constant within this type of element, but
since the strains are assumed to be small, the rotation relative to the x axis
should also be small, and hence the rotation of the x axis, a, should be a
good approximation of the rotational component of the element's displacement.

Jhe deformation displacements are then the nodal rotations relative to
the x axis

(19)
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and the midplane displacement, which can Immediately be expressed In terms of
the midplane strain e .

m

(20)

The

A

P =

X

e =

strain-displacement equations are

A

em "

1 ,
M Vi I

r i

A A

* a<l>(x)

ax

A

„ - y cos (
r

au

5—) »
ax

where

au
def

e =m
dx

(21)

(22)

and for the transverse cubic displacement field

A A

3x2) + -p (3x2 - (23)

Equation (21) 1s the standard equation for the circumferential strains as
given by Novozhilov [11], whereas Eq. (20) can be shown to be equivalent to

A A A

that of Novozhilov within second order terms In ̂  and a^/ax; both terms are
small for moderate rotations if the strains are small.

The stresses are then computed by the usual engineering stress-strain
laws. The equations for internal nodal forces corresponding to Eq. (15) are

5>

(6x-
A

(ex-

it

odV .
x (24)

The other nodal forces are found by Invoking the self-equilibration of the
planar nodal forces



(25)

rix f2x *

These nodal forces are then transformed Into the global coordinates. The
Internal nodal forces due to the circumferential stresses are computed by the
standard linear nodal force-stress relations.

For both elements, lumped masses are used. In the axisymmetric triangu-
lar element, the total mass 1s apportioned equally among the three nodes. In
the conical shell element, the translatory and rotatory lumped mass at each
node Is equivalent to the mass and mass moment, respectively, of the segment
between the node and the midpoint of the element. Inertia due to rotation of
the cross-section Is neglected.

III. SIMULATION OF PRESTRESSING

Prestressing is an essential part of the PCRV behavior; therefore, in the
analytical model, the prestress must be simulated before the dynamic loads are
applied. In this prestressing simulation cracking is not permitted; here the
loading is of a static nature, as opposed to the dynamic loading for which the
code is primarily intended. Dynamic relaxation, described in Section III.A,
is used in this phase of the modeling.

The prestressing is accomplished by layers of homogeneously distributed
tendons which are modeled by thin membrane elements in the plane geometry and
by thin shell elements (with v = G = 0 in the plane of the shell) In the
axisymmetric geometry. These prestressing members are superimposed over the
grid of the reinforced concrete model and are connected through sliding Inter-
faces so that they can stretch and slide along a predetermined path, simulat-
ing the behavior of the tendons.

The tendons are prestvessed by gradually applying a force at the points
where the tendons are attached to the concrete. An equal and opposite force
Is also exerted on the concrete grid at these nodes so that equilibrium 1s

10



maintained. When the specified prestress 1s reached, the prestressing tendons
and concrete are locked together at these nodes. The prestressing operation
Is then considered complete.

A. Dynamic Relaxation

Dynamic relaxation Is a procedure for obtaining static solutions by
solving the dynamic equations with sufficient damping to converge to the
static solution. Damping may be either diagonal damping £j£, where C_ Is a
diagonal matrix usually taken to be proportional to the mass matrix, or the
non-diagonal damping, such as stiffness proportional damping o^ j< u_. The
equations of motion are then

M ̂ J + (C + oj K) u + K u J* F ^ , (26)

where H, K_and Ĉ  are the mass, stiffness and damping matrices, £f x t the exter
nal force matrix, and û  the nodal displacement matrix; superposed dots denote
time derivatives.

In nonlinear problems K̂  u_ is replaced by nodal internal forces f]
Furthermore, the diagonal damping matrix C_ is taken to be mass-proportionals

so C_ = eg M̂  Consequently, Eq. (26) can be rearranged as follows:

M u = F e X t - F 1 n t - F V i S C , (27)

where

f_ViSC = (o^ K + a2 M) £ . (28)

In order to take advantage of an Implicit formulation for the mass-
proportional damping terms, vre use the following difference form of Eq, (27):

Mu(t) = FeXt(t) - F1 n t(t) - ĉ  K u{t - At/2) - ô  M u(t) , (29)

where

u(t) = •S^: [u(t + At) - u(t - At)] = u(t - At/2) + £• u(t) . (30)

11



Hence,

M(l + c^At/2)u(t) = F 6 X t ( t ) - F 1 n t ( t ) • ( « £ + - At/2) , (31)

can be used to solve for the accelerations at time t. The velocities and

displacements are then obtained by Eqs. (1) and (2).

To estimate the parameters aj and o^, 1t Is necessary to have estimates

on the minimum and maximum frequencies of the mesh, u ^ and %
hX
* If we set

°1
 =
 ^h^%ax* °2 ~

 2(J
2

ti
m1n

, w!iere
 &f

 i s t n e
 f

r a c t , i o n o f
 critical damping

desired In the frequencies c^. If 0 = ̂  = pg»
 a11
 frequencies between ^

n

and α^ax will be damped at fractions of critical damping that are less than e.

The density plays a purely f ict i t ious role 1n dynamic relaxation. When-

ever the elements vary In size significantly, convergence can be enhanced
ele

If (o Is the same for all elements. This Is accomplished by choosing the
max

density for each continuum element such that

ele max
E(l - v)

- 2v)
(32)

where o^
nax
 can be any convenient constant, which will correspond roughly with

the maximum frequency of the result-

Ing model. Similar scaling formulas

are available for the shell element.

B. Sliding Interface

The movement of prestressing

tendons with respect to the rein-

forced concrete continuum Is imple-

iinci.ted by a sliding option. The
>

node structure at a sliding inter-

face as used herein Is shown In F1g.

i
.
 At each point of the Interface

W have two nodes: one node which

• REINFORED CONCRETE NODES

o PRESTRESSING TENDON NODES

F1g. 2. Nodes of the Sliding
Interface.

12



pertains to the prestressing tendon, and one node of the concrete grid.
Initially the pairs are coincident. For each pair, a local coordinate system
(t, n) 1s set up so that t is the tangent to the sliding interface, n is 90°
counterclockwise from t. Whenever a corner occurs in the interface, t Is the
average of the two tangent directions.

The normal force transmitted from node i to node j across the Interface
is

f = F1?* - M4u , (33)
n ni 1 n

where

Here u is the common normal acceleration of the pair of nodes and the last
term in Eq. (33) is the inertial resistance of node i.

IV. REINFORCED CONCRETE MODEL

Both concrete and reinforcement are modeled within the same c*.;..1nuum
element. The strength of concrete and reinforcement are accounted for by
addition of their respective stresses and resolution of resulting internal
forces to the appropriate nodes. The individual models of concrete and rein-
forcement are described in the following sections.

A. Concrete Modeling

A linear elastic response with tensile and compressive limits is used for
modeling concrete behavior. In compression, the concrete model Is allowed to
sustain stresses up to the uniaxial compressive strength f£. In tension,
cracking Is assumed to initiate when the maximum principal tensile stress of
concrete reaches the uniaxial tensile limit f{..

The tensile and compressive limits of concrete are greatly dependent on
the rate of loading. Some experimental evidence on this subject has been

13



compiled by Neville [12], who plotted data showing the dependence of ultimate
stress on the stress rate as obtained from McHenry and Shideler [13] and
McNeeley and Lash [14]. To make use of these data in the analytical treatment
of concrete, we have expressed rate
dependence In terms of strain rate
by using a - EQe, where E o is the
initial yield modulus, and o and e
are the stress and strain rates,
respectively. Thus we neglect any
strain rate effects on Young's
modulus. The replotted ratio of
dynamic strength to static strength
as a function of strain rate e 1s
shown in Fig. 3. The static
strength in Fig. 3 is asi^med to be
that obtained at 12 MPa/min, and E o

= 2.76 x 101* MPa. As observed in
F1g. 3, the compressive data extend Fig. 3.
to almost 10 s"1; no Information for
transient tensile limits is avail-
able for such strain rates.

JO

2.0

i n

i

AVERAGED

0

1

1 1 1

EXPERIMENTAL DATA

COMPRESSION
RUPTURE MOOULUS
RUPTURE 1 ASSUMED 1

1 1 1

/

/

l

/

/ \

A .
<ro

1

1

= 064 +0.97 « ° 0 , ,

| I

10' 10*

STRAIN RATE U l,s"'

Strain Rate Dependence on
Tensile and Compressive
Limits.

In the problems solved here, strain rates as high as 100 s"1 were encoun-
tered. An extrapolation of dynamic stress limit under tensile loading Is thus
needed. This was accomplished 1n the following manner.

We assume that ratio f/f0 to be a function of strain rate e of the expo-
nential form

(35)

where a, b and c are constants to be determined. Two conditions could be

satisfied by the experimental data shown In F1g. 3, and the third could be

It Is of Interest to observe that a similar exponential strain rate
dependence for oil shale, based on experimental data, has also been
reported recently by Grady and K1pp [15].
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derived by trial and error, using the analytical model described below. As
the criterion for the analytical cracking, we assume that cracking is only
possible as a result of structural deformation. Implied in this 1s the as-
sumption that cracking will not be caused by sharp stress peaks during wave
Interactions.

Figure 3 also shows the equation derived for predicting dynamic compres-
sion limits. The ratio of actual strength to static strength in compression
thus becomes

f /f . = 0.64 + 0.97(e)°*091 . (36)
c co v J

This equation was obtained by using all three conditions from experimental
data so that no "help" from analysis is needed.

The strain rate used in the calculations is taken to be the maximum of
the principal rates within an element, i .e . ,

maxfe , e , e l . (37)
*• rr zz 69 ;

The initiation of cracking within an element is based on the maximum-
principal -stress criterion. In an axisymmetric (r, z, e) geometry, the cir-
cumferential direction always provides a principal stress. The remaining two
principal planes lie within the r-z plane and are given by

a =
nn

a =
tt

0

rr

°rr

f

2

•

2

0

zz

°zz

(38)

'

f Orr" azz. . 2a2-rz

where o^, <^z, orz are the radial, axial and shear stresses of the r-z plane;
ĉ n and o ^ are the stresses normal and tangential to an impending crack.
When a principal stress exceeds the tensile limit, a crack is considered to be
Initiated. The direction of the normal to an Initiated crack with respect to
the r-axis Is given by

15



a = 1 / 2 a r c t a n [ 2 c / { a - a )] .1 r z *• rr z z J i (39)

Once a crack has been Initiated, Its direction 1s kept as a permanent record
so that the stress or strain normal or tangent to the crack can be monitored
during subsequent time steps. The normal, tangential, and shear strains (enn»

, Ynt) with respect to the crack are,

nn

"tt
Ynt

COS2a

s1n2a

s1n2a

s1n2a

COS2a

s1n2a

1/2 s1n2a

-1/2 Sin2a

cos2a

err
e
zz

Yrz

(40)

where e^, e ^ , yrz are the engineering (small) normal strains In the radial,

axial directions, and shear angle In the r-z plane, respectively.

The strains of Eq. (38) within a given element are related to the stres-

ses as follows:

nn

tt

°nt

ee

1

1

0

0

0

G/E,

0

Q

1

nn

'tt

'nt

'86

(41)

where v = v/(l - v), E = 2G(1 - v)/(l - 2v), E Is Young's modulus of elasti-

city, v Is Poisson's ratio, and G Is the shear modulus.

Equation (41) 1s also used for the case where cracking 1s assumed to have
Initiated, but a definite crack opening 1s not as yet present. Such a state
Is assumed to be possible 1n the presence of microcracks 1n brittle materials
[16]. For purposes of Illustrating the crack Initiation model, the principal
stresses of Eq. (41) are arranged so that a, > o? > ou. Initially q will be
equal to <^n or aQ9 depending on which one Is of greater magnitude. Since
cracking 1s based on the maximum principal stress, crack Initiation should

16



Strain

Fig. 4. Stress-Strain Model of
Cracking Material Under
Transient Conditions.

f irst occur jiormal to oj. Once the
principal sttess ô  reaches or
exceeds the ransile limit f{., the
stress normal"to the Impending crack
is prescribed end is usually inde-
pendent of the strain normal to the
crack. At the instant when the
maximum uniaxial tensile limit Is
reached or exceeded by the principal
stress, the stress normal to the
Impending crack Is set equal to the
tensile limit fj.. During the subse-
quent time Increments, the tensile
stress normal to the impending crack
is reduced to zero linearly over a
prescribed characteristic strain ê
in Fig. 4:

e - e

e < e <
e

e d } '
(42)

where ed is the normal strain, extending from initiation of cracking to crack
opening, and ee Is the strain corresponding to the tensile limit fj., shown in
Fig. 4. This equation applies for the range of normal strains shown; If e >
(e + e.), then the formation of a crack is considered completed; a fully
developed crack is assumed to have occurred.

It should be noted that if any of the principal stresses are prescribed,
the other principal stresses are affected correspondingly. For example, if
the prescribed stress across the crack Is taken to be oA, the strain component
enn in Eq. (41) 1s solved for and substituted into the expressions of the
other principal stresses. The state of stress in the element becomes:

17



= V

(43)

* °3 + vl

• s v •

Similarly, if two principal stresses oA, op are prescribed, the element state
of stress becomes:

i =
 °A •

(44)

^ t = GYnt J

where 63 Is the minimum principal strain* Finally, if all three principal
stresses are prescribed, aA, og, o^, then the state of stress becomes:

" °A

°C •

(45)

Note that the prescribed stresses aA, ag, a^ need not be equal. This may
occur, for example, 1f a second or third crack forms 1n an element. As long
as no fully developed cracks exist, concurrent crack development is assumed to
originate 1n orthogonal directions.

It may be noted that a more realistic way to model progressive tensile
cracking would be to take Into account the nonlinearity of tensile stress-

18



strain behavior and tensile strain-softening, which would entail a nonlinear
tensile stress-strain relationship. This relationship must exhibit the elas-
tic anisotropy Introduced by partial cracking 1n particular directions. To
express this in a tensor!ally Invariant form, it would be necessary to postu-
late a damage tensor whose components describe the reduction of elastic stiff-
ness in various directions.

The transformation of principal stresses to stresses in cylindrical

coordinates (r, z, e) must also be provided for. Since 8 1s the principal

coordinate, no change Is necessary for the circumferential stress aeQ. The

itress components in the r-z plane, howeve.,, require the following transforma-

tion

rr

zz

rz

sin2a

sin2a

cosza

-sin2a"

sin2a

_l/2sin2a -l/2sin2o cos2a_

a*
nn

a*
tt

nt

(46)

The state of stress in an element with one fully developed radial crack is

established by the previous equations provided that a9Q is set to zero.

However, with a ful iy developed crack in the r-z plane the presence of aggre-

gate interlock makes the conditions somewhat more complicated. It has been

suggested [17] that the effect of aggreqate interlock can be accounted for by

a shear reduction term as follows:

0

ant
E

1 - v2

1

0

0
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0

0

1

ett

Ynt

ee

(47)

where e Is the shear reduction factor, a constant usually taken as 0.5. This
means that the shear strain tangent to the crack 1s assumed to be reduced by
the factor 3 from what It would be In the absence of a crack. Although a
constant factor for any crack size and aggregate surface Is a rather rough
estimate, It seems to yield fairly good results under static conditions.
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Lacking any better means of accounting for aggregate Interlock, the same
approach Is retained In this formulation.

Because of the existence of the shear stress due to aggregate Interlock,
the perpendicular to the normal of the existing crack within an element Is not
a principal direction. The second principal stress 1n the r-z plane, which Is
used to check for secondary cracks, and the angle of Its normal with respect
to the r-axis are:

of = a + 1/2 a.r-ctan (-2a Jo. A
v nt tt

(48)

\

three

The non-orthogonal cracking In the r-z plane causes another complication.
With one crack fully developed and another Impending, there are a total of
four stress values to be prescribed
but the stress tensor has
Independent components.
culty 1s resolved in the fo l lw f tg
manner: The normal stresses across
the two cracks are given by Eq. (42)
and the shear stress ont of the
f i r s t crack Is computed by the shear
reduction factor 0, as described
before. The shear stress a£t along (a) (b)

Element with Two Non-
Perpendicular Cracks.

the Impending crack, however, 1s
obtained from equilibrium considera- Fig. 5,
tions, as shown in Fig. 5. Note
also the definition of a and a* in
Fig. 5. Moment equilibrium shows that the ohear stresses tangent to the new
crack Is given by

nt ant tt
tan (49)

From force equilibrium the following expressions are obtained:
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It may be observed that Eq. (50) reduces to Eq. (46) provided that onn 1s set
to zero and of* is set equal to a. Equation (50) pertains to the case where
the second crack 1n the r-z plane Is in the process of formation, or has been
fully developed,
being formed,

Thus o* = f', 1f the second crack 1s at the Instant of
d* = Oj [see Eq. (42)] during crack formation, and o* = 0 if

the crack Is fully formed.

After the second crack In the r-z plane has fully developed and o*
set to zero, the remaining stresses are calculated by

is

nt

ee

= E

0G/E 0

0 1

"nf.

89

(51)

On the other hand, if the radial crack 1s postulated to have fully formed
first, then oeo Is set to zero and the remaining stresses become

nt

= E

1 0

0 fjG/E

'tt

'nt

(52)

Here again, the principal stress is not crtt, but is expressed by Eq. (48) with
the corresponding position. The resolution of stresses into the components of
the r-z plane Is accomplished by Eq. (46) where a* Is set to zero.

Equations (51) and (52) also apply to the case where a third crack has
Initiated and is In the process of formation. Then the last principal stress
is assigned by Eq. (42). If all tlvee cracks have been fully developed In the
element, all stress components are due to the contribution of shear strain

Due to the oscillatory nature of the motion of the vessel, the cracking
model must account for the possibility that a fully developed crack may close
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or an impending crack may be arrested if the strain rate changes sign. The
strain normal to each crack monitors this condition: 1f the strain normal to
a given crack is found to be less than zero, then a fully developed crack is
assumed to have closed or the development of a crack is assumed to be inter-
rupted. The element is then able to sustain compressive loading across the
crack. With the closing of a crack or arrest of cracking, the tensile limit
normal to the crack is changed and stored for later use. If a fully developed
crack closes, then the tensile limit is set to zero. However, In case the
crack formation is Interrupted, the stored tensile limit 1s assigned that
particular value of stress which corresponds to the time of crack arrest. The
element is hence governed by the reduced tensile limit If and when it is again
reloaded in tension.

As for the inelastic behavior in compression, only the simplest possible
model consisting of a maximum compressive limit on the principal stresses, is
considered at this stage. In compression the stress in the element may be
defined by the previous expressions, depending on how many principal stresses
reach the compressive limit f^ at the same time. At the present, the maximum
uniaxial stress f^ Is used as the maximum stress that the element may be able
to sustain.

B. Reinforcement

In this analytical model, the
reinforcement Is superimposed over
the concrete element as 1f It were
uniformly distributed over the
entire element as an anisotropic
material. Uniaxial reinforcement
within the element can be prescribed
as a percentage of reinforcement In
three directions - one being the
circumferential direction, and the
other two positioned arbitrarily
within the r-z plane, as shown in
Fig. 6.

Fig. 6. Reinforcing Within Element.
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For purposes of computing the stresses 1n the reinforcement In the r-z
plane, the strain 1n the direction of the reinforcement must be found. If the
angle between the r-axis and the axes of the reinforcement are ^ or tg, the
strain along the respective directions corresponds to enn 1n Eq. (41). The
response of reinforcement Is determined by an elastic-plastic material mod-
el. This model uses Isotropic unloading.

A conventional yield value correction for mild steel Is Incorporated for
reinforcement, I.e.,

J'
0.2"

(53)

which accounts for the strain rate effects.

The contribution of the reinforcement stress to the total element stress
Is then given by

«r= ",V*c ' (54)

where Ar and Ac are the cross-sectional areas of reinforcement and concrete
normal to the directions of the reinforcement. The stress In Eq. (54) needs
to be transformed Into the cartesian components If reinforcement lies In the
r-z plane; for circumferential reinforcement, o^ corresponds to cee. Finally,
the cartesian stress components due to concrete and steel are summed to obtain
the overall stress In the element.

C. Artificial Viscosity

In the Integration of the finite-element equations of motion with small
time steps, such as Is generally the case In explicit Integration, high-
frequency oscillations which are called "spurious oscillations" will appear In
an undamped system. The severity of these oscillations tends to Increase If
the mesh 1s rather heterogeneous. These oscillations can be reduced and
sometimes eliminated by the use of a suitable artificial viscosity, which 1s
really a numerical damping.

An artificial viscosity of the following form 1s used
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^ = ppc/A e , (55)

156)

where a^ and e^j are the stress and strain tensors, while s^j and e^j are the

deviatoric stress and strain tensors, respectively, u 1s approximately the

fraction of critical damping.

V. COMPARISON OF ANALYSIS WITH TEST DATA

The comparison of analytical results with test data 1s Important 1n

validating the analytical model. This Is especially true 1n this case because

the analytical behavior of concrete under transient conditions Is not yet well

understood. Here we need basic experimental data for guiding the analytical

formulation. This has been a difficult task because even test data of rela-

tively simple structures under transient loading are sparse. Only some of the

comparison made will be described In this report.

A. Static Test

The experimental data used In this comparison pertains to an Internally
pressurized, prestressed cylindrical container tested at the University of
Illinois, Urbana [18]. This container simulates the containment of a nuclear
reactor, and is shown 1n F1g. 7. The right side of F1g. 7 Identifies the
components of the test structure, while the left side shows the analytical
model used In the comparison. As can be observed, no reinforcement Is pro-
vided In the model.

The concrete 1s characterized by a tensile limit of 3.10 MN/m2, a com-
pressive Hm1t of -49.23 MN/m" with an initial elastic modulus of 29.7 GN/m2

and a Poisson's ratio of 0.15. The prestress material has a modulus of 192
GN/m2 and a yield stress of 1655 MN/m2. Before the Internal pressurization 1s
applied, each layer of tendons Is prestressed longitudinally to a
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4.69 mm DIA.
PRESTRESSING WIRE
WITH 9.38 mm SPACING

BASE
PLATE

LOAD CELL

STRAND GRIP

Fig. 7. Details of the Cylindrical
Test Vessel.

accuracy of the solution in the presence
pendent of the algorithm.

force of 0.112 MN and prestressed
circumferentially to an equivalent
pressure of 3.52 MN/m2.

It should be emphasized that
while the experimental data pertains
to static conditions, the analytical
results are based on a computer code
which is expressly written for
dynamic problems. The use of a
dynamic code for a static simulation
is Inefficient and rather expensive,
but It nevertheless provides a good
validation of the method for pre-
dicting static problems. It should
be noted that this problem was run
before dynamic relaxation was intro-
duced into the code. With the
dynamic relaxation now available,
the solution of static problems
should be easier. However, the

of concrete cracking should be inde-

The static result? were thus simulated by a set of individual dynamic
runs, all of which Involved the same prestress. The pressurization in each of
these runs consisted cf a ramp loading to a given pressure, followed by a
constant pressure at that level. Each individual run Involved a different
pressure level. In the first phase, the pressurization proceeded at a loading
rate higher than that encountered In the experiment.

The general response of the model would roughly follow the history of the
pressurization coupled with the dynamic oscillation superimposed over the
static value. The static equivalent response was thus estimated by visual
elimination of the dynamic component from the overall results.

The analytical simulation of a static experiment by means of a dynamic
code, as used in this comparison Involves certain error sources. Because of
the dynamic overshoot, the analytical model would be exposed to higher stres-
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ses, resulting in additional cracks, which in turn would make the material

"softer". Thus, because of the overshoot beyond the tensile limit, the model

may overestimate the true results.

Figure 8 shows the central
deformation of the cover with re-
spect to internal pressure. The
close agreement is encouraging since
the nonlinearity of the deflection
stems from the cracking In the
concrete; without cracking, the
deflection would be linear along the
initial slope. 0.5 1.0 15 20 2.5

Dellcclion.mm

Fig. 8. Central Deflection of the
Top Slab.

Figures 9 through 11 show the
comparison of experimental strain
readings on the cover with code
calculations. Figure 9 shows the radial strain on the top surface of the
cover at three radial locations. Four sets of experimental data are shown at
each of the radial distances. The calculated strain falls within the experi-
mental data.

7 I

Measured

o — -oColculoted

0.1905-m
Radius

0.4

STRAIN x 10*

Fig. 9. Radial Strain at Top of Slab.
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The radial strain at the bottom of the cover 1s shown 1n Fig. 10. Again,

the data of four gauges, each located at the same distance from the center, 1s

compared with the calculated results. The calculated values compare quite

well with the measurements.

STRAIN 1.10

Fig. 10. Radial Strain at Bottom of Slab.

The circumferental strains at the bottom of the cover are given In Fig.

11. The calculated results show a stiffer response at the low pressures.

This is consistent with the elastic representation of the concrete in com-

pression; in reality, concrete exhibits softening with increasing compres-

sion. This effect seems to be offset at higher pressures by the occurrence of

cracking.
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Fig. 11. Circumferential Strain at Bottom of Slab.

The overall agreement between experiment and calculation is surprisingly

good. All the results shown pertain to the cover of the model. Since the

cover Is not reinforced, the quality of comparisons largely reflect on the
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crack modeling of concrete. A comparison of experiment and analysis under
dynamic conditions will be presented 1n subsequent sections.

B. Dynamic Tests

In our comparisons of analytical results with experimental data, we have
concluded that concrete cracking Is greatly dependent on the strain rate of
loading; much better correlation between experiment and analysis could be
obtained when the cracking limit was made dependent on the strain rate.
Because available data 1s Insufficient, we have Introduced an extrapolation
for taking the strain rate effects Into account. However, this procedure
requires other test data from which the needed information could be In-
ferred. The first illustration of this section thus deals with the "calibra-
tion" where a tensile limit and strain rate relationship is obtained.

1. Tension-Reinforced Beam

Rather simple test specimens involving substantial cracking are
beams tested at the University of Illinois, Urbana [19]. The b^am tested 1s
shown in Fig. 12 where the right-hand side shows the characteristics of the
beam and the left-hand side shows the analytical model.

TWO # 4
REINFORCING
BARS
<ry * 3 2 9 MPo

Fig. 12. Details of the Concrete Test Beam and the Analytical Model.

Figure 13 shows the history of the applied load and F1g. 14 the
history of the central deflection. Figure 14 gives two sets of experimental
results, together with the analytical deflection. The analytical results
represent the best fit with the experimental data. The Important points to
match here were the maximum deflection and the permanent set. Strain history
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Beam.

of the reinforcing steel is shown in Fig. 15, which refers to location A in
Fig. 12. Two sets of experimental values exist which pertain to points which
should have equal response because of symmetry. The analytical strain rz-
ported here is the average strain for two adjoining horizontal elements.

Figure 16 shows additional experimental strain results for the

identical locations, but for the second reinforcing rod. The analytical

strain results shown in Fig. 15 are reproduced in Fig. 16 for comparison.
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Fig. 15. Strain History of Reinfor-
cing Steel at Location A.

Fig. 16. Strain History of Steel at
Locations A and B.
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The steel strains on the centerline of the beam are also shown in

Fig. 16. The analytical results indicate a final permanent set of 0.76%,

whereas the experimental value is ~ 0.5%. The analytical results given in the

figures pertain to the following values of the constants in Eq. (35):

a = 0.94, b = 3.79, c = 0.37,

and the strain rate correction of reinforcing steel for yield stress given in

Eq. (53). These values were found by trial and error to best compare with

experimental data. These constant? depend to some extent on other variables,

not only of the analytical model, but also on the characteristics of the

concrete constitutive model, discretization of the analytical model, the

artificial viscous damping, etc. With the large number of variables involved,

the question arises as to how well the analytical model calibrated for the

strain rate in this experiment predicts results in other structures. The

extension of this analytical model to other test structures will be reported

in subsequent sections.

2. Long Test Beam

The experimental data referred to in this section originated also at

the University of I l l i n o i s , Urbana [20]. The details of the reinforced con-

crete beam tested together with the supporting system, are shown in Fig.

17(a), while the analytical model used in the comparison is given in Fig.

17(b). Figure 18 indicates the time-history of the applied load on the

beam.
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Fig. 17. Dimensions of the Test Beam (a) and Corresponding Model (b).
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Fig. 18. Idealized Input Load
Acting on the Beam.

Since the reinforcement is assumed to be distributed evenly through-
out each of the elements, it may be characterized by averaged vertical and
horizontal reinforcement densities in the interior elements. The only ele-
ments without reinforcement are located within the top and bottom layers of
the beam.

The time history of the central deflection of the beam is shown in
Fig. 19, which depicts the experimental data and a number of results pertain-
ing to analytical predicitons. For Case A, the strain rate relationship
derived in the previous section was used. The maximum analytical beam dis-
placement Is 55% lower than that of the experiment. It appears that the rate
dependence of the cracking limit makes the analytical model too stiff In this
case. The sensitivity of the analytical model to other parameters was then
Investigated in order to establish the source of the discrepancy.

First, strain rate dependence on the limit of concrete cracking was
Ignored 1n the model which Is denoted as Case B In Fig. 19. Very large dis-
placements were predicted and excessive cracking prevented numerical comple-
tion of the solution. Next we assumed the same static properties for con-
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crete, but permitted only one crack per element. This corresponds to Case C
In F1g. 19.

Since the model tested possesses considerable reinforcing, as com-
pared to the model described in the previous section, we chose to Investigate
the reinforcing steel properties. Case D corresponds to the analytical re-
sults where the rate dependence on the yield stress of reinforcing steel was
neglected and cracking was limited to one crack per element. This curve comes
closest to the experimental results. On the other extreme, cracking was not
limited but strain rate effects for reinforcement were neglected and the
results of beam displacement are shown as Case E.

The parameter study shows that the strain-rate effects of concrete

play a small role here. However, the strain rate effects of the reinforcing

steel are of Importance. This Illustration shows that "calibration" of analy-

tical model Is not a simple matter and must Involve considerable thought. An

independent calibration of one variable 1s meaningful only if the effect of

the other variables is insignificant.

3. Simple PCRV Model

The third set of results given here is for the PCRV model tested at
Foulness [21] for the British fast reactor safety program. A cross-section of
this cylindrical PCRV model is shown in Fig. 20. The model was loaded through
charges submerged 1n the pool of water. The explosive used was the same
PETN/polystyrene foam as 1n the COVA [22] test for which a well-defined equa-
tion of state exists. The experimental pressure records were not spatially
consistent, so, in order to obtain a set of consistent pressure records for
use of the PCRV analysis, an ICECO [23] simulation of the charge detonation
and subsequent pool swell and slug Impact was made. In the ICECO analysis,
the behavior of the charge was described by the equation of state derived for
the COVA experiments [22]:

, -9V n -2.4V -1.1
p = Ae + Be + C ,

where A = 17.039 GPa, B = 1.1595 GFa, C = 53.56 MPa, and V Is the specific

volume. The equation of state for water Is of the form
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F1g. 20. Geometry of Test Model
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P=F-

where Bo = 1.9895 GPa, Bo = 6.985, and Vo Is the Initial specific volume. The
air above the surface of the water was allowed to escape during the excursion
and to present no resistance to compression. The pressure histories on the
walls of the PCRV were stored and used to load the prestressed PCRV analytical
model.

The PCRV model Is shown In Fig. 21. Ax1symmetric linear-
displacement triangular elements with one Integration point per element were
used. Four layers of elements were used In the cylindrical walls, and al-
though this Is barely sufficient for an accurate simulation of the bending,
the primary response Is In a hoop mode, for which this discretization is more
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than adequate. The stable time step
for this model was 2 MS. Material
properties of the model are given in
Table I.

The prestressing tendons
were modelled by rod elements placed
as shown in Fig. 21. An elastic-
plastic material model with Iso-
tropic strain hardening was used for
the rods. These elements were
connected to the concrete elements
through sliding interfaces, so that
the prestressing force was applied
to the PCRV only at the anchors of
the tendons.

In the PCRV model the
vertical tendons consisted of 18
high strength bolts of 12.7 mm
diameter which were prestressed to
an initial tension of 49 kN.

Hoop prestress was applied by winding on the model 18 gauge (1.22 mm) diameter

high tensile wire at a tension of 1.46 kN. Due to the relaxation of the

model, the estimated prestress 1n the tests were as follows [24]:

1. Hoop tendon loads were reduced 70% to 65% of their failure strength,

and

2. Vertical tendon loads were reduced from 74% to 64% of their failure

strength.

These estimated prestress conditions were used in our simulations; the equiva-

lent values are Indicated 1n F1g. 21.

The prestressing operation was simulated by applying equal and
opposite forces to the concrete and prestressing members at the anchors with
the tendons. A static solution was obtained for this condition by the dynamic

Fig. 21. The PCRV Analytical Model.
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relaxation procedure [25]. During the dynamic relaxation procedure, no crack-
ing was allowed In the concrete to prevent spurious cracking from dynamic
overshoots. The results of this solution then served as Initial conditions
for the transient solutions.

Table I. Material Properties.

Properties of Concrete

Density 2400 kg/m3

Modulus of elasticity 44000 MPa

Stress-strain data (yield) Tensile failure 5 MPa
Compressive failure strength 65 MPa

Poisson's ratio 0.17

Properties of Prestress Steel

Density 8000 kg/m3

Initial modulus of elasticity 200000 MPa

Tensile and compressive limits Hoop prestress: 18 gage wire (1.22
mm d1a.)
Tensile failure 2085 N

Vertical prestress: 17.7 mm bolt
Tensile yield load 66030 N
Tensile failure load 78680 H

Poisson's ratio 0.30

Before the analytical simulation of the experimental data is des-
cribed, we will briefly review the salient features of the Foulness test
data. This data pertains to a series of dynamic loadings on a single PCRV
model. The explosives used in the tests were small at the start and were
increased In size until failure of the vessel occurred. Some of the available
data are given 1n Table II.
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Table II. Maximum Radial Displacement at the Side Wall.

Test No.

1 & 2

3 S 4

5

6

7

Charge,
9

2.5

14 & 12

27

54

112

Pressure**,
MPa

3.6 & 2.5

6.8 & 15.9

19.8

25.5

44.0

Displacement, mm

Experiment

1.0, 0.77

1.27

Failure

Analysis

0.103

0.343

0.871

1.54

Recorded peak pressure on the side wall.

The use of the same vessel in the whole series of tests confronted
us with the dilemma of whether or not to maintain the cracks from previous
simulations. We found that the concrete model described here overestimates
damage, so that if the cracks are maintained through the entire series of
simulations, complete failure is predicted at a lower load than observed
experimentally. Therefore, we performed these analyses with either an un-
damaged initial state or at most precracking from one previous analysis.

Displacement time histories at the midpoint of the cylindrical
vessel were only available for tests 5 and 6. Figure 22 shows the experi-
mental data of test 5 along with a purely elastic simulation and a simulation
without precracking. An attempt to account for precracking is demonstrated in
Fig. 23, where only the precracking from the loading of test 4 is Included.
The Individual cases shown in Fig. 23 pertain to different strain-rate rela-
tionships of tensile cracking assumed and are shown in Fig. 24. The same
strain dependence of the tensile cracking limit Is used during loading of both
test 4 and test 5.

The computer simulations with cracking replicate the principal
features of the experiment: the period of the displacement 1s increased, and
the amplitude Is Increased as compared to the elastic solution. The pre-
cracked simulation Is more accurate In the period, while that without pre-
cracking is more accurate In the maximum amplitude. Both solutions exhibit
the absence of any permanent displacement found in the experiment: the pre-
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stressing tendons remain elastic and close the cracks after the load 1s re-

leased. It Is of Interest that the solutions with and without precracking

bound the observed maximum displacement.
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The deformation history
for test 6 Is given in Fig. 25 where
test data are compared to two analy-
tical solutions. The analytical
results consist of a purely elastic
solution and another with cracking
where precracking had not been taken
into account. The correlation
between the analytical predictions
and experiment is almost Identical
to test 5: the amplitude agrees
quite well, but the solution without
precracking no longer bounds the
observed displacement from below.

In Ref. [21] it was con-
jectured that a proper Inclusion of
the added mass of the fluid would
improve the correlation between
experiment and analysis. However,
it turns out that added mass is
quite small and changes the results
by at most 5%.
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Fig. 25. Comparison of Side-Wall
Displacement with Analysis
for Test 6.

VI. CONCLUSIONS

The results presented in this report reflect the current capability of
the DYNAPCON code to treat dynamically loaded PCRV structures. The compari-
sons of experiment and code results shows reasonable agreement for many fea-
tures of dvailable experiments, but also some shortcomings. The calculations
correctly predict the magnitudes of the displacements for tests 5 and 6 of the
Foulness model tests. In addition, displacement time histories obtained from
the calculation reproduce the salient features of the experimental records:
period elongation and amplitude increase as compared to an elastic solution,
and the absence of permanent displacement. However, the period still under-
estimates the experiment, while the amplitude Is generally somewhat large. In
test 5, the solutions with and without precracking bound the observed record.
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One parameter In the transient modeling of concrete, which was Introduced
In this Investigation, Is the effect of strain rate on the tensile strength
limit of concrete. The relevance of this parameter, although Inferred Ini-
tially from Intuition and numerical considerations and later observed In other
brittle materials [15], appears to be quite important in modeling of concrete
cracking. Experimental evidence 1s necessary to resolve this issue. Once an
experimental determination of the rate-dependence can be ascertained than the
remaining questions of crack modeling can be addressed.

Although it is quite clear that analytical modeling of concrete cracking
must include strain-rate effects, it 1s also evident that this is not the only
cause for the discrepancies between computations and experiments. This 1s
substantiated by the observation that analytical simulations could not quite
match the experimental shapes of the deflections. Either the amplitude or the
period of response could be varied by changing different variables, yet both
of them could not be matched with experiment for the same run.

The need for experimental evidence into the phenomenology of concrete
cracking cannot be overemphasized. Closer agreement with experimental data
will eventually require better analytical modeling of the actual cracking
phenomenon.
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APPENDIX

INPUT INSTRUCTIONS TO DYNAPCON
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Card
Type Columns

1

1-80

FORTRAN
Name

TITLE

Descript ion

T i t l e Card. (80A1).

80 alpha-numeric characters to i d e n t i f y the
j o b ; these characters w i l l be pr inted as a
heading.

1-5

6-10

11-15

16-20

21-25

26-30

NNODE

NELE

NUMMAT

NUMDIS

MXSTEP

NDGREE

31-40

41-45

46-50

DELT

NPRES

NSLID

F i r s t tarameter Card. ( 6 I 5 . E 1 0 . 6 . I 5 ) .

Number of nodes in the ana ly t ica l model.

Number of elements.

Number of material types.

Number of nodes at which one or more displace-
ment components are prescribed.

Number of time steps to be taken.

Number of degrees of freedom per node (2 for
this version).

Time step At; i f K0NTRK8) f 0 of Card 3, then
use At = At . /At /At . .

min max mm
Number of load units (see Cards 11).

Number of sliding interface lines (see Cards
12).

Second Parameter Card. ( 1 6 1 5 ) .

1-5

6-10

11-15

KONTRL(l)

K0NTRK2)

K0NTRK3)

KONTRL(l) = 1 :
KONTRL(l) = 2:
KONTRL(l) = 3:

K0NTRK2) = 0:

K0NTRK2)
K0NTRU2)
K0NTRK2)

1:
2:
3:

K0NTRK3) = 0:

K0NTRU3) > 0:

44

For axisymmetric problem.
For plane stress problem.
For plane strain problem.

No reading from or writing on
auxiliary units.
Write on auxiliary unit 8.
Read from auxiliary unit 9.
Read from auxiliary unit 9 and
write on auxiliary unit 8.

Any nodes for which node cards
are not given on Cards 7 will
be equispaced.
Any nodes for which node Cards
7 are not given will be spaced
so that the ratio of distances
between consecutive nodes are
K0NTRL(3)/100.



Card
Type Columns

3 (cont'd)

16-20

21-25

26-30

31-35

36-40

FORTRAN
Name

K0NTRU4)

K0NTRK5)

K0NTRK6)

K0NTRK7)

K0NTRK8)

41-45

46-50

51-55

K0NTRL(9)

KONTRL(IO)

ICRACK

Description

K0NTRU4) = 0: For pressure-time loading.
K0NTRK4) f 0: For impulse ( in i t ia l velocity)

loading.

Percent of cr i t ical (stiffness-proportional)
ar t i f i c ia l damping.

Percent of cr i t ical (mass-proportional) a r t i -
f ic ia l damping.

Circular frequency of the structure to be
specified with K0NTRU6).

K0NTRU8) = 0: Dynamic relaxation is not used.
K0NTRK8) > 0: Dynamic relaxation is to be

used, where K0NTRK8) =
A W A t m i n - 1 ^ the element
mesn.

K0NTRL(9) = 0: Input loading not derived from
auxiliary units.

K0NTRL{9) > 0: Input loading derived from
auxiliary unit 4 and acting on
elements 1 (one) through
K0NTRK9) during the course of
the solution.

Total number of ful ly cracked elements allowed
in the solution; after reaching KONTRL(IO)
number of ful ly cracked elements the solution
terminates.

ICRACK = 0 : No concrete elements used in the
analytical model.

ICRACK = 1: Concrete elements are used in the
analytical model.

Note: Cards 4 and 5 are used only if ICRACK = 1 (see Card 3).

1-10 RASYTI

Concrete Parameters. (6F10.0,2110).

RASYTI = 0: Minimum printing of concrete
cracking (only fully cracked
elements are indicated).

RASYTI = 1: Detailed initiation and completion
of cracking within the concrete
elements 1s Indicted.
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Card
Type Columns

4 (cont'd)

11-20

21-30

31-40

41-50

51-60

FORTRAN
Name

PR

BETA

ERB

SYIELD

DKCOEFF

61-70 NR

Description

Poisson's ratio of concrete.

Degree of fu l l shear to be retained in the
concrete elements (usually BETA = 0.5).

Elastic modulus of reinforcing steel.

Yield stress of reinforcing steel.

Magnitude of strain from Init iat ion to comple-
tion of cracking.

Number of straight-line portions of the stress-
strain diagram of reinforcing steel.

1-10

11-20

21-30

31-40

EE(1)

EE(2)

EE(3)

EE(4)

First strain.

First stress.

Second strain.

Second stress.

Stress-Strain Data for Reinforcing Steel.
(8E10.0)

Coordinates of first, point

Coordinates of second point.

61-70

71-80

EE(7)

EE(8)

Fourth strain.

Fourth stress.
Coordinates of fourth point.

Note: (1) Use another card if needed to describe the piece-wise linear
stress-strain diagram.

(2) If K0NTRU2) < 2 (see Card 2) then two sets of cards (Cards 2
through 5) must be used. This is usually a continuation run. In
addition, one or two extra cards must be supplied as follows:

5a (1115).

1-5 ICOUNT Number of cracked elements to be Input.

Note: Cards 5b are used only 1f ICOUNT > 0.
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Card
Type Columns

5 (conf)

5b

1-5

11-20

21-30

31-40

41-50

51-60

FORTRAN
Name

LD

STR9

STR8

STR7

STR6

STR5

61-70 SMC

Description

Crack Information (I5,5X,6E10.4).

Number of cracked element.

Index of circumferential crack.

Index of first crack in the r-z (or x-y) plane.

Index of second crack in the r-z (or x-y)
plane.

Angle of first crack measured from r (or x)
axis.

Angle of second crack measured from r (or x)
axis.

Secant modulus for unloading.

Note The information on Card 5b can be (and usually is) generated by punch-
ing cards during the preceding part of several runs (see NCRK on Card
10a).

Material Properties for Flexural Beam or Shell
Elements.

6a

6b

1-5

6-10

1-10

11-20

21-30

31-40

MTYPE

NTYPE

E(l,MTYPE)

E(2,MTYPE)

E(3,MTYPE)

E(4,MTYPE)

( 2 1 5 ) .

Mater ia l type number.

NTYPE = 1 : For beam or shel l elements

(6E10 .4 ) .

Mass densi ty .

Young's modulus.

Yield stress.

Plastic modulus (second slope of the s

41-50 E(5,MTYPE)

strain curve).

Space reserved for width of beam (not used in
this version).
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Card

Type Columns

6b (cont'd)

51-60

FORTRAN
Name

E(6,MTYPE) Ultimate stress.

Description

6c

1-10

11-20

E(7,MTYPE)

E(8,MTYPE)

(6E10.4)

Poisson's rat io .

Height of beam or shell (needed only i f not
specified in dummy node data on Card 7 ) .

Material (other than Concrete) Properties for
R ane and Axisymmetric Elements.

6a

6b

6c

1-5

6-10

1-10

11-20

21-30

31-40

41-50

MTYPE

NTYPE

E(l,MTYPE)

E(2,MTYPE)

E(3,MTYPE)

E(4,MTYPE)

E(5,MTYPE)

(215)

Mater ia l type number.

NTYPE = 2: For continuum elements.

(6E10.4)

Densi ty .

Young's modulus.

Yield stress.

Plastic modulus.

E(5,MTYPE) = 0 : For solid elements
modulus if element is used tc
simulate fluid. If element is
fluid then E(2,MTYPEI and
E(6,MTYPE) should be zero.

51-60

1-10

11-20

E(6

E(7

E(8

,MTYPE)

,MTYPE)

,MTYPE)

Ultimate stress.

(6E10.4).

Poisson's ra t io .

E(8,MTYPE) ••
E(8,MTYPE) >

= 0:
= 1 :

For no artificial damping,
For use with artificial
damping.
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Card

Type Columns

6c (cont'd)

21-30

FORTRAN
Name

E(9,MTYPE)

31-40 E(10,MTYPE)

Description

Linear damping coefficient for hydrostatic
stresses.

Linear damping constant for deviatoric
stresses.

Material Properties for Reinforced Concrete
Elements.

6a

1-5 MTYPE

6-10 NTYPE

(215).

Material type number.

NTYPE = 4: For continuum concrete elements.

6b

1-10

11-20

21-30

31-40

41-50

51-60

E(l,MTYPE)

E(2,MTYPE)

E(3,MTYPE)

E{4,MTYPE)

E(5,MTYPE)

E(6,MTYPE)

(6E10.4).

Density of concrete.

Concrete compressive limit.

Initial elastic modulus.

Concrete tensile limit.

Area ratio of reinforcement in r (or x)
direction.

Area r?it1o of reinforcement in z (or y)
direction.

6c (6E10.4).

1-10 E(7,MTYPE) Area ratio of reinforcement In circumferential
direction.

11-20 E(8,MTYPE) E(8,MTYPE) = 0: For no art i f ic ial damping.
E(8,MTYPE) = 1: For art i f ic ia l damping to be

used.

21-30 E(9,MTYPE) Linear damping coefficient for hydrostatic
stresses.

31-40 E110,MTYPE ) Linear damping constant for deviatoric
s tresses.
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Card
Type

7

Columns

1-5

6-20

FORTRAN
Name

N

XC(N)

21-30 YC(N)

Description

Nodal Coordinates. (I5,5X,2E10.4).

Node number.

r (or x) coordinate for real nodes; for "dummy"
nodes this could specify the height of the beam
or shell.

z (or y) coordinate of node N.

Note; Coordinates for nodes equispaced between two nodes will be automatical-
ly generated 1f the data cards for Intermediate nodes are skipped.

8

1-5

6-10

11-15

16-20

21-25

26-30

M

NODE(l.M)

N0DE(2,M)

N0DE(3,M)

N0DE(4,M)

NCDE(5,M)

Element-Node Relationship.

Element number.

Node Nl of

Node N2 of

Node 1:3 of

Node N4 of

N0DE(5,M) -

element M.

element M.

element M.

element M.

= 0: I f K0NTRU8)

(1015).

= 0.
N0DE(5,M) f 0: I f K0NTRL(8) f 0, the element M

is a prestress element and i t
is connected to only one con-
tinuum element.

31-35 N0DE(6,M) N0DE(6,M) = 0: For sol id elements.
N0DE(6,M) j 0: For elements simulating f l u i d .

41-45 N0DE(8,M) N0DE(8,M) = 1: For axisymmetric elements.
N0DE(8,M) = 2: For plane stress elements.
N0DE(8,M) = 3: For plane strain elements.
N0DE(8,M) = 8: For concrete elements.

46-50 MTYP Material number for element M.

51-55 NTYP NTYP = 1 : For flexural element.
NTYP = 2: For tr iangular continuum element.
NTYP = 3 : For triangular f l u i d element.

Note: (1) For tr iangular element N3 = N4 and the nodes must be numbered
clockwise.

(2) For flexural elements N3 and N4 are "dummy" nodes and are associ-
ated with nodal rotations.
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Card FORTRAN
Type Columns Name Description

8 (cont'd)

Jjjotej (3) Node cards for elements which can be generated by adding one to
all node numbers of the previous element need not be Included; the
node data for these elements will be generated automatically. The
card associated with the last element 1s required.

(4) For axisymmetric configurations the meridional prestress elements
should use N0DE(8,M) = 2.

9 Prescribed Nodal Displacements. (I10.E10.4).

1-7 N Node at which one or more displacement compo-
nents are prescribed to be zero.

8 I l = 0 : For unconstrained displacement of the r
(or x) component.

l = 1 : For zero displacement of the r (or x)
component.

9 J J = 0 : For unconstrained displacement z (or y)
component.

j = 1 : For zero displacement of the z (or y)
component.

11-20 ANGLE Angle of Inclination of the boundary coordinate
axis ? (or x) relative to the global r (or x)
axis measured counterclockwise In degrees.

Note: The rotational degree of freedom Is controlled by I for the dummy

nodes; I = 0 for unconstrained rotation and I = 1 for zero rotation.

10 Output Control.

10a (5110).
1-10 NPFREQ Output frequency; time history records of

speci f ied nodal and element Information w i l l be
printed every NPFREQ time step.

11-20 NPRU Number of nodal - re lated time history records:
displacements, v e l o c i t i e s , acce lera t ions ,
forces, e tc .

21-30 NPRS Number of element-related time history
records: stresses, s t r a i n s , In terna l forces,
e t c .
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Card FORTRAN
Type Columns Name Description

10a (cont'd)

31-40 NPIC Number of complete output records at specified
time steps; this may consist of all nodal and
ejement records at the given time step.

41-50 NCRK NCRK = 0: No information on cracking
requested.

NCRK = 1: Final cracking information to be
printed at the end of the solution.

NCRK = 2: Final information to be printed and
punched on cards in the same format
as given for Cards 5b.

10b NPRU Specifications. (8110).

1-7 Node number for which a specified nodal record
1s to be printed.

8 J j = 1 : For r (or x) component or the rotation
for dummy nodes.

j = 2 : For z (or y) component.

9 K K = 0 : For displacement.
K = l : For velocity.
K = 2 : For acceleration.
K = 3 : For external force.
K = 4 : For internal force.

10 L L = 0: If no plotting required.
L ~ 1: For nodal time history to be plotted on

printer.
L = 2 : For nodal time history to be plotted on

printer and auxiliary unit such as
Calcomp.

10c NPRS Specifications for Continuum Elements.
(8110).

1-7 Element number for which Information Is to be
printed.

A A

8-9 M M = l : Strain e (or e ).
-r -x

M = 2 : Strain e (or e ).
z y -

M = 3 : Engineering shear strain y (or Y ).
M = 4: Hoop strain e (for axisymmetric

ee

case).

52



Card FORTRAN

Type Columns Name Description

10c (cont'd)

8-9 M
(cont'd)

10

M = 5 : Stress a (or a ).
r x

M = 6 :
M = 7 :
M = 8:

r x
Stress a (or o ) .

z * y
Shear stress a (or a ).

- rz xy
Hoop stress a (for axi symmetric
case).

L = 0 : For no printing requested.
L = l : For information to be plotted on

printer.
L = 2 : For information to be plotted on

printer and on auxiliary unit such as
Calcomp.

10c

1-7

8-9 M

NPRS Specifications for Flexural Elements.
(8110).

Element number for which information is
desired.

Index given in the following table, where the
circumscribed numbers refer to integration
points throuh the depth of the beam or shell.

Station

8 10

11 12 13 14 15 16 17 18 19 20

yield pt

21

31

41

22

32

42

23

33

43

24

34

44

25

35

45

26

36

46

27

37

47

28

38

48

29

39

49

30

40

50
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Card
Type Columns

FORTRAN
Name

10c (cont'd)

Description

10 L = 0 : For no printing.
L = l : For information to be plotted on

printer.
L = 2 : For information to be plotted on

printer and on auxiliary unit such as
Calcomp.

10d

1-10

11-20 KONT

NPIC Specification. (2110).

Time step at which a complete output as speci-
fied by KONT is desired.

KONT = 1: Displacements at all nodes.
KONT = 2: Displacements and current coordi-

nates at all nodes.
KONT = 3: Displacements, coordinates, velo-

cities and accelerations at all
nodes.

KONT = 4: Displacements, coordinates, velo-
cities, accelerations, of all modes,
strains and stresses of all
elements.

11

lla

1-5

6-10

I

NDNOD

Loading Specifications.

(515).

Load unit number.

Number of nodes associated with the load unit
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Card FORTRAN
Type Columns Name Description

lla (cont'd)

11-15 IVOL(I) IVOL(I) = 1: Pressure history is prescribed
and load unit is part of axi-
symmetric surface.

IVOL(I) = 2: Pressure history is prescribed
and load unit is part of plane
surface.

IVOL(I) = 8: For circumferential prestress
load unit.

IVOL(I) = 9: For meridional prestress load
unit; in this case NDNOD = 3.

16-20 INT1 Interval, spacing between nodes on load unit
for automatic load unit generation; i f INT1 >
0, the load unit is generated by adding INT1 to
the previous node number starting with the node
specified on Card l i e .

21-25 NPT Number of pressure-time point pairs of a piece-

wise linear curve to be specified on Cards l i b .

l ib Pressure History Input. (8E10.0).

First point on pressure-time plot.

Second point on pressure-time plot.

Third point on pressure-time plot.

Fourth point on pressure-time plot.

Note: Use another card to describe the pressure-time loading I f needed. A
total of eight pressure-time pairs can be specified for each load
unit. I f pressure 1s zero at time zero then this pair need not be
Input.

1-10

11-20

21-30

31-40

41-50

51-60

61-70

71-80

PTU.I)

PT(2,I)

PT(3,I)

PT(4,I)

PT(5,I)

PT(6,I)

PT(7,I)

PT(8,I)

Time

Pressure

Time

Pressure

Time

Pressure

Time

Pressure
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Card
Type Columns

lib

1-10

FORTRAN
Name

PT(l.I)

11-20 PT(2,I)

21-30 PT(3,I)

31-40 PT(4,I)

Description

Inpulse Input. (8E10.0).

Prescribed Initial velocity component tangent
to load unit.

Prescribed Initial velocity component normal to
load unit.

Impulse multiplication factor of the first node
(use zero 1f the first node 1s not on line of
symmetry, and set PT(3,I) = 2 If the first node
1s on the line of symmetry).

Impulse multiplication factor of the last node
[PT(4,I) = 0 1f last node 1s not on line of
symmetry, PT(4,I) = 2 If last point Is on line
of symmetry).

l i e

1-5 KPRES(l)

6-10 KPRES(2)

11-15 KPRES(3)

etc.

Nodes Associated with the Pressure-Time Load
Unit. (1615).

F i rst node on load unit; i f a l l nodes can be
generated from KPRES(l) by addition of incre-
ment INT1, then only KPRES(l) need be speci-
f ied .

Second node on load unit .

Third node on load unit .

He

1-5

6-10

KPRES(l)

KPRES(2)

Nodes Associated with the Circumferential
Prestress Unit. (1615).

KPRES(NDN0D/2) J

». First to last nodes on prestressing vessel.

56

1



Card
Type Columns

lie (cont'd)

FORTRAN
Name

KPRES(NDN0D/2+l)

Description

KPRES(NDNOD)

*• First to last nodes on the prestressed

surface.

lie

1-5

6-10

11-15

KPRES(l)

KPRES(2)

KPRESO)

Nodes Associated with the Meridional Prestress
Unit. (1615).

Node of prestress vessel where the prestressing
load is applied.

Next to the last node of the prestressed struc-
ture where sliding takes place.

Node of the prestressed structure corresponding
to the node KPRES(l).

12 Sliding Interface Cards.

12a

1-5

6-10

11-15

M

ND1

INT1

16-20

21-30

31-40

INT2

SLIPAR(l.M)

SLIPAR(2,M)

(1615 ) .

Sliding interface number.

Number of node pairs on sliding interface.

Automatic interval generator for sliding inter-
face nodes starting with KSLID(l.I) on Card
12b; i f INT1 > 0 the node numbers of sliding
interface are generated by adding INT1 to
successive nodes.

Automatic interval generator for sliding inter-
face nodes starting with KSLID(2,I) on Card
12b.

Static coefficient of fr iction.

Dynamic coefficient of friction.
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Type Columns

12a (cont'd)

41-50

FORTRAN
Name

SLIPAR (3,M) SLIPAR(3,M) = 0:

SLIPAR(3,M) = 1:

Description

For no sliding friction to be
considered [then also set
SLIPAR(l.M) = 0 and
SLIPAR(2,M) = 0].
For sliding friction to be
applied.

12b

1-5

6-10

11-15

16-20

KSLID(l.I)

KSLID(2I)

KSLID(3,I)

KSLID(4,I)

Nodes on Sliding Interface. (1615).

First pair of nodes on sliding Interface.

Second pair of nodes on sliding Interface.

etc.

Note: (1)

(2)

Each pair of nodes on the sliding interface must initially have
the same coordinates.
Cards 13, 14 and 15 are intended for modifying the mass matrix in
conjunction with dynamic relaxation. They are needed only if
K0NTRK8) 1 0.

13

1-5 NRM

(1615).

Number of nodes where the mass is to be modi-
fied; If NRM = 0 then Cards 14 and 15 are not
required.

14

1-5

6-10

11-15

NN(1)

NN(2)

NN(3)

(1615).

Node number of first mass to be modified.

Node number of second mass to be modified.

Node number of third mass to be modified.
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Type Columns

FORTRAN
Name

NN(NRM)

Description

Node number of last mass to be modified.

15

1-10 RMASS(l)

11-20 RMASS(2)

Mass Multiplication Factors. (8E10.4)

Original mass at node NN(1) wi l l be multiplied
by RMASS(l).

Original mass at node NN(2) wi l l be multiplied
by RMASS(2).

RMASS(NRM) Original mass at node NN(NRM) w i l l be mult i -
plied by RMASS(NRM).
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