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DYNAPCON A COMPUTER CODE FOR DYNAMIC ANALYSIS OF
PRESTRESSED CONCRETE STRUCTURES
by

A. H. Marchertas

ABSTRACT

A finite element computer code for the transient analysis of
prestressed concrete reactor vessels (PCRVs) for LMFBR containment
is described. The method assumes rotational symmetry of the
structure. Time integration is by an explicit method. The quasi-
static prestressing operation of the PCRY model is performed by a
dynamic relaxation technique. The material model accounts for the
crushing and tensile cracking in arbitrary direction in concrete
and the elastic-plastic benavior of reinforcing steel. The varia-
tion of the concrete tensile cracking and compressive crushing
limits with strain rate is taken into account. Relative slip is
permitted between the concrete and tendons.

Several example solutions are presented and compared with
experimental results. These sample problems range from simply
supported beams to small scale models of PCRV's. It is shown that
the analytical methods correlate quite well with experimental
results, although in the vicinity of the failure load the response
of the models tend to be quite sensitive to input parameters.

I. INTRODUCTION

The analysis of reinforced concrete has been the topic of many investiga-
tions, beginning with the original work of Nilson [1] who duplicated the
cracking pattern in a point loaded, simply supported beam. Recently, a defi-
nitive paper describing the use of a Mohr-Coulomb model was published by
Argyris, et al. {2], which demonstrated the application of a finite element
procedure to a large variety of static problems.

The analysis of prestressed concrete under impulsive loads such as in the

safety analysis of a hypothetical core disruptive accident (HCDA), however,
poses additional difficulties. An efficient solution under such conditions



makes an explicit technique preferable, both because of economy and because it
facilitates the use of a realistic mode! of the interaction of prestressing
tendons with the concrete through the slide 1ine option; the latter are very
difficult to program in implicit, Newton type codes. However, this necessi-
tates an efficient solution procedure for the static prestressing. Dynamic
relaxation procedures provide a natural method for obtaining static solutions
by explicit, transient codes, and finite difference procedures for its imple-
mentation have been published by Otter [3], and Holland [4] and the group at
Imperial College [5]. However, little was available for enhancing the effi-
ciency of dynamic relaxation in a finite element context, so we have developed
such procedures, and describe them in Section III.A.

Another difficulty which has plagued our treatment of concrete models
with cracking in a dynamic setting is the chain reaction of cracks introduced
by cracking in a single element [6,7]. This often leads to complete failure
of the structure in situations where experiments do not indicate failure. One
of the culprits in our initial models was the complete elimination of tensile
normal stress across the crack immediately after cracking. We have now re-
fined this model by introducing a gradual decay in tensile stress and found
experimental evidence for this phenomenon in the literature [8]. In addition
we have incorporated the strain rate dependence of the tensile strength of
concrete. The incorporation of these factors has led to reasonable agreement
between our model and many experiments; some of these comparisons are reported
here.

II. BASIC FEATURES OF THE ANALYTICAL METHOD

In view of the significant advantages of the finite-element technique for
enginearing analysis, it was adopted for these models. Rather than developing
a completely new code, the WHAMS [9] code 1s used as a basis. One feature
which sets this family of codes apart from other codes is its use of convected
coordinates. In the use of convected coordinates, each element is associated
with a coordinate system that rotates but does not deform with the element.
For problems with small strains but large rotations, which probably encom-
passes a large portion of nonlinear engineering problems, it can be shown that
the struins are linearly related to what are termed "deformation displace-
ments". The latter are simply the displacements of the element relative to



the convected coordinates. The deformation nodal forces are similarly related
to the stresses by linear expressions. The important nonlinearities which
arise from large rotations are accounted for entirely by transformations
between the global and convected coordinates and the omission of the rigid
body motion in the strain-displacement relations. Hence, the computation of
nodal forces is considerably simplified, particularly in elements where numer-
ical quadrature is required.

For treating prestressed concrete structures, this parent code has been
supplemented by a material law that models cracking and reinforcement distri-
buted within a continuum finite element. In programs with explicit time
integration, the material properties are used exclusively to calculate stress
increments from strain increments, and the implementation of constitutive
equations must be arranged accordingly.

Three basic components are needed for modeling reinforced and prestressed
concrete structures. These are:

° a means of representing concrete behavior under an applied load,

e a method of accounting for the contribution of concrete reinforce-
ment,

° the provision for a prestressing capability.

The first two items, concrete and reinforcement, are modeled by a homogination
approach, so that the stresses of both concrete and steel are averaged to
obtain the element stress. Thus, the formulation provides the equivalent
components of stress (op,.s 0,,5 Opys Ogg) from a known state of strain (e,
€25 Ypz» eeo). A total stress-strain formulation, as opposed to an incre-
mental one, is used. The prestressing capability is handled outside of the
reinforced concrete formulation. This is accomplished by the use of separate
elements representing prestressing tendons. A detailed description of the
analytical models is provided in the foliowing paragraphs.




A. Time Integration

Time integration is carried out by the central difference explicit meth-
od. For the central-difference method, the velocities and displacements are
updated by the formulas

Ut + 8t/2) = ult - 4t/2) + 2t u(t) (1)
and
ult + at) = ul(t) + at ult + at/2) , (2)

where superscript dots denote time derivatives and At is the time step. For
purposes of numerical stability the time step is limited by

et (T - ), (3)
max
where up,, s the maximum frequency in the mesh, and u is the fraction of
critical damping in the highest frequency due to the stiffness proportionai
damping; u is independent of any mass-proportional (diagonal) damping.

To estimate at for a run, we use the result of Hughes, et al. [10] that
the maximum frequency of the mesh is bounded by the maximum frequency of any
individual element in the mesh. For constant-strain elements the highest
frequency may be estimated by the formula

2c

W =

max !'_' s (4)

where ¢ is the maximum elastic or the acoustic-wave speed in the material and

£ the minimum element dimension. This estimate also applies to the axial mode
of the beam and shell efements, but in addition a bending mode must be consi-

dered for which the frequency estimate is

12crg
“nax = T )

where rg is the radius of gyration of the cross section. For a uniform cross
section, the radius of gyration is given by r; = h2/12, where h is the thick-




ness. Since both Eqs. (4) and (5) pertain to a beam or shell, the time step
is governed by whichever of these frequencies is larger. Thus Eq. (4) governs
for a beam or shell of uniform cross-section as long as

2 > ¥3h . (6)

It is important to keep the beam or shell elements long enough so that Eq. (6)
is not violated by much, for otherwise Eq. (5) governs and At decreases with
the square of element lenath.

The dilatational elastic wave speed ¢ is given by

for beam and shell element

E
o)
c = ’;KT—E—;EY for plane stress continuum (7)

c = E(1 - v) for plane strain continuum or
p(l - 2v)(1 + v) axisymmetric element

c =

where E is Young's modulus, v is Poisson's ratio, and p the density.

B. Elements

Two elements have been used for
the analysis of reinforced/pre-
stressed concrete structures: a
linear displacement, triangular,
toroidal (or plane) continuum ele-
ment and a conical shell (or beam)
element. Both elements have been
programmed so that they automatical-
1y reduce from axisymmetric to plain
geometry. Consequently, only the
axisymmetric elements will be des-

Fig. 1. The Axisymmetric Three
Dimensional Continuum
cribed here. These elements are Element and the Axisym-

shown in Fig. 1 along with the metric Shell Element.

nomenclature used in this report.




The trianguiar element is the standard simplex element; its displacement
field relative to node 1 is given by

~
-

. (8)

The angle of rigid body rotation « is constant in the element and computed by
the formula:

A A A A

33 - 3, 2300 " 20,3 * *Pp = ToPys
tan o = >— T - - - - , (9)
14 A+ zD, - 2,0 0 -rgdn v Dy

where A is the area of the element, (;1’ 21) the nodal coordinates relative to
node 1, and (Dri’ Dz1) the nodal displacements relative to the displacement of
node 1. The deformation nodal displacements are found at each node by sub-

tracting the nodal displacements which correspond to the rigid body rotation
o yielding

y def
Dri Dri r1
= [a] + ([A] - [1]) R (10)
Dot 224 24
where
CcOoS a sin o
(Al = . (11)
-sin a CcoS a

The convected strains are then given in terms of the deformation displacements
by



F ~ L

€. ‘ afar 0 ~def
u

" R r

< Ez } = 0 8/ 0z . (12)

~def

*~ -~ (.Y uz

2 |3/ 92 3/ ar_

\. o

Since the rigid body motion has been eliminated in obtaining the deformation
displacements, as long as the strains are small, the above formulas are appli-
cable regardless of the magnitude of the rotations.

Using Eq. (12), it follows that the r-z strains in the convected coordi-
nates are then related to the deformation nodal displacements by

~ Ndef
. W - . _ rDrz
€, 2, 0 -z, 0 X
D
e V=1l 1o o0 4" (13)
ﬁ *2 2A T3 2 . .
~ ~ ~ ~ "~ "3
Yrz LT3 23 2 Tl | .
L J D
. Z3J
The circumferential strains are computed by the linear relation
€y = ur/r . (1)

Stresses and strains are measured in the convected coordinates, so they are
independent of the rotation.

We define internal nodal forces due to planar and circumferential stres-
ses by

@y, =t [ T el (15)

‘I



(#°), = vf[sc]T{oe}dv : (16)

I
The nodal forces (fp)I are self-equilibrated.

The [EP] matrix is defined by Eq. {13), while the standard relation
between g and u, defines the [Ec] matrix. The nodal forces can then be found
by a direct application of Eq. (15), which yields
N

p
fo
p T
3 } = T 7] {o}av , (17)
P {o] [a) v
Fax I
p
f3y
\ ¥,

~(6h + ),

p
f 2x 3y

1x

[}

(18)

p
f1y

p p
(ny + f3y) .
The integeands in Eq. (17) are not constant, but a one point integration has
been found sufficient.

"

In the conical shell element the convected x axis is taken tg lie along
the 1ine joining the nodes. Cubic polynomial shape functions in x are used
for the transverse displacements, 1inear shape functions for the axial dis-
placements. The rotation is not constant within this type of element, but
since the strains are assumed to be small, the rotation relative to the x axis
should also be smali, and hence the rotation of the x axis, a, should be a
good approximation of the rotational component of the element's displacement.

JThe deformation displacements are then the nodail rotations relative to
the x axis

-~

4 =4 -a, (19)



and the midplane displacement, which can immediately be expressed in terms of
the midplane strain €n"

The strain-displacement equations are

¢ o= e -ylx) (20)
X m
ax

1 N u,

€a=7(ur'y cos 8 —%) , (21)
ax
where

. au:ef
g = . (22)
m ~

X

and for the transverse cubic displacement field

~N ~

Ay N P
¢(x) =7 (22 - 4ax + 3x2) t 23 (3x2 - 2ax) . (23)

Equation (21) is the standard equation for the circumferential strains as
given by Novozhilov [11], whereas Eq. (20) can be shown to be equivalent to
that of Novozhilov within second order terms in %n and a;/a;; both terms are
small for moderate rotations if the strains are small.

The stresses are then computed by the usual engineering stress-strain
laws. The equations for internal nodal forces corresponding to Eq. (15) are

mf [6; - 221;

W p= - 1 f (6; - ?z); o dv . (24)
2 E?‘v ' X

p I

fo | ¢ -

The other nodal forces are found by invoking the self-equilibration of the
planar nodal forces



P o _ P _ (P, DM
fl_y f2_y (m1 +m, Y,
(25)
>
flx = fax

These nodal forces are then transformed into the global coordinates. The
internal nodal forces due to the circumferential stresses are computed by the
standard linear nodal force-stress relations.

For both elements, Tumped masses are used. In the axisymmetric triangu-
lar element, the tctal mass is apportioned equally among the three nodes. In
the conical shell element, the translatory and rotatory lumped mass at each
node is equivalent to the mass and mass moment, respectively, of the segment
betweer the node and the midpoint of the element. Inertia due to rotation of
the cross--section is neglected.

ITI. SIMULATION OF PRESTRESSING

Prestressing is an essential part of the PCRV behavior; therefore, in the
analytical model, the prestress must be simulated before the dynamic loads are
applied. In this prestressing simulation cracking is not permitted; here the
loading is of a static nature, as opposed to the dynamic loading for which the
code is primarily intended. Dynamic relaxation, described in Section III1.A,
is used in this phase of the modeling.

The prestressing is accomplished by layers of homogeneously distributed
tendons which are modeled by thin membrane elements in the plane geometry and
by thin shell elements (with v=G = 0 in the plane of the shell) in the
axisymmetric geometry. These prestressing members are superimposed over the
grid of the reinforced concrete model and are connected through sliding inter-
faces so that they can stretch and slide along a predetermined path, simulat-
ing the behavior of the tendons.

The tendons are prestressed by gradually applying a force at the points
where the tendons are attached to the concrete. An equal and opposite force
is also exerted on the concrete grid at these nodes so that equilibrium is

10



maintained. When the specified prestress is reached, the prestressing tendons
and concrete are locked together at these nodes. The prestressing operation
is then considered complete.

A. Dynamic Relaxation

Dynamic relaxation is a procedure for obtaining static solutions by
solving the dynamic equations with sufficient damping to converge to the
static solution. Damping may be either diagonal damping C 4, where C is a
diagonal matrix usually taken to be proportional tc the mass matrix, or the
non-diagonal damping, such as stiffness proportional damping oy K u. The
equations of motion are then

| poxt

Mut C+oqK)uvRupr™, (26)
where M, K and C are the mass, stiffness and damping matrices, _E_e"t the exter-
nal force matrix, and u the nodal displacement matrix; superposed dots denote

time derivatives.
In nonlinear problems K u is replaced by nodal internal forces f_i“t.

Furthermore, the diagonal damping matrix C is taken to be mass-proportional,
so C = o M. Consequently, Eg. (26) can be rearranged as follows:

mu= et (27)
where
visc .
= \
Frre (g Ktaymu. (28)

In order to take advantage of an implicit formulation for the mass-
proportional damping terms, we use the following difference form of Eq. (27):

ma(t) = F(e) - F1"e) - o Kt - at/2) - w MY, (29)
where
() = o [ult + at) - ult - at)] = alt - at/2) + 25 gt " (30)
2at ‘ 2 ’

11



Hence,

M+ o a/2)ul) = PN - F Y

t) - (qK + aMult - at/2) ,  (31)

can be used to solve for the accelerations at time t. The velocities and
displacements are then obtained by Eqs. (1) and (2).

To estimate the parameters oy and o, it is necessary to have estimates
on the minimum and maximum frequencies of the mesh, uwy;, and uy.,. If we set
o = 231/"111ax’ % = 23201“", where By is the fraction of critical damping
desired in the frequencies w;. If 8= g = By, all frequencies between wyip
and up, will be damped at fractions of critical damping that are less than 8.

The density plays a purely fictitious role in dynamic relaxation. When-
ever the elements vary in size significantly, convergence can be enhanced
if uﬁli is the same for ali elements. This is accomplished by choosing the
density for each continuum element such that

we  E(1 - v)
ele max

R v e v e i (32)

where u,., can be any convenient constant, which will correspond roughly with
the maximum fregquency of the result-
ing model. Similar scaling formulas
are available for the shell element.

B. Sliding Interface

The movement of prestressing
tendons with respect to the rein-
forced concrete continuum is imple-
nputed by a sliding option. The

. . o REINFORED CONCRETE NODES
node structure at a sliding inter- o PRESTRESSING TENDON NODES

face as used herein is shown in Fig.
SE; At each point of the interface Fig. 2. ?gggifgge?he Sliding
W& have two nodes: one node which

12




pertains to the prestressing tendon, and one node of the concrete grid.
Initially the pairs are coincident. For each pair, a local coordinate system
(t, n) is set up so that t is the tangent to the sliding interface, n is 90°
counterclockwise from t. Whenever a corner occurs in the interface, t is the
average of the two tangent directions.

The normal force transmitted from node i to node j across the interface

is
fFo=F" wa (33)
n ni in?
where
- Fni ¥ Fnj
Y (34)
1 J

Here u is the common normal acceleration of the pair of nodes and the last
term in Eq. (33) is the inertial resistance of node i.

IV. REINFORCED CONCRETE MODEL

Both concrete and reinforcement are modeled within the same c.  .inuum
element. The strength of concrete and reinforcement are accounted for by
addition of their respective stresses and resolutien of resulting internal
forces to the appropriate nodes. The individual models of concrete and rein-
forcement are described in the following sections.

A. Concrete Modeling

A linear elastic response with tensile and compressive 1imits is used for
modeling concrete behavior. In compression, the concrete model is allowed to
sustafin stresses up to the uniaxial compressive strength f.. In tension,
cracking is assumed to initiate when the maximum principal tensile stress of
concrete reaches the uniaxial tensile limit fi.

The tensile and compressive 1imits of concrete are greatly dependent on
the rate of loading. Some experimental evidence on this subject has been

13



compiled by Neville [12], who plotted data showing the dependence of ultimate
stress on the stress rate as obtained from McHenry and Shideler [13] and
McNeeley and Lash [14]. To make use of these data in the analytical treatment
of concrete, we have expressed rate
dependence in terms of strain rate
by using o = E <, where Eq is the
initial yield modulus, and o and ¢

I | | I ! 1

are the stress and strain rates, 301" AVERAGED EXPERIMENTAL DATA / ]
respectively. Thus we neglect any S COMPRESSION s /
strain rate effects on Young's = uPRe s /

modulus. The replotted ratio of
dynamic strength to static strungth
as a function of strain rate ¢ 1is

shown in Fig. 3. The static L 15 abesaor
strength in Fig. 3 is as.'med to be & L L Ls o k. 5 o
that obtained at 12 MPa/min, and Eq STRAIN RATE (<1,

= 2.76 x 10% MPa. As observed in

Fig. 3, the compressive data extend Fig. 3. Strain Rate Dependence on
to almost i0 s71; no information for I?g?ll? and Compressive

transient tensile 1imits is avail-
able for such strain rates.

In the problems solved here, strain rates as high as 100 s~ were encoun-
tered. An extrapolation of dynamic stress 1imit under tensile loading is thus
needed. This was accomplished in the following manner.

We assume that ratio f/fy to be a function of strain rate e of the expo-
nential form”"

f
f0
where a, b and ¢ are constants to be determined. Two conditions could be

satisfied by the experimental data shown in Fig. 3, and the third could be

=a+b(e), (35)

It 1s of interest to observe that a similar exponential strain rate
dependence for o1l shale, based on experimental data, has also been
reported recently by Grady and Kipp [15].

14




derived by trial and error, using the analytical model described below. As
the criterien for the analytical cracking, we assume that cracking is only

possible as a result of structural deformation. Implied in this is the as-
sumption that cracking will not be caused by sharp stress peaks during wave
interactions.

Figure 3 also shows the equation derived for predicting dynamic compres-
sion Timits. The ratio of actual strength to static strength in compression
thus becomes

-,0.091

= 0.64 + 0.97(¢) (36)

fc/fco
This equation was obtained by using all three conditions from experimental

data so that no "help" from analysis is needed.

The strain rate used in the calculations is taken to be the maximum of
the principal rates within an element, i.e.,

max(err, €, eee] . (37)
The initiation of cracking within an element is based on the maximum-
principal-stress criterion. In an axisymmetric (r, z, 6) geometry, the cir-
cumferential direction always provides a principal stress. The remaining two
principal planes lie within the r-z plane and are given by

g
nn 2

[}
.
1
+
NQ
N
+
—
| @
3
™~N )
NQ
N
N
+
'SQN
N
L ]

(38)

tt

Q
n
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N 4+
NQ
N
1
p—
Q
-
1
N ]
N
N
S ——
N
+
'iQN
N
-

where opp, 0y7s Opy are the radial, axial and shear stresses of the r-z plane;
ohn and oy are the stresses normal and tangential to an impending crack.

When a principal stress exceeds the tensile limit, a crack is considered to be
initiated. The direction of the normal to an initiated crack with respect to
the r-axis is given by

15




= - . 39
a= 1/2 arctan [2°rz/(°rr ozz)] (39)
Once a crack has been initiated, its direction is kept as a permanent record
so that the stress or strain normal or tangent to the crack can be monitored
during subsequent time steps. The normal, tangential, and shear strains (enn,

St> Yot) With respect to the crack are,

€ cos 2qa sinZa 1/2 sin2« €
nn rr
= 2 2 -
St sin2a  cosa 1/2 sin2a €, 1 ° (40)
Tt -sin2a sin2a co0s2a Yz

where e.., €,, Ypp are the engineering {small) normal strains in the radial,
axial directions, and shear angle in the r-z plane, respectively.

The strains of Eq. (38) within a given element zre related to the streé-
ses as follows:

%n 1 1 0 k| “nn
:tt =& ;1 :) G(/)E c\;l jtt , (41)
nt 1 nt
oee _vl \’1 0 1 | eee

where v = v/(l - v), E1 = 2G{1 - v)/{1 - 2v), E is Young's modulus of elasti-
city, v is Poisson's ratio, and G is the shear modulus.

Equation (41) is also used for the case where cracking is assumed to have
initiated, but a definite crack opening is not as yet present. Such a state
is assumed to be possible in the presence of microcracks in brittle materials
[16]. For purposes of illusirating the crack initiation model, the principal
stresses of Eq. (41) are arranged so that q > 9, > dge Initially o will be
equal to o,, or oy, depending on which one is of greater magnitude. Since

cracking is based on the maximum principal stress, crack initiation should

16




first occur normal to o;. Once the
principal stgess o reaches or
exceeds the Tinsile limit fi, the
" stress normal®to the impending crack
is prescribed @nd is usually inde-
pendent of the strain normal to the
crack. At the instant when the
maximum uniaxial tensile limit is
reached or exceeded by the principal
stress, the stress normal to the

Stress

) G d impending crack is set equal to the
tensile 1imit fi. During the subse-
quent time increments, the tensile

Fig. 4. Stress-Strain Model of stress normal to the impending crack
g::ﬁﬁ::ﬁtnggﬁﬁgilonger is reduced to zero linearly over a
prescribed characteristic strain g4
in Fig. 4:
E-ee
01=f;:(- : >; ee<e<(eefed), (42)

where ¢4 is the normal strain, extending from initiation of cracking to crack
opening, and e, s the strain corresponding to the tensile limit f{, shown in
Fig. 4. This equation applies for the range of normal strains shown; if ¢ >
(ﬁe + ed), then the formation of a crack is considered completed; a fully
developed crack is assumed to have occurred.

It should be noted that if any of the principal stresses are prescribed,
the other principal stresses are affected correspondingly. For example, if
the prescribed stress across the crack is taken to be o, the strain component
enn in Eq. (41) is solved for and substituted into the expressions of the
other principal stresses. The state of stress in the element becomes:
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q= 9%
% = q + v (o, = 0,),
h TV 1
. (43)
%= o3t vlo-q),
%t = Epg J

Similarly, if two principal stresses oy, og are prescribed, the element state
of stress becomes:

q =9
%G =%
r(44)
o§=Ee3+v(oA+oB),
Bt " OVt J

where ¢3 is the minimum principal strain. Finally, if all three principal
stresses are prescribed, oy, og, o, then the state of stress becomes:

-

G4 =9
%G = %>
. (45)
%= %
O:Irt::GYnt. J

Note that the prescribed stresses oy, og, o need not be equal. This may
occur, for example, if a second or third crack forms in an element. As long
as no fully developed cracks exist, concurrent crack development is assumed to
originate in orthogonal directions.

It may be noted that a more realistic way to model progressive tensile
cracking would be to take into account the nonlinearity of tensile stress-
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strain behavior and tensile strain-softening, which would entail a nonlinear
tensile stress-strain relationship. This relationship must exhibit the elas-
tic anisotropy introduced by partial cracking in particular directions. To
express this in a tensorially invariant form, it would be necessary to postu-
late a damage tensor whose components describe the reduction of elastic stiff-
ness in various directions.

The transformation of principal stresses to stresses in cylindrical
coordinates (r, z, 8) must also be provided for. Since o is the principal
coordinate, no change is necessary for the circumferential stress oggq. The
stress components in the r-z plane, howeve., require the foliowing transforma-

tion
a cos 2q sin2a -sin2a o*
rr nn
g =| sin2qa cos2a sin2a o \. (46)
zZ tt
3 - £ 3
L 1/2sin2a 1/2sin2a cos2a °nt

The state of stress in an clement with one fully developed radial crack is
established by the previous equations provided that oyq is set to zero.
However, with a fuliy developed crack in the r-z plane the presence of aggre-
gate interlock makes the conditions somewhat more complicated. It has been
suggested [17] that the effect of aggragate interlock can be accounted for by
a shear reduction term as follows:

o 1 0 v €

tt tt

_ E B(1 - v)
Nl S T-v2|° 7 O ({1t ( ° (47)
oee v 0 1 €00

where g8 is the shear reduction factor, a constant usually taken as 0.5. This
means that the shear strain tangent to the crack is assumed to be reduced by
the factor g from what it would be in the absence of a crack. Although a
constant factor for any crack size and aggregate surface is a rather rough
estimate, 1t seems to yleld fairly good results under static conditions.
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Lacking any better means of accounting for aggregate {interlock, the same
approach is retained in this formulation.

Because of the existence of the shear stresc due to aggregate interlock,
the perpendicular to the normal of the existing crack within an element is not
a principal direction. The second principa’ stress in the r-z plane, which is
used to check for secondary cracks, ard the angle of its normal with respect
to the r-axis are:

= 12 2
d{t 1/20tt + /(1/20ttj + o2y »
(48)

ot = a+ 1/2 arctan (-Zont/ott) .

The non-orthogonal cracking in the r-z plane causes another complication.
With one crack fully developed and another impending, there are a total of
four stress values to be prescribed

but the stress tensor has
independent components. This
culty is resolved in the foll
manner: The normal stresses ac.
the two cracks are given by Eq. (42) \\\\ %
and the shear stress o,y of the Tat
first crack is computed by the shear

reduction factor g, as described

*

three v .
N A
s /T

S —= Ty

before. The shear stress df; along @ )
the impending crack, however, is
obtained from equilibrium considera- Fig. 5. Element with Two Non-

tions, as shown in Fig. 5. Note Perpendicular Cracks.

also the definition of a and o* in
fig. 5. Moment equilibrium shows that the <hear stresses tangent to the new
crack is given by

o*nt =, + ott tan (o* - a) . (49)

From force equilibrium the following expressions are obtained:
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sina sin(2o*-a) -2sina cose® cos(a-o*)

ag

i . %)

g \= cosa cos(2a*-a) 2sina cosa* cos(a-ao*) . {50)
zz2t cos(a - oF) ‘

c., -1/2sin2a* 1/2(cos2a*+cos2a)

It may be observed that Eq. (50) reduces to Eq. (46) provided that o,, is set
to zero and o is set equal to a. Equation (50) pertains to the case where
the second crack in the r-z plane is in the process of formation, or has been
fully developed. Thus o:t = f;, if the second crack is at the instant of
being formed, d;t =9 [see Eq. (42)] during crack formation, and ozt =0 if
the crack is fully formed.

After the second crack in the r-z plane has fully developed and °¥t is
set to zero, the remaining stresses are calculated by

%t BR/E 01 { Yne
= E . (51)
0 1 r-;ee

%00
On the other hand, if the radial crack is postulated to have fully formed
first, then oy, s set to zero and the remaining stresses become

%y |'1 0 €1t
= E l : (52)
‘nt 0 BE/E | { oy

Here again, the princfpal stress is not o4, but is expressed by Eq. (48) with
the corresponding positicn. The resolution of stresses into the components of
the r-z plane is accomplished by Eq. (46) where o;n is set to zero.

Equations (51) and (52) also apply to the case where a third crack has
initiated and is in the process of formation. Then the last principal stress
is assfgned by Eq. (42). If all three cracks have been fully developed in the
element, all stress components are due to the contrioution of shear strain

nte
Due to the oscillatory nature of the motion of the vessel, the cracking
model must account for the possibility that a fully developed crack may close
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or an impending crack may be arrested if the strain rate changes sign. The
strain normal to each crack monitors this condition: 1if the strain normal to
a given crack is found to be less than zero, then a fully developed crack is
assumed to have closed or the development of a crack is assumed to be inter-
rupted. The element is then able tc sustain compressive loading across the
crack. With the closing of a crack or arrest of cracking, the tensile 1imit
normal to the crack is changed and stored for later use. If a fully developed
crack closes, then the tensile 1imit is set to zero. However, in case the
crack formation is interrupted, the stored tensile limit is assigned that
particular value of stress which corresponds to the time of crack arrest. The
element is hence governed by the reduced tensile limit if and when it is again
reloaded in tension.

As for the inelastic behavior in compression, only the simplest possible
model consisting of a maximum compressive 1imit on the principal! stresses, is
considered at this stage. In compression the stress in the element may be
defined by the previous expressions, depending on how many principal stresses
reach the compressive limit f. at the same time. At thc present, the maximum
uniaxial stress f_ is used as the maximum stress that the element may be able
to sustain.

B. Reinfo.cement

In this analytical model, the z
reinforcement is superimposed over
the concrete element as if it were
uniformly distributad over the
entire element as an anisotropic
material. Uniaxial reinforcement
within the element can be prescribed
as a percentage of reinforcement in
three directions - one being the
circumferential direction, and the
other two positioned arbitrarily
within the r-z plane, as shown in
Fig. 6.

Fig. 6. Reinforcing Within Element.
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For purposes of computing the stresses in the reinforcement in the r-z
plane, the strain in the direction of the reinforcement must be found. If the
angle between the r-axis and the axes of the reinforcement are ¢; or ¢y, the
strain along the respective directions corresponds to e,, in Eq. (41). The
response of reinforcement is determined by an elastic-plastic material mod-
el. This model uses isotropic unloading.

A conventional yield value correction for mild steel is incorporated for
reinforcement, i.e.,

.\ 0.2
(9 Jgyn ("y)stat[l ¥ (40.4) ]’ (53)

which accounts for the strain rate effects.

The contribution of the reinforcement stress to the total element stress
is then given by

q = osAr/Ac . (54)

where A. and A. are the cross-sectional areas of reinforcement and concrete
normal to the directions of the reinforcement. The stress in Eq. {54) necds
to be transformed into the cartesian components if reinforcement lies in the
v-z plane; for circumferential reinforcement, oy corresponds to ogge Finally,
the cartesian stress components due to concrete and steel are summed to obtain
the overall stress in the element.

C. Artificial Viscosity

In the integration of the finite-element equations of motion with small
time steps, such as is generally the case in explicit integration, high-
frequency oscillations which are called "spurious oscillations" will appear in
an undamped system. The severity of these oscillations tends to increase if
the mesh 1s rather heterogeneous. These oscillations can be reduced and
sometimes eliminated by the use of a suitable artificial viscosity, which is
really a numerical damping.

An artificfal viscosity of the following form is used
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SV1S= uecvA e, . , (55)

S.. g,. = 1/3 g 6 . 3
] i [N
o . (56)

e, - 1/3 ¢

€5 " Sij 22’1y

where o;; and e are the stress and strain tensors, while s;; and e;; are the
deviatoric stress and strain tensors, respectively, u 15 approximately the
fraction of critical damping.

V. CCMPARISON OF ANALYSIS WITH TEST DATA

The comparison of analytical results with test data is important in
validating the analytical model. This is especially true in this case because
the analytical behavior of concrete under transient conditions is not yet well
understood. Here we need basic experimental data for guiding the analytical
formulation. This has been a difficult task because even test data of rela-
tively simple structures under transient loading are sparse. Only some of the
comparison made will be described in this report.

A. Static Test

The experimen’.al data used in this comparison pertains to an internally
pressurized, prestressed cylindrical container tested at the University of
IMinois, Urbana [18]. This container simulates the containment of a nuclear
reactor, and is shown in Fig. 7. The right side of Fig. 7 identifies the
components of the test structure, while the 1eft side shows the amalytical
model used in the comparison. As can be observed, no reinforcement is pro-
vided in the model.

The concrete is characterized by a tensile 1imit of 3.10 MN/m2, a com-
pressive 1imit of -49.23 MN/m” with an initial elastic modulus of 29.7 GN/m2
and a Poisson's ratio of 0.15. The prestress material has a modulus of 192
GN/m2 and a yield stress of 1655 MN/m2, Before the internal pressurization is
applied, each Tayer of tendons is prestressed longitudinally to a
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30 HOLES AT 12° APART force of 0.112 MN and prestressed
circumferentially to an equivalent
pressure of 3.52 MN/m2.

It should be emphasized that
while the experimental data pertains
to static conditions, the analytical
results are based on a computer code

12.7mm ROUND
SEVEN-WIRE STRAND

BEARING PLATE

o 058 am O, which is expressly written for
— e0.*%,0 ofe [] PRESTRESSING WIRE
F ':::?‘fi;-a¥%m WITH 8.33mm SPACING dynamic prcblems. The use of a
i — dynamic code for a static simulation
1ﬂan_.i:‘- oee is inefficient and rather expensive,
Q381 m—>]
aoase—iope 07" but it nevertheless provides a good
e validation of the method for pre-
SEALING o o
ﬁa IRING '

N:.fii-_‘Qm“” dicting static problems. It should

0.0 m be noted that this problem was run
before dynamic relaxation was intro-
duced into the code. With the
dynamic relaxation now available,
the snlution of static problems
should be easier. However, the
accuracy of the solution in the presence of concrete cracking should be inde-
pendent of the algorithm.

Fig. 7. Details of the Cylindrical
Test Vessel.

The static results were thus simulated by a set of individual dynamic
rins, all of which involved the same prestress. The pressurization in each of
these runs consisted cf a ramp loading to a Jiven pressure, followed by a
constant pressure at that level. Each individual run involved a different
pressure level. In the first phase, the pressurization proceeded at a loading
rate higher than that encountered in the experiment.

The general response of the model would roughly foilow the history of the
pressurization coupled with the dynamic oscillation superimposed over the
static value. The static equivalent response was thus estimated by visual
elimination of the dynamic component from the overall results.

The analytical simulation of a static experiment by means of a dynamic
code, as used in this comparison involves certain error sources. Because of
the dynamic overshoot, the analytical model would be exposed to higher stres-
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ses, resulting in additional cracks, which in turn would make the material
"softer". Thus, because of the overshoot beyond the tensile 1imit, the model
may overestimate the true results.

Figure 8 shows the central 7
deformation of the cover with re- 6}~
spect to internal pressure. The
close agreement is encouraging since
the nonlinearity of the deflection
stems from the cracking in the
concrete; without cracking, the
deflection would be linear along the o | | | 1 | 1 |
1nitia.l S10pe- 0 0.5 10 15 20 2.5 30 35 40

Delflection,mm

Meosured
O

p ———R’

Analytical

Internol Pressure,kPa

Figures 3 through 11 show the Fig. 8. Central Deflection of the
comparison of experimental strain Top Slab.

readings on the cover with code
calculations. Figure 9 shows the radial strain on the top surface of the
cover at three radial locations. Four sets of experimental data are shown at

each of the radial distances. The calculated strain falls within the experi-
mental data.

4 | | |
= Measured | _
6 O~ = =OCalculated
5 |- — <1 o -
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] \
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23k K 1 rd
a \ f
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0 | | |
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STRAIN x 10°

Fig. 9. Radial Strain at Top of Slab.
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The radial strain at the bottom of the cover is shown in Fig. 10. Again,
the data of four gauges, each located at the same distance from the center, is
compared with the calculated results. The calculated values compare quite

well with the measurcments.

T T T T | T T T
6 = 4 F -
~
s, 1 L 4 L a _
H
- : S
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x4 ar 1 N 1
a
g, ! 4L MEASURED | _
o 'S O~ — -0 CALCULATED
S 4
.E_" 2 ," 4 - -
z © 0.3556m @ 01505m RADIUS © 0.09525m RADIUS
I RADIUS o |- L
| | ! ] \ { 1 | L
0 02 04 -08 06 04 02 010 08 06 04 02 0
STRAIN 2.10°
Fig. 10. Radial Strain at Bottom of Slab.

The circumferental strains at the bottom of the cover are given in Fig.
11. The calculated results show a stiffer response at the low pressures.
This is consistent with the elastic representation of the concrete in com-
pression; in reality, concrete exhibits softening with increasing compres-
sion. This effect seems to be offset at higher pressures by the occurrence of
cracking.
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Fig. 11. Circumferential Strain at Bottom of Slab.

The overall agreement between experiment and calculation is surprisingly

good. Al11 the results shown pertain to the cover of the model. Since the
cover is not reinforced, the quality of comparisons largely reflect on the
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crack modeling of concrete. A comparison of experiment and analysis under
dynamic conditions will be presented in subsequent sections.

B. Dynamic Tests

In our comparisons of analytical results with experimental data, we have
concluded that concrete cracking is greatly dependent on the strain rate of
loading; much better correlation between experiment and analysis could be
obtained when the cracking 1imit was made dependent on the strain rate.
Because available data is insufficient, we have introduced an extrapolation
for taking the strain rate effects into account. However, this procedure
requires other test data from which the needed information could be in-
ferred. The first i1lustration of this section thus deals with the "calibra-
tion" where a tensile 1imit and strain rate relationship is obtained.

1. Tension-Reinforced Beam

Rather simple test specimens involving substantial cracking are
beams tested at the University of I1linois, Urbana [19]. The beam tested is
shown in Fig. 12 where the right-hand side shows the characteristics of the
beam and the left-hand side shows the analytical model.

0.254 o.wns-‘——mszq—-—Lo.ums--—o.zsq-—-
4 ¢
1+ 32.4 MPg
ANALYTICAC]  MODEL f:2.85 MPa 0.2236
[ "P )/ e _._A_ —_— Lo o
0.0318
N, ' |o.orsz|
0.6604
™O #a
0.8636 REINFORCING

BARS
% 329 MPo

Fig. 12. Details of the Concrete Test Beam and the Analytical Madel.

Figure 13 shows the history of the applied 1o0ad and Fig. 14 the
history of the central deflection. Figure 14 gives two sets of experimental
results, together with the analytical deflection. The analytical results
represent the best fit with the experimental data. The important points to
match here were the maximum deflection and the permanent set. Strain history

28



250

200

@
o

FORCE, kN
8

Fig. 13.

10 15
TIME, ms

Force.

of the reinforcing steel is shown in Fig. 15, which refers to location A in
Two sets of experimental values exist which pertain to points which

Fig. 12.

should have equal response because of symmetry.
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Fig. 14. Central Deflection of the
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The analytical strain ra-

ported here is the average strain for two adjoining horizontal elements.

Figure 16 shows additional experimental strain results for the

identical locations, but for the second reinforcing rod.

The analytical

strain results shown in Fig. 15 are reproduced in Fig. 16 for comparison.
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Fig. 16. Strain History of Steel
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The steel strains on the centerline of the beam are also shown in
Fig. 16. The analytical results indicate a final permanent set of 0.76%,
whereas the experimental value is ~ 0.5%. The analytical results given in the
figures pertain to the fo]]ow{ng values of the constants in Eq. (35):

a=0.94, b=3.79, ¢ =0.37,

and the strain rate correction of reinforcing steel for yield stress given in
Eq. (53). These values were found by trial and error to best compare with
exparimental data. These constantc depend to some extent on other variables,
not only of the analytical model, but also on the characteristics of the
concrete constitutive model, discretization of the analytical model, the
artificial viscous damping, etc. With the large number of variables involved,
the question arises as to how well the analytical model calibrated for the
strain rate in this experiment predicts results in other structures. The
extension of this analytical model to other test structures will be reported

in subsequent sections.

2. Long Test Beam

The experimental data referred to in this section originated also at
the University of I11inois, Urbana [20]. The details of the reinforced con-
crete beam tested together with the supporting system, are shown in Fig.
17(a), while the analytical model used in the comparison is given in Fig.
17(b). Figure 18 indicates the time-history of the applied load on the
beam.
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(b)

N
N

3
Fig. 17. Dimensions of the Test Beam (a) and Corresnonding Model (b).
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Since the reinforcement is assumed to be distributed evenly through-
out each of the elements, it may be characterized by averaged vertical and
horizontal reinforcement densities in the interior elements. The only ele-
ments without reinforcement are located within the top and bottom layers of
the beam.

The time history of the central deflection of the beam is shown in
Fig. 19, which depicts the experimental data and a number of results pertain-
ing to analytical predicitons. For Case A, the strain rate relationship
derived in the previous section was used. The maximum analytical beam dis-
placement is 55% lower than that of the experiment. It appears that the rate
dependence of the cracking 1imit makes the analytical model too stiff in this
case. The sensitivity of the analytical model to other parameters was then
investigated in order to establish the source of the discrepancy.

First, strain rate dependence on the 1imit of concrete cracking was
ignored in the model which is denoted as Case B in Fig. 19. Very large dis-
placements were predicted and excessive cracking prevented numerical comple-
tion of the solution. Next we assumed the same static properties for con-
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crete, but permitted only one crack per element. This corresponds to Case C
in Fig. 19,

Since the model tested possesses considerable reinforcing, as com-
pared to the model described in the previous section, we chose to investigate
the reinforcing steel properties. Case D corresponds to the analytical re-
sults where the rate dependence on the yield stress of reinforcing steel was
neglected and cracking was limited to one crack per element. This curve comes
closest to the experimental results. On the other extreme, cracking was not
limited but strain rate effects for reinforcement were neglected and the
results of beam displacement are shown as Case E.

The parameter study shows that the strain-rate effects of concrete
play a small role here. However, the strain rate effects of the reinforcing
steel are of importance. This illustration shows that "calibration" of analy-
tical model is not a simple matter and must involve considerable thought. An
independent calibration of one variable is meaningful only if the effect of
the other variables is insignificant.

3. Simple PCRV Model

The third set of results given here is for the PCRV model tested at
Foulness [Z1] for the British fast reactor safety program. A cross-section of
this cylindrical PCRV model is shown in Fig. 20. The model was loaded through
charges submerged in the pool of water. The explosive used was the same
PETN/polystyrene foam as in the COVA [22] test for which a well-defined equa-
tion of state exists. The experimental pressure records were not spatially
consistent, so, in order to obtain a set of consistent pressure records for
use of the PCRV analysis, an ICECO [23] simulation of the charge detonation
and subsequent pool swell and slug impact was made. In the ICECO analysis,
the behavior of the charge was described by the equation of state derived for
the COVA experiments [22]:

N R R

where A = 17.039 GPa, B = 1.1595 GPa, C = 53.56 MPa, and V is the specific
volume. The equation of state for water is of the form
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where B, = 1.9895 GPa, 36 = 6.985, and V, is the initial specific volume. The
air above the surface of the water was allowed to escape during the excursion
and to present no resistance to compression. The pressure histories on the
walls of the PCRV were stored and used to 1oad the prestressed PCRV analytical
model.

The PCRV model is shown in Fig. 21. Axisymmetric linear-
displacement triangular elements with one integration point per element were
used. Four layers of elements were used in the cylindrical walls, and al-
though this is barely sufficient for an accurate simulation of the bending,
the primary response is in a hoop mode, for which this discretization is more
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than adequate. The stable time step PRESTRESSING

for this mode! was 2 us. Material ¢ oLUG 0.3645MN/m
properties of the model are given in l
4.227MPa
Table I.
The prestressing tendons
4.035MPo
were modelled by rod elements placed
as shown in Fig. 21. An elastic- 4.035MPg
plastic material model with iso- ZERE;'TC,{\ELSS 4.254MPa
tropic strain hardening was used for | xﬂﬁiﬁof A
the rods. These elements were VERTICALLY) 4.250Mpa
connected to the concrete elements 4.035MPa
4.035MPa

through sliding interfaces, so that CIRCUMFERENTIAL
the prestressing force was applied <LESTRESS
to the PCRV only at the anchors of
the tenduns.

4.278MPo

7/ ri L vl 4 TFr7L 7 . VERTICALLY
FIXED NODE

In the PCRY model the
vertical tendons consisted of 18
high strength bolts of 12.7 mm
diameter which were prestressed to
an initial tension of 49 kN.
Hoop prestress was applied by winding on the model 18 gauge (1.22 mm) diameter
high tensile wire at a tension of 1.46 kN. Due to the relaxation of the

model, the estimated prestress in the tests were as follows [24]:

Fig. 21. The PCRV Analytical Model.

1. Hoop tendon loads were reduced 70% to 65% of their failure strength,

and

2. Vertical tendon loads were reduced from 74% to 64% of their failure
strength,

These estimated prestress conditions were used in our simulations; the equiva-
lTent values are indicated in Fig. 21.
The prestressing operation was simulated by applying equal and

opposite forces to the concrete and prestressing members at the anchors with
the tendons. A static solution was obtained for this condition by the dynamic
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relaxation procedure [25]. During the dynamic relaxation procedure, no crack-
ing was allowed in the concrete to prevent spurious cracking from dynamic
overshoots. The results of this solution then served as initial conditions
for the transient solutions.

Table I. Material Properties.

Properties of Concrete

Density 2400 kg/m3
Modulus of elasticity 44000 MPa
Stress-strain data (yield) Tensile failure 5 MPa

Compressive failure strength 65 MPa

Poisson's ratio 0.17

Properties of Prestress Steel

Density 8000 kg/m3

Initial modulus of elasticity 200000 MPa

Tensile and compressive limits Hoop prestress: 18 gage wire (1.22
mm dia.)

Tensile failure 2085 N

Vertical prestress: 17.7 mm bolt
Tensile yield 1oad 66030 N
Tensile failure load 78680 N

Poisson's ratio 0.30

Before the analytical simulation of the experimental data is des-
cribed, we will briefly review the salient features of the Foulness test
data. This data pertains to a series of dynamic loadings on a single PCRV
model. The explosives used in the tests were small at the start and were
increased in size until failure of the vessel occurred. Some of the available
data are givqn in Table II.



Table II. Maximum Radial Displacement at the Side Wall.

b Displacement, mm
Test No. Charge, Pressure”,
] MPa
Experiment Analysis
182 2.5 3.6 & 2.5 - 0.103
344 14 & 12 6.8 & 15.9 - - 0.343
5 27 19.8 1.0, 0.77 0,871
6 54 25.5 1.27 1.54
7 112 44.0 Failure

b Recorded peak pressure on the side wall.

The use of the same vessel in the whole series of tests confronted
us with the dilemma of whether or not to maintain the cracks from previous
simulations. We found that the concrete model described here overestimates
damage, so that if the cracks are maintained through the entire series of
simulations, complete failure is predicted at a lower load than observed
experimentally. Therefore, we performed these analyses with either an un-
damaged initial state or at most precracking from one previous analysis.

Displacement time histories at the midpnint of the cylindrical
vessel were only available for tests 5 and 6. Figure 22 shows the experi-
mental data of test 5 along with a purely elastic simulation and a simulation
without precracking. An attempt to account for precracking is demonstrated in
Fig. 23, where only the precracking from the loading of test 4 is included.
The individual cases shown in Fig. 23 pertain to different strain-rate rela-
tionships of tensile cracking assumed and are shown in Fig. 24. The same
strain dependence of the tensile cracking 1imit is used during loading of both
test 4 and test 5.

The computer simulations with cracking replicate the principal
features of the experiment: the period of the displacement is increased, and
the amplitude is increased as compared to the elastic solution. The pre-
cracked simulation is more accurate in the period, while that without pre-
cracking is more accurate in the maximum amplitude. Both solutions exhibit
the absence of any permanent displacement found in the experiment: the pre-
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stressing tendons remain elastic and close the cracks after the load is re-
leased. 1t is of interest that the solutions with and without precracking

bound the observed maximum displacement.

o~

015 }— PRECRACKING (TEST 4}
AND_LOADING {TEST 5)
00k ... CASE 8
c CASE €
g EXPERIMENTAL N CASE D
- DATA 5
] 3
e EXPERIMENTA
g 005 é RES{JLTS .
§ 3 005
8 -
3 g
[=]
& 0
0
ELASTIC
RESPONSE
oyl
-0.05 1 .
0 05 0 5 0050 05 \lo "5
TIME, ms TIME, ms
Fig. 22. Comparison of Side-Wall Fig. 23. Consideration of Pre-
Displacement with Analysis cracking for Test 5.
for Test 5.

3

[

RATIO OF DYNAMIC TO
STATIC STRENGTH (fg)

0- i { | { ! [
105 104 103 162 0! w0 0 1R
STRAIN RATE (¢), s

Fig. 24. Assumed Cracking Limit Dependence of Concrete.
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The deformation history
for test 6 is given in Fig. 25 where
test data are compared to two analy-
tical solutions. The analytical
results consist of a purely elastic
solution and another with cracking
where precracking had not been taken
into account. The correlation
between the analytical predictions
and experiment is almost identical
to test 5: the amplitude agrees
quite well, but the solution without
precracking no longer bounds the
observed displacement from below.

RADIAL DISPLACEMENT, cm

015 .

[A[¢]

005

ELASTIC
SOLUTION

NO PRECRACKING

(CASE D}

EXPERIMENTAL
DATA

-005 %‘

In Ref. [21] it was con- 1 ]
jectured that a proper inclusion of ’ ” rmaﬁ ¢
the added mass of the fluid would
jmprove the correlation between Fig. 25. g?@g?;l:ggn:fwgigegﬁg};sis
experimen; and analysis. However, for Test 6.
it turns out that added mass is
quite small and changes the results
by at most 5%.

VI. CONCLUSIONS

The results presented in this report reflect the current capability of
the DYNAPCON code to treat dynamically loaded PCRV structures. The compari-
sons of experiment and code results shows reasonable agreement for many fea-
tures of available experiments, but also some shortcomings. The calculations
correctly predict the magnitudes of the displacements for tests 5 and 6 of the
Foulness model tests. In addition, displacement time histories obtained from
the calculation reproduce the salient features of the experimental records:
period elongation and amplitude increase as compared to an elastic solution,
and the absence of permanent displacement. However, the period still under-
estimates the experiment, while the ampiitude is generally somewhat large. In
test 5, the solutions with and without precracking bound the observed record.
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One parameter in the transient modeling of concrete, which was introduced
in this investigation, is the effect of strain rate on the tensile strength
limit of concrete. The relevance of this parameter, although inferred ini-
tially from intuition and numerical considerations and later observed in other
brittle materials [15], appears to be quite important in modeling of concrete
cracking. Experimental evidence is necessary to resolve this issue. Once an
experimental determination of the rate-dependence can be ascertained than the
remaining questions of crack modeling can be addressed.

Although it is quite clear that analytical modeling of concrete cracking
must include strain-rate effects, it is also evident that this is not the only
cause for the discrepancies between computations and experiments. This is
substantiated by the observation that analytical simulations could not quite
match the experimental shapes of the deflections. Either the amplitude or the
period of response could be varied by changing different variables, yet both
of them could not be matched with experiment for the same run.

The need for experimental evidence into the phenomenology of concrete
cracking cannot be overemphasized. Closer agreement with experimental data
will eventually require better analytical modeling of the actual cracking
phenomenon.
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Card FORTRAN

Type Columns Name

1
1-80 TITLE

2
1-5 NNODE
6-10 NELE
11-15 NUMMAT
16-20 NUMDIS
21-25 MXSTEP
26-30 NDGREE
31-40 DELT
41-45 NPRES
46-50 NSLID

3
1-5 KONTRL(1)
6-10 KONTRL(2)
11-15 KOWTRL(3)

Description
Title Card. (80Al).
80 alpha-numeric characters to identify the
job; these characters will be printed as a
heading.
First + arameter Card. (615,E10.6,15).
Number of nodes in the analytical model.
Number of elements.
Number of material types.

Number of nodes at which one or more displace-
ment components are prescribed.

Number of time steps to be taken.

Number of degrees of freedom per node (2 for
this version).

Time step A%; if KONTRL(8) # O of Card 3, then
use At = at . vVat_ /at . .
min  max’  min

Number of load units (see Cards 11).
NgTber of sliding interface lines (see Cards
12).

Second Parameter Card. (1615).

KONTRL{(1) = 1: For axisymmetric problem.
KONTRL(1) = 2: For plane stress problem.
KONTRL(1) = 3: For plane strain prublem.
KONTRL(2) = 0: No reading from or writing on
auxiliary units.
KONTRL(2) = 1: Write on auxiliary unit 8.
KONTRL(2) = 2: Read from auxiliary unit 9.
KONTRL(2) = 3: Read from auxiliary unit 9 and
write on auxiliary unit 8.
KONTRL(3) = 0: Any nodes for which node cards

are not given on Cards 7 will
be equispaced.

KONTRL{3) > 0: Any nodes for which node Cards
7 are not given will be spaced
so that the ratio of distances
between consecutive nodes are

a KONTRL(3)/100.



Description

KONTRL(4) = 0: For pressure-time loading.
KONTRL(4) # 0: For impulse (initial velocity)
loading.

Percent of critical (stiffness-proportional)
artificial damping.

Percent of critical (mass-proportional) arti-
ficial damping.

Circular frequency of the structure to be
specified with KONTRL(6).

KONTRL(8) = 0: Dynamic relaxation is not used.

KONTRL(8) > 0: Dynamic relaxation is to be
used, where KONTRL(8) =
Ao/ Mg - 1 in the element
mesh,

KONTRL(9) = 0: Input loading not derived from
auxiliary units.

KONTRL{9) > O: Input loading derived from

auxiliary unit 4 and acting on
elements 1 (one) through
KONTRL(9) during the course of
the solution.

Total number of fully cracked elements allowed
in the solution; after reaching KONTRL(10)
number of fully cracked elements the solution
terminates.

ICRACK = 0: No concrete elements used in the
analytical model.
ICRACK = 1: Concrete elements are used in the

analytical model.

Cards 4 and 5 are used only if ICRACK = 1 (see Card 3).

Card FORTRAN

Type Columns Name

3 (cont'd)
16-20 KONTRL(4)
21-25 KONTRL(5)
26-30 KONTRL(6)
31-35 KONTRL(7)
36-40 KONTRL(8)
41-45 KONTRL(9)
46-50 KONTRL(10)
51-55 ICRACK

Note:

4

1-10

RASYTI

Concrete Parameters. (6F10.0,2110).

RASYTI = 0: Minimum printing of concrete
cracking (only fully cracked
elements are indicated).

RASYTI = 1: Detailed initiation and completion

of cracking within the concrete
elements is indicted.
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Description

Poisson's ratio of concrete.

Degree of full shear to be retained in the
concrete elements (usually BETA = 0.5).

Elastic modulus of reinforcing steel.
Yield stress of reinforcing steel.

Magnitude of strain from initiation to comple-
tion of cracking.

Number of straight-line portions of the stress-
strain diagram of reinforcing steel.

Stress-Strain Data for Reinforcing Steel.
(8£10.0)

First strain.
Coordinates of first point

First stress.

Second strain.
Coordinates of second point.

Second stress.

Fourth strain.
Coordinates of fourth point.

Fourth stress.

Use another card if needed to describe the piece-wise linear
stress-strain diagram.

If KONTRL(2) < 2 (see Card 2) then two sets of cards (Cards 2
through 5) must be used. This is usually a continuation run. In
addition, one or two extra cards must be supplied as follows:

Card FORTRAN
Type Columns Name
4 (cont'd)
11-20 PR
21-30 BETA
31-40 ERB
41-50 SYIELD
51-60 DKCOEFF
61-70 NR
5
1-10 EE(1)
11-20 EE(2)
21-30 EE(3)
31-40 EE(4)
61-70 EE(7)
71-80 EE(8)
Note: (1)
(2)
5a
1-5 ICOUNT
Note:

(1115).

Number of cracked elements to be input.

Cards 5b are used only if ICOUNT > 0.
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Card FORTRAN

Type Columns Name

5 (cont')

5b
1-5 LD
11-20 STR9
21-30 STR8
31-40 STR?
41-50 STR6
51-60 STR5
61-70 SMC

Description

Crack Information (I15,5X,6E10.4).

Number of cracked element.

Index of circumferential crack.

Index of first crack in the r-z (or x-y) plane.

Index of second crack in the r-z (or x-y)
plane.

Angle of first crack measured from r (or x)
axis.

Angle of second crack measured from r (or x)
axis.

Secant modulus for unloading.

Note The information on Card 5b can be (and usually is) generated by punch-
ing cards during the preceding part of several runs (see NCRK on Card

10a).

6a
1-5
6-10

6b
1-10
11-20
21-30
31-40

41-50

MTYPE
NTYPE

E(1,MTYPE)
E(2,MTYPE)
E(3,MTYPE)
E(4,MTYPE)

E(5,MTYPE)

Material Properties for Flexural Beam or Shell
Elements.

(215).
Material type number.

NTYPE = 1: For beam or shell elements.

-(6E10.4).

Mass density.
Young's modulus.
Yield stress.

Plastic modulus (second slope of the stress-
strain curve).

Space reserved for width of beam (not used in
this version).
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Card FORTRAN
Type Columns Name
6t (cont'd)
51-60 E(6,MTYPE)
6¢c
1-10 E(7,MTYPE)
11-20 E(8,MTYPE)
6
6a
1-5 MTYPE
6-10 NTYPE
6b
1-10 E(1,MTYPE)
11-20 E(2,MTYPE)
21-30 E(3,MTYPE)
31-40 E(4,MTYPE)
41-50 E(5,MTYPE)
51-60 E(6,MTYPE)
6¢
1-10 E(7 ,MTYPE)
11-20 E(8,MTYPE)

Ultimate stress.

(6E10.4)

Poisson's ratio.

Description

Height of beam or shell (needed only if not
specified in dummy node data on Card 7).

Material (other than Concrete) Properties for
R ane and Axisymmetric Elements.

(215)

Material type number.

NTYPE = 2: For continuum elements.

(6£10.4)

Density.

Young's modulus.

Yield stress.

Plastic modulus.

E(5,MTYPE) = O:

Ultimate stress.

(6£10.4).

Poisson's ratio.

E(8,MTYPE)
E(8,MTYPE)

Hon
—
e

48

For solid elements; bulk
modulus if element is used tc
simulate fluid. If element is
fluid then E{2,MTYPE) and
E(6,MTYPE) should be zero.

For no artificial damping.
For use with artificial
damping.



Card FORTRAN
Type Columns Name
6c (cont'd)
21-30 E(9,MTYPE)
31-40 E(10,MTYPE)
6
6a
1-5 MTYPE
6-10 NTYPE
6b
1-10 E(1,MTYPE)
11-20 E{2,MTYPE)
21-30 E(3,MTYPE)
31-40 E{4,MTYPE)
41-50 E(5,MTYPE)
51-60 E(6,MTYPE)
6¢c
1-10 E(7,MTYPE)
11-20 E(8,MTYPE)
21-30 E(9,MTYPE)
31-40 EY10,MTYPE )

Description

Linear damping coefficient for hydrostatic
stresses.

Linear damping constant for deviatoric
stresses.

Material Properiies for Reinforced Concrete
Elements.

(215).

Material type number.

NTYPE = 4: For continuum concrcte elements.

(6E10.4).

Density of concrete.
Concrete compressive limit.
Initial elastic modulus.
Concrete tensile limit.

Area ralio of reinforcement in r (or x)
direction.

Area ratio of reinforcement in z (or y)

direction.

(6E1G.4).

Area ratio of reinforcement in circumferential
direction.

E(8,MTYPE) = 0: For no artificial damping.
E(8,MTYPE) = 1: For artificial damping to be

used.

Linear damping coefficient for hydrostatic
stresses.

Linear damping constant for deviatoric
s tresses.
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Card
Tyge

Note:

Note:

FORTRAN

Columns Name
1-5 N

6-20 XC(N)
21-30 YC(N)

Description

Nodal Coordinates.

Node number.

(15,5%,2E10.4).

r (or x) coordinate for real nodes; for "dummy"
nodes this could specify the height of the beam

or shell.

z (or y) coordinate

of node N.

Coordinates for nodes equispaced between two nodes will be automatical-
1y generated if the data cards for intermediate nodes are skipped.

1-5
6-10
11-15
16-20
21-25
26-30

31-35

41-45

46-50
51-55

(1) For triangular element N3

M
NODE(1,M)
NODE(2,M)
NODE (3,M)
NODE(4,M)
NCDE(5,M)

NODE(6,M)

NODE(8,M)

MTYP
NTYP

clockwise.,

(2) For flexural elements N3 and N4 are “"dummy" nodes and are associ-

Element-Node Relatio

Element number.

nship. (101I5).

Node N1 of element M.

Node N2 of element M.

Node i3 of element M.

Node N4 of element M.

NODE(5

0: If KONTRL(8) = 0.

M) =
NODE(5,M) # 0: If KONTRL(8) # 0, the element

is a

is ¢

tinu
NODE(6,M) = 0: For
NODE(6,M) # 0: For
NODE(8,M) = 1: For
NODE(8,M) = 2: For
NODE(8,M) = 3: For
NODE(8,M) = 8: For

Material number for

NTYP = 1: For flexu
NTYP = 2: For trian
NTYP = 3

ated with nodal rotations.
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prestress element and it
onnected to only one con-
um element.

solid elements.

elements simulating fluid.

axisymmetric elements.
plane stress elements.
plane strain elements.
concrete elements.

element M.

ral element.
gular continuum element.

For triangular fluid element.

N4 and the nodes must be numbered

M



Description

(3) Node cards for elements which can be generated by adding one to
all node numbers of the previous element need not be included; the
node data for these elements will be generated automatically. The
card associated with the last element is required.

(4) For axisymmetric configurations the meridional prestress elements

should use NODE(8,M) = 2.

Prescribed Nodal Displacements. (I10,E10.4).

Node at which one or more displacement compo-
nents are prescribed to be zero.

I = 0: For unconstrained displacement of the ¢
(or X) component.
I =1: For zero displacement of the ¥ (or X)

component.

J = 0: For unconstrained displacement Z (or ¥)
component.

J = 1: For zero displacement of the Z (or ¥)
component.

Angle of inclination of the boundary coordinate
axis P (or X) relative to the global r (or x)
axis measured counterclockwise in degrees.

The rotational degree of freedom is controlled by I for the dummy
nodes; I = 0 for unconstrained rotation and I = 1 for zero rotation.

Card FORTRAN
Type Columns Name
8 (cont'd)
Note:
9
1-7 N
8 I
9 J
11-20 ANGLE
Note:
10
10a

1-10

11-20

21-30

NPFREQ

NPRU

NPRS

Output Control.

(5110).

Output frequency; time history records of
specified nodal and element information will be
printed every NPFREQ time step.

Number of nodal-related time history records:
displacements, velocities, accelerations,
forces, etc.

Number of element-related time history

records: stresses, strains, internal forces,
etc.
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Card FORTRAN
Type Columns Name

10a (cont'd)
31-40 NPIC

41-50 NCRK
10b

1-7

8 J

9 K

10 L
10c

1-7

8-9 M

Description

Number of complete output records at specified
time steps; this may consist of all nodal and
element records at the given time step.

NCRK = 0: No information on cracking
requested.

NCRK = 1: Final cracking information to be
printed at the end of the solution.

NCRK = 2: Final information to be printed and

punched on cards in the same format
as given for Cards 5b.
NPRU Specifications. (8I10).

Node number for which a specified nodal record
is to be printed.

J = 1: For r (or x) component or the rotation
for dummy nodes.

J = 2: For z (or y) component.

K = 0: For displacement.

K =1: For velocity.

K =2: For acceleration.

K =3: For external force.

K =4: For internal force.

L =0: If no plotting required.

L = 1: For nodal time history to be plotted on

printer.

L = 2: For nodal time history to be plotted on
printer and auxiliary unit such as
Calcomp.

NPRS Specifications for Continuum Elements.
(8110).

Element number for which information is to be
printed.
M=1: Strain ;r (or éx)'
M=2: Strain €, (or e ). X )
= 3: Engineering shear strain Yog {or y*y).
M=4: Hoop strain €a0 {for axisymmetric
case).
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Card FORTRAN
Type Columns Name Description

10c (cont'd)

8-9 M M = 5: Stress ;r (or gx).
(cont'd) M= 6: Stress o, (or o ). A
M =7: Shear stress o _ (or o ).
~rz xy
M = 8: Hoop stress %ag (for axisymmetric
case).
10 L L = 0: For no printing requested.
L =1: For information to be plotted on
printer.
L = 2: For information to be plotted on
printer and on auxiliary unit such as
Calcomp.
10c NPRS Specifications for Flexural Elements.
(8110).
1-7 Element number for which information is
desired.
8-9 M Index given in the following table, where the

circumscribed numbers refer to integration
points throuh the depth of the beam or shell.

s R CERRERREE
Ex 1| 2| 3)la|s| 6| 78] 9]0
o 11 [12 |13 |14 |15 )16 |17 |18 |19 |20
s 21 |22 | 23 |24 |25 | 26 | 27 |28 | 29 | 30
o, 31 [32 (33|34 [35[36 |37 |38 |39 (a0
yicldpt |4 |42 |43 |48 [45] a6 |47 |28 [ 49 |50
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Card FORTRAN
Type Columns Name

10c (cont'd)

y
A

Description

N1

—_

PO

10 L
10d
1-10
11-20 KONT
11
11la
1-5 1
6-10 NDNOD

@Qf@@

L =0: For no printing.

L =1: For information to be plotted on
printer.

L =2: For information to be plotted on

printer and on auxiliary unit such as
Calcomp.
NPIC Specification. (2110).

Time step at which a complete output as speci-
fied by KONT is desired.

KONT = 1: Displacements at all nodes.

KONT = 2: Displacements and current coordi-
nates at all nodes.

KONT = 3: Displacements, coordinates, velo-
cities and accelerations at all
nodes.

KONT = 4: Displacements, coordinates, velo-

cities, accelerations, of all modes,
strains and stresses of 211
elements.

Loading Specifications.

(515).
Load unit number.

Number of nodes associated with the load unit.
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Card
Type

FORTRAN
Columns Name Description

1la (cont'd)

11b

Note:

11-15 IVOL(I) IVOL(I) = 1: Pressure history is prescribed
and load unit is part of axi-
symmetric surface.

IVOL(I) = 2: Pressure history is prescribed
and load unit is part of plane
surface.

IVOL(I) = 8: For circumferential prestress
load unit.

IVOL{I) = 9: For meridional prestress load
unit; in this case NDNOD = 3.

16-20 INT1 Interval, spacing between nodes on load unit

for automatic load unit generation; if INT1 >
0, the load unit is generated by adding INT1 to
the previous node number starting with the node
specified on Card 1llc.

21-25 NPT Number of pressure-time point pairs of a piece-
wise linear curve to be specified on Cards 11b.

Pressure History Input. (8E10.0).

1-10 PT(1,1) Time

First point on pressure-time plot.
11-20 PT(2,1) Pressure
21-30 PT(3,I) Time

Second point on pressure-time plot.
31-40 PT(4,1) Pressure
41-50 PT(5,I) Time

Third point on pressure-time plot.
51-60 PT(6,1) Pressure
61-70 PT(7,1) Time

Fourth point on pressure-time plot.
71-80 PT(8,I) Pressure

Use another card to describe the pressure-time loading if needed. A
total of eight pressure-time pairs can be specified for each load
unit. If pressure is zero at time zero then this pair need not be

input.
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Card FORTRAN
Type Columns Name
11b
1-10 PT(1,I)
11-20 PT(2,1)
21-30 PT(3,I)
31-40 PT(4,1)
1l1lc
1-5 KPRES(1)
6-10 KPRES(2)
11-15 KPRES(3)
etc.
l1lc
1-5 KPRES(1)
6-10 KPRES(2)

KPRES(NDNOD/2)

Description
Inpulse Input. (8E10.0).

Prescribed initial velocity component tangent
to load unit.

Prescribed initial velocity component normal to
load unit.

Impulse multiplication factor of the first node
(use zero if the first node is not on line of
symmetry, and set PT(3,I) = 2 if the first node
is on the line of symmetry).

Impulse multiplication factor of the last node
[PT(4,1) = 0 if last node is not on line of
symmetry, PT(4,I) = 2 if last point is on line
of symmetry).

Nodes Associated with the Pressure-Time Load

Unit. (1615).

First node on load unit; if all nodes can be

generated from KPRES(1) by addition of incre-
ment INT1, then only KPRES(1) need be speci-

fied.

Second node on load unit.

Third node on load unit.

Nodes Associated with the Circumferential
Prestress Unit. (1615).

\

\ First to last nodes on prestressing vessel.
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Card FORTRAN
Type Columns Name Description
11c (cont'd)
KPRES(NDNOD/2+1)W
. . LFirst to last nodes on the prestressed
. . surface.
KPRES(NDNOD)
o
11c Nodes Associated with the Meridional Prestress
Unit. (1615).

1-5 KPRES(1) Node of prestress vessel where the prestressing
load is applied.

6-10 KPRES(2) Next to the last node of the prestressed struc-
ture where sliding takes place.

11-15 KPRES(3) Node of the prestressed structure corresponding
to the node KPRES(1).

12 S1iding Interface Cards.
12a (1615).

1-5 M Sliding interface number.

6-10 ND1 Number of node pairs on sliding interface.

11-15 INT1 Automatic interval generator for sliding inter-
face nodes starting with KSLID(1,I) on Card
12b; if INT1 > O the node numbers of sliding
interface are generated by adding INT1 to
successive nodes.

16-20 INT2 Automatic interval generator for sliding inter-
face nodes starting with KSLID(2,I) on Card
12b.

21-30 SLIPAR(1,M) Static coefficient of friction.

31-40 SLIPAR(2,M) Dynamic coefficient of friction.

57



Card
Type

Columns

FORTRAN
Name

12a (cont'd)

12b

Note:

13

14

41-50

1-5
6-10
11-15
16-20

etc.

SLIPAR (3,M)

KSLID(1,I)
KSLiD(21)

KSLID(3,I)
KSLID(4,1)

Description

SLIPAR(3,M) = 0: For no sliding friction to be
considered [then also set
SLIPAR(1,M) = 0 and
SLIPAR(2,M) = 0].

SLIPAR(3,M) = 1: For sliding friction to be

applied.

Nodes on S1iding Interface. (1615).

First pair of nodes on sliding interface.

Second pair of nodes on sliding interface.

(1) Each pair of nodes on the sliding interface must initially have
the same coordinates.

(2) Cards 13, 14 and 15 are intended for modifying the mass matrix in
conjunction with dynamic relaxation. They are needed only if
KONTRL(8) # O.

1-5

1-5
6-10
11-15

NRM

NN(1)
NN(2)
NN(3)

(1615).

Number of nodes where the mass is to be modi-
fied; if NRM = 0 then Cards 14 and 15 are not
required.

(1615).

Node number of first mass to be modified.

Node number of second mass to be modified.

Node number of third mass to be modified.
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Card FORTRAN
Type Columns Name
NN{NRM)
15
1-10 RMASS(1)
11-20 RMASS(2)
RMASS(NRM)

Description

Node number of last mass to be modified.

Mass Multiplication Factors. (8E10.4)

Original mass at node NN(1) will be multiplied
by RMASS(1).

Original mass at node NN{2) will be multiplied
by RMASS(2).

Original mass at node NN{NRM) will be multi-
plied by RMASS(NRM).
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