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ABSTRACT

A simple theory for predicting the convective energy loss from side-
facing cavity receivers in windless environments has been developed. The
approach used is to determine the velocity distribution of the incoming air
in the aperture plane (and thereby the rate of mass entrainment); and then to
estimate the bulk temperature of the heated emerging air. The convective loss
is then calculated from an energy balance. To illustrate this theory, numeri-
cal results applicable to the 2.15 meter cubic cavity being tested in our
laboratory are provided.
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FOREWORD

In April 1979, at a workshop held in Dublin, California, a cross section
of the nation's experts in the thermal sciences fognd that the extremelen91ron-
ment and large sizes of typical solar central receivers place them in akflow |
and heat transfer regime where data and proven predictive methods fok esti-
mating energy losses are lacking. Confronted with this appraisal and the
urgent need to predict the efficiency and hence the cost of energy collection,
the Central Receiver Energy Loss Program was‘initiated.

The goal of the program is the development of computational tools, to be
verified by experiment, to predict the convective and radiative energy losses
from external and cavity-type central receivers.

This report describes one of these too]s: an approximate analytical
solution for the convective energy loss from a side-facing solar cavity in a
windless environment. The objectives of this work are to provide preliminary
results while detailed numerical simulations of the convective process are
being developed, and then afterwards, to serve as a rapid means of estimating
the convective loss in applications where the more accurate numerical predic-

tions are not needed.




NOMENCLATURE

Ag internal surface area of cavity
a constant defined by Equation (46)
Ce contraction coefficient
Cp specific heat
F function defined by Equation (33)
f fraction yn/Lap
g acceleration due to gravity
- h heat transfer coefficient
k thermal conductivity
Lap height of aperture
m rate of mass entrainment per unit width of cavity aperture
Nu Nusselt number
Pr Prandt1 number
p pressure
Q rate of convective energy loss per unit width of cavity aperture
R ideal gas constant
T temperature (degrees absolute)
y distance beneath neutral elevation
F U maximum velocity of emerging air
. u velocity of emerging air
Vap characteristic aperture inflow velocity |




v velocity of incoming air

Wap width of aperture
Greek:
B coefficient of volumetric expansion -
n dimensionless distance, y/yp (see Figure 1)
" dimension]es; distance, yD/yn (see Figure 2)
A dummy variable, &/&,
v kinematic viscosity
2 distance above neutral elevation
P density
Superscripts:
* dimensionless quantity
' dummy variable i
Subscripts: )
a refers to conditions in exterior ambient plane
ap refers to conditions in aperture plane
b bulk
D profile development distance
f evaluated at film temperature
fp flat plate
i refers to conditions in vertical stagnant fluid column
alongside vena contracta
J refers to conditions in vena contracta )
max upper bound
min lower bound

n neutral elevation




refers to distance over which temperature profile develops
refers to distance over which velocity profile develops

wall condition
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A SIMPLE THEORY FOR PREDICTING THE NATURAL CONVECTIVE
ENERGY LOSS FROM SIDE-FACING SOLAR CAVITY RECEIVERS

Introduction

The present approach is closely related to thét used with sonie success
in the building scien;es to predict the rate of air flow and heat transfer
through doorways and corridors [e.g., 1,2,3]. In fhis approach, Bernou]]i's
equation is applied to streamlines which pass from a region where velocities
are assumed to be negligible through the doorway or corridor where knowledge
of the velocity distribution is sought.

In using this approach to evaluate the convective energy loss from a
cavity-type receiver (Figure 1), the(method»is to determine the velocity
distribution of the incoming air in the aperture plane (and from this the
rate of mass entrainment, ﬁ); and then to estimate the bulk temperatu?e of
the heated emerging air, Th. The convective loss is then calculated from:

the energy balance
Q=me (Tb- Ta) o ; (1)

where Ty is the ambient temperature.

We give here expressfons déscribing the aperture-plane velocity distribu-
tion, the rate of mass entfainment, and the bulk temperature of the heated
emerging air for side-facing solar cavities in windless environments. Expres-
sions for bounds within which entrained mass flows and convective energy

losses must lie are also presented. Such bounds can serve as screening tests
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for this and other predictive theories. As an illustration of the present
theory, numerical results applicable to the 2.15 meter cubic cavity being
tested at Sandia National Laboratories are provided.

It should be noted at the outset, that the convective loss from a cavity
can be determined ultimately only by direct measurement or by a detailed
three-dimensional computer simulation. Any’otherlapproach,’in¢1uding the
present one, must necessarily entail a number of asSumptiohs and approxima-
tions. Presently, measurement and numerical techniques applicable to large
turbulent cavities are being developed, and probably will be unévai]ab]e for
some time. The role envisaged for the present work, therefore, is to provide
tentative results in the interim, and then afterwards, to serve as a tool for
making rapid estimates of the convective energy loss in applications where the
more accurate computer simulations are not required.

To our knowledge, there afé no pub]iﬁhéd works dealing with the turbulent
flow and heat transfer regimes typicaTkof 1arge—$ca1e solar receivers. The
only studies relevant to the problem of concern here are the numerical simula-
tions of Penot [4,5], Eyler [6], and Humphrey, et al. [7], which are, however,
1imited to two dimensions and laminar flow*, and the investigations of Quintiere
and Den Braven [3], and Steckler et al. 8], which are concerned‘with fire-
induced flows through doorways. The aperture-p]ane velocity distributions
found in these studies posseﬁs the qualitative featu;es depicted in Figure 2a.
The velocity of the incoming air increases rapidly from zero to a value Vap
in the velocity development region 0 to yy, and then remains essentially

constant until a narrow boundary layer region at the lower edge of the cavity

*The numerical simulations in [4-6] also use the Boussinesq approximation
which is inappropriate in solar cavities where large variations in tempera-
ture can exist within the enclosed body of air. Eyler's computational
procedure [6] is capable of handling three dimensions, but only two-
dimensional results were presented.
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aperture. The heated emerging air possesses a velocity maximum whoseylocation
appears to shift upward as the Grashof number increases. One of the underlying
assumptions in this study is that the aperture-plane velocity distribution at
the center of a turbulent three-dimensional solar cavity is similar, quali-

tatively, to those found in References 3-8.

Analysis

1. The Ve10c1ty D1str1but1on of the Incoming Air and the Rate of
Mass Entrainment

To determine the velocity distribution of the incoming air, we consider
three hypothetical, plane parallel surfaces: the aperture plane; an exterior
plane sufficiently far. from the cavity such that iincoming air velocities may

be neglected; and an interior plane located at the vena contracta of the

incoming air (Figure 1). The vena contracta, or jet of minimum cross-

sectional area, is bordered on all sides by a frame of essentially stagnant
air. The neutral surface demarcates the inflow from the outflow region,
and the air velocity is zero on this surface. The line of intersection

of the neutral surface and the vena contracta plane is called the neutral - .

elevation.

Bernoulli's equation, gy + v2/2 + fdp/p = constant along a given stream-
line, is applied to streamlines of incoming air between the exterior and
interior planes. This relationship expresses the conservation of momentum
principle when viscous forces are negligible. Strictly speaking, the use of
the Berndﬁ]li equafion is not valid in the velocity development region’O-yV
and at the‘lbwer edge of thé cavity aperture (Figure 2a) where viscous forces
must predominate. We shall show later, however, that since these regions are

‘small, onTy,hegligibleVerror results in the ca]culatidn of the rate‘of mass
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entrainment. For concreteness, we apply Bernoulli's equation to the particular
streamline which passes through points a in the exterior plane, ap in the

aperture plane, and j in the vena contracta. These points are located,

respectively, at distances ya, yap, and yj beneath the neutral elevation

(see Figure 1). The result is

2 .
: vilys)
J%E + bl 4 g (y;-y,) = 0 (2)

da

Although our concern ultimately is with the aperture plane, we deal first

with the vena contracta because there streamlines have zero curvature (in

horizontal planes), and hence, every streamline at the elevation yj is at

the same pressure. It is for this reason that Equation (2) is applied to all

streamlines passing through the vena contracta at the elevation yj. The
transference of the velocities to the aperture plane is described subsequently.
Two additional assumptions are now made. First, it is assumed that heat

transfer to the air flowing from outside the cavity to the vena contracta is

neqligible, and thus, the air temperature in this region is everywhere equal
to Ta. Second, it is assumed that elevation differences, such as yj-ya, along
an incoming streamline are sufficiently small so that the gravitational
contribution in Equation (2) may be dropped. The first assumption and the

ideal gas law, p = p/RT, lead to the result

fj dp + [pylyy) - pylyy)] (3)
a

P p,(y,)

The second assumption is more difficult to justify and it may, in fact,

be invalid.* It is employed here, however, because as stated earlier,

*For example, if velocities of the order of 1 m/sec are expected in the vena
contracta, the gravitational contribution is 10% of the kinetic energy contri-
bution for elevation differences |yj - Ya| on the order of ~ 0.5 cm.
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it has been used by others in analyzingvrelatedwphgnomena. (It also greatly
simplifies the analysis.) ,‘ -

With the neglect of the gravitational term, the combination df Equations
(2) énd (3) gives the f6110wing”expression for the velocity distribution in

the vena contracta:

vilyy) = N2 (y,) - p e v,y BN CO LR
or, simply
vi(y) = V2p () - p;()1/e,(y) e

where it is assumed that
Yo = ¥5 =Y - » (6)
The distribution of pressure in the exter1or p]ane is taken to be

hydrostatic so that
Paly) =p,* 9 gypa (y')dy | i (7)

where p_ is the pressure at the neutral elevation (Figure-1). "Also, since

the pressure at the elevation y in the vena contracta must equal the hydro- - -

static pressure at the elevation y in the stagnant‘vertica1‘columh of fluid

alongside the vena contracta,

p:(y) = p, * 9 fyoi(yf)dy' g . o " B (8)

where (y') represents the density distribution in that fluid column. The
. : .

substitution of Equations (7) and (8) into (5) thus gives the velocity distri-

bution in the vena contracta:

*It should be noted that the pressure difference pg- pj which dr1ves the flow
into the cavity is also extremely small. For 1nstance a velocity 'of 1m/sec
in the vena contracta would be produced by a pressure d1fference of only

~ 0.06 mm water as can be calculated from Equation (4).
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2| ['To,(v') - oyy)Idy'|
vjly) = ° - . - (9)
J | p,(¥) |

The determination of the velocity distribution in the aperture plane is

now considered. It is customary to relate the areas of a vena contracta Ayc

and an aperture inflow Azp by a contraction coefficient C¢ according to [9].
AVC = CC Aap | (10)

Here, we assume further, that the contraction coefficient is the same for

each stream tube between the aperture and the vena contracta. Thus, from»
the conservation of mass principle, the yé]otity at the aperture on aﬁy f
streamline, a - ap - j for example, may be expressed as

vap(¥ap) = Cc p;(¥;) vi(y5)/04,5p)
or, simply,

vap(y) # Cc v5(¥)> (11) :
which is a consequence of the two simplifying assumptions made earlier. For
completeness, we point out that the assumption of negligible elevation differ-
ences along incoming stkeamlines in the Bernoulli equation may also be strictly
inconsistent with the existence of a flow area contraction. The combinétion

of Equations (9), (11) and the relationship

vy ' =_R l_ _ 1 ‘ :
o (y') - pyly’) = & [Ta T;(—r)'] _ (12)
yields the velocity distribution in the aperture plane
van(y) = Cc Y29 fy 1 - = a dy' (13)
ap C 5 Ti(yl) . .

It should be noted that Ti(y') represents the temperature at the elevation

y' in the stagnant column of fluid alongside the vena contracta; and it

should be recognized that, because of the assumptions made, the contraction .

coefficient Cc may be more appropriately considered to be a correlation factor.
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The rate of mass flow into the cavity per unit width of its aperture is

given by
' fy" pap(y) vaply)dy (14)
or ° '
. Yn
m = Pg / Vap(.Y)d.Y (15)
0

considering that, for the purpose of this integration, pap(y) R pae
The substitution of Equation (13) into (15) then yields the rate of mass

entrainment

| - |
m = py Cc /29 ({ynng[l - -T‘ij’)a;—-‘)‘]dir" dy (16)

Equations (13) and (16) may be made dimensionless by the substitution of

the variables

n=ylyn:; n =y'/yns f=yn/lagp; and To*=T./T, ‘ (17)
with the results '
v*(n) = vap() oL e | (18)
CchLap V/Zg 0 T] (nl\) : ' ) -
and
. m 1
m* = = [ v* (n) dn (19a)

pacc(ﬂ-ap)?’/2 /29 0

(19b)*

} 1 o1
g ‘/£ l:I Tj*(n'):ldn dn

*knowledge of the distance flap (=yn) which appears in the calculation of
the velocity distribution from Equation (18) is actually not required.
Rather, in this equation fLap is merely the length used to normalize
distance. If a length other than flLzp had been used, it would appear
in Equation (18) instead. The distance fLap(=yn) must be known, however,
in the calculation of the rate of mass entrainment (Equations (16) or (19b)).

19




It is seen that, to use the building sciences approach to calculate the
rate of mass entrainment, one must have a priori estimations of the aperture
height occupied by the inflow, fLap(=yn); the contraction coefficient, Cc¢;
and the function T (y) (or Ti*(n)) describing the temperature distribution

in the stagnant fluid column alongside the vena contracta. We now discuss

the specification of this distribution.

The Temperature Distribution Function T;(y)

Our specification of the temperature distribution in the stagnant fluid

column alongside the vena contracta is based on the temperature measurements

of Quintiere and Den Braven [3] and the requirement that the resultant incom-
ing velocity distribution, expressed by Equation (13), must also agree quali-
tatively with that depicted in Figure 2a. Quintiere and Den Braven found that

the temperature alongside the vena contracta of the incoming air decreased

from a relatively high value, T,, at the neutral elevation to nearly the
ambient temperature, Ty, within a short distance y7 beneath the neutral
elevation. An idealization of their measurements is shown in Figure 2b. The
aperture plane velocity data in the Quintiere-Den Braven study indicate,
further, that the region (0-yy) within which the velocity develops from O to
Vap is approximately equal to the span (0-y) within which the temperature

Ti(y) decreases from T, to Tu; i.e.,
WeIr=h (20)

where yp is considered to be the development distance for both the velocity
and temperature profiles. Our specification of the temperature distribution

in the fluid column alongside the vena contracta is thus assumed to be

20




=7 -1 - ‘
Ti(y) = T, Yo (T, - T,) for 0 <y <y | ‘J(gla)
and
Ti(y) = T, for yy <y <y, ' (21b)

which in dimensionless form is:

T.*(n) = T * _-ﬁa (Ty* - 1) for 0 < n < my (22&)
and

Ti*(n) =1 for ng <1 <1 (22b)
where "y = yD/yn ‘ (22¢)

Having specified the temperature distribution function Ti(y), the
resulting velocity distribution of the incoming air (obtained by substituting

Equations (21) into (13)) is given by

v_(y)=¢C 2 A 1 1 - L1 --Ig for 0 <y« (23a)
V) = e VI Yy T g T, Y <

and

v_(y)=¢C ‘/2 - 1 P In IQ—= const for y > | (23b)
ap y ¢ V<9 Tn/Ta-l Tn Yy 2 ¥p .

= Vap

and the rate of mass entrainment (obtainéd by substituting Equations (23) into

(15)) by
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3—11 o
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. YD 1
m=p C\ﬁgy / ‘/,Y_+ ~ Il - L£-[1 -
ac D o Yp Tn7Ta 1 Yp

T
1 a
+ o, Co (y,myp) 429y ‘/1 + WTa—'l In T

It is observed that the velocity distribution (Equations (23)), which is also.

drawn in Figure 2c, possesses the required qualitative features shown in

Figure 2a. In dimensionless form these equations are, respectively,

v¥(n) = __Vap(n) s+ D n f, 1 (25a)
Cc/-zg '/-——ﬂ-ap Tn*-l In|l - nD 1 - Tn* for 0<n<nD .

InT*
v¥(n) = vap(n) SN PP} . for ny<n<l, (25b)
cozs T, VYT D

H Vap* = const
and
. . )nD n
m* = 1 377 * / n + 2 In|l --%— 1 - —l; dn

pCc 729 (fLap) 0 Tp -1 D Tn

L )y Y1 - ———i$nT"1 (26)

Note, that with our specification of the temperature distribution function
Ti(y), the dimensionless velocity and rate of mass entrainment depend on

just two parameters: Tn*, the dimensionless corner temperature at the neutral
elevation; and Nps the dimensionless profile development distance (cf.
Equations (25) and (26)). Values of m*, obtained by integrating Equation

(26) numerically, and Vap* are given in Table I and Figure 3 for a range of

values of these parameters. Bounds within which p must lie and the means

22




TABLE I

DIMENSIONLESS RATE OF MASS ENTRAINMENT AND

CHARACTERISTIC INFLOW VELOCITYT

T *
np 1.02 1.10 1.20 1.30  1.40 1.50
0 m* 0 0 0 0 0 0
* .
Vap 0 0 0 0 9 0
.02 m* © .0140  .0305  .0419  .0499 .0561  .0612
ap” .0140  .0306  .0420  .0501 .0564  .0615
.04 m .0197  .0429  .0589  .0702 .0790  .0862
Vap" 0199  ..0433  .0595  .0708 .0797  .0870
.06 m* .0240  .0524  .0719  .0856 .0963  .105
Vopt .0243 . .0530  .0728  .0868 .0976  .107
.08 m* .0276  .0602  .0826  .0984 .11l .121
Vp" .0281  .0613 .0841  .100  .113 123
.10 m . .0307 .0670  .0919  .109  .123 .134
Vopt .0314  .0685  .0940  .112  .126 .138
.12 m* .0335  .0731  .100  .119 - .134 .146
Voot .0344  .0750  .103 123 .138 .151
.14 W L0360  .0786  .108  .128  .144 157
apf 0372 . .0810 .11 133 .149 .163
.16 i .0384  .083  .115  .137  .154 - .168
Vapt .0397  .0866  .119 142 L1589 L174
.18 m - .0405  .0883  .l121 144 - .162 177
Voot L0421 L0919 .126 .150  .169  .184
.20 i 0425 L0926 127 151 .170 .185
Vap" .0444  .0968  .133 158 .178 .194

Tm* calculated from Equation (26); Vap* calculated from Equation (25b).
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of determining specific values of i) and Tn* for a given application are
discussed later.

Since available results [3-8] indicate that Ny K 1, a useful approxi-
mation for m* may be obtained simply by neglecting the rate of mass - inflow
in the velocity development region, by neglecting the integral term and i)
in comparison to unity in Equation‘(26).  This gives | |

InT*

™ = \/ip4/! - T;??%‘ (27)
The error introduced by using Equation (27) instead4of (26) is 111Qstrated in
Figure 3, and it is observed that it is small. It is therefore of no conse-
quence that the use of Bernoulli's equation in the velocity deve]opment_
region (where viscous forces are important) may not have been valid. We shall
use Equation (27) to express the rate of mass entrainment in the remainder of
this study. It is:worth noting in addition, that the foregoing expression for

m* is identical to the expression for Vap* (Equation (25b)).

2. Bounds on the Convective Energy Loss and the Rate of Mass Entrainment

An upper bound for the convective loss from a cavity whose interior sur-
faces are at the temperature Tw is the loss that would occur, hypothetically,
if the heat transfer coefficient on all the cavity interior surfaces was thatk
for a vertical free-standing plate of height Lap; 1.e.3

Qmax Wap = hfp As (Ty - Ta) , : (28)
where hfp represents the vertical plate heat transfer coefficient, and Ag
the cavity surface area. For turbulent natura]yconvection one correlation for

hfp is given by [10] as

. 3 /3
h, L gB.(T -T_)L |
_fp7ap =y, =o0.13| W 23 o, (29)*
ks fp Ny £
f ,

*The coefficient 0.13 is not unique: Eckert and Drake [11] use the constant
0.10, Raithby and Hollands [12] use the constant 0.096, etc. Furthermore, in
the temperature range of solar receivers, a different constant as well as a
variable property parameter may be appropriate.
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where the properties are evaluated at the "film" or average temperature Tf =

(Ty*Ta)/2. The combination of Equations (28) and (29) with the relationships

Be = 2/(Tw+Ta) and Pr, R Pre (30)

yields the following upper bound for the convective loss
To- T A3 v 13
0.26 W a f

Q. W _ = o.Ac T V2g (31)

max ap Pra2/3 [Tw + Ta] (29)1/6 aspa N
or simply

Qmax wap = 0.26 FpaAscpTa V29 ‘ (32)
where .

1/3
T -T.\4/3 v
- -2/3| W a f
F =F(T ,T.) = Pr_ —— —_— (33)
w''da a TW + Ta (29)1/6

The function F, which depends only on the cavity and ambient temperatures

and the properties of air, proves useful in subsequent calculations and is
plotted in Figure 4.

A lower bound for the convective loss from a cavity whose surfaces are at

the temperature T, would be the heat transfer from the hot to cold surfaces

of a hypothetical closed box which is geometrically identical to the cavity
except for the lack of an aperture. In this enclosure, one vertical surface
is assumed to be at the temperature T,, the surface facing it is assumed to

be at the ambient temperature, Ta; and all other surfaces are assumed to be
adiabatic. The correlation of MacGregor and Emery [13] is considered to be

applicable to such enclosures in turbulent flow and is given by

_ 3 1/3
ng(Tw Ta)th (34)*

; = Nubox sz Prf | )

whence the lower bound for the convective loss from a cavity is expressed as

*Here too, the coefficient 0.046 is not unique. Raithby, et al. [14] give a
coefficient of 0.044; Jakob's correlation of the data of Mull and Reiher [15]
indicates a coefficient of 0.073; etc.
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hbothswhs(Tw'Ta) : (35)

Qnin wap )
In these expressions Lpg and Whg represent, respectively, the height and
width of the heated surface of the hypothetical enclosure. The foregoing
lower bound may be more conveniently written as

Qnin wap = 0.092 FpathwhscpTa Y29 (36)
by combining Equations (30), (33-35).

The uppeh and lower bounds for the convective loss from our 2.15-meter
cubic cavity, as calculated by Equations (32) and (36), are plotted in Figure
5. In the calculation of these bounds, five of the cavity walls are con-
sidered to be at the temperature T,, and the sixth is open to the atmosphere
which is assumed to be at 293°K. It is clear from their spread that these
bounds, by themselves, are not of great utility in obtaining engineering
estimates of the convective loss. They do, however, serve as checks for the
present and other predictive theories.

Upper and lower bounds on the rate of mass entrainment may be derived

from Equation (1), that is

" - Qmax or min , (37)
max or min cpZTb-Ta5

where Qpax is obtained from Equation (32) or Qmin is obtained from Equation
(36). The results are

0.26 Fp AT V29

a's'a
m = (38)
max wap(Tb-Ta)

and

. - 0.092 Fp_ L, W, _vZQ )
o= a hs"hs | (39)
min (Tb_Ta)

wap
For a given specification of the bulk temperature, Th, any flow rate greater

than ﬁmax would correspond to an energy loss greater than Qpax; alternatively,
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any flow rate less than ﬁmin would correspond to an energy loss less than
Qmine Using the definition of m* (Equation (19)), the corresponding upper

and lower bounds on the dimensionless mass entrainment rates are expressed,

respectively, as

A

" 0.26 F s ' ‘
m = : (40)
max 3/2/+ * 3/2 ,
C.F/ (T "-1) Lap Wap
and
s 0.002F Las¥hs\ (41)
min 3]2,. * 372
CF/ STy -1) \Lgp ™y,

where Tp*(=Tp/Ta) represents the dimensionless bulk temperature of the

heated emerging air.

3. The Bulk Temperature of the Heated Emerging Air

The bulk temperature of the emerging air, Tp, is defined such that the
product ﬁcpr represents the enthalpy efflux from the cavity aperture,
i.e.,

13

me, Ty, = é ! p(a)u(é)cp T(g)de | (42)

where £, denotes the aperture height occupied by the outflow (cf. Figure 2a)
and p(g) and T(£) represent, respectively, the density and temperature dis-
| tributions over this height. Using‘the ideal gas law, and with the rate of

mass entrainment defined by
. En | :
m=/[ " p(g)u(e)d , | (43)
)

the bulk temperature may, in turn, be expressed as

flu(A)dA | .
T, = —— | (44)

> oy 1e
0
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where A is the dummy variable, £/£n. The pressure and the specific heat
have been assumed to be constants.

It is seen that a priori knowledge of the velocity and temperature
distributions is necessary to calculate the bulk temperature. Since these
distributions are generally unknown, we have assumed distributions that are in

qualitative agreement with the results of Penot [5], and Humphrey, et al. [7].

They are:
A
u(r) = U *(1'*)eaax (45)
A (1-2,)e™
where
a = (2x -1)/[A(1-3)] . - (46)
and
. f
TA) =T, /|1 -2 (1 --Ti)- . (47)
W

U représents the maximum velocity of the emerging air, and Ay the dimension-
less location of this maximum above the neutral elevation. These distributions
are plotted in Figure 6a and it should be noted that they satisfy the physical
requirements that u=0 at A=0 and X=1; and T=T, at A=1. Equation (47) also
implies that T=T; at A=0, a condition which, if not strictly valid, has

Tittle effect upon the computaffon of the bulk temperature since u(X)%O as A+0
(cf. Equation (44)). The expression for the bulk temperature, obtained by
substituting Equations (45) and (47) into (44), is

i} _ a[a(1+e?) + 2(1-e%)]
TW/Ta 2T =3

(48)
a (1+ea/Tw*)+2a[ea-1/Tw*-2(ea/Tw*—l)]+6(1-1/Tw*)(l-ea)

where T* denotes the dimensionless wall temperature, Tw/Ta. Equation (48)

is plotted in Figure 7 for values of a corresponding to Ap = .7, .8, and .9.
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6. Velocity and Temperature Distributions in Heated Emerging Air
(a) Recommended Distributions
(b) and (c) Other Distributions That Have Been Considered
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Figure 7. The Bulk Temperature of the Heated Emerging Air for Various
Distributions of the Velocity and Temperature
Model A Corresponds to Figure ba
Model B Corresponds to Figure 6b
Model C Corresponds to Figure 6¢
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We have also considered other forms of the velocity and temperature
distributions, and these are depicted in Figures 6b and 6c. The corresponding
expressions for the bulk temperature have been determined and the results are
plotted in Figure 7. Equation (48) (Model A) is, however, recommended and is

used in the remainder of this study.

4. An Alternative Formulation for the Convective Loss

Having expressions for the rate of mass entrainment and the bulk tempera-
ture, it is possible to calculate the convective loss directly from Equation
(1) upon specifying certain parameters. It is found convenient, however, to
use an alternative formulation.

By expressing the convective loss as

Q=0q,,, (Qmax , « (49)
and then substituting Qmax‘from Equation (32) and the result
= < | (50) ‘
max  Mnax
we obtain
- 0.26 /25 Fp Ac T [ |
Qwap = 0. 29 Fpa st a ﬁ]—;]k]—a—— (51)
x .

Equation (50) arises from the combination of Equations (1), (37) and from the

definition of m* (Equation (26)). From Equation (27),

m* "D
x0T n (52)
mmax D,max

whence Equation (51) becomes

n
D
W, = 0.26 /29
QH,, = 0.26 /23 Fo Acc,T, o (53)
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The quantity np,max is defined such that (cf Eq. (27)):

* %
mma nD max v (54)

Physically, it represents an upper bound on the profile development parameter
since any value of np greater than mp pax corresponds to a convective

energy loss greater than Qpax. Combining Equations (40) and (54) yields

A 2
_ 0.26 F S 1
nD’max B C f3/2( 1) 3/2W In Tn* (55)
c b ap ap 1- %]
n

Equation (53) is the alternative formulation sought. Its édvantage is
that all of the parameters requiring ad hoc specification are embodied in the
ratio mp/m max- It can be verified that Equation (53) is identical to the
result that would be obtained by substituting the expressions for m and Tp
directly into Equation (1).

The convective loss from our 2.15-meter cavity as calculated by Equation
(53) is plotted in Figure 8 as a function of the wall temperatdre ratio for

various values of the ratio my/my max-

Summary and Conclusions

We present a s1mp1e theory for predicting the convective energy loss and
mass entra1nment rate for side-facing cavity- type receivers in windless
environments. The convective loss is expressed by Equation (53), and the mass
entrainment rate by Equation (27). Although, at present, the lack of experi-
mental measurements makes it impossible to test the accuracy of this theory,
it should bé noted that simi]af theoreficaf approaches ih the building sciences

have been successful.
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The chief drawback in implementing the theory is the need to specify a
number of parameters, some of which are only tenuously known. These parame-
ters are

f, the fraction of the aperture height occupied by the inflow;
Ccs the contraction coefficient;‘
Am» the dimensionless tocation of the velocity maximum above the
neutral elevation (cf. Figure 6a);
Tp*, the dimensionless temperature of the stagnant air alongside the

vena contracta at the neutral elevation; and

the dimensionless profile development distance for incoming air,
yD/yn (cf. ngure 2c).

Our recommendations for the specifications of these parameters.and a sample
calculation are given in the Appendix.

A number of assumptions have been made in arriving at the final formalisms.,
The one that we regard as being crucial, however, is the presumption that the
incoming velocity distribution is shaped, qualitatively, as depicted in Figure
2a.

The theory as presented here is strictly applicable to cavities whose
apertures are rectangular and vertical. We judge it feasible to relax these
restrictions within the framework of the building sciences approach.

The greatest need in our view is the acquisition of experimental data to
test the accuracy of this predictive theory. This need should be satisfied

shortly with results from our 2.15 meter cubic cavity.
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APPENDIX--ESTIMATION OF VALUES OF PARAMETERS
NEEDED FOR COMPUTATIONS AND A SAMPLE CALCULATION

We present here our recommendations for the specification of the parame-
ters needed to calculate the convective loss, Modifications of these fecom—
mendations may be necessary as experimental and numerical data become available.

f--The measurements of Shaw [2], Quintiere and DenBraven [3], and
Steckler et al. [8] indicate values of f that vary from 0.48 to 0.68. We
recommend, tentatively, the approximate mid-point of this range, i.e., f =
0.55.

EE;-Following Streeter [9], we assume C¢ = 0.6. This value corres-
ponds to the flow from an infinite reservoir through a finite opening. It
also correlates some of the data of Brown and Solvason [1] and Shaw [2]. We
point out, however, that the recent data of Steckler et al. [8] indicate a
value of 0.7. |

iﬂf'An examination of the available experimental and numerical data
has revealed values of Ay between ~ 0.5 (Shaw [2]) and ~ 0.9 (Humphrey,
et al. [7]). The midpoint of this range, Ap = 0.7, is tentatively recomnended.

Iﬂjf-Information on Tp* must strictly come from three-dimensional
numerical or experimental studies, Since no pertinent studies have been

reported, our specification of Tp* is based on the fact that its role in the

present theory is to fix the density of air in the stagnant column alongside

the vena contracta. Accordingly we assume that

(pw + pa) . (A.1)

N —

P =
n
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Using the ideal gas law and the definition of the dimensionless temperature

this leads to

T * = ot o (A.2)

nD--Suitable numerical or experimental data for this parameter are
also ;;Eking, and therefore, our specification Of'"D(EyD/yn) is based on a
model which describes the development of the boundary layer between the
neutral surface and the incoming air stream. In this model it is assumed that
the incoming air stream accé]erates foward the cavity apefturé according to
the relationship

V() = v | | | | (A.3)
whére x denotes the distance measured toward fhe cavity from the origin of the
inflow; V(x) represents the free stream velocity outside the boundary layer;
and vi and m are constants. (Note that V(x) =VVap at x correspohding to the
aperture plane.) The development of such a boundary layer is described by the
Falkner-Skan equation (Schlichting [17, p. 150]) if the inflow in the neigh-.
borhood of the neutral surface is laminar, and if no flow crosses the neutral

surface. This model leads to the result that

*1-1/5
-3/5 . lnTn

S ©(A.4)
b Tl

"y = 0.011 La

by assuming that the exponent m=4 in Equation (A.3); and the virtual origin of

the inflow is located at 0.3 Lap meters outside the cavity aperture,

It should be noted that, having already specified the parameters f, Cc¢,

Am» and Tp*, the selection of ny is governed by the requirement that

r/'D,maxk> "o > ™,min °
"D max is given by Equation (55) which is repeated here for convenience:
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2

[ _o.26F As ) 1 . o 55)
"D, max 3/2(T *1) 1372, InT* 2 ;
b ap ap 1- T%.1 ' V

n

and "D min is a 1ower bound defined such that
In T *

, n
m1n = V"p,min T TR | (A.5)

(cf. Equation (27)). By combining Equation (A.5) with the expression.for

m1n (Equation (41)), we have that

2

[ 0002k  (tnsths 1 (A.6)
D,min Ccf3/2(Tb*_1) 3/2w L. n Tn*

2 "ap 1
n

To aid in the computations of ny . and np .o for the current specification
- E]

of the parameters, we have plotted in Figure A.1 the function

F 2.
G =1 (A.7)
3/? InT * :

versus the temperature ratio T,/T,. With a numerical value for G, ny ..

and ny L.oocan be readily determined from the relationships:

n Ny i
D,max D,min - G (A.8)

' A 2 L, W 2
S hs hs
ap “ap ap ~ap

wWe shall now calculate the convective loss, mass entrainment rate and

characteristic inflow velocity for our 2.15-meter cubic cavity in order to
illustrate the use of this theory. Equation (53) will be employed for the
convective loss. For concreteness, we presume the temperature of the cavity
surfaces to be uniform and at 800°K.

Figure 4 gives F = 9.71 x 10-3 ml/2 and Figure A.1 gives G = 2.44 x 10-2 m.

3/2 . -

The geometrical parameter [Ag/(L ap Wap)] = 3.41 m-1/2 whence "y max - 0-019 using

Equation (A.8).
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The substitution of the foregoing numerical values and np = 0.010

(from Equation (A.4)) into Equation (53) thus gives:

-3 /2y

- m
Qwap 0.26 4/2x9.81 oc? x 9.71 x 10

1.21 5% x5 x 2.15% me x
m

kw-sec o
1.00@—_-5'(— x 293°K x

= 66 kw

The dimensionless rate of mass entrainment as expressed by Equation (27)

has the value

1]

m = JOT0I0 41 - JlL%%iﬁ

0.042

H

and the corresponding dimensional rate of mass entrainment using the defini-

tion in Equation (26) is found to be

= 0.062 |1.21 ¥4 x .6 x 4/2x9.81 M x (.55 x 2.15 m)>/2
m3 Secz
- _kg
0.17 m-sec

In these calculations, T; is given by Equation (A.2). The characteristic

inflow velocity, determined from Equation (25b), has the value

- m _ m_
Vap = 0.042 [.6 X 42x9.81 . X y.55 x 2.15 m ] = 0.12 sec
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The sensitivity of the foregoing calculation to the specification of the
parameters has been assessed by increasing and then decreasing the parameters
f, Cc» Am» and T; by 10% from their nominal values. The resultant calculated
values of the convective energy loss are, respectively, 92 and 42 kw. As

implied earlier, there are presently no data to judge the reasonableness of

these limits.
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