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ABSTRACT 

A simple theory for predicting the convective energy loss from side-
facing cavity receivers in windless environments has been developed. The 
approach used is to determine the velocity distribution of the incoming air 
in the aperture plane (and thereby the rate of mass entrainment); and then to 
estimate the bulk temperature of the heated emerging air. The convective loss 
is then calculated from an energy balance. To illustrate this theory, numeri-
cal results applicable to the 2.15 meter cubic cavity being tested in our 
laboratory are provided. 
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FOREWORD 

In April 1979, at a workshop held in Dublin, California, a cross section 

of the nation's experts in the thermal sciences found that the extreme environ-

ment and large sizes of typical solar central receivers place them in a flow 

and heat transfer regime where data and proven predictive methods for esti-

mating energy losses are lacking. Confronted with this appraisal and the 

urgent need to predict the efficiency and hence the cost of energy collection, 

the Central Receiver Energy Loss Program was. initiated. 

The goal of the program is the development of computational tools, to be 

verified by experiment, to predict the convective and radiative energy losses 

from external and cavity-type central receivers. 

This report describes one of these tools: an approximate analytical 

solution for the convective energy loss from a side-facing solar cavity in a 

windless environment. The objectives of this work are to provide preliminary 

results while detailed numerical simulations of the convective process are 

being developed, and then afterwards, to serve as a rapid means of estimating 

the convective loss in applications where the more accurate numerical predic-

tions are not needed. 
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NOMENCLATURE 

As internal surface area of cavity 

a constant defined by Equation (46) 

Cc contraction coefficient 

Cp specific heat 

F function defined by Equation (33} 

f fraction Yn/Lap 

g acceleration due to gravity 

h heat transfer coefficient 

k thennal conductivity 

Lap height of aperture 
. m rate of mass entrainment per unit width of cavity aperture 

Nu Nusselt number 

Pr Prandtl number 

p pressure 

Q rate of convective energy loss per unit width of cavity aperture 

R ideal gas constant 

T temperature (degrees absolute) 

y distance beneath neutral elevation 

U maximum velocity of emerging air 

u velocity of emerging air 

Yap characteristic aperture inflow velocity 
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v velocity of incoming air 

Wap width of aperture 

Greek: 

B 

n 

V 

p 

coefficient of volumetric expansion 

dimensionless distance, y/yn (see Figure 1) 

dimensionless distance, y0/yn (see Figure 2) 

dummy variable, ~/~n 

kinematic viscosity 

distance above neutral elevation 

density 

Superscripts: 

* 

Subscripts: 

dimensionless quantity 

dummy variable 

a refers to conditions in exterior ambient plane 

ap refers to conditions in aperture plane 

b bulk 

D profile development distance 

f evaluated at film temperature 

fp flat plate 

i refers to conditions in vertical stagnant fluid column 
alongside vena contracta 

j refers to conditions in vena contracta 

max upper bound 

min lower bound 

n neutral elevation 

8 



T 

V 

w 

refers to distance over which temperature profile develops 

refers to distance over which velocity profile develops 

wall condition 
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A SIMPLE THEORY FOR PREDICTING THE NATURAL CONVECTIVE 
ENERGY LOSS FROM SIDE-FACING SOLAR CAVITY RECEIVERS 

Introduction 

The present approach is closely related to that used with some success 

in the building sciences to predict the rate of air flow and heat transfer 

through doorways and corridors [e.g., 1,2,3]. In this approach, Bernoulli 1 s 

equation is applied to streamlines which pass from a region where velocities 

are assumed to be negligible through the doorway or corridor where knowledge 

of the velocity distribution is sought. 

In using this approach to evaluate the convective energy loss from a 

cavity-type receiver (Figure 1), the method, is to determine the velocity 

distribution of the incoming air in the aperture plane (and from this the 
C 

rate of mass entrainment, m); and then to estimate the bulk temperature of 

the heated emerging air, Tb. The convective loss,is .then calculated from 

the energy balance 

where Ta is the ambient temperature. 

( 1) 

We give here expressions describing the aperture-plane velocity distribu-

tion, the rate of mass entrainment, and the bulk temperature of the heated 

emerging air for side-facing solar cavities in windless environments. Expres-

sions for bounds within which entrained mass flows and convective energy 

losses must lie are also presented. Such bounds can serve as screening tests 
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for this and other predictive theories. As an illustration of the present 

theory, numerical results applicable to the 2.15 meter cubic cavity being 

tested at Sandia National Laboratories are provided. 

It should be noted at the outset, that the convective loss from a cavity 

can be determined ultimately only by direct measurement or by a detailed 

three-dimensional computer simulation. Any other approach, including the 

present one, must necessarily entail a number of assumptions and approxima-

tions. Presently, measurement and numerical techniques applicable to large 

turbulent cavities are being developed, and probably will be unavailable for 

some time. The role envisaged for the present work, therefore, is to provide 

tentative results in the interim, and then afterwards, to serve as a tool for 

making rapid estimates of the convective energy loss in applications where the 

more accurate computer simulations are not required. 

To our knowledge, there are no published works dealing with the turbulent 

flow and heat transfer regimes typical of large-scale solar receivers. The 

only studies relevant to the problem of concern here are the numerical simula-

tions of Penot [4,5], Eyler [6], and Humphrey, et al. [7], which are, however, 

limited to two dimensions and laminar flow*, and the investigations of Quintiere 

and Den Braven [3], and Steckler et al. [8], which are concerned with fire-

induced flows through doorways. The aperture-plane velocity distributions 

found in these studies possess the qualitative features depicted in Figure 2a. 

The velocity of the incoming air increases rapidly from zero to a value Vap 

in the velocity development region Oto YV, and then remains essentially 

constant until a narrow boundary layer region at the lower edge of the cavity 

*The numerical simulations in [4-6] also use the Boussinesq approximation 
which is inappropriate in solar cavities where large variations in tempera-
ture can exist within the enclosed body of air. Eyler's computational 
procedure [6] is capable of handling three dimensions, but only two-
dimensional results were presented. 
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aperture. The heated emerging air possesses a velocity maximum whose location 

appears to shift upward as the Grashof number increases. One of the underlying 

assumptions in this study is that the aperture-plane velocity distribution at 

the center of a turbulent three-dimensional solar cavity is similar, quali-

tatively, to those found in References 3-8. 

Analysis 

1. The Velocity Distribution of the Incoming Air and the Rate of 
Mass Entrainment 

To determine the velocity distribution of the incoming air, we consider 

three hypothetical, plane parallel surfaces: the aperture plane; an exterior 

plane sufficiently far from the cavity such that incoming air velocities may 

be neglected; and an interior plane located at the vena contracta of the 

incoming air (Figure 1). The vena contracta, or jet of minimum cross-

sectional area, is bordered on all sides by a frame of essenti.ally stagnant 

air. The neutral surface demarcates the inflow from the outflow. region, 

and the air velocity is zero on this surface. The line of intersection 

of the neutral surface and the vena contracta plane is called the neutral 

elevation. 

Bernoulli 1 s equation, gy + v2/2 + Jdp/p = constant along a given stream-

line, is applied to streamlines of incoming air between the exterior and 

interior planes. This relationship expresses the conservation of momentum 

principle when viscous forces are negligible. Strictly speaking, the use of 

the Bernoulli equation is not valid in the velocity development region 0-yv 

and at the lower edge of the cavity aperture (Figure 2a) where viscous forces 

must predominate. We shall show later, ho~ever, that since these regions are 

small, only negligible error results in the calculation of the rate of mass 
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entrainment. For concreteness, we apply Bernoulli's equation to the particular 

streamline which passes through points a in the exterior plane, ap in the 

aperture plane, and j in the vena contracta. These points are located, 

respectively, at distances Ya, Yap, and Yj beneath the neutral elevation 

(see Figure 1). The 
2 V. (y.) 
J J 
2 

result is 

+ g (y. - y ) = 0 J a (2) 

Although our concern ultimately is with the aperture plane, we deal first 

with the vena contracta because there streamlines have zero curvature (in 

horizontal planes), and hence, every streamline at the elevation Yj is at 

the same pressure. It is for this reason that Equation (2) is applied to all 

streamlines passing through the vena contracta at the elevation Yj• The 

transference of the velocities to the aperture plane is described subsequently. 

Two additional assumptions are now made. First, it is assumed that heat 

transfer to the air flowing from outside the cavity to the vena contracta is 

negligible, and thus, the air temperature in this region is everywhere equal 

to Ta • Second, it is assumed that elevation differences, such as Yj-Ya, along 

an incoming streamline are sufficiently small so that the gravitational 

contribution in Equation (2) may be dropped. The first assumption and the 

ideal gas law, p = p/RT, lead to the result 

j 
J .QQ : 
a P 

[pa(Ya) - Pj(yj)] 
Pa (ya) 

The second assumption is more difficult to justify and it may, in fact, 

be invalid.* It is employed here, however, because as stated earlier, 

( 3) 

*For example, if velocities of the order of 1 m/sec are expected in the vena 
contracta, the gravitational contribution is 10% of the kinetic energy contri-
bution for elevation differences IYj - Ya I on the order of~ 0.5 cm. 
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--- ----------------

it has been used by others in analyzing related phenomena. (It also greatly 

simplifies the analysis.) 

With the neglect of the gravitational term, the combination of Equations 

(2) and (3) gives the following'expression for the velocity distribution in 

the vena contracta: 

or, simply 

where it is assumed that 

Ya=Yj=Y• 
The distribution of pressure in the exterior plane is taken to be 

hydrostatic so that 

(4 )* ' 

(5) 

( 6) 

(7) 

where Pn is the pressure at the neutral elevation (Figure 1). · Also, since 

the pressure at the elevation yin the vena contracta must equal the hydro-

static pressure at the elevation yin the stagnant vertical column of fluid 

alongside the vena contracta, 

y 
= p + g J p. (y I) dy' n l · 

0 
(8) 

where~ (y') represents the density distribution in t~at fluid column. The 
t 

substitution of Equations (7) and (8) into (5) thus gives the velocity distri-

bution in the vena contracta: 

*It should be. not~d that the pressure differenc~ Pa-Pj which dri~es the flow 
into the cav,ty 1s also extremely small. For 1nstance, a veloc,ty :of lm/sec 
in the vena contracta would be produced by a pressure difference of only 
~ 0.06 mm water as can be calculated from Equation (4). 
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2gr !y[pa(y') - P; (y' )]dy' 

Pay 
(9) 

The detennination of the velocity distribution in the aperture plane is 

now considered. It is customary to relate the areas of a vena contracta Ave 

and an aperture inflow Aap by a contraction coefficient Cc according to [9]. 

Ave = Cc Aap 

Here, we assume further, that the contraction coefficient is the same for 

each stream tube between the aperture and the~ contracta. Thus, from 

the conservation of mass principle, the velocity at the aperture on any 

streamline, a - ap - j for example, may be expressed as 

Vap(Yap) = Cc Pj(yj) vj(yj)/pap(Yap) 

or, simply, 

(10) 

Vap(Y) ! Cc vj(y), (11) 

which is a consequence of the two simplifying assumptions made earlier. For 

completeness, we point out that the assumption of negligible elevation differ-

ences along incoming streamlines in the Bernoulli equation may also be strictly 

inconsistent with the existence of a flow area contraction. The combination 

of Equations (9), (11) and the relationship 

(12) 

yields the velocity distribution in the aperture plane 

•apM • Cc ~([ 1 - T;~;•)] dy' (13) 

It should be noted that Ti(Y') represents the temperature at the elevation 

y' in the stagnant column of fluid alongside the vena contracta; and it 

should be recognized that, because of the assumptions made, the contraction 

coefficient Cc may be more appropriately considered to be a correlation factor. 
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The rate of mass flow into the cavity per unit width of its aperture is 

given by 

. /n Pap(Y) Vap(y)dy m = 
or 0 

. Yn 
m = Pa f Vap(y)dy 

0 

considering that, for the purpose of this integration, Pap(Y) Pa· 

The substitution of Equation (13) into (15) then yields the rate of mass 

entrainment 

• ,Yn 
m = Pa Cc 12g J 

0 

(14) 

(15) 

(16) 

Equations (13) and (16) may be made dimensionless by the substitution of 

the variables 

n = y/yn 

with the results 

v*{n) = 

and 

n' =y'/Yn (17) 

(18) 

1 
= f v* ( n) dn (19a) 

0 

(19b)* 

= / 
0 

*Knowledge of the distance flap (=yn) which appears in the calculation of 
the velocity distribution from Equation (18) is actually not required. 
Rather, in this equation flap is merely the length used to normalize 
distance. If a length other than flap had been used, J! would appear 
in Equation (18) instead. The distance flap(=yn) must be known, however, 
in the calculation of the rate of mass entrainment (Equations (16) or (19b)). 
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It is seen that, to use the building sciences approach to calculate the 

rate of mass entrainment, one must have~ priori estimations of the aperture 

height occupied by the inflow, flap(=yn); the contraction coefficient, Cc; 

and the function Ti (y) (or Ti*(n)) describing the temperature distribution 

in the stagnant fluid column alongside the vena contracta. We now discuss 

the specification of this distribution. 

The Temperature Distribution Function Ti(Y) 

Our specification of the temperature distribution in the stagnant fluid 

column alongside the vena contracta is based on the temperature measurements 

of Quintiere and Den Braven [3] and the requirement that the resultant incom-

ing velocity distribution, expressed by Equation (13), must also agree quali-

tatively with that depicted in Figure 2a. Quintiere and Den Braven found that 

the temperature alongside the~ contracta of the incoming air decreased 

from a relatively high value, Tn, at the neutral elevation to nearly the 

ambient temperature, Ta, within a short distance YT beneath the neutral 

elevation. An idealization of their measurements is shown in Figure 2b. The 

aperture plane velocity data in the Quintiere-Den Braven study indicate, 

further, that the region {O-yv) within which the velocity develops from Oto 

Vap is approximately equal to the span (0-yT) within which the temperature 

Ti(Y) decreases from Tn to Ta; i.e., 

where Yo is considered to be the development distance for both the velocity 

and temperature profiles. Our specification of the temperature distribution 

in the fluid column alongside the vena contracta is thus assumed to be 

20 



T. (y) = T - L (T - Ta) for a < y < Yo 
1 n Yo n 

(21a) 

and 

(21b} 

which in dimensionless form is: 

T1.*(n) = T * - (T * - 1) for O < n < n0 n n0 n 
(22a) 

and 

Ti*(n) = 1 for n0 < n < 1 (22b) 

where (22c) 

Having specified the temperature distribution function Ti(Y), the 

resulting velocity distribution of the incoming air (obtained by substituting 

Equations (21) into (13)) is given by 

vap(y) • Cc "l/2gy0 r3a-l ln[l -To (1 - for O < y < y0 (23a) 

and 

v (y) = C • '2mZgy 1 + 1 l n Ta = con st for y > Yo 
ap c v~~Jo Tn/Ta-1 Tn (23b) 

and the rate of mass entrainment (obtained by substituting Equations (23) into 

(15)) by 
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(24) 

1 T 
1 + T /T -1 ln 

n a T n 

It is observed that the velocity distribution (Equations (23)), which is also 

drawn in Figure 2c, possesses the required qualitative features shown in 

Figure 2a. In dimensionless form these equations are, respectively, 

v* ( n) = 

v*(n) - vap(n) 

and 

m* = 

- V * = const ap 

= vno l n T * n 
l - T *-1 

n 

ln Tn* 
Tn*-1 

(25a} 

for no <n<l, (25b) 

dn 

(26) 

Note, that with our specification of the temperature distribution function 

Ti(Y), the dimensionless velocity and rate of mass entrainment depend on 

just two parameters: Tn*, the dimensionless corner temperature at the neutral 

elevation; and n0 , the dimensionless profile development distance (cf. 

Equations (25) and (26)). Values of m*, obtained by integrating Equation 

(26} numerically, and Vap* are given in Table I and Figure 3 for a range of 

values of these parameters. Bounds within which n0 must lie and the means 
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TABLE I 

DIMENSIONLESS RATE OF MASS ENTRAINMENT AND 
CHARACTERISTIC INFLOW VELOCITYt 

T * n 

no 1.02 1.10 1.20 1.30 1.40 1.50 

0 m* 0 0 0 0 0 0 
vap * 0 0 0 0 0 0 

.02 m* .0140 .0305 .0419 .0499 .0561 .0612 
vap * .0140 .0306 .0420 .0501 .0564 .0615 

.04 m* .0197 .0429 .0589 .0702 .0790 .0862 
V * ap .0199 .0433 .0595 .0708 .0797 .0870 

.06 m* .0240 .0524 .0719 .0856 .0963 .105 
vap * .0243 .0530 .0728 .0868 .0976 .107 
. .0276 .0826 .08 m* .0602 .0984 .111 .121 
vap * .0281 .0613 .0841 .100 .113 .123 

.10 m* .0307 .0670 .0919 .109 .123 .134 
Vat .0314 .0685 .0940 .112 .126 .138 

.12 m* .0335 .0731 .100 .119 .134 .146 
V ap* .0344 .0750 .103 .123 .138 .151 

.14 m* .0360 .0786 .108 .128 .144 .157 
vap * .0372 , .0810 .111 .133 .149 .163 

.16 m* .0384 .0836 .115 · .137 .154 .168 
V ap* .0397 .0866 .119 .142 .159 .174 

.18 m* .0405 .0883 .121 .144 .162 .177 
V * ap .0421 .0919 .126 .150 .169 .184 
. 

.20 m* .0425 .0926 .127 .151 .170 .185 
V * ap .0444 .0968 .133 .158 .178 .194 

tm* calculated from Equation (26); Vap* calculated from Equation (25b). 
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of determining specific values of n0 and T/ for a given application are 

discussed later. 

Since available results [3-8] indicate that « 1, a useful approxi-

mation for m* may be obtained simply by neglecting the rate of mass, ·inflow 

in the velocity development region, by neglecting the integral term and no 
in comparison to unity in Equation {26). · This gives 

rn* = V11D 
l n T * n 

l - T *-1 n 
(27) 

The error introduced by using Equation (27) instead of {26) is illustrated in 

Figure 3, and it is observed that it is small. It is therefore of no conse-

quence that the use of Bernoulli 1 s equation in the velocity development 

region {where viscous forces are important) may not have been valid. We shall 

use Equation (27) to express the rate of mass entrainment in the remainder of 

this study. It is worth noting in addition, that the foregoing expression for 

m* is identical to the expression for Vap* {Equation {25b)). 

2. Bounds on the Convective Energy Loss and the Rate of Mass Entrainment 

An upper bound for the convective loss from a cavity whose interior sur-

faces are at the temperature Tw is the loss that would occur, hypothetically, 

if the heat transfer coefficient on all the cavity interior surfaces was that 

for a vertical free-standing plate of height Lap; i.e., 

Qmax Wap = hfp As (Tw - Ta) {28} 

where hfp represents the vertical plate heat. transfer coefficient, and As 

the cavity surface area. For turbulent natural convection one correlation for 

hfp is given by [10] 
h L fp ap = Nu 

kf fp 

as 

[

ga (T -T )L 3 . ]l/3 
= 0.13 f w ap Prf 

\) f 
(29)* 

*The coefficient 0.13 is not unique: Eckert and Drake [11] use the constant 
0.10, Raithby and Hollands [12] use the constant 0.096, etc. Furthermore, in 
the temperature range of solar receivers, a different constant as well as a 
variable property parameter may be appropriate. 
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where the properties are evaluated at the 11 film 11 or average temperature Tf = 

(Tw+Ta)/2. The combination of Equations (28) and (29) with the relationships 

13f = 2/(Tw+Ta) and Pra Prf {30) 

yields the following upper bound for the convective loss 

Q W 0.26 w a f Ac T ffg 
[

T - T ]4/3 V 1/3 
max ap = Pra2/3 Tw + Ta (2g)l/6 Pas pa 

(31) 

or simply 

Qmax Wap = 0.26 FpaAscpTa (32) 

where 

(
T - T )4/3 v l/3 

_ -2/3 w a f 
F = F(Tw,Ta) = Pra T + T 1/6 w a (2g) 

(33) 

The function F, which depends only on the cavity and ambient temperatures 

and the properties of air, proves useful in subsequent calculations and is 

plotted in Figure 4. 

A lower bound for the convective loss from a cavity whose surfaces are at 

the temperature Tw would be the heat transfer from the hot to cold surfaces 

of a hypothetical closed box which is geometrically identical to the cavity 

except for the lack of an aperture. In this enclosure, one vertical surface 

is assumed to be at the temperature Tw, the surface facing it is assumed to 

be at the ambient temperature, Ta, and all other surfaces are assumed to be 

adiabatic. The correlation of MacGregor and Emery [13] is considered to be 

applicable to such enclosures in turbulent flow and is given by 

h L [913 (T -T )L 
3 

]l/
3 

box hs = N = 0 046 f w a hs P 
k ubox • 2 r f 
f vf 

(34 )* 

whence the lower bound for the convective loss from a cavity is expressed as 

*Here too, the coefficient 0.046 is not unique. Raithby, et al. (14] give a 
coefficient of 0.044; Jakob's correlation of the data of Mull and Reiher [15] 
indicates a coefficient of 0.073; etc. 
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In these expressions Lhs and Whs represent, respectively, the height and 

width of the heated surface of the hypothetical enclosure. The foregoing 

lower bound may be more conveniently written as 

Qmin Wap = 0.092 FpalhswhscpTa 12g 

by combining Equations (30), (33-35). 

{35) 

(36) 

The upper and lower bounds for the convective loss from our 2.15-meter 

cubic cavity, as calculated by Equations (32) and (36), are plotted in Figure 

5. In the calculation of these bounds, five of the cavity walls are con-

sidered to be at the temperature Tw, and the sixth is open to the atmosphere 

which is assumed to be at 293°K. It is clear from their spread that these 

bounds, by themselves, are not of great utility in obtaining engineering 

estimates of the convective loss. They do, however, serve as checks for the 

present and other predictive theories. 

Upper and lower bounds on the rate of mass entrainment may be derived 

from Equation (1), that is 

• Qmax or min 
mmax or m.in = cp(T b-T a) (37) 

where Qmax is obtained from Equation (32) or Qmin is obtained from Equation 

(36). The results are 

. 0.26 FPisTaffg" 
m = wap(Tb-Ta) max (38) 

and 

. 0.092 Fpalhswhsf2g 
m . = mm wap(Tb-Ta) 

(39) 

For a given specification of the bulk temperature, Tb, any flow rate greater 

than llmax would correspond to an energy loss greater than Qmax; alternatively, 
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any flow rate less than IT\nin would correspond to an energy loss less than 

Qmin• Using the definition of m* (Equation (19)), the corresponding upper 

and lower bounds on the dimensionless mass entrainment rates are expressed, 

respectively, as 

A ) m* _ 0.26 F s 
max - C f3/2(T *-l) L3/2w 

c b ap ap 
(40) 

and 

m* _ 0.092 F ( LhsWhs) (41) 
min - c f3/2(T *-l) L3/2w 

c b ap ap 
where Tb*(=Tb/Ta) represents the dimensionless bulk temperature of the 

heated emerging air. 

3. The Bulk Temperature of the Heated Emerging Air 

The bulk temperature of the emerging air, Tb, is defined such that the 

product mcpTb represents the enthalpy efflux from the cavity aperture, 

i.e. , 

(42) 

where sn denotes the aperture height occupied by the outflow (cf. Figure 2a) 

and p(s) and T(s) represent, respectively, the density and temperature dis-

tributions over this height. Using the ideal gas law, and with the rate of 

mass entrainment defined by 

• sn 
m = f p ( s ) u ( s ) ds , 

0 

the bulk temperature may, in turn, be expressed as 
1 f u(X)dA 
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0 
Tb= 1 

f [u(X )/T(X )]dX 
0 

(43) 

(44) 



where A is the dunvny variable, ~/~n· The pressure and the specific heat 

have been assumed to be constants. 

It is seen that~ priori knowledge of the velocity and temperature 

distributions is necessary to calculate the bulk temperature. Since these 

distributions are generally unknown, we have assumed distributions that are in 

qualitative agreement with the results of Penot [5], and Humphrey, et al. [7]. 

They are: 

(45) 

where 

a = (2A -1)/[A (1-A )] m m m (46) 

and 

(47) 

U represents the maximum velocity of the emerging air, and Am the dimension-

less location of this maximum above the neutral elevation. These distributions 

are plotted in Figure 6a and it should be noted that they satisfy the physical 

requirements that u=O at A=O and A=l; and T=Tw at A=l. Eqµation (47) also 

implies that T=Ta at A=O, a condition which, if not strictly valid, has 

little effect upon the computation of the bulk temperature since u(A)+O as A+O 

(cf. Equation (44)). The expression for the bulk temperature, obtained by 

substituting Equations (45) and (47) into (44), is 

(48) 

where Tw* denotes the dimensionless wall temperature, Tw/Ta• Equation (48) 

is plotted in Figure 7 for values of a corresponding to Am= .7, .8, and .9. 
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Figure 6. Velocity and Temperature Distributions in Heated Emerging Air 
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We have also considered other forms of the velocity and temperature 

distributionst and these are depicted in Figures 6b and 6c. The corresponding 

expressions for the bulk temperature have been determined and the results are 

plotted in Figure 7. Equation (48) (Model A) ist howevert recommended and is 

used in the remainder of this study. 

4. An Alternative Formulation for the Convective Loss 

Having expressions for the rate of mass entrainment and the bulk tempera-

turet it is possible to calculate the convective loss directly from Equation 

(1) upon specifying certain parameters. It is found convenientt howevert to 

use an alternative formulation. 

By expressing the convective loss as 

Q = Qmax (rfl-) t max 

and then substituting Qmax from Equation (32) and the result 

_Q_ = m* 
Q "* max mmax 

we obtain 

(49) 

(50) 

(51) 

Equation (50) arises from the combination of Equations (1) 9 (37) and from the 

definition of m* (Equation (26)). From Equation (27)t 

-~* = fl 
mmax ynotmax 

(52) 

whence Equation (51) becomes 

(53) 
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- -------------------

The quantity no,max is defined such that (cf Eq. (27)): 

m* = max - no,max 
n T * n 1 - -=-~-T *-1 n 

(54) 

Physically, it represents an upper bound on the profile development parameter 

since any value of no_ greater than no,max corresponds to a convective 

energy loss greater than Qmax• Combining Equations (40) and (54) yields 

,max [ 
0.26 F ( As )~

2 
1 

= C f3/2(T *-1) L3/2w ln Tn* 
c b ap ap 1 - -T-*---1-n 

(55) 

Equation (53) is the alternative formulation sought. Its advantage is 

that all of the parameters requiring ad hoc specification are embodied in the 

ratio no/no,max• It can be verified that Equation (53) is identical to the 

result that would be obtained by substituting the expressions form and Tb 

directly into Equation (1). 

The convective loss from our 2.15-meter cavity as calculated by Equation 

(53) is plotted in Figure 8 as a function of the wall temperature ratio for 

various values of the ratio no/no,max• 

Summary and Conclusions 

We present a simple theory for predicting the convective energy loss and 

mass entrainment rate for side-facing cavity-type receivers in windless 

environments. The convective loss is expressed by Equation (53), and the mass 

entrainment rate by Equation (27). Although, at present, the lack of experi-

mental measurements makes it impossible to test the accuracy of this theory, 

it should be noted that similar theoretical approaches in the building sciences 

have been successful. 
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The chief drawback in implementing the theory is the need to specify a 

number of parameters, some of which are only tenuously known. These parame-

ters are 

f, the fraction of the aperture height occupied by the inflow; 

Cc, the contraction coefficient; 

Am, the dimensionless location of the velocity maximum above the 

neutral elevation (cf. Figure 6a); 

Tn*, the dimensionless temperature of the stagnant air alongside the 

vena contracta at the neutral elevation; and 

n0 , the dimensionless profile development distance for incoming air, 

y0/yn (cf. Figure 2c). 

Our recommendations for the specifications of these parameters and a sample 

calculation are given in the Appendix. 

A number of assumptions have been made in arriving at the final formalisms. 

The one that we regard as being crucial, however, is the presumption that the 

incoming velocity distribution is shaped, qualitatively, as depicted in Figure 

2a. 

The theory as presented here is strictly applicable to cavities whose 

apertures are rectangular and vertical. We judge it feasible to relax these 

restrictions within the framework of the building sciences approach. 

The greatest need in our view is the acquisition of experimental data to 

test the accuracy of this predictive theory. This need should be satisfied 

shortly with results from our 2.15 meter cubic cavity. 
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APPENDIX--ESTIMATION OF VALUES OF PARAMETERS 
NEEDED FOR COMPUTATIONS AND A SAMPLE CALCULATION 

We present here our recommendations for the specification of the parame-

ters needed to calculate the convective loss. Modifications of these recom-

mendations may be necessary as experimental and numerical data become available. 

f--The measurements of Shaw [2], Quintiere and DenBraven [3], and 

Steckler et al. [8] indicate values off that vary from 0.48 to 0.68. We 

recommend, tentatively, the approximate mid-point of this range, i.e., f = 

0.55. 

Cc--Following Streeter [9], we assume Cc= 0.6. This value corres-

ponds to the flow from an infinite reservoir through a finite opening. It 

also correlates some of the data of Brown and Solvason [1] and Shaw [2]. We 

point out, however, that the recent data of Steckler et al. [8] indicate a 

value of 0.7. 

Am--An examination of the available experimental and numerical data 

has revealed values of Am between~ 0.5 (Shaw [2]) and~ 0.9 (Humphrey, 

et al. [7]). The midpoint of this range, Am= 0.7, 1s tentatively reco111nended. 

Tn*--Information on Tn* must strictly come from three-dimensional 

numerical or experimental studies. Since no pertinent studies have been 

reported, our specification of Tn* is based on the fact that its role in the 

present theory is to fix the density of air in the stagnant column alongside 

the vena contracta. Accordingly we assume that 

1 
p = -2 (P + p ) • n w a (A.1) 
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Using the ideal gas law and the definition of the dimensionless temperature 

this leads to 

T * n 
2 =---1 T * + 1 

w 

n0--Suitable numerical or experimental data for this parameter are 

(A.2) 

also lacking, and therefore, our specification of n0 (=y0/yn) is based on a 

model which describes the development of the boundary layer between the 

neutral surface and the incoming air stream. In this model it is assumed that 

the incoming air stream accelerates toward the cavity aperture according to 

the relationship 

V(x) = v1xm (A.3) 

where x denotes the distance measured toward the cavity from the origin of the 

inflow; V(x) represents the free stream velocity outside the boundary layer; 

and v1 and mare constants. (Note that V(x) = Vap at x corresponding to the 

aperture plane.) The development of such a boundary layer is described by the 

Falkner-Skan equation (Schlichting [17, p. 150]) if the inflow in the neigh-

borhood of the neutral surface is laminar, and if no flow crosses the neutral 

surface. This model leads to the result that 

n = 0.011 L -3/5 [1 - lnT~]-1/5 
D ap T*-1 

n 
(A.4) 

by assuming that the exponent m=4 in Equation (A.3); and the virtual origin of 

the inflow is lo~ated at 0.3 Lap meters outside the cavity aperture. 

It should be noted that, having already specified the parameters f, Cc, 

Am, and Tn*, the selection of n0 is governed by the requirement that 

no ,max > no > no ,min • 

no,max is given by Equation (55) which is repeated here for convenience: 
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and n0 . is a 1 ower bound defined such that ,m,n 
l n T * 

"* .I 1 . n 
mmin = vno,min - T *-1 n 

(cf. Equation (27)}. By combining Equation (A.5) with the expression for 

m;in (Equation (41)), we have that 

1 
1 n T * n 1 - ------T *-1 n 

(55) 

(A.5) 

(A.6) 

To aid in the computations of no,max and no,min for the current specification 

of the parameters, we have plotted in Figure A.1 the function 

G a rCcf3/2~v-)2 I - _t n_,.........,T n_* L j T *-1 
n 

(A. 7} 

versus the temperature ratio Twila. With a numerical value for G n... ' u,max 
and n0 . can be readily determined from the relationships: ,m,n 

(A.8) 

We shall now calculate the convective loss, mass entrainment rate and 

characteristic inflow velocity for our 2.15-meter cubic cavity in order to 

illustrate the use of this theory. Equation (53} will be employed for the 

convective loss. For concreteness, we presume the temperature of the cavity 

surfaces to be uniform and at 800°K. 

Figure 4 gives F = 9.71 x 10-3 ml/2 

The geometrical parameter [As/(L!~2Wap}J 

Equation (A.8}. 
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and Figure A.1 gives G = 2.44 x 10-2 m. 

= 3.41 m-1/2 whence nn m = 0.019 using u, ax 
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The substitution of the foregoing numerical values and n0 = 0.010 

(from Equation (A.4)) into Equation {53) thus gives: 

QWap = 0.26 s:c2 x 9.71 x 10-3 m1/ 2 x 

2 2 1.21 3 X 5 X 2.15 m X 
m 

1.00 X 293°K X 

JJITD 
1:o19 

= 66 kw 

The dimensionless rate of mass entrainment as expressed by Equation (27) 

has the value 

m* = 10.010 

= 0.042 

ln 1.46 
.46 

and the corresponding dimensional rate of mass entrainment using the defini-

tion in Equation {26) is found to be 

ffi = 0.042 [1.21 X .6 X S:Cz X (.55 X 2.15 m)J/Z] 

- kg 
- 0•17 m-sec 

In these calculations, T~ is given by Equation (A.2). The characteristic 

inflow velocity, determined from Equation {25b), has the value 

V ap = 0.042 [·6 x s:cz x /.55 x 2. 15 m] = 0.12 s:c 
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) . 

The sensitivity of the foregoing calculation to the specification of the 

parameters has been assessed by increasing and then decreasing the parameters 

* f, Cc, Am, and Tn by 10% from their nominal values. The resultant calculated 

values of the convective energy loss are, respectively, 92 and 42 kw. As 

implied earlier, there are presently no data to judge the reasonableness of 

these limits. 
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