

10
11-87. J6 ①
55

I-29408

DR# 0138-04

BMI/ONWI-627

Influence of Variables on the Consolidation and Unconfined Compressive Strength of Crushed Salt

Technical Report

January 1987

**DO NOT MICROFILM
COVER**

**Tom W. Pfeifle
Paul E. Senseny
Kirby D. Mellegard
of
RE/SPEC Inc.**

prepared for

**Office of Nuclear Waste Isolation
Battelle Memorial Institute
505 King Avenue
Columbus, OH 43201-2693**

ONWI
Office of Nuclear Waste Isolation

**BATTELLE Project Management Division
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

BIBLIOGRAPHIC DATA

Pfeifle, Tom W., Paul E. Senseny, and Kirby D. Mellegard, 1987. *Influence of Variables on the Consolidation and Unconfined Compressive Strength of Crushed Salt*, BMI/ONWI-627, prepared by RE/SPEC Inc. for the Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, OH.

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

**DO NOT MICROFILM
COVER**

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

NTIS price codes
Printed copy: A05
Microfiche copy: A01

BMI/ONWI-627
Distribution Category UC-70

BMI/ONWI--627

DE87 005209

Influence of Variables on the Consolidation and Unconfined Compressive Strength of Crushed Salt

Technical Report

January 1987

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

**Tom W. Pfeifle
Paul E. Sensem
Kirby D. Mellegard
of
RE/SPEC Inc.**

prepared for

**Office of Nuclear Waste Isolation
Battelle Memorial Institute
505 King Avenue
Columbus, OH 43201-2693**

The content of this report was effective as of August 1984. This report was prepared by RE/SPEC Inc., Rapid City, SD, for Battelle Project Management Division, Office of Nuclear Waste Isolation, under Contract No. DE-AC02-83CH10140 with the U.S. Department of Energy.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

ABSTRACT

Eight hydrostatic compression creep tests were performed on crushed salt specimens fabricated from Avery Island dome salt. Following the creep test, each specimen was tested in unconfined compression. The experiments were performed to assess the influence of the following four variables on the consolidation and unconfined strength of crushed salt: grain size distribution, temperature, time, and moisture content. The experiment design comprised a half-fraction factorial matrix at two levels. The levels of each variable investigated were grain size distribution, uniform-graded and well-graded (coefficient of uniformity of 1 and 8); temperature 25°C and 100°C; time, 3.5×10^3 s and 950×10^3 s (approximately 60 minutes and 11 days, respectively); and moisture content, dry and wet (85 percent relative humidity for 24 hours). The hydrostatic creep stress was 10 MPa. The unconfined compression tests were performed at an axial strain rate of 1×10^{-5} s⁻¹. Results show that the variables time and moisture content have the greatest influence on creep consolidation, while grain size distribution and, to a somewhat lesser degree, temperature have the greatest influence on total consolidation. Time and moisture content and the confounded two-factor interactions between either grain size distribution and time or temperature and moisture content have the greatest influence on unconfined strength.

FOREWORD

The National Waste Terminal Storage program was established in 1976 by the U.S. Department of Energy's predecessor, the Energy Research and Development Administration. In September 1983, this program became the Civilian Radioactive Waste Management (CRWM) Program. Its purpose is to develop technology and provide facilities for safe, environmentally acceptable, permanent disposal of high-level waste (HLW). HLW includes wastes from both commercial and defense sources, such as spent (used) fuel from nuclear power reactors, accumulations of wastes from production of nuclear weapons, and solidified wastes from fuel reprocessing.

The information in this report pertains to the rock mechanics studies of the Salt Repository Project of the Office of Geologic Repositories in the CRWM Program.

TABLE OF CONTENTS

	<u>Page</u>
1 INTRODUCTION	1
1.1 BACKGROUND	1
1.2 APPROACH AND SCOPE	2
1.3 REPORT ORGANIZATION	5
2 SPECIMENS	6
2.1 SALT CRUSHING AND SIZING	6
2.2 SPECIMEN PREPARATION	6
2.3 POST-TEST DISPOSITION	12
3 TESTING	13
3.1 LOAD FRAMES	13
3.1.1 Consolidation Machines	13
3.1.2 MTS Universal Load Frame	15
3.2 INSTRUMENTATION	15
3.2.1 Consolidation Machines	15
3.2.2 MTS Universal Load Frame	17
3.3 CALIBRATION	17
3.4 CONTROL	17
3.4.1 Consolidation Machines	17
3.4.2 MTS Universal Load Frame	17
3.5 TEST PROCEDURES	19
3.5.1 Consolidation Tests	19
3.5.2 Unconfined Compression Tests	19
4 RESULTS	21
4.1 CONSOLIDATION TESTS	21
4.1.1 Quasi-Static Behavior	21
4.1.2 Creep	23
4.2 UNCONFINED COMPRESSION TESTS	27

5 ANALYSIS	28
5.1 DISCUSSION	28
5.2 BULK DENSITY RATIO FOR CREEP CONSOLIDATION	32
5.3 BULK DENSITY RATIO FOR TOTAL CONSOLIDATION	32
5.4 UNCONFINED COMPRESSIVE STRENGTH	32
6 CONCLUSIONS	37
7 REFERENCES	38
APPENDIX A - VOLUMETRIC STRAIN-VERSUS-MEAN STRESS DATA FOR AVERY ISLAND CRUSHED SALT DURING QUASI-STATIC LOADING . . .	39
APPENDIX B - VOLUMETRIC STRAIN-VERSUS-TIME DATA FOR AVERY ISLAND CRUSHED SALT DURING CONSOLIDATION (CREEP)	51

LIST OF TABLES

<u>Table</u>	<u>Title</u>	<u>Page</u>
1-1.	Variables and Their Levels in Current Experiment	3
1-2.	Test Matrix for Crushed Salt Experiment	3
2-1.	Sieve Stack and Grain Size Distributions for Crushed-Salt Experiment	7
2-2.	Summary of Initial Specimen Dimensions and Conditions	11
3-1.	Calibration Results	18
4-1.	Summary of Results for the Crushed Salt Experiment	22
5-1.	Sign Convention Used in the Current Study to Estimate the Variable Effects	29
5-2.	Alias Pattern for the 2_{IV}^{4-1} Experiment	31
5-3.	Estimate of Variable Effects on the Creep Consolidation Bulk Density Ratio	33
5-4.	Estimate of Variable Effects on the Total Consolidation Bulk Density Ratio	34
5-5.	Estimate of Variable Effects on Unconfined Strength	35

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>	<u>Page</u>
2-1.	Particle Size Distribution Curves for Crushed-Salt Experiment . . .	8
2-2.	Crushed-Salt Compaction Mold and Hammer	10
3-1.	Creep Test Machine Schematic	14
3-2.	MTS Universal Load Frame	16
4-1.	Volumetric Strain-Versus-Mean Stress for Avery Island Crushed Salt	24
4-2.	Volumetric Creep Strain for Avery Island Crushed Salt at the Low Level of the Variable, Time	25
4-3.	Volumetric Creep Strain for Avery Island Crushed Salt at the High Level of the Variable, Time	26

1 INTRODUCTION

1.1 BACKGROUND

Backfilling the emplacement rooms and access drifts of a deep geologic nuclear waste repository in rock salt with native mine-run ore (crushed salt) is an attractive option under consideration by repository designers. The perceived benefits of the backfilling are (1) haulage and spoiling of the mine-run ore will be reduced significantly; (2) repository permeability, at least locally, will be reduced if the backfill is consolidated significantly by creep deformations of the roof, floor, and rib of the room; and (3) pillar stresses will be reduced if some of the initial loads can be transferred to the backfill. If these benefits are proven, positive impacts on other phases of repository design may be realized. For instance, the long-term requirements of seals and plugs may be relaxed, and the closure of rooms by creep deformation may be reduced.

Assessment of the benefits of crushed-salt backfills requires a knowledge of the material properties and behavior. The material properties and behavior of interest are

- Deformation during loading (quasi-static)
- Deformation at constant load (creep)
- Permeability
- Strength.

The quasi-static and creep behavior is important in modeling the response of the backfill to stresses caused by creep deformation of the surrounding rock salt. Permeability and the decrease in permeability with consolidation and time are important to the overall sealing of the repository to limit radionuclide migration. Strength is important as it is an indicator of the relative ease with which the backfill can be mined should retrieval of the waste become necessary. The material properties and behavior can be determined from laboratory or field testing.

Several investigators [Hansen, 1976; Stinebaugh, 1979; Shor et al, 1981; and Holcomb and Hannum, 1982] have studied the behavior of crushed salt in laboratory experiments. A summary [IT Corporation, 1984] of these studies suggests that crushed-salt behavior is affected by several factors or variables, namely:

- Salt impurities
- Grain size
- Grain size distribution
- Initial porosity
- Moisture content
- Stress state
- Load path
- Temperature
- Time.

Most of the past studies examined the effects of only one or perhaps several of the variables on the behavior of crushed salt. The objectives of this study are to determine statistically the main effects of four of these variables and the interactions among these variables relevant to two material properties, consolidation and strength. As a result, successive test matrices can be designed to examine only those variables that significantly affect the behavior of crushed salt.

1.2 APPROACH AND SCOPE

A laboratory experiment was developed using a class of statistical designs commonly known as two-level factorial designs [Box et al, 1978]. In these designs, two levels for each of a number of variables are selected; then, tests are performed with all possible combinations of levels and variables to evaluate the relative effects on a response. In this study, the variables are those given above, and the responses are the ratio of postcreep consolidation bulk density to precreep consolidation bulk density, ρ_f/ρ_i ; the ratio of postcreep consolidation bulk density to the original undeformed bulk density, ρ_f/ρ_0 ; and the unconfined compressive strength, C_0 . (Permeability rather than the ratios of bulk densities was the response of interest; however, the measurement of permeability on trial specimens of consolidated crushed salt revealed such large permeabilities that the RE/SPEC permeability apparatus could not be used).

Because of the large number of tests required to include all nine variables in this design ($2^9 = 512$) and because of the limited time and money available, the full factorial design with nine variables was modified to a half-fraction design with four variables; i.e., time, grain size distribution, temperature,

and moisture content. The variables and their respective levels are shown in Table 1-1. As a result of this modification, only eight tests were required for the experiment and are shown in Table 1-2.

The variable levels shown in Table 1-1, with the obvious exception of time, were selected to bracket expected levels at a typical salt repository. The 25°C temperature level is representative of temperatures expected in access rooms and at long times; while the 100°C level was selected to represent expected peak backfill temperatures in disposal rooms. The well-graded grain size distribution represented the expected distribution of mined crushed salt with one exception: grains larger than 9.5 mm were removed to stay within acceptable grain size-to-specimen size criterion. The uniform distribution was included as an extreme contrast; however, if results of testing on this material prove favorable, the distribution may become representative of the backfill in future designs. Additionally, the distributions were selected to have identical mean grain sizes to eliminate mean grain size effects. The dry level of moisture content is nearly representative of mine-run ore from a potential repository. The wet level (approximately 3 to 4 percent) was selected as the highest moisture content considered acceptable in an operating repository. Since long times are not practical, a high level was chosen to meet test schedules. The low level was then set to provide a sufficient time difference between levels for valid statistical inference.

In each of the eight tests, a crushed-salt specimen constructed of either uniform-graded or well-graded grain sizes that had been either dried at 105°C or humidified (85 percent relative humidity at 26.5°C) for 24 hours was subjected to a hydrostatic compressive stress of 10 MPa and permitted to consolidate (creep). The consolidation stage was performed at temperatures of either 25°C or 100°C and lasted either 3.5×10^3 s or 950×10^3 s. Immediately after consolidation, an unconfined compression test was performed at a nominal strain rate of $1 \times 10^{-5}\text{s}^{-1}$ and a temperature of 20°C.

Mean values for each response (bulk density ratios and unconfined compressive strength) were determined. In addition, for each response the four main variable effects and three two-variable interactions were calculated. Results show that the mean values for the bulk density ratios (ρ_f/ρ_i and ρ_f/ρ_0) and unconfined compressive strength are 1.08, 1.27, and 9.0 MPa, respectively. The variables that significantly influence the bulk density ratio during creep are time and moisture content; while grain size distribution and, to a somewhat

Table 1-1. Variables and Their Levels in Current Experiment

Variable	Low Level	High Level
Temperature (°C)	25	100
Time ^(a) (10 ³ s)	3.5	950
Grain Size Distribution (Based on Coefficient of Uniformity, D_{60}/D_{10}) ^(b)	1	8
Moisture Content ^(c)	D	W

(a) After stress application.

(b) Ratio of diameters of grains for which 60 percent, D_{60} , and 10 percent, D_{10} , are smaller, respectively. See Table 2-1 and Figure 2-1 for actual size distribution.

(c) D-Dry, stored with desiccant; W-Wet, placed in an 85 percent relative humidity environment for 24 hours.

Table 1-2. Test Matrix for Crushed-Salt Experiment^(a)

Run	Temperature (°C)	Time (10 ³ s)	Grain Size Distribution (D_{60}/D_{10})	Moisture
1	100	950	8	W
2	25	950	8	D
3	100	3.5	8	D
4	25	3.5	8	W
5	100	950	1	D
6	25	950	1	W
7	100	3.5	1	W
8	25	3.5	1	D

(a) All tests performed at a hydrostatic stress of 10 MPa.

lesser degree, temperature have the greatest influence on the bulk density ratio for total consolidation. Strength is significantly influenced by time and moisture content and the two-factor interactions between either grain size distribution and time or temperature and moisture content.

1.3 REPORT ORGANIZATION

The remainder of the report is divided into five chapters and two appendixes. The next chapter describes the specimens used in this study, and the third chapter describes the test machines used and gives the test procedures. Test results are given in the fourth chapter, and the fifth chapter presents an analysis of the data. The sixth chapter gives the conclusions of this study and is followed by a list of cited references. Two appendixes conclude the report. Appendix A gives the volumetric strain-versus-mean stress curves for each of the eight hydrostatic stress applications. Appendix B gives the volumetric strain-versus-time curves for the consolidation stages of the eight tests.

2 SPECIMENS

2.1 SALT CRUSHING AND SIZING

The crushed salt for this experiment was fabricated by passing intact salt core fragments from the Avery Island Mine in Louisiana through a conventional flour mill. The mill, equipped with a set of adjustable grinding stones, permits a selection of aperture settings appropriate for the grain sizes required in the current study. After the salt was crushed, it was dried in a conventional oven at 105°C for 24 hours. To obtain grains of nominally equal size, the dried crushed salt was separated using a series of U.S. Standard Sieves. The sieves used in this procedure and their respective size of openings are given in Table 2-1. The uniform grains retained on each sieve were stored with a CaSO_4 desiccant in jars until sufficient quantities of all grain sizes were obtained.

Accurate ratios of each uniform grain size were blended to form two distributions: one, a well-graded (WG) distribution having a coefficient of uniformity*, C_u , of 8; and the second, an extremely uniform-graded (UG) distribution with $C_u = 1$. The grain size distribution for each blend is given in Table 2-1, and the curve is shown in Figure 2-1. Both distributions have an average grain size of 1 mm. The maximum and minimum sizes for the well-graded distribution are 9.5 mm and 0.075 mm, respectively, and for the uniform-graded distribution are 1.18 mm and 0.850 mm, respectively. Each distribution was stored with desiccant in jars until required for the experiment.

2.2 SPECIMEN PREPARATION

The specimens for each test were prepared identically in all cases. A portion of crushed salt was removed from a desiccator jar and accurately weighed (0.27 kg for the uniform-graded distribution and 0.36 kg for the well-graded distribution) with a Mettler P1200N balance having a resolution of 0.01 g. If the specimen required wetting, the crushed salt was placed in a shallow dish

* The coefficient of uniformity, C_u , is defined as the ratio of the grain diameter at the 60 percent passing point to that at the 10 percent passing point on the gradation curve, or $C_u = D_{60}/D_{10}$.

Table 2-1. Sieve Stack and Grain Size Distributions for Crushed-Salt Experiment

Sieve No. (a)	Sieve Size (mm)	Distribution - Percent Passing	
		Uniform Graded	Well Graded
3/8 in	9.500	-	100
5/16 in	8.000	-	98
3	6.300	-	96
4	4.750	-	91
5	4.000	-	87.5
6	3.350	-	84
7	2.800	-	80
8	2.360	-	75
10	2.000	-	70
12	1.700	-	65
14	1.400	-	60
16	1.180	100	54
18	1.000	50	50
20	0.850	0	44
30	0.600	-	34
40	0.425	-	26
60	0.250	-	15
140	0.106	-	3
200	0.075	-	0

(a) U.S. Standard Sieves conforming to American Society for Testing and Materials (ASTM) Specification E11.

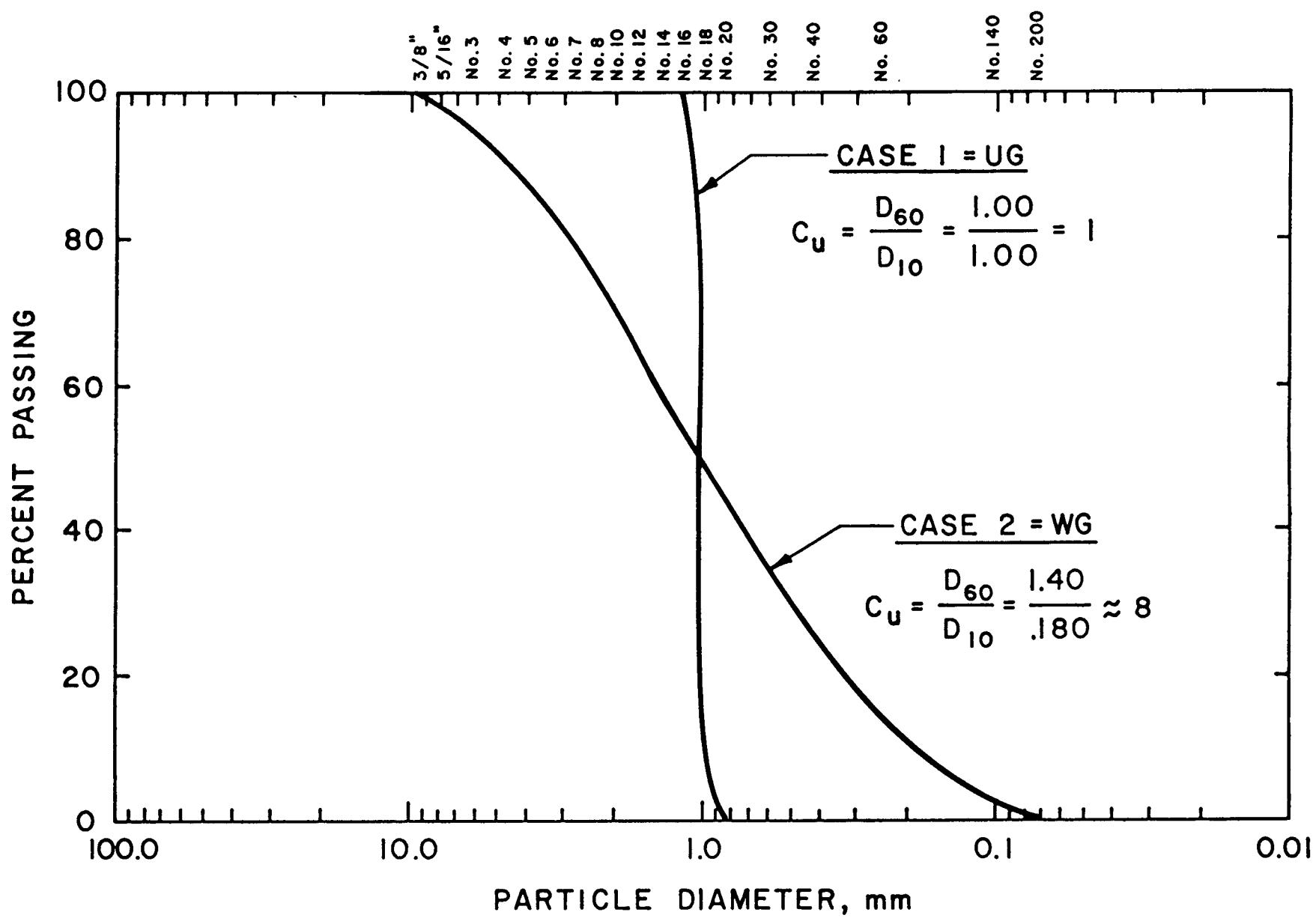


Figure 2-1. Particle Size Distribution Curves for Crushed-Salt Experiment

that was then placed in a humidity chamber for 24 hours at 85 percent relative humidity and 26.5°C. Upon removal from the chamber, the crushed salt was again weighed to determine the free moisture content. The moisture content of the wet salt was 3 to 4 percent by weight and does not include any water initially present either within crystals or on grain boundaries. The specimen was fabricated by compacting three equal layers of crushed salt in a Viton jacket and mold affixed to a steel load platen as shown in Figure 2-2. The compactive effort for each layer was $494 \text{ kJ} \cdot \text{m}^{-3}$ and was attained by 25 repetitions of a 0.9-kg hammer free-falling from a height of 0.15 m. (Various combinations of repetitions, hammer weight, and height were used on trial specimens to obtain the highest initial density possible without significant crushing of individual grains.) A steel load platen was placed on the top of the compacted specimen, and the Viton jacket was secured to this upper platen with lock wire.

The initial dimensions of each specimen were determined indirectly following compaction. The length was determined by measuring the total length of the specimen-platen assembly and subtracting the combined lengths of the platens. The diameter was determined by subtracting two thicknesses of the Viton jacket from the inside diameter of the mold. Nominal dimensions for all specimens were 50-mm diameters by 100-mm lengths. Each specimen was assigned an identification number and logged into the RE/SPEC computerized core inventory. A typical identification number is

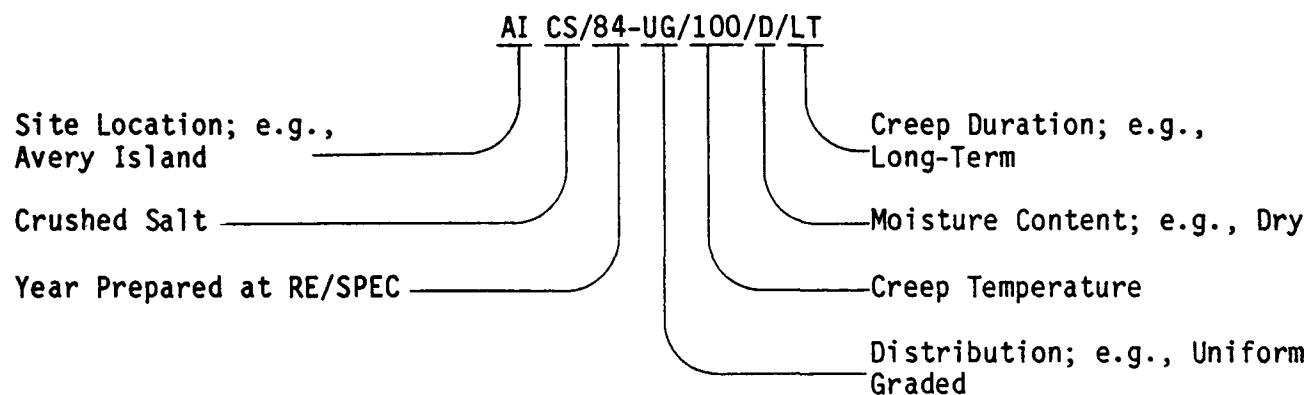


Table 2-2 summarizes the initial dimensions and conditions for each specimen.

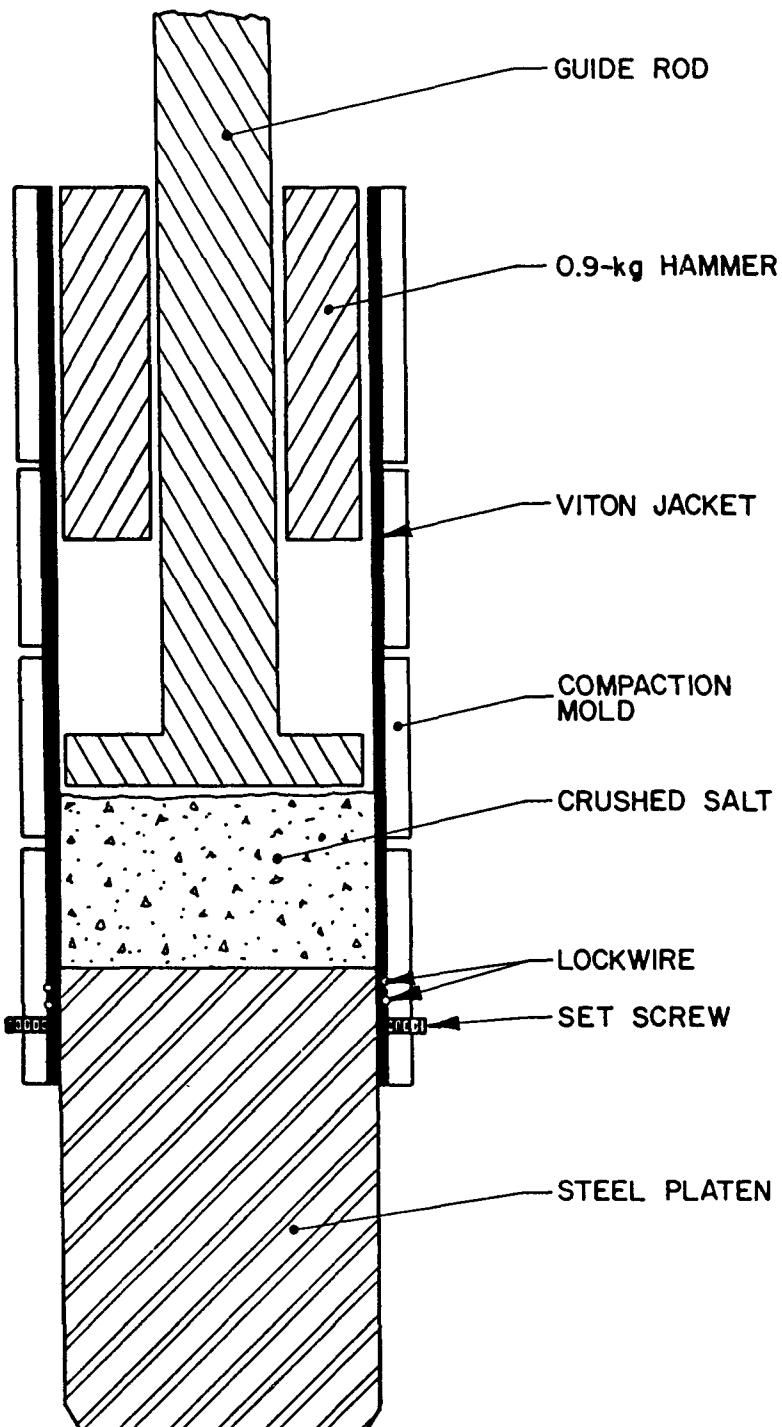


Figure 2-2. Crushed-Salt Compaction Mold and Hammer

Table 2-2. Summary of Initial Specimen Dimensions and Conditions

Specimen I.D.	Length (mm)	Diameter (mm)	Weight (kg)	Density Dry, ρ_0 (kg/m ³)	Porosity(a)	Moisture(b) Content (%)
AICS/84-WG/100/W/LT	109.6	51.2	0.36	1595	0.27	3.2
AICS/84-WG/25/D/LT	105.5	51.2	0.36	1660	0.24	-
AICS/84-WG/100/D/ST	107.9	51.2	0.36	1620	0.26	-
AICS/84-WG/25/W/ST	108.4	51.2	0.36	1615	0.26	3.3
AICS/84-UG/100/D/LT	100.0	51.2	0.27	1310	0.40	-
AICS/84-UG/25/W/LT	101.6	51.2	0.27	1290	0.41	4.3
AICS/84-UG/100/W/ST	104.4	51.2	0.27	1255	0.43	4.3
AICS/84-UG/25/D/ST	104.5	51.2	0.27	1255	0.43	-

(a) Assumes a theoretical salt density of 2190 kg/m³.

(b) Based on dry weight.

2.3 POST-TEST DISPOSITION

After each specimen has been tested, it is sealed in a plastic bag with an identification tag and stored in the RE/SPEC core facilities. An inventory record of specimens is also kept in the RE/SPEC offices.

3 TESTING

The hydrostatic consolidation tests were conducted using two triaxial machines. The machines were designed and constructed by Dr. W. R. Wawersik of Sandia National Laboratories. These machines have been described in a previous publication [Hansen and Mellegard, 1980] and have the distinctive capability of measuring volumetric changes during a hydrostatic consolidation creep test. The unconfined compression tests were conducted using a computer-controlled, universal load frame designed by MTS Systems Corporation.

3.1 LOAD FRAMES

3.1.1 Consolidation Machines

Figure 3-1 presents a cross section of a typical load frame for hydrostatic consolidation creep testing with prominent components labeled for reference. The machines use a double-ended, triaxial pressure vessel that accommodates a 50-mm-diameter cylindrical specimen having a length-to-diameter ratio of $L:D = 2$. A hydraulic cylinder bolted on the load frame drives the loading piston, which applies axial compressive force to the specimen. Confining pressure is applied to the jacketed specimen by pressurizing the sealed vessel chamber with silicone oil. A dilatometer system maintains constant confining pressure and provides volumetric measurements.

The two testing machines can apply confining pressures up to 70 MPa. One machine can apply a compressive axial load up to 270 kN, while the other has a greater axial load capability and can apply a load up to 530 kN. The heating system, including seals on the pressure vessel, can maintain specimen temperatures up to 200°C.

The test frame and control panel house the accumulators, hydraulic pumps, pressure intensifiers, temperature controllers, and confining pressure controllers for both test frames. The panels contain digital meters that display the output of the transducers. The temperature controller gives a digital output of the temperature. Mechanical pressure gages give readings of the nitrogen pressure in the accumulator and the oil pressure in the hydraulic cylinder.

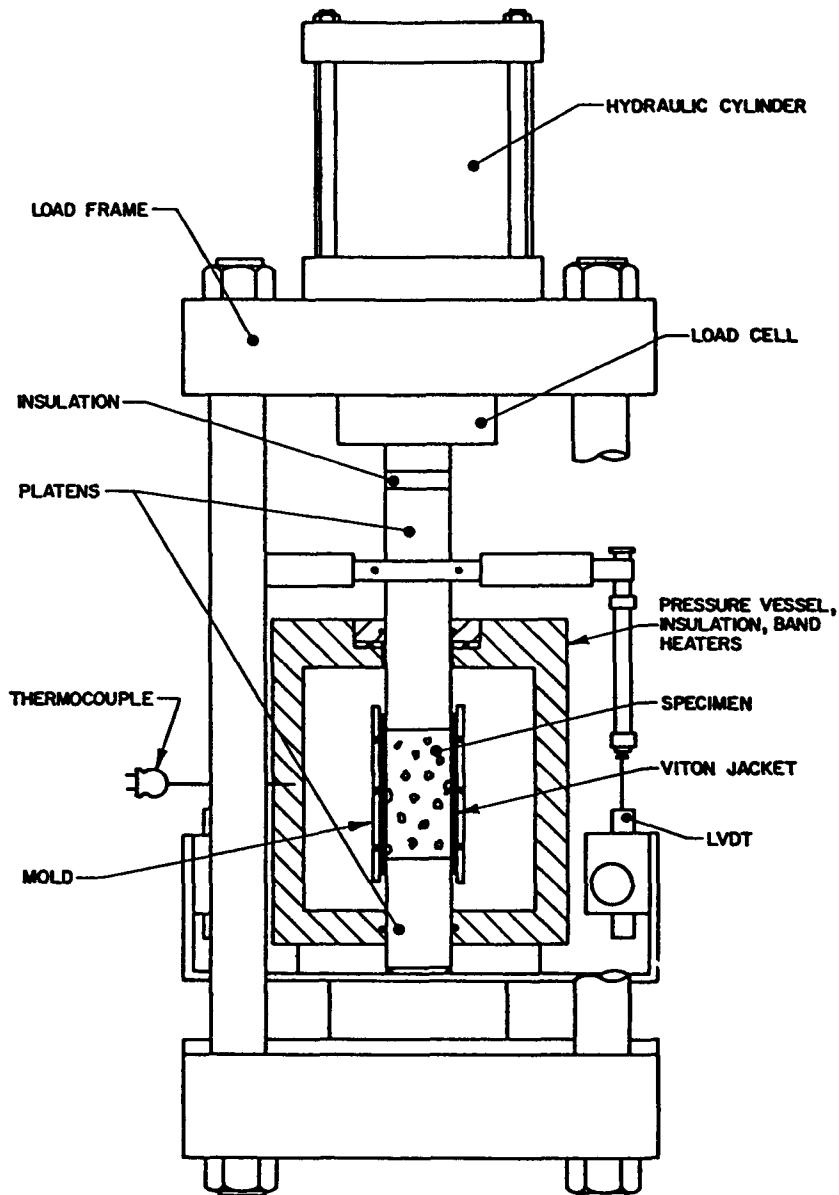


Figure 3-1. Creep Test Machine Schematic

3.1.2 MTS Universal Load Frame

Figure 3-2 presents the characteristic two-post design of the MTS universal load frame. A hydraulic cylinder located in the base of the machine can apply 500 kN of force (tensile/compressive) to a specimen. The movable crosshead allows for a wide range of specimen lengths.

The machine is completely servocontrolled. A Digital Equipment Corporation (DEC) LSI-11/23 microcomputer (programmable in BASIC) provides closed loop test control in either load or displacement feedback mode.

3.2 INSTRUMENTATION

3.2.1 Consolidation Machines

Axial force is measured by a load cell in the load train outside the pressure vessel, while confining pressure is measured by a pressure transducer in the line between the intensifier and the pressure vessel. Temperature is measured by a thermocouple in the wall of the pressure vessel. The relationship between specimen temperature and that recorded by this thermocouple has been determined by calibration runs at several temperatures that span the operating range. Axial deformation in the specimen is measured by two Linear Variable Differential Transformers (LVDTs) mounted outside the pressure vessel. They monitor displacement of the loading piston relative to the bottom of the pressure vessel. Lateral deformation is measured using a dilatometer. With this technique, lateral deformation is determined at fixed pressure by measuring the volume of oil that the intensifier replaces in the pressure vessel, and then compensating for the axial deformation measured by the LVDTs. A rotary potentiometer is mounted on the intensifier shaft to provide a signal that is proportional to the volume of oil that is replaced in the pressure vessel.

Data collected consist of axial force, confining pressure, axial displacement, volumetric displacement, and temperature. A COMTEL Corporation DATAC 600 System and a Data General Corporation NOVA 2 minicomputer provide control for logging data and converting transducer signals to engineering units.

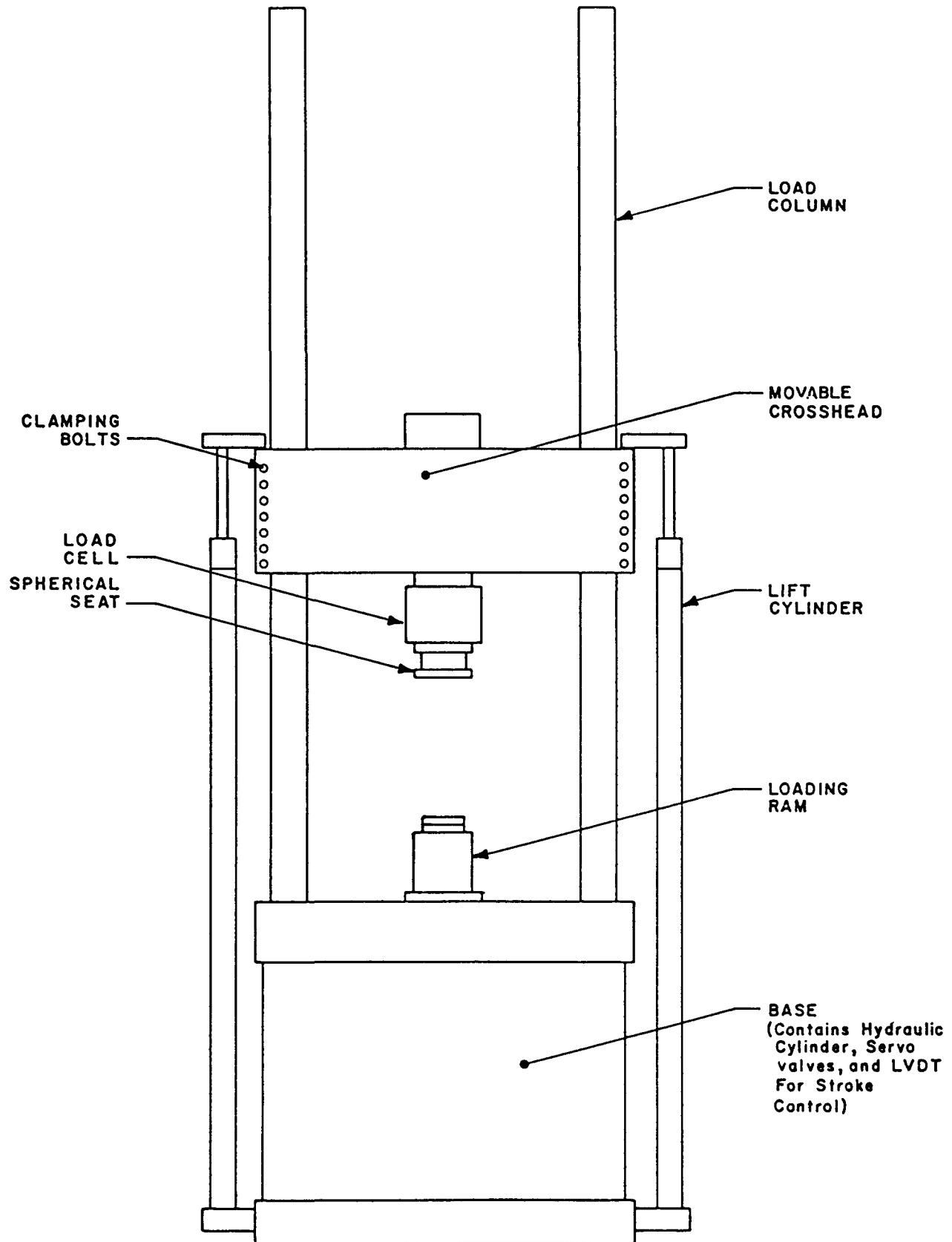


Figure 3-2. MTS Universal Load Frame

3.2.2 MTS Universal Load Frame

Only axial force was measured in the unconfined compression tests and is measured by a load cell equipped with a spherical seat. A control console houses the signal conditioning for the transducer and interfaces with a DEC LSI-11/23 microcomputer to provide data acquisition.

3.3 CALIBRATION

The transducers used to collect data are calibrated using standards traceable to the National Bureau of Standards. Table 3-1 summarizes the results of the calibration.

3.4 CONTROL

3.4.1 Consolidation Machines

Temperature is controlled with a controller having a manual set point that regulates power to the band heaters on the vessel. The thermocouple in the pressure vessel wall supplies the feedback signal. The specimen temperature is maintained constant within 0.2°C. Confining pressure is controlled by inputting the pressure transducer signal to a unit that contains two manual set points. These set points are adjusted to maintain the confining pressure constant within 20 kPa. When a set point is reached, the controller signals the intensifier to advance or retreat, depending upon whether the lower or upper set point has been reached. Axial load is controlled manually by metering gas into or out of a nitrogen-charged bladder accumulator. The deadband on load is 1.0 kN, and for 50-mm-diameter specimens, gives a deadband on axial stress of 0.50 MPa.

3.4.2 MTS Universal Load Frame

The unconfined compression tests require only the control of the axial strain rate. Programmable control of the strain rate is provided by an LVDT mounted in the load actuator at the base of the load frame, a control console housing feedback and valve driver modules for the hydraulics, and a DEC LSI-11/23 microcomputer.

Table 3-1. Calibration Results

Measurement	Range	Accuracy	Resolution
CONSOLIDATION MACHINES			
Axial Strain (Percent)	0-25	0.125	0.0025
Lateral Strain (Percent)	0- 5	0.01 ^(a)	0.0004 ^(a)
Axial Load (kN)			
Machine 1	0-530	0.75	0.05
Machine 2	0-270	0.95	0.03
Confining Pressure (MPa)	0- 70	0.04	0.007
Temperature (°C)	25-200	2.0 ^(b)	0.02
MTS UNIVERSAL LOAD FRAME			
Axial Load (kN)	0- 50	0.05	0.01 ^(c)

(a) Accuracy and resolution determined at zero strain.

(b) Manufacturer's specified accuracy.

(c) 14-bit analog-to-digital converter with one bit to denote sign.

3.5 TEST PROCEDURES

3.5.1 Consolidation Tests

Consolidation tests are performed in two stages. In the first stage, hydrostatic stress is applied quasi-statically until the target stress is reached. This is followed by the second stage, the creep stage, in which consolidation occurs with time. The discussion below describes the procedure for both stages.

Jacketed specimens of crushed salt are placed in a pressure vessel that is subsequently filled with silicone oil. The vessel is sealed and placed in a load frame. The specimen is heated to the target temperature and allowed to stabilize for 12 hours. Following stabilization, a hydrostatic stress is applied by the operator. Since the vessel design features axial and confining pressure hydraulics that are decoupled, the hydrostatic stress application is performed quasi-statically by increasing the confining pressure while simultaneously applying an axial force. Pressure increments of 0.5 MPa are used to prevent large deviatoric stresses. The stress application stage requires about 20 minutes to complete, resulting in a nominal load rate of $1 \times 10^{-2} \text{ MPa} \cdot \text{s}^{-1}$. When the target hydrostatic creep stress of 10 MPa is reached, the dilatometer servosystem is actuated to maintain constant confining pressure. Axial load is maintained during the creep stage with a nitrogen-charged accumulator. Adjustment of the load is made periodically by the operator by either adding nitrogen to or venting nitrogen from the accumulator. During the test, data are logged according to one of two criteria. First, if the specimen length changes by a prescribed amount since the last data were logged, data are logged again. If, however, the specimen length changes by less than the prescribed amount over a time selected by the operator, data are logged at the end of this time period. When the desired creep duration is reached, the hydrostatic stress is removed in decrements of 0.5 MPa at a rate of $1 \times 10^{-2} \text{ MPa} \cdot \text{s}^{-1}$.

3.5.2 Unconfined Compression Tests

Each consolidated specimen is placed in the MTS universal load frame immediately after removal from the pressure vessel. In load control, a small pre-load is applied to the specimen. The control program is initiated by the

operator and requires input of the specimen dimensions. Control is then switched to the stroke transducer (LVDT), and the specimen is loaded at a nominal axial strain rate of $1 \times 10^{-5}\text{s}^{-1}$ to failure. The computer identifies failure as a 10 percent decrease in load below the peak load carried by the specimen. Control is switched back to the load cell, and the specimen is quickly unloaded. The unconfined compressive strength is calculated from the post-consolidation specimen dimensions and the peak load and is printed at the control terminal.

4 RESULTS

4.1 CONSOLIDATION TESTS

4.1.1 Quasi-Static Behavior

The quasi-static volumetric strain data are used to determine the initial density of each specimen before creep consolidation occurs by

$$\rho_i = \frac{\rho_0}{1 - \epsilon_v} \quad (4-1)$$

where ρ_i and ρ_0 are the initial density before creep and the original undeformed specimen density (Table 2-2), respectively, and ϵ_v is the volumetric strain that occurred during quasi-static application of the hydrostatic load. Table 4-1 gives the original density and initial density for each specimen as calculated from Equation 4-1. The volumetric strain, ϵ_v , can be related to the principal engineering strains, ϵ_1 and ϵ_2 , by

$$\epsilon_v = \epsilon_1 + 2\epsilon_2 + \epsilon_1\epsilon_2^2 - 2\epsilon_1\epsilon_2 - \epsilon_2^2 \quad (4-2)$$

Equation 4-2 assumes that $\epsilon_2 = \epsilon_3$ (true for traditional triaxial test equipment) and includes second and third order terms important in large-strain determination. For true hydrostatic loading assuming material isotropy, $\epsilon_1 = \epsilon_2 = \epsilon_3$. Thus, Equation 4-2 can be rewritten as

$$\epsilon_v = 3\epsilon_1 + \epsilon_1^3 - 3\epsilon_1^2 \quad (4-3)$$

and only ϵ_1 (i.e., the axial strain which is equal to the change in specimen length, ΔL , divided by the original specimen length, L_0) needs to be measured. The isotropy assumption will be discussed in the next section.

Plots of quasi-static volumetric strain as calculated from Equation 4-3 versus mean stress for each test are given in Appendix A. Mean stress is calculated simply by

Table 4-1. Summary of Results for the Crushed-Salt Experiment

Specimen I.D.	Specimen Density Original, ρ_0 (kg/m ³)	Specimen Density Prior to Creep, ρ_i (kg/m ³)	Specimen Density After Creep, ρ_f (kg/m ³)	ρ_f / ρ_i	ρ_f / ρ_0	Unconfined Compressive Strength, C_0 (MPa)
AICS/84-WG/100/W/LT	1595	1800	2085	1.16	1.31	30.1
AICS/84-WG/25/D/LT	1660	1785	1820	1.02	1.10	7.9
AICS/84-WG/100/D/ST	1620	1820	1850	1.02	1.14	0.0
AICS/84-WG/25/W/ST	1615	1790	1845	1.03	1.14	2.0
AICS/84-UG/100/D/LT	1310	1695	1940	1.14	1.48	8.3
AICS/84-UG/25/W/LT	1290	1525	1775	1.16	1.38	9.9
AICS/84-UG/100/W/ST	1255	1620	1765	1.09	1.41	8.2
AICS/84-UG/25/D/ST	1255	1490	1520	1.02	1.21	5.3

$$\sigma_m = \frac{\sigma_1 + 2\sigma_2}{3} \quad (4-4)$$

where σ_1 and σ_2 are the axial stress and confining pressure, respectively. For comparative purposes, the volumetric strain-versus-mean stress curves are plotted in Figure 4-1. It is apparent, at least qualitatively, that larger volumetric strains occur at the high level of temperature (i.e., 100°C) and at the low level of grain size distribution (i.e., $C_u = 1$).

4.1.2 Creep

During the creep stage, the lateral strain, ϵ_2 , is determined directly from volume measurements of oil replaced in the vessel by

$$\epsilon_2 = 1 - \sqrt{1 - \frac{1}{(L_i - \Delta L)D_i^2} \left\{ \frac{4\Delta V}{\pi} + \Delta L (D_p^2 - D_i^2) \right\}} \quad (4-5)$$

where

ϵ_2 = Lateral engineering strain, $\Delta D/D_i$

L_i , D_i = Initial specimen length and diameter before creep

ΔL = Change in specimen length

ΔV = Volume of oil replaced in the vessel corrected for temperature

D_p = Diameter of the loading platen

The validity of the isotropy assumption in the previous section can be checked by comparing the volumetric strains as calculated using Equation 4-3 and those calculated using Equation 4-2. If the assumption is correct, both equations should yield identical volumetric strains. Appendix B gives plots of volumetric creep strain using both equations for each of the eight tests. In general, the agreement between the two equations is good, thereby validating the assumption of isotropy.

Figures 4-2 and 4-3 give plots of volumetric creep strain (Equation 4-2) for the short- and long-term tests, respectively. The main effects of the



Figure 4-1. Volumetric Strain-Versus-Mean Stress for Avery Island Crushed Salt

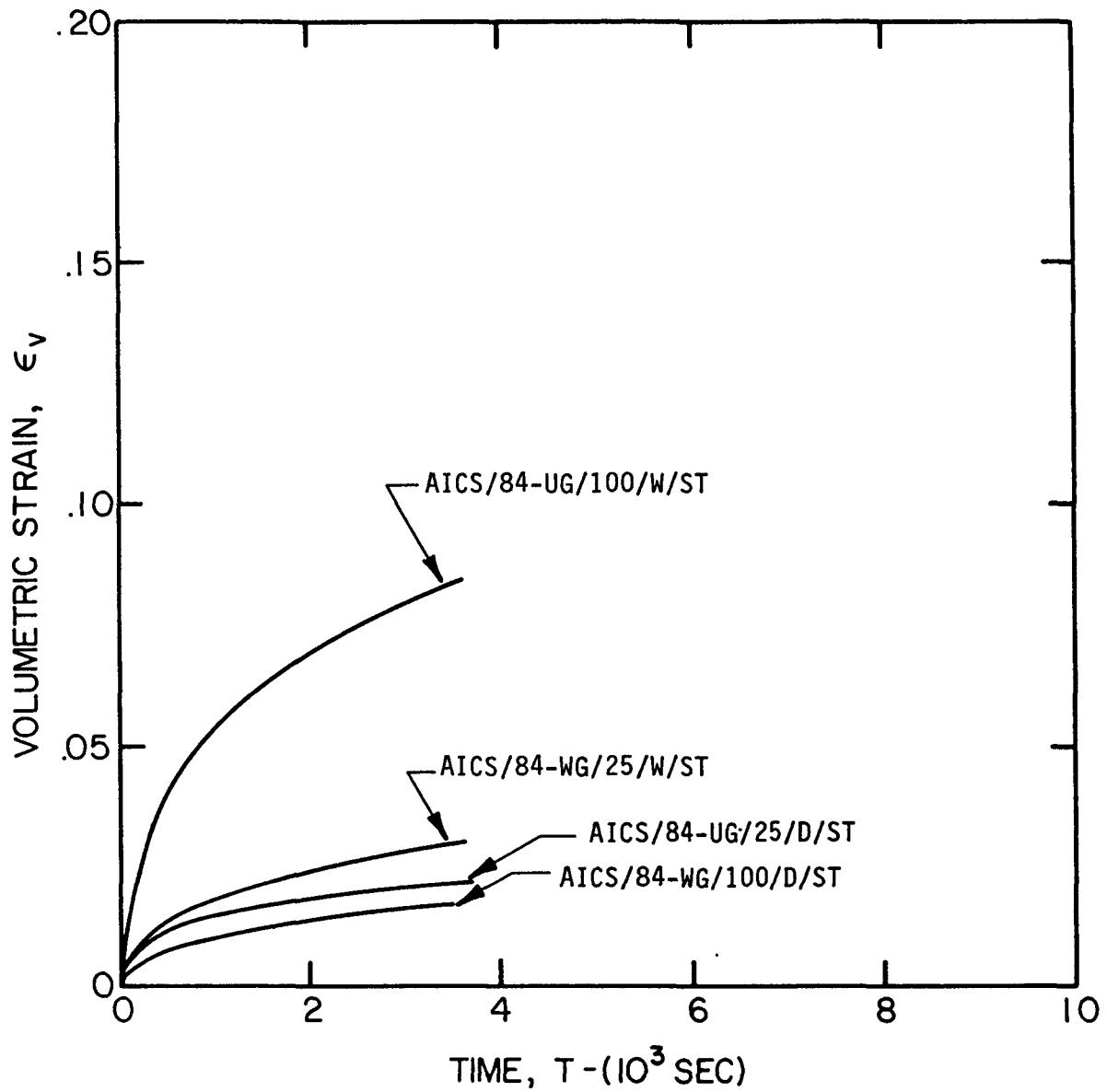


Figure 4-2. Volumetric Creep Strain for Avery Island Crushed Salt at the Low Level of the Variable, Time

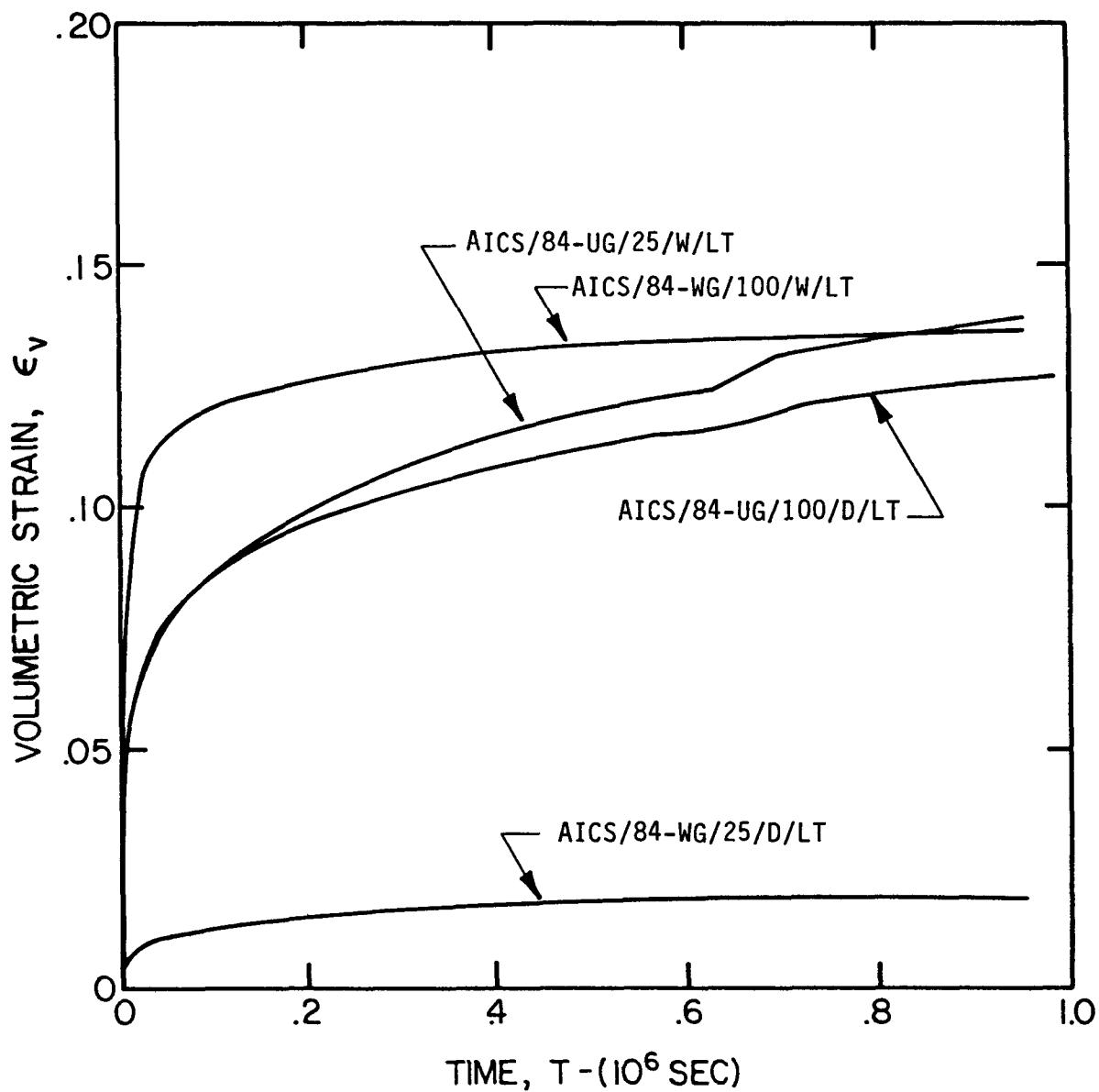


Figure 4-3. Volumetric Creep Strain for Avery Island Crushed Salt at the High Level of the Variable, Time

variables are not as clear as before, and variable interactions are probably more important. The density, ρ_f , is determined after the creep stage using Equations 4-1 and 4-2 and substituting ρ_f for ρ_i , ρ_i for ρ_0 , and the volumetric creep strain for ϵ_v . The final density for each specimen and the ratios ρ_f/ρ_i and ρ_f/ρ_0 are given in Table 4-1. These final densities agree well with density measurements made after the specimens are removed from the pressure vessel. It should also be noted from Table 4-1 and the appendixes that most of the consolidation occurs during the application of hydrostatic load.

4.2 UNCONFINED COMPRESSION TESTS

The results of the unconfined compression tests are also given in Table 4-1. The values of C_0 are based on the dimensions of the specimen after consolidation and are not corrected for shape change during the unconfined test. All values are below 10 MPa with the exception of one value (30.1 MPa) determined for the wet, well-graded specimen consolidated at 100°C, long term. This value is higher than the average value (23.1 MPa) reported by Hansen and Mellegard [1980] for intact Avery Island salt.

5 ANALYSIS

5.1 DISCUSSION

The number of runs required by a full factorial design at two levels increases geometrically with the number of variables or factors to be studied. For instance, if the influence of nine variables is to be assessed, as is the case for crushed salt, $2^9 = 512$ runs or tests would be required. From these runs, 512 statistics could be calculated which estimate main effects, as well as interaction effects. In an effort to save both time and money and because full factorial designs tend to be inherently redundant, a half-fraction factorial design approach [Box et al, 1978] considering only four variables; i.e., grain size distribution, temperature, time, and moisture content, was used to analyze the results presented in the previous section. Although no information is obtained for the other five variables (i.e., impurities, grain size, initial porosity, stress state, and load path), any of these variables can be added at a later time without affecting the design or analysis. In addition, if variables currently under study have no distinguishable effect, they can be deleted in subsequent experiments.

A half-fraction for four variables requires eight runs or tests. The eight runs are chosen by writing a full factorial design for the first three variables (in this case, grain size distribution, temperature, and moisture content) using minus and plus signs to denote the low and high levels of each variable, respectively. Table 5-1 shows the signs for the first three variables in Columns 1 through 3. The level of the remaining variable, time, is selected for each run by determining the sign of the algebraic product of the signs in the first three columns in Table 5-1. For instance in run one, the sign of the algebraic product is positive; i.e., $(+) = (+) \times (+) \times (+)$, and thus, the high level (950×10^3 s) for the variable, time, is required for run one. Column 4 gives the signs for the remaining runs.

The half fraction can also be designated by 2_{IV}^{4-1} : the notation implies that four variables at two levels are considered, but that only $2^{4-1} = 8$ runs are employed. The subscript IV gives the resolution of the design and indicates the confounding pattern. Confounding occurs when all the runs of a full factorial are not performed. To define the confounding pattern, Table 5-1 is used and three-factor and higher order interactions are assumed to be negligible. Product columns of plus and minus signs are determined for each

Table 5-1. Sign Convention Used in the Current Study to Estimate the Variable Effects

Run	Design Variable				Variable Interactions			Response		
	Grain Size Distribution (1)	Temperature (2)	Moisture Content (3)	Time (4)	$1 \times 2 =$ 3×4 (5)	$1 \times 3 =$ 2×4 (6)	$1 \times 4 =$ 2×3 (7)	ρ_f / ρ_i (8)	ρ_f / ρ_0 (9)	C_0 (MPa) (10)
1	+	+	+	+	+	+	+	1.16	1.31	30.1
2	+	-	-	+	-	-	+	1.02	1.10	7.9
3	+	+	-	-	+	-	-	1.02	1.14	0.0
4	+	-	+	-	-	+	-	1.03	1.14	2.0
5	-	+	-	+	-	+	-	1.14	1.48	8.3
6	-	-	+	+	+	-	-	1.16	1.38	9.9
7	-	+	+	-	-	-	+	1.09	1.41	8.2
8	-	-	-	-	+	+	+	1.02	1.21	5.3

two-factor interaction by multiplication of the individual elements of the columns for the two factors (variables) to be studied. For example, the signs in Column 5; i.e., the interaction between grain size distribution and temperature, are determined by multiplying the elements in Columns 1 and 2. If this is done for all interactions, one sees that the sign sequence in the product columns for 1 x 2 is equal to 3 x 4, 1 x 3 is equal to 2 x 4, and 1 x 4 is equal to 2 x 3. This means these interaction effects are confounded or are alias of one another. If one of these interactions, such as the interaction between grain size distribution and temperature, is found to be important, then the only conclusion one can reach is that either the interaction between grain size distribution and temperature or the interaction between moisture content and time has influence on the response. Thus, the interactions must be considered together and not separately. Table 5-2 shows the alias pattern for the two-factor interactions of this study. In general for a design of resolution IV, main effects and two-factor interactions are not confounded; but two-factor interactions are confounded with other two-factor interactions.

Eight statistics can be calculated for each response measured in the experiment. The statistics are

- One mean
- Four main effects
- Three two-factor interactions.

The mean response is calculated by summing the values in Columns 8, 9, and 10, respectively, and dividing by the number of runs; i.e., eight. The main effects and the two-factor interactions are calculated by algebraically summing the values in Columns 8, 9, and 10, respectively, using the signs in the product Columns 1 through 7 and dividing by the number of runs divided by two; i.e., four. For example, the main effect of grain size distribution on the creep consolidation bulk density ratio, ρ_f/ρ_i , is -0.045 and is calculated from

$$-0.045 = \frac{(+ 1.16 + 1.02 + 1.02 + 1.03 - 1.14 - 1.16 - 1.09 - 1.02)}{4} \quad (5-1)$$

The statistics for each response are presented below.

Table 5-2. Alias Pattern for the 2^{4-1}_{IV} Experiment

Two-Factor Interaction	Alias
Grain Size Distribution x Temperature	Moisture Content x Time
Grain Size Distribution x Moisture Content	Temperature x Time
Grain Size Distribution x Time	Temperature x Moisture Content

5.2 BULK DENSITY RATIO FOR CREEP CONSOLIDATION

The influence of the four variables on the creep consolidation bulk density ratio, ρ_f/ρ_j , is shown in Table 5-3 in terms of the eight statistics. The relative magnitude and not the sign or absolute magnitude is important. The effect of the variable, time, is the most important and is about twice that of either grain size distribution or temperature. Moisture content does have some influence on the consolidation but not quite as much as time. All two-factor interaction effects are only one-fourth to one-third the main effects and as such are insignificant. It is not surprising that the consolidation is influenced by time, since consolidation (or creep) implies time dependence. It should be noted, however, that factorial designs assume linearity between levels. A review of the plots in Appendix B suggests that the volumetric creep strain is not linear. If the levels of time are changed, time may lose its relative influence on consolidation. The relatively insignificant influence of temperature has been documented by others [Hansen, 1976; Holcomb and Hannum, 1982].

5.3 BULK DENSITY RATIO FOR TOTAL CONSOLIDATION

Table 5-4 gives the relative influence of the four variables on the total consolidation bulk density ratio, ρ_f/ρ_0 . Grain size distribution and temperature, to a somewhat lesser degree, are the variables with the greatest influence on ρ_f/ρ_0 . This result was seen, at least qualitatively, in Figure 4-1. The relatively large influence of grain size distribution is plausible since the uniform-graded distribution starts at a much lower density initially and, therefore, has the potential for greater change in density. This response and the variables that affect it are pertinent to permeability, since they include all consolidation. It is interesting to note the change in the relative importance of the variables when comparing the creep consolidation with the total consolidation. Grain size distribution and temperature are less influential during creep.

5.4 UNCONFINED COMPRESSIVE STRENGTH

Table 5-5 gives the relative influence of the four variables on the unconfined compressive strength in terms of the eight statistics. As with creep,

Table 5-3. Estimate^(a) of Variable Effects on the Creep Consolidation Bulk Density Ratio

Statistic	Estimate
Mean	1.080
Main Effects	
Grain Size Distribution	-0.045
Temperature	0.045
Moisture Content	0.060
Time	0.080
Interactions	
Grain Size Distribution x Temperature (Moisture Content x Time)	0.020
Grain Size Distribution x Moisture Content (Temperature x Time)	0.015
Grain Size Distribution x Time (Temperature x Moisture Content)	-0.015

(a) Based on 2^{4-1}_{IV} .

Table 5-4. Estimate^(a) of Variable Effects on the Total Consolidation Bulk Density Ratio

Statistic	Estimate
Mean	1.2700
Main Effects	
Grain Size Distribution	-0.1975
Temperature	0.1275
Moisture Content	0.0775
Time	0.0925
Interactions	
Grain Size Distribution x Temperature (Moisture Content x Time)	-0.0225
Grain Size Distribution x Moisture Content (Temperature x Time)	0.0275
Grain Size Distribution x Time (Temperature x Moisture Content)	-0.0275

(a) Based on 2^{4-1}_{IV} .

Table 5-5. Estimate^(a) of Variable Effects on Unconfined Strength

Statistic	Estimate
Mean	9.0 MPa
Main Effects	
Grain Size Distribution	2.1
Temperature	5.4
Moisture Content	7.2
Time	10.2
Interactions	
Grain Size Distribution x Temperature (Moisture Content x Time)	4.7
Grain Size Distribution x Moisture Content (Temperature x Time)	4.9
Grain Size Distribution x Time (Temperature x Moisture Content)	7.8

(a) Based on 2_{IV}^{4-1} .

time and moisture content have the greater influence; however, the two-factor interactions between either grain size distribution and time or temperature and moisture content (from Table 5-2 alias pattern) are also of relatively large importance. In fact, each two-factor interaction is more important or as important as the main effects of grain size distribution and temperature.

6 CONCLUSIONS

An experiment has been performed on crushed salt from Avery Island, Louisiana, to assess the influence of four variables on the consolidation and unconfined compressive strength of crushed salt. The four variables studied were grain size distribution, temperature, time, and moisture content. A matrix of eight tests was designed using a half-fraction factorial at two levels. The two levels for each variable were grain size distribution, $C_u = .1$ and 8; temperature, 25°C and 100°C ; time, $3.5 \times 10^3\text{s}$ and $950 \times 10^3\text{s}$; and moisture content, dry and wet (85 percent relative humidity at 26.5°C for 24 hours).

An analysis of the results shows that time, and to a somewhat lesser degree, moisture content have the largest influence on the creep consolidation bulk density ratio. Grain size distribution and temperature have the largest influence on the bulk density ratio during the total consolidation. Time and moisture content have the largest influence on the unconfined compressive strength; and in addition, the two-factor interactions between either grain size distribution and time or temperature and moisture content have a relatively significant effect.

The results obtained from this study should be considered when future experimental crushed salt matrices are designed. The confounded effects between grain size distribution and time and temperature and moisture content should be resolved for the unconfined compressive strength. The confounded effects could be eliminated by either performing the remaining eight runs for a full factorial design or choosing a smaller number of additional runs that when performed resolve the ambiguity. Future studies should retain the four current variables and incorporate new variables to determine their relative significance. Additionally, future experiments should include replication so that data variability can be estimated. Model building can begin when significant variables are identified and should reflect other levels of these variables.

7 REFERENCES

Box, G. E. P., W. G. Hunter, and J. S. Hunter, 1978. Statistics for Experiments, John Wiley & Sons, New York, NY.

Hansen, F. D., 1976. Experimental Consolidation of Granulated Rock Salt With Application to Sleeve Buckling, ORNL-SUB-4269-21, prepared by RE/SPEC Inc. for Oak Ridge National Laboratory, Union Carbide Corporation - Nuclear Division, Oak Ridge, TN.

Hansen, F. D., and K. D. Mellegard, 1980. Creep of 50-mm Diameter Specimens of Dome Salt From Avery Island, Louisiana, ONWI-104, prepared by RE/SPEC Inc. for Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, OH.

Holcomb, D. J., and D. W. Hannum, 1982. Consolidation of Crushed Salt Backfill Under Conditions Appropriate to the WIPP Facility, SAND82-0630, prepared for U.S. Department of Energy by Sandia National Laboratories, Albuquerque, NM.

IT Corporation, 1984. Assessment of Crushed Salt Consolidation and Fracture Healing Processes in a Nuclear Waste Repository in Salt, BMI/ONWI-546, prepared for Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, OH.

Shor, A. J., C. F. Baes, Jr., and C. M. Canonico, 1981. Consolidation and Permeability of Salt in Brine, ORNL-5774, prepared for U.S. Department of Energy by Oak Ridge National Laboratory, Union Carbide Corporation, Oak Ridge, TN.

Stinebaugh, R. E., 1979. Compressibility of Granulated Rock Salt, SAND79-1119, prepared for U.S. Department of Energy by Sandia National Laboratories, Albuquerque, NM.

APPENDIX A

VOLUMETRIC STRAIN-VERSUS-MEAN STRESS
DATA FOR AVERY ISLAND CRUSHED SALT
DURING QUASI-STATIC LOADING

APPENDIX A
LIST OF FIGURES

<u>Figure</u>	<u>Title</u>	<u>Page</u>
A-1.	Measured Volumetric Strain-Versus-Mean Stress for Wet Avery Island Crushed Salt at a Temperature of 100°C and C_u of 8	43
A-2.	Measured Volumetric Strain-Versus-Mean Stress for Dry Avery Island Crushed Salt at a Temperature of 25°C and C_u of 8	44
A-3.	Measured Volumetric Strain-Versus-Mean Stress for Dry Avery Island Crushed Salt at a Temperature of 100°C and C_u of 8	45
A-4.	Measured Volumetric Strain-Versus-Mean Stress for Wet Avery Island Crushed Salt at a Temperature of 25°C and C_u of 8	46
A-5.	Measured Volumetric Strain-Versus-Mean Stress for Dry Avery Island Crushed Salt at a Temperature of 100°C and C_u of 1	47
A-6.	Measured Volumetric Strain-Versus-Mean Stress for Wet Avery Island Crushed Salt at a Temperature of 25°C and C_u of 1	48
A-7.	Measured Volumetric Strain-Versus-Mean Stress for Wet Avery Island Crushed Salt at a Temperature of 100°C and C_u of 1	49
A-8.	Measured Volumetric Strain-Versus-Mean Stress for Dry Avery Island Crushed Salt at a Temperature of 25°C and C_u of 1	50

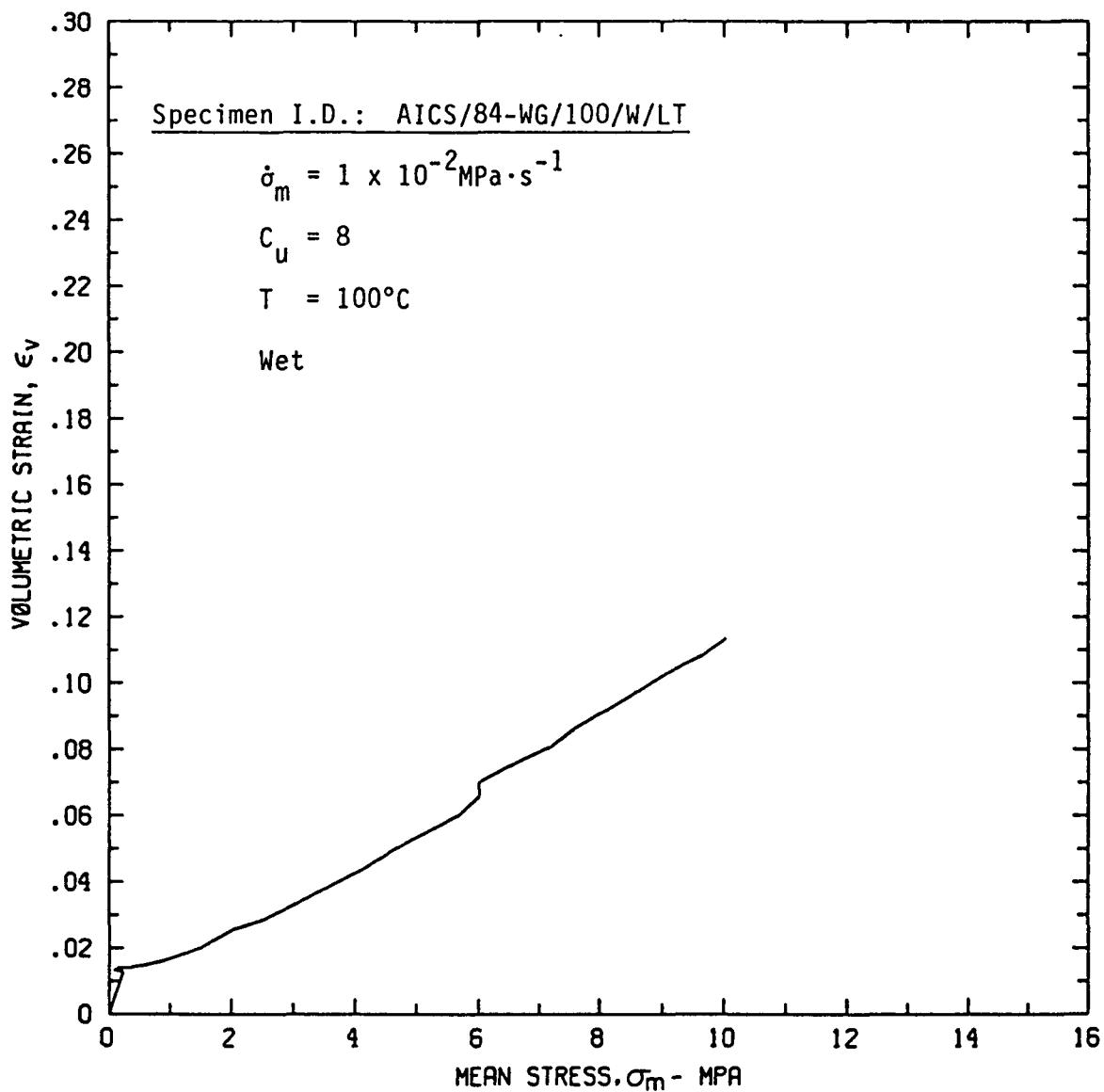


Figure A-1. Measured Volumetric Strain-Versus-Mean Stress for Wet Avery Island Crushed Salt at a Temperature of 100°C and C_u of 8

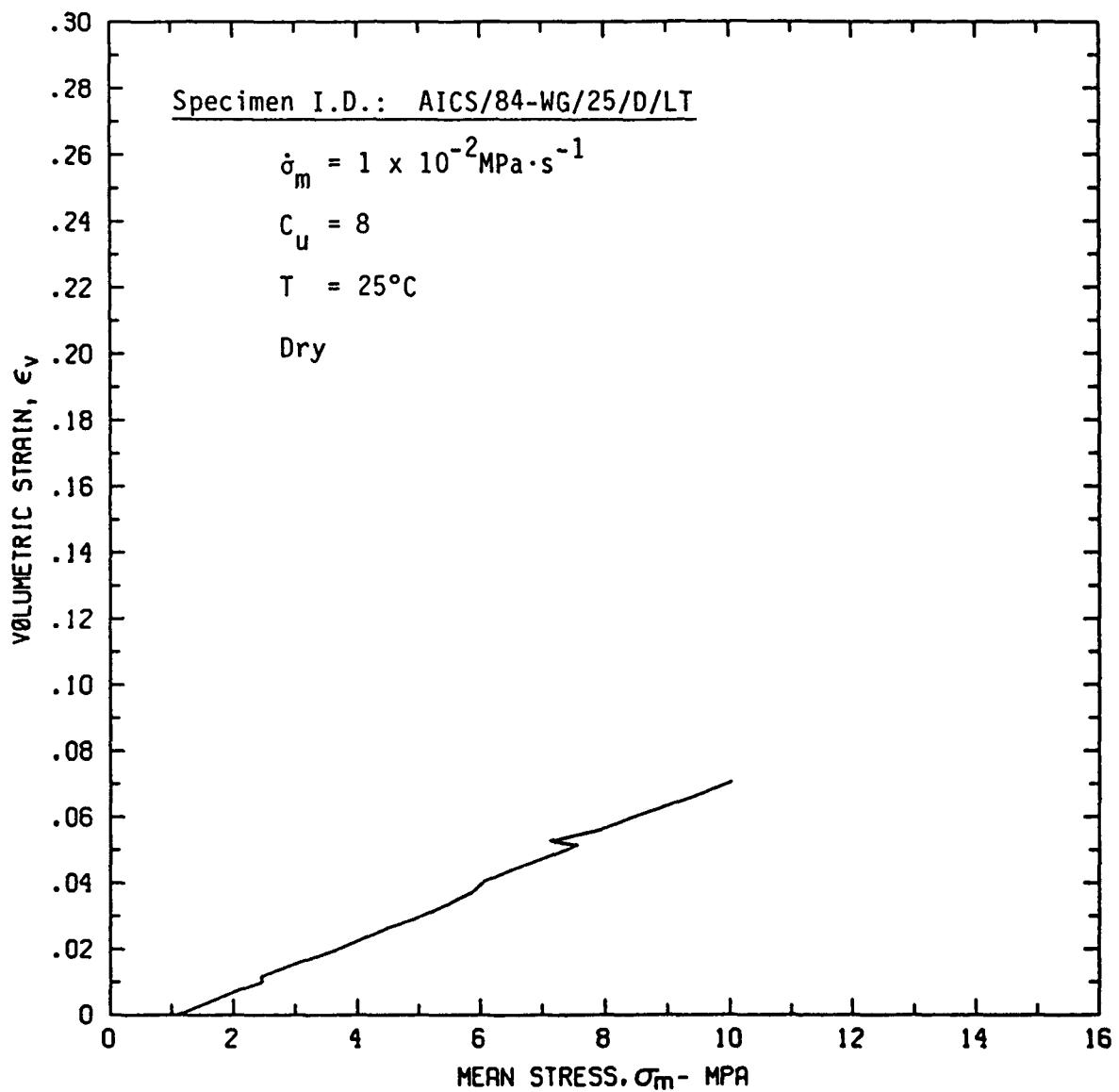


Figure A-2. Measured Volumetric Strain-Versus-Mean Stress for Dry Avery Island Crushed Salt at a Temperature of 25°C and C_u of 8

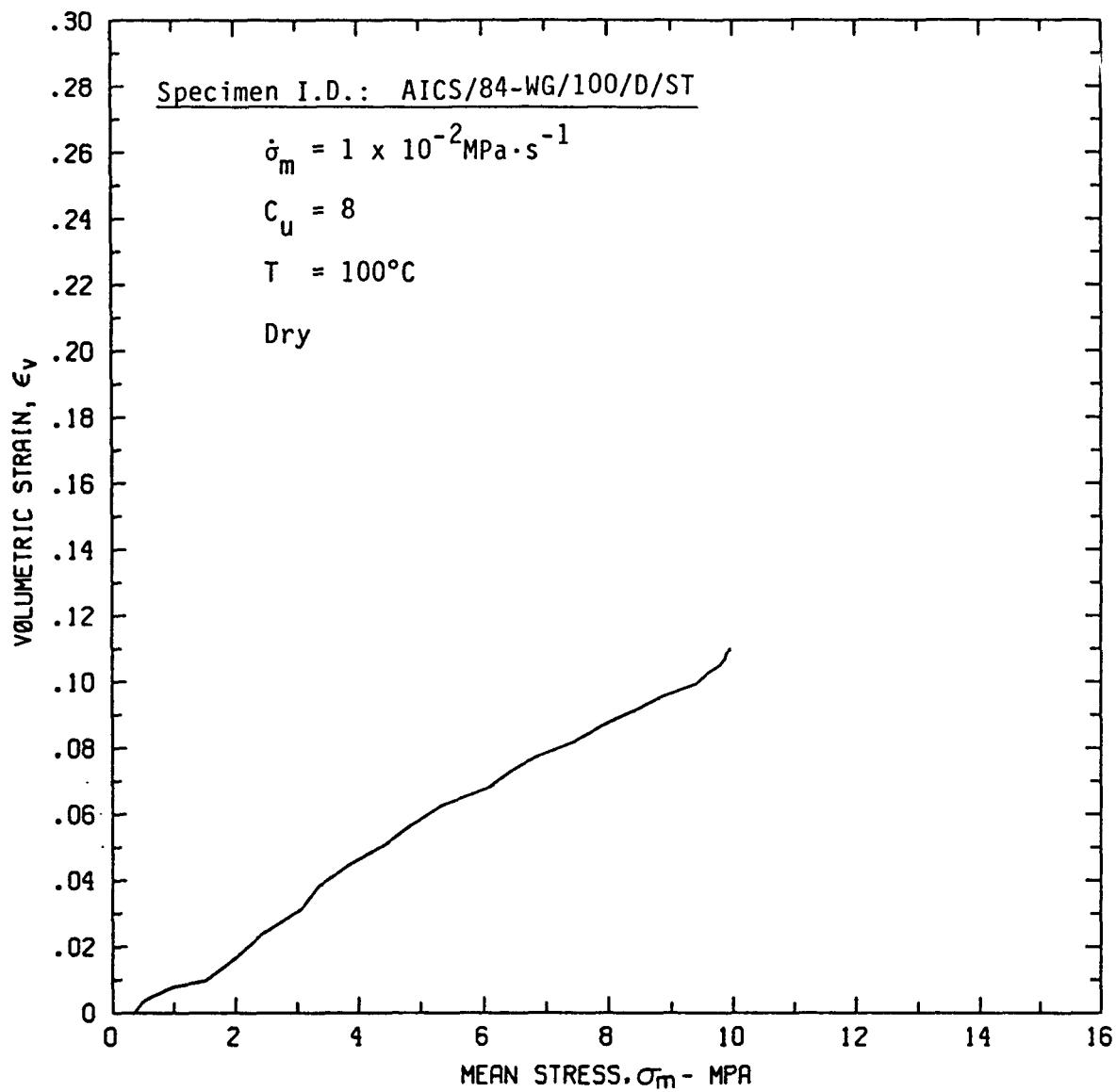


Figure A-3. Measured Volumetric Strain-Versus-Mean Stress for Dry Avery Island Crushed Salt at a Temperature of 100°C and C_u of 8

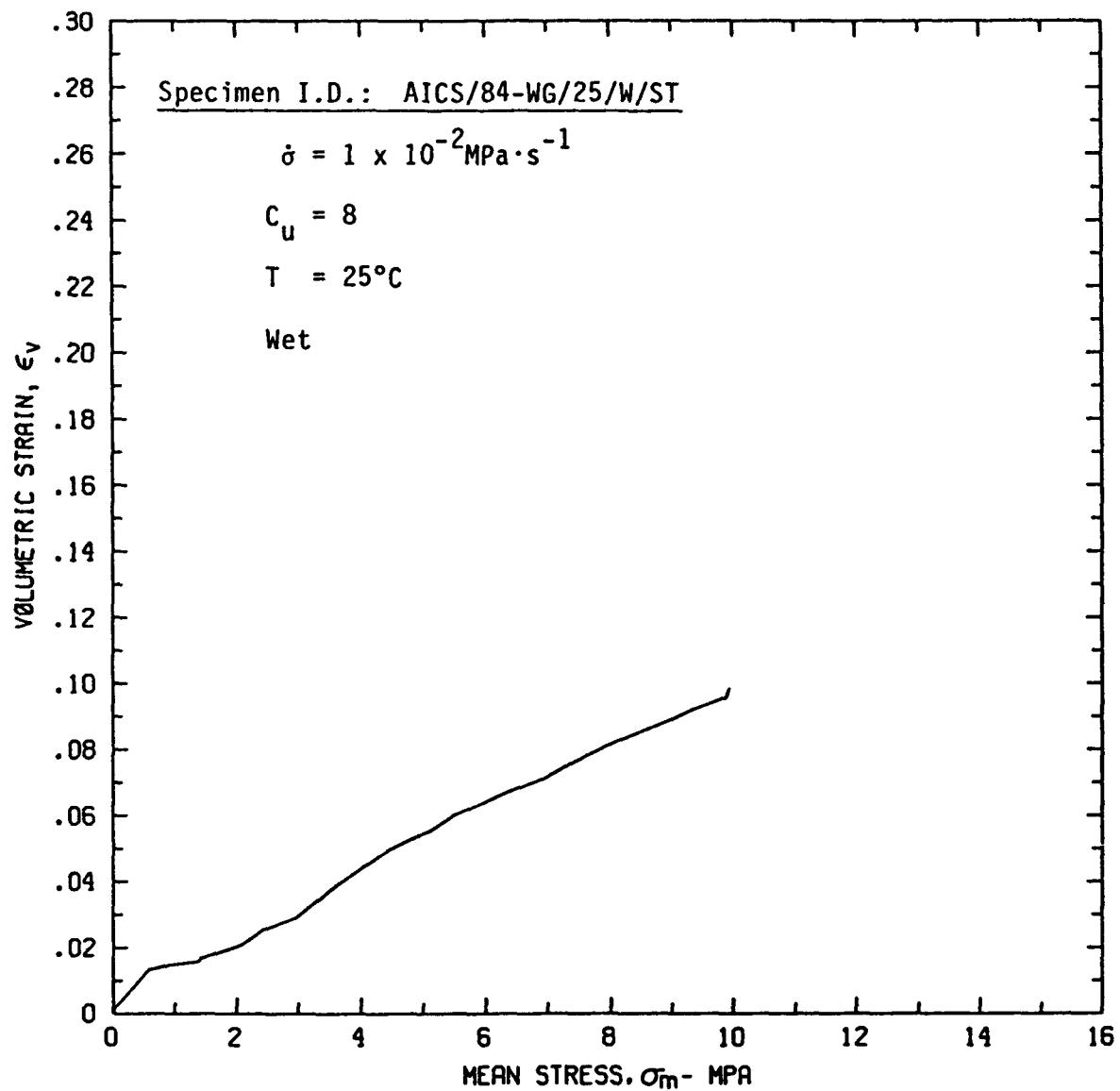


Figure A-4. Measured Volumetric Strain-Versus-Mean Stress for Wet Avery Island Crushed Salt at a Temperature of 25°C and C_u of 8

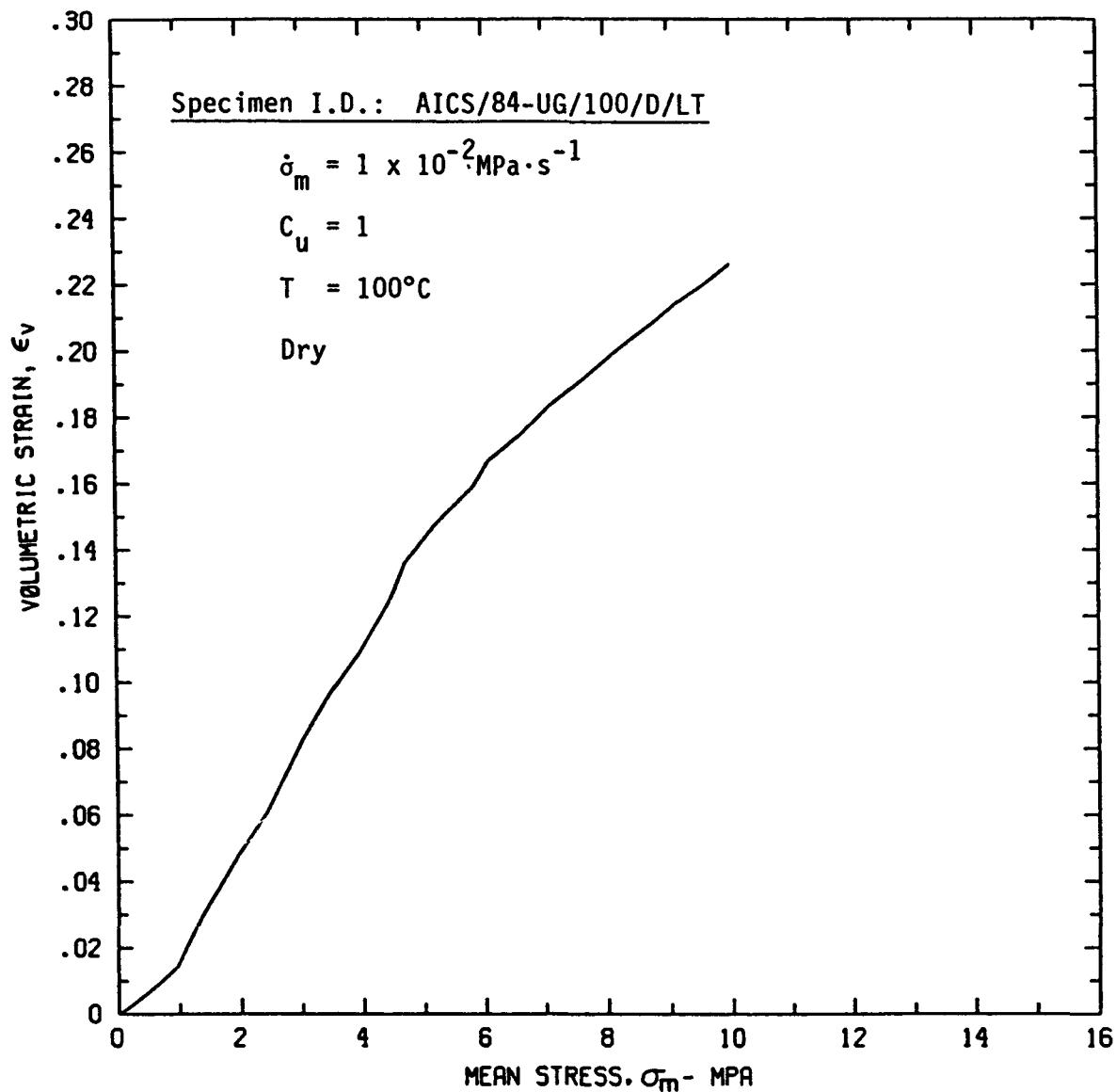


Figure A-5. Measured Volumetric Strain-Versus-Mean Stress for Dry Avery Island Crushed Salt at a Temperature of 100°C and C_u of 1

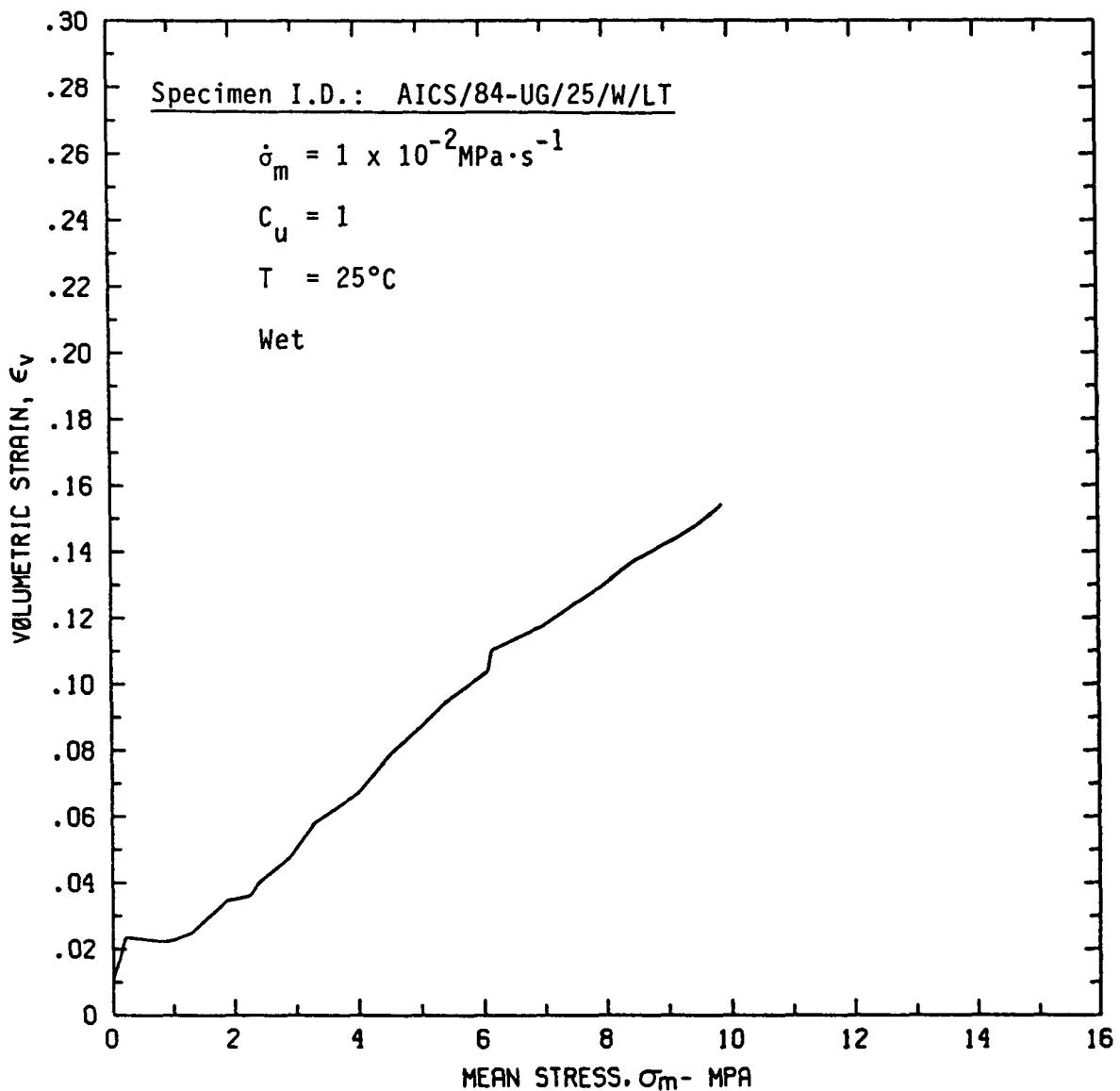


Figure A-6. Measured Volumetric Strain-Versus-Mean Stress for Wet Avery Island Crushed Salt at a Temperature of 25°C and C_u of 1

R-001-84-394

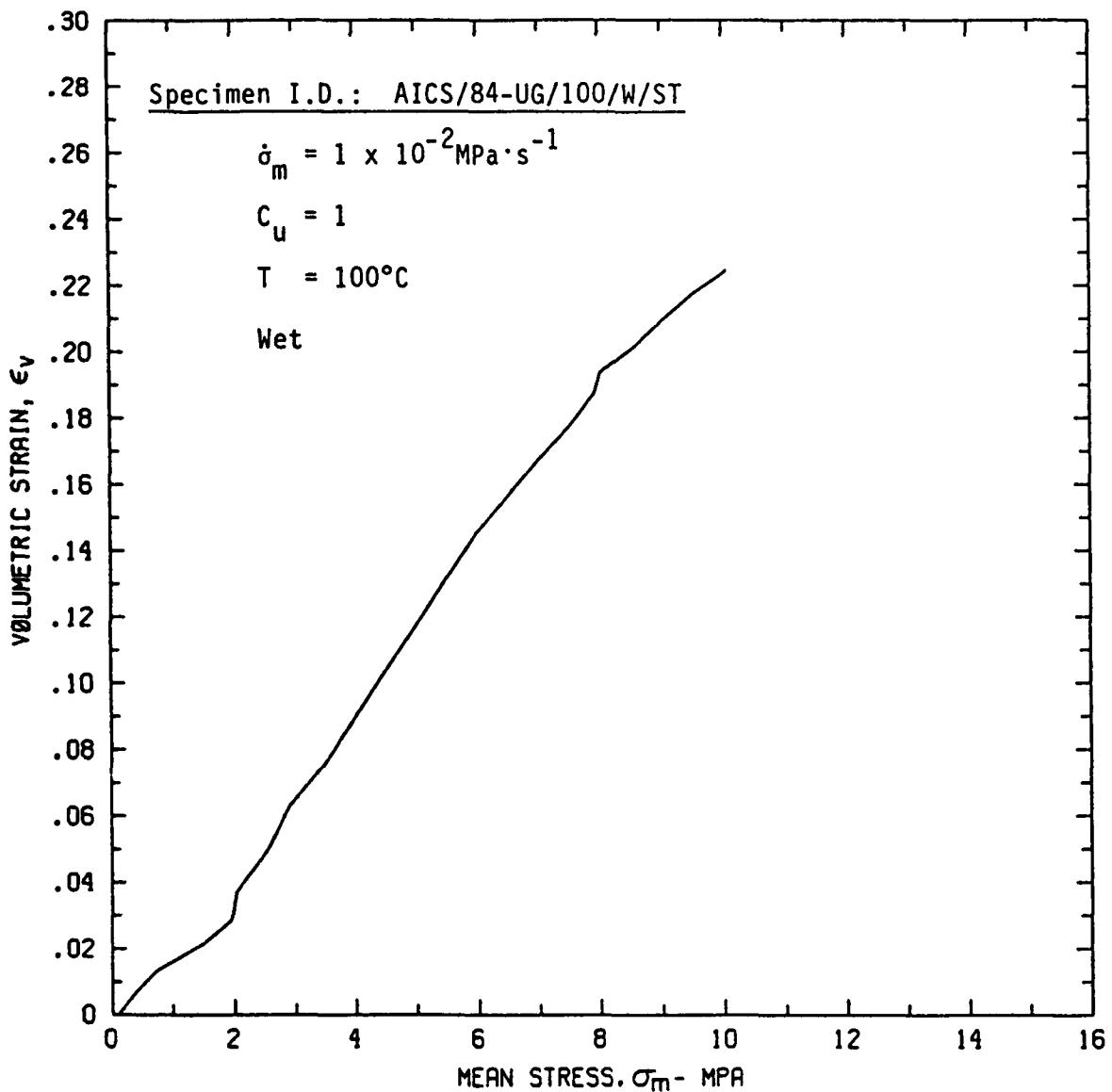


Figure A-7. Measured Volumetric Strain-Versus-Mean Stress for Wet Avery Island Crushed Salt at a Temperature of 100°C and C_u of 1

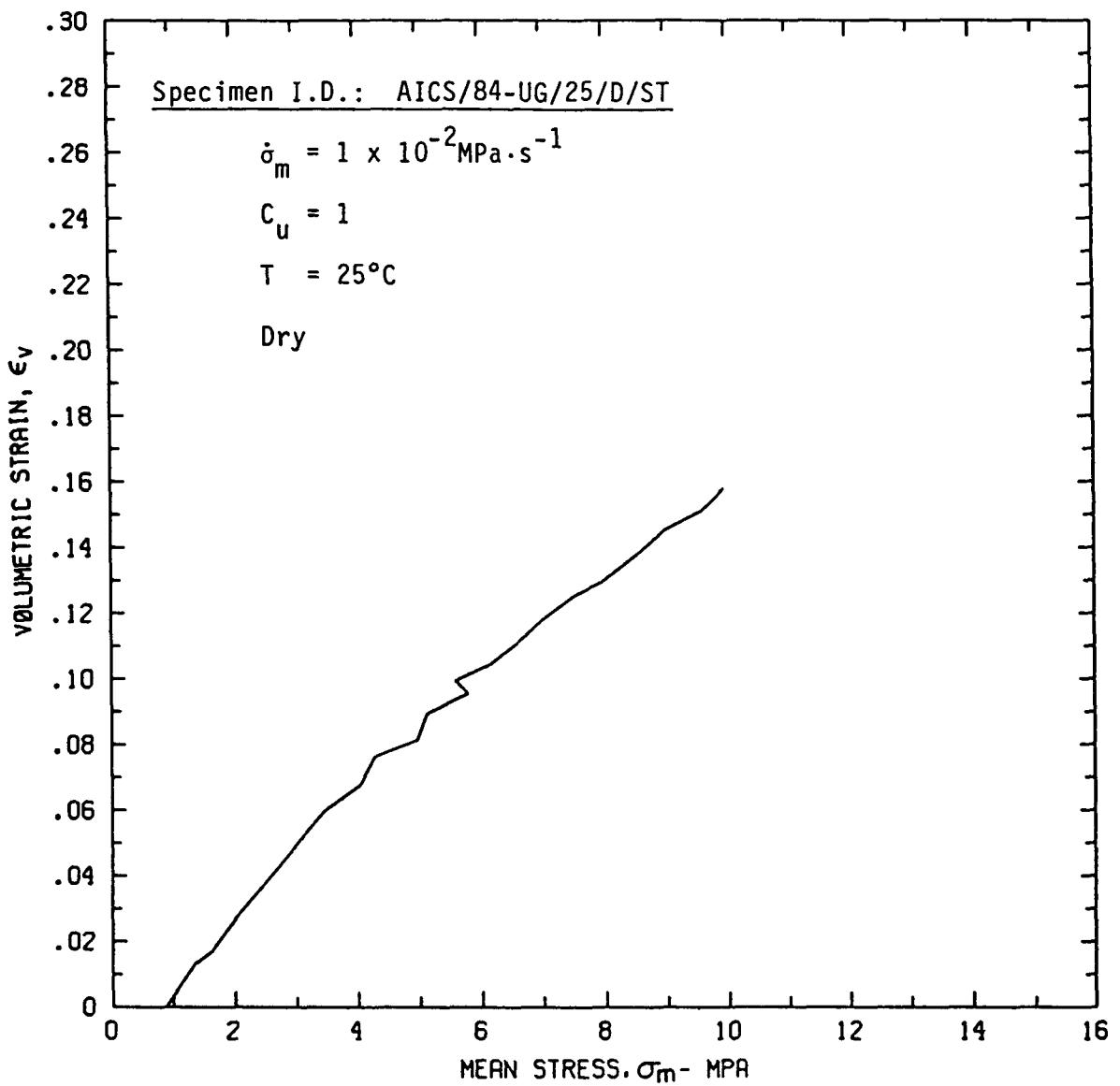


Figure A-8. Measured Volumetric Strain-Versus-Mean Stress for Dry Avery Island Crushed Salt at a Temperature of 25°C and C_u of 1

APPENDIX B

VOLUMETRIC STRAIN-VERSUS-TIME DATA FOR AVERY ISLAND CRUSHED SALT DURING CONSOLIDATION (CREEP)

APPENDIX B
LIST OF FIGURES

<u>Figure</u>	<u>Title</u>	<u>Page</u>
B-1.	Measured Volumetric Creep Strain for Wet Avery Island Crushed Salt at a Temperature of 100°C and C_u of 8	55
B-2.	Measured Volumetric Creep Strain for Dry Avery Island Crushed Salt at a Temperature of 25°C and C_u of 8	56
B-3.	Measured Volumetric Creep Strain for Dry Avery Island Crushed Salt at a Temperature of 100°C and C_u of 8	57
B-4.	Measured Volumetric Creep Strain for Wet Avery Island Crushed Salt at a Temperature of 25°C and C_u of 8	58
B-5.	Measured Volumetric Creep Strain for Dry Avery Island Crushed Salt at a Temperature of 100°C and C_u of 1	59
B-6.	Measured Volumetric Creep Strain for Wet Avery Island Crushed Salt at a Temperature of 25°C and C_u of 1	60
B-7.	Measured Volumetric Creep Strain for Wet Avery Island Crushed Salt at a Temperature of 100°C and C_u of 1	61
B-8.	Measured Volumetric Creep Strain for Dry Avery Island Crushed Salt at a Temperature of 25°C and C_u of 1	62

R-001-84-437

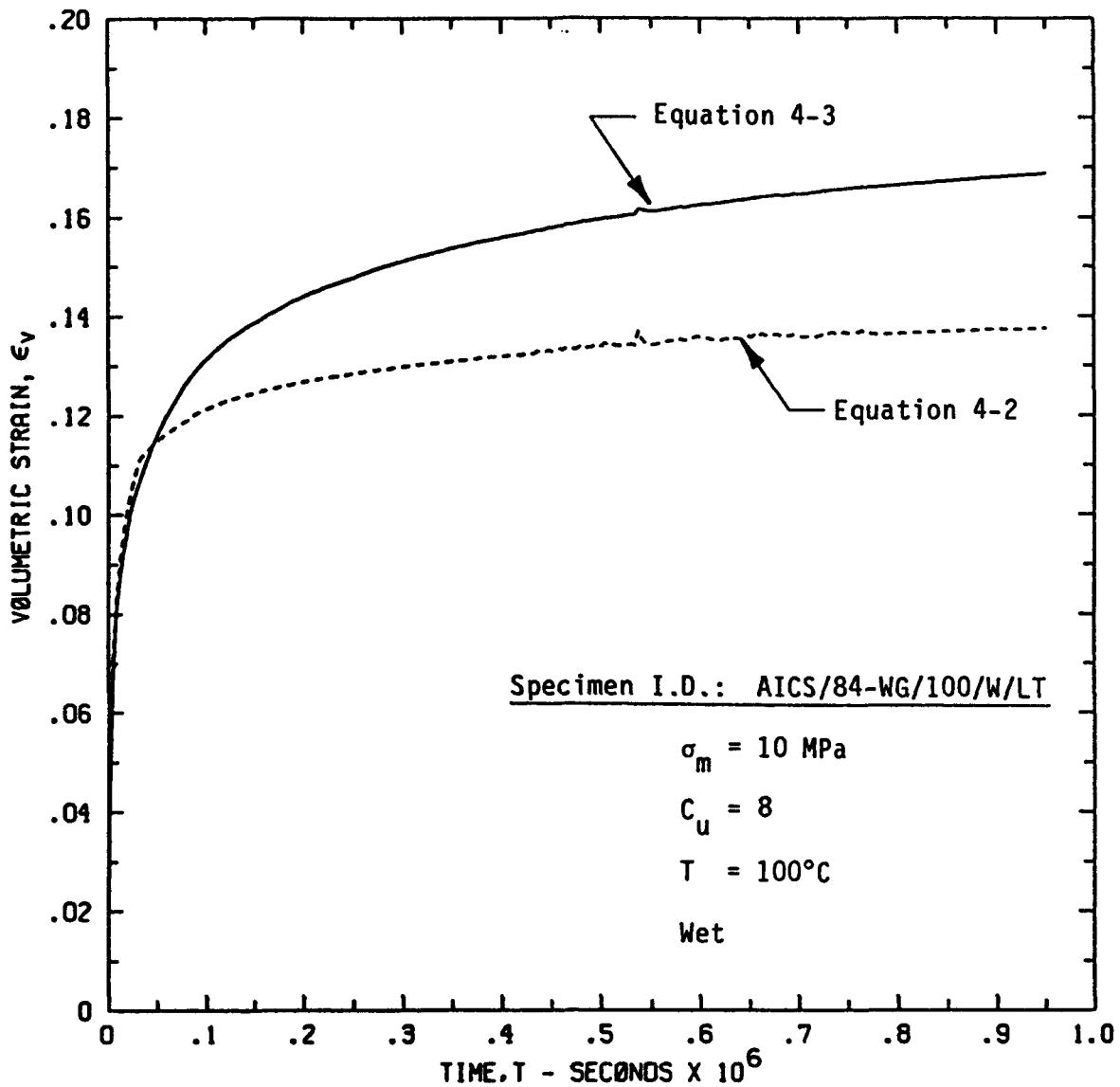


Figure B-1. Measured Volumetric Creep Strain for Wet Avery Island Crushed Salt at a Temperature of 100°C and C_u of 8

R-001-84-396

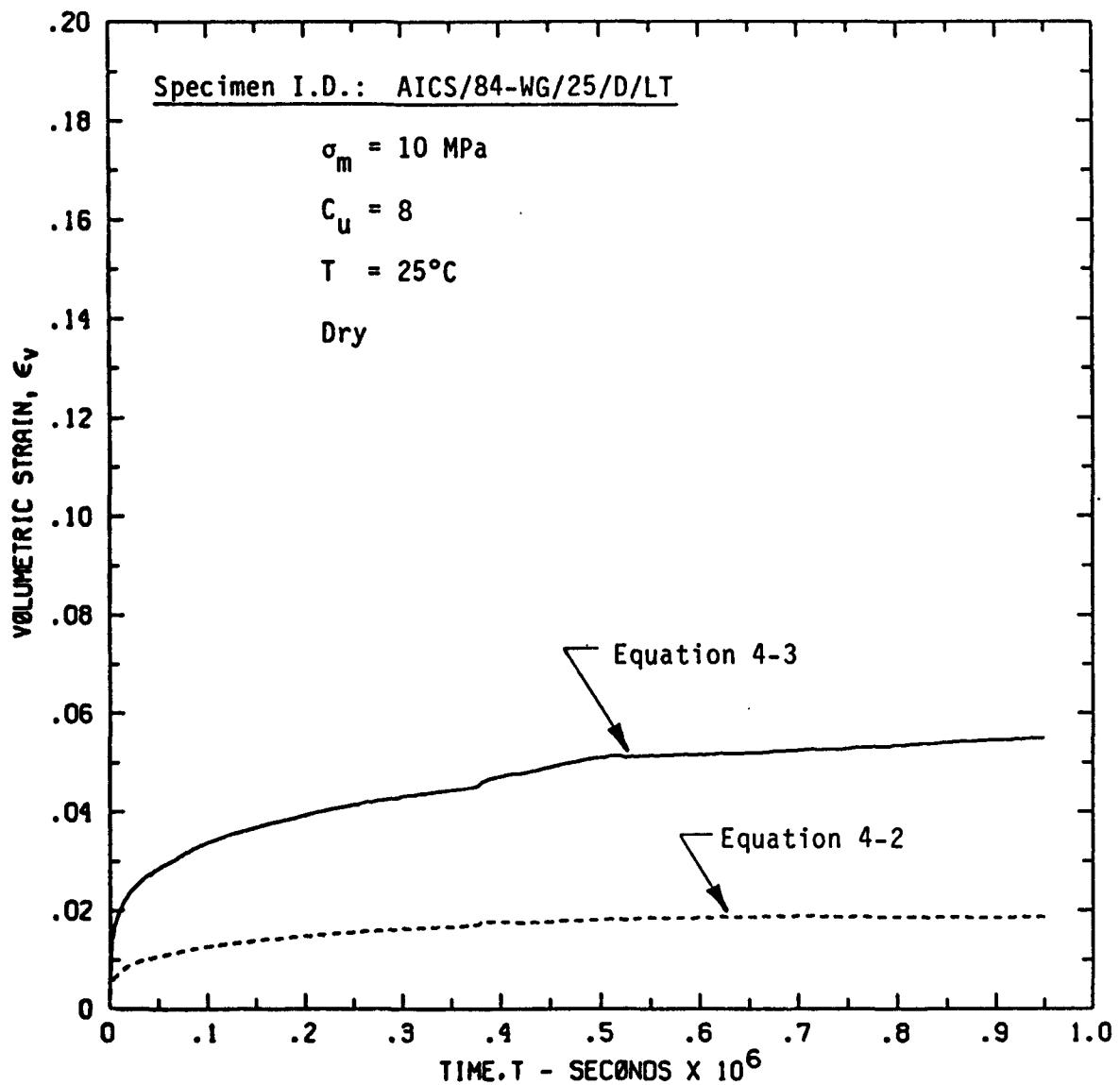


Figure B-2. Measured Volumetric Creep Strain for Dry Avery Island Crushed Salt at a Temperature of 25°C and C_u of 8

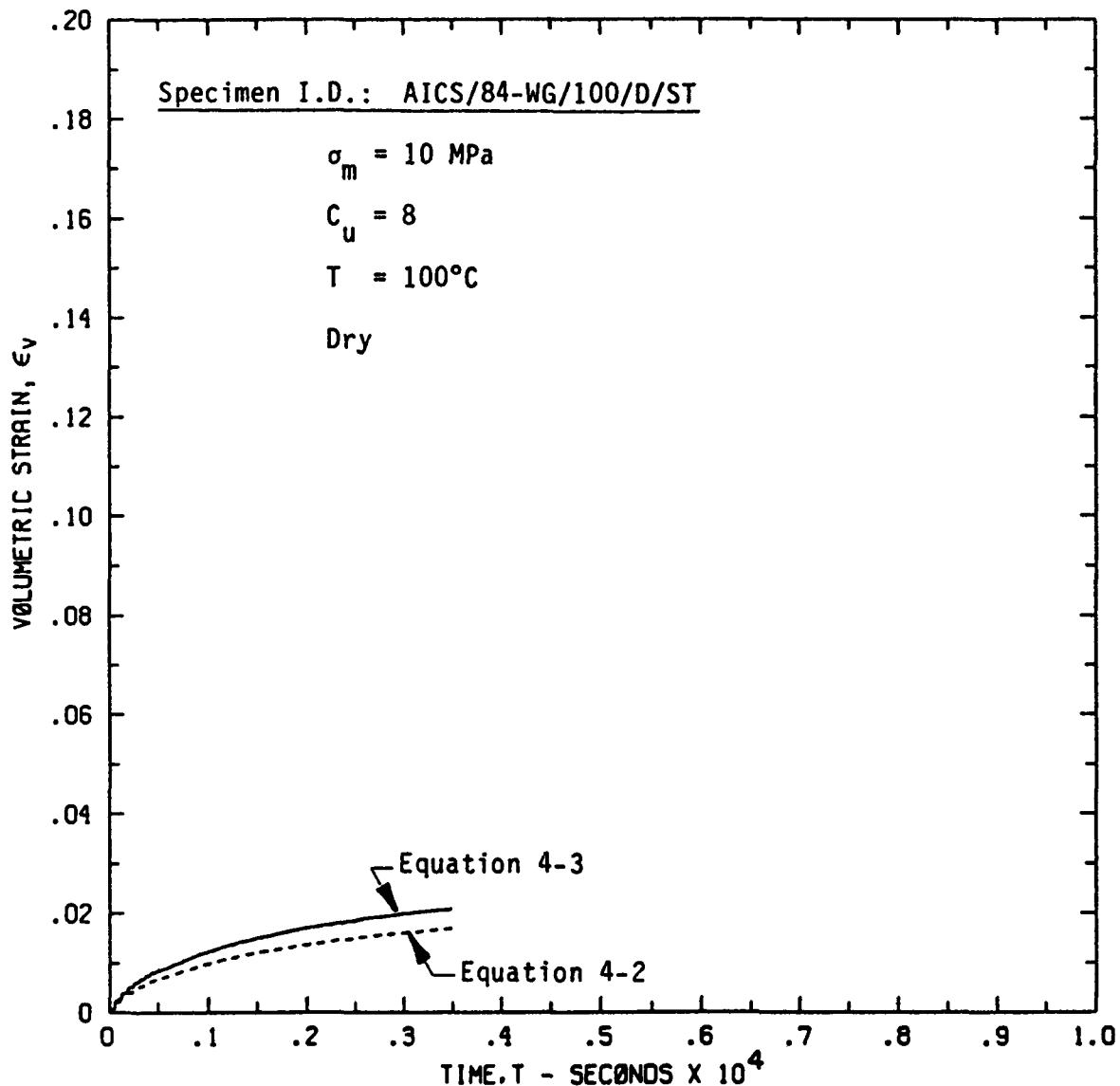


Figure B-3. Measured Volumetric Creep Strain for Dry Avery Island
Crushed Salt at a Temperature of 100°C and C_u of 8

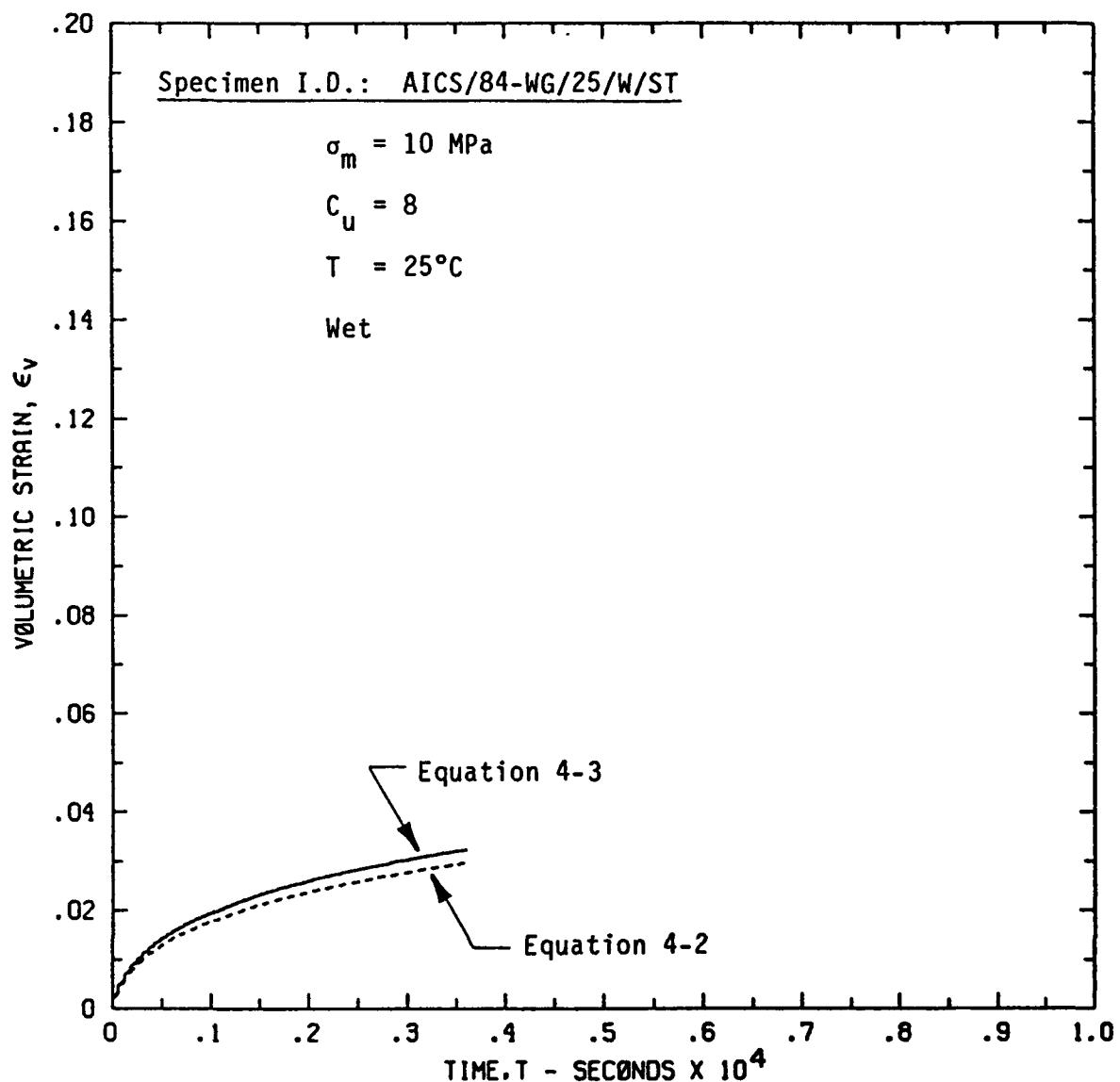


Figure B-4. Measured Volumetric Creep Strain for Wet Avery Island Crushed Salt at a Temperature of 25°C and C_u of 8

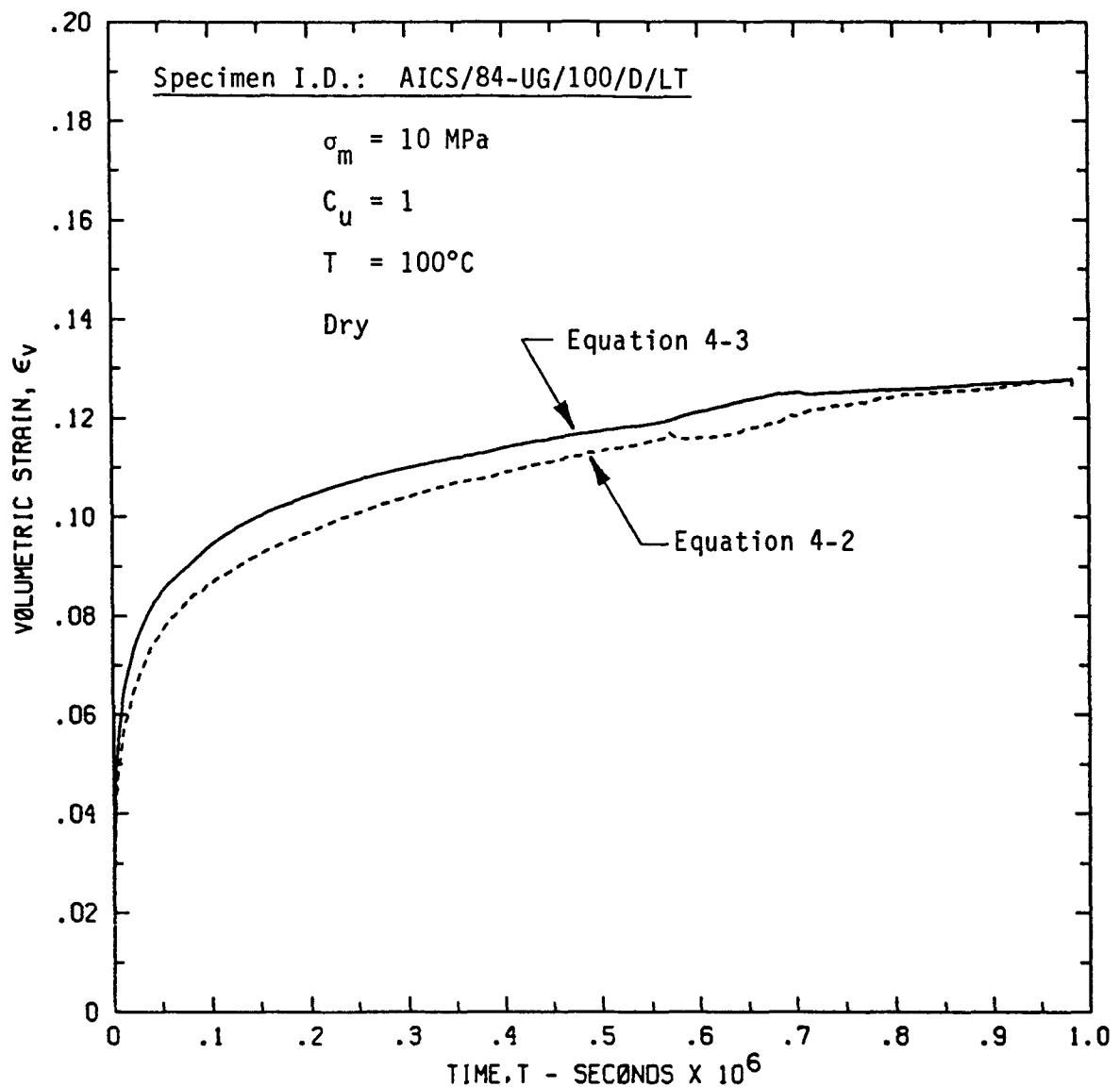


Figure B-5. Measured Volumetric Creep Strain for Dry Avery Island Crushed Salt at a Temperature of 100°C and C_u of 1

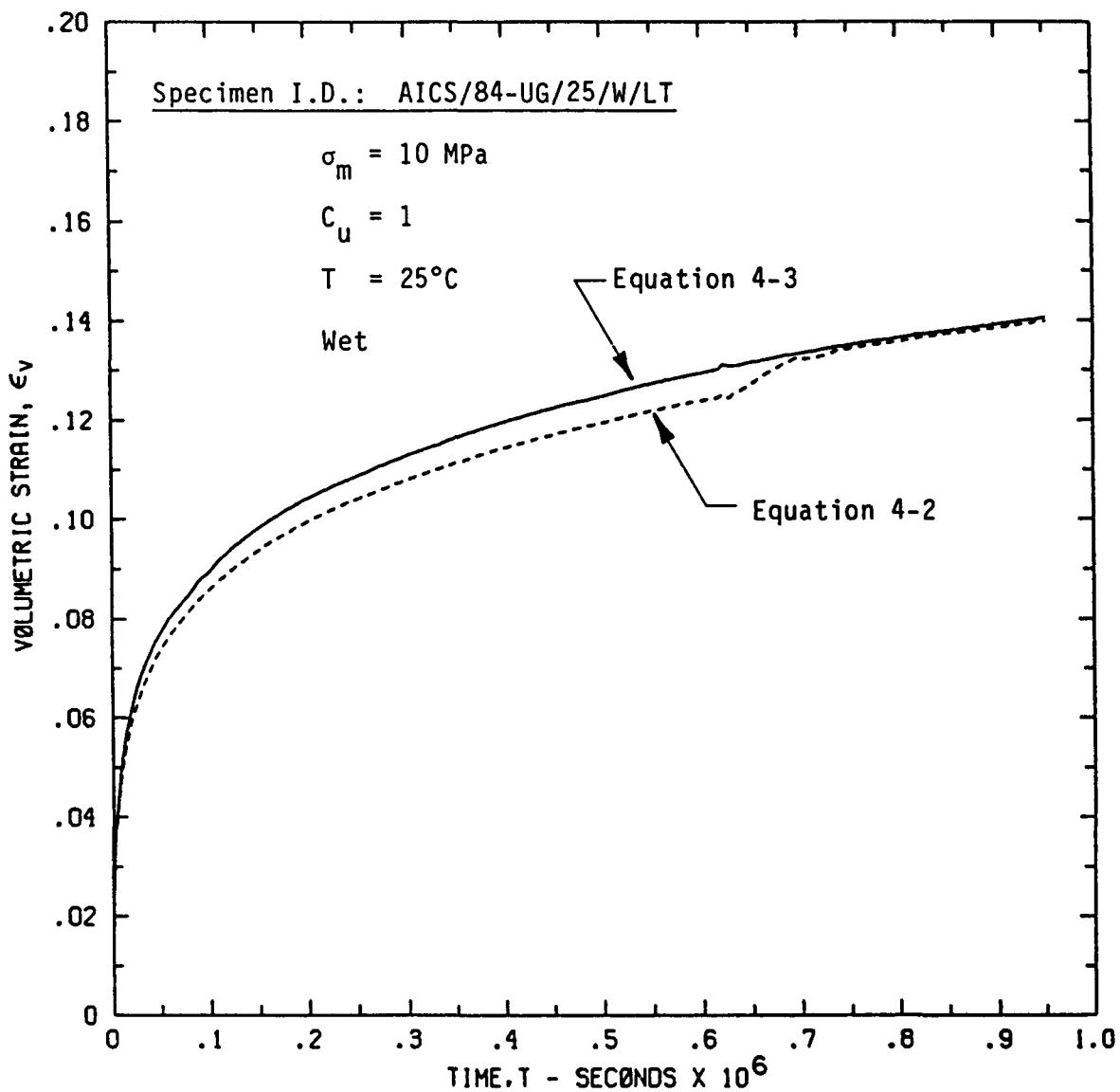


Figure B-6. Measured Volumetric Creep Strain for Wet Avery Island Crushed Salt at a Temperature of 25°C and C_u of 1

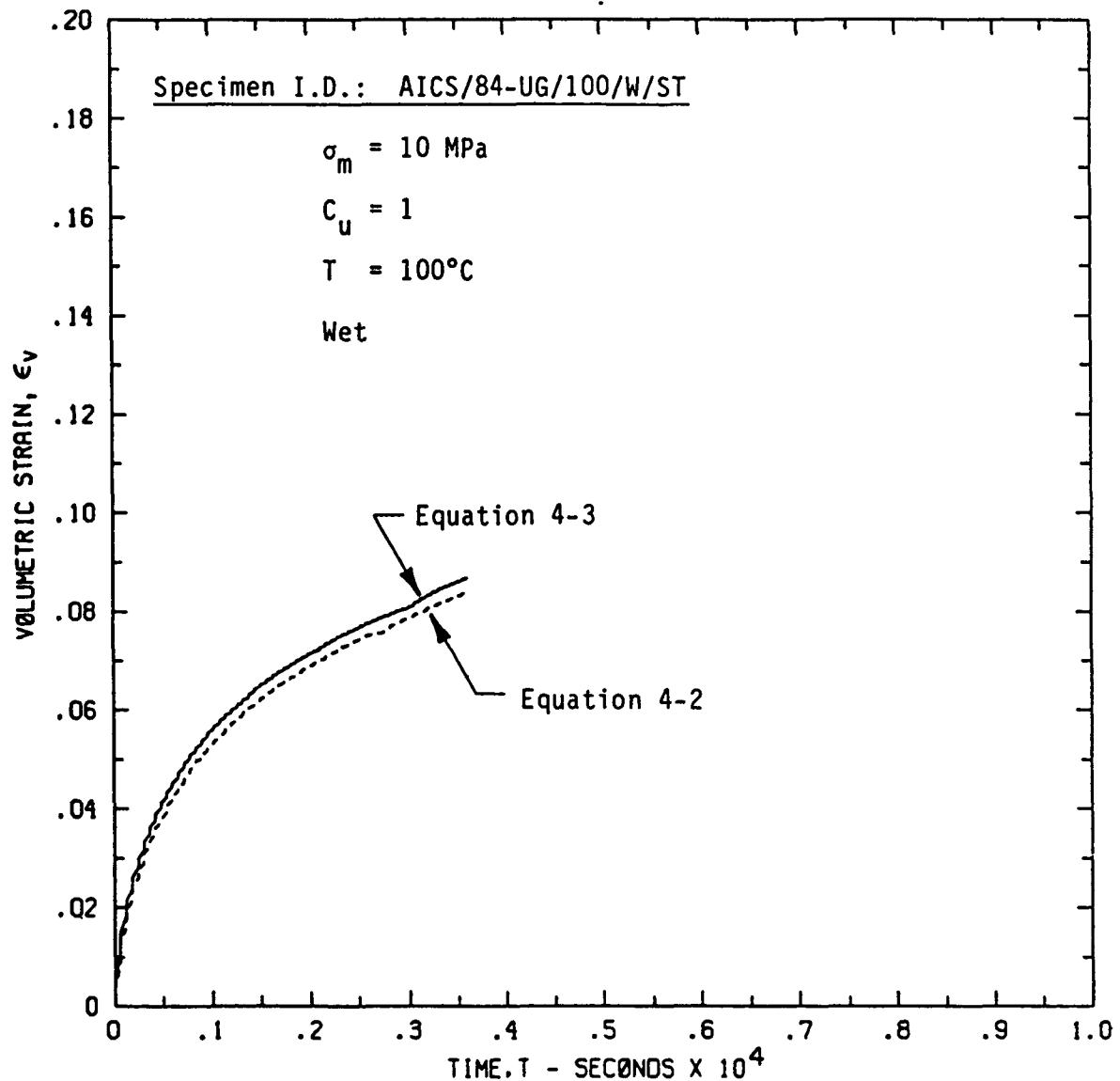


Figure B-7. Measured Volumetric Creep Strain for Wet Avery Island Crushed Salt at a Temperature of 100°C and C_u of 1

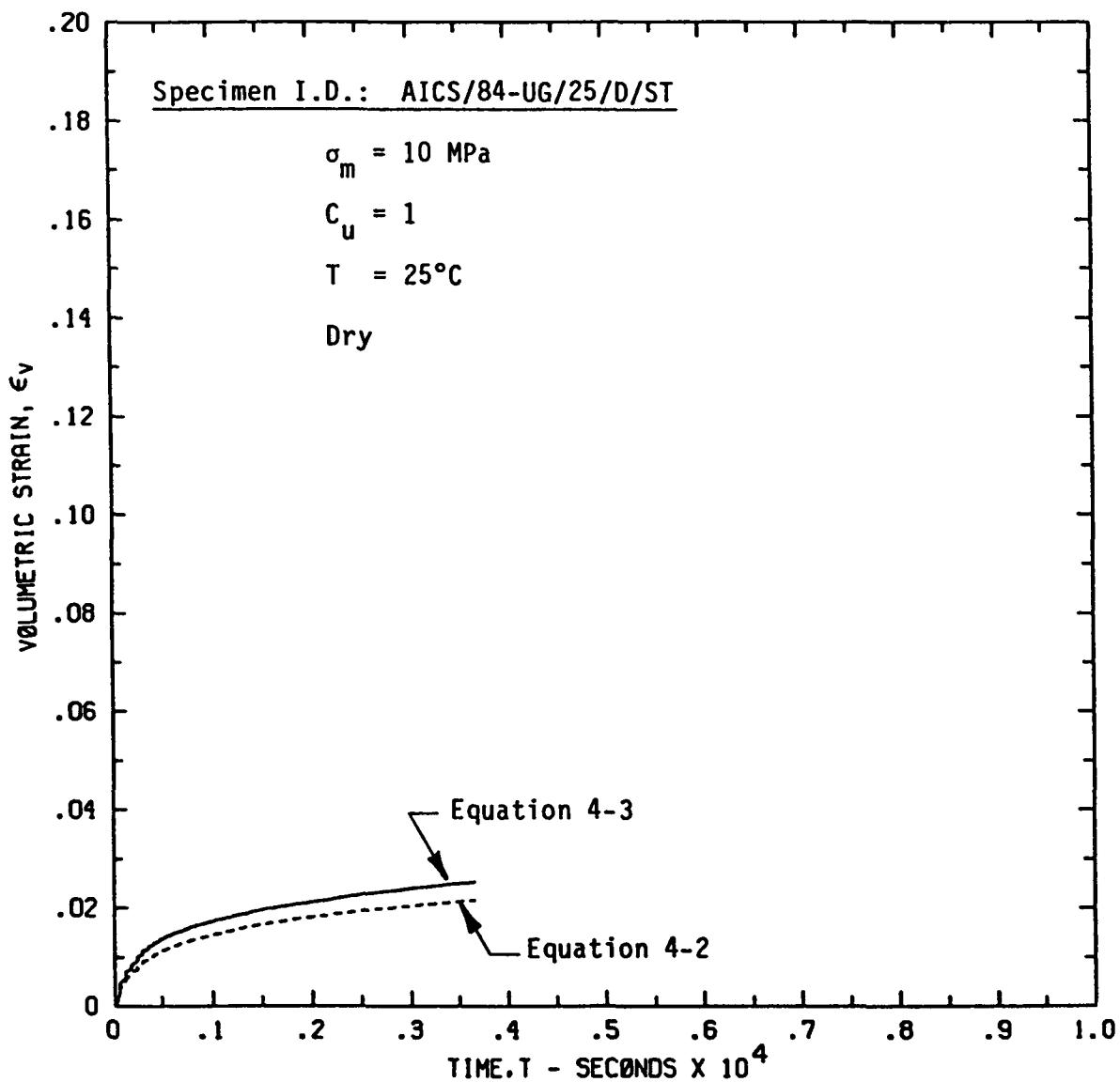


Figure B-8. Measured Volumetric Creep Strain for Dry Avery Island Crushed Salt at a Temperature of 25°C and C_u of 1.

DISTRIBUTION LIST

ACRES INTERNATIONAL CORP
STEWART N. THOMPSON
ALABAMA STATE GEOLOGICAL SURVEY
THORNTON L. NEATHERY
AMARILLO PUBLIC LIBRARY
AMERICAN ROCK WRITING RESEARCH
JOHN NOXON
APPLIED RESEARCH ASSOCIATES
STEVEN WOOLFOLK
ARGONNE NATIONAL LABORATORY
DORLAND E. EDGAR
DOUGLAS F. HAMBLEY
WYMAN HARRISON
MARTIN J. STEINDLER
YU CHIEN YUAN
ARIZONA NUCLEAR POWER PROJECT
HENRY W. RILEY, JR.
ARIZONA STATE UNIVERSITY
PAUL KNAUTH
ARTHUR D. LITTLE INC
CHARLES R. HADLOCK
ATOMIC ENERGY CONSULTANTS
DONALD G. ANDERSON
ATOMIC ENERGY CONTROL BOARD—CANADA
KEN SHULTZ
ATOMIC ENERGY OF CANADA LTD
T. CHAN
SIEGRUN MEYER
ATOMIC ENERGY RESEARCH ESTABLISHMENT—
UNITED KINGDOM
D. P. HODGKINSON
BATTELLE MEMORIAL INSTITUTE
JAMES DUGUID
JOHN T. MCGINNIS
JEFFREY L. MEANS
CARL SPILKER
BCM CONVERSE INC.
ROBERT J. MANUEL
BECHTEL NATIONAL INC
BEVERLY S. AUSMUS
LESLIE J. JARDINE
T. R. MONGAN
BENDIX FIELD ENGINEERING CORP
LARRY M. FUKUI
CHARLES A. JONES
ANTHONY ZAIKOWSKI
BERKELEY GEOSCIENCES/HYDROTECHNIQUE
ASSOCIATES
BRIAN KANEHIRO
BOWDOIN COLLEGE
EDWARD P. LAINE
BRENK SYSTEMPLANUNG—W. GERMANY
H. D. BRENK
BRITISH GEOLOGICAL SURVEY
DAVID MICHAEL MCCANN
BROOKHAVEN NATIONAL LABORATORY
M. S. DAVIS
HELEN TODOSOW (2)
BROOME COMMUNITY COLLEGE
BRUCE OLDFIELD
BROWN UNIVERSITY
MICHELE BURKE
BUNDESANSTALT FÜR GEOWISSENSCHAFTEN
UND ROHSTOFFE—W. GERMANY
MICHAEL LANGER
HELMUT VENZLAFF
BUREAU DE RECHERCHES GEOLOGIQUES ET
MINIERES—FRANCE
BERNARD FEUGA
PIERRE F. PEAUDECERF

CALIFORNIA DEPT OF CONSERVATION
PERRY AMIMITO
CANVIRO CONSULTANTS
DOUG METCALFE
CAPITAL UNIVERSITY
VICTOR M. SHOWALTER
CAYUGA LAKE CONSERVATION ASSOCIATION
INC
D. S. KIEFER
CELSIUS ENERGY COMPANY
NICK THOMAIDIS
CENTER FOR ENVIRONMENTAL HEALTH
CAMERON MCDONALD VOWELL
CENTER FOR INTERDISCIPLINARY STUDIES
DAVID M. ARMSTRONG
CER CORP
ELLA JACKSON
CHEVRON OIL FIELD RESEARCH COMPANY
BJORN PAULSSON
CITIZENS AGAINST NUCLEAR DISPOSAL INC
STANLEY D. FLINT
CLARK UNIVERSITY
JEANNE X. KASPERSON
CLIFFS ENGINEERING INC
GARY D. AHO
COLBY COLLEGE
BRUCE F. RUEGER
COLORADO GEOLOGIC INC
MIKE E. BRAZIE
COLORADO GEOLOGICAL SURVEY
JOHN W. ROLD
COLORADO SCHOOL OF MINES
W. HISTRULID
COLUMBIA UNIVERSITY
M. ASHRAF MAHTAB
CORNELL UNIVERSITY
ARTHUR L. BLOOM
DUANE CHAPMAN
FRED H. KULHAWY
ROBERT POHL
COUNCIL OF ENERGY RESOURCE TRIBES
WYATT M. ROGERS, JR.
DAMES & MOORE
RON KEAR
ROBERT W. KUPP
CHARLES R. LEWIS
DANIEL B. STEPHENS AND ASSOCIATES
ROBERT G. KNOWLTON, JR.
DEAF SMITH COUNTY LIBRARY
DEPARTMENT OF THE NAVY
GENNARO MELLIS
DEPT OF ENERGY, MINES AND RESOURCES -
CANADA
A. S. JUDGE
DESERET NEWS
JOSEPH BAUMAN
DEUTSCHE GESELLSCHAFT ZUM BAU UND
BETRIEB VON ENDLAGERN
GERNOT GRUBLER
DISPOSAL SAFETY INC
BENJAMIN ROSS
DUNN GEOSCIENCE CORP
WILLIAM E. CUTCLIFFE
DYNATECH RESEARCH/DEVELOPMENT
COMPANY
STEPHEN E. SMITH
E.I. DU PONT DE NEMOURS & CO
A. B. MILLER
EARTH RESOURCE ASSOCIATES INC
SERGE GONZALES

EARTH SCIENCE AND ENGINEERING INC
LOU BLANCK
EARTH SCIENCES CONSULTANTS INC
HARRY L. CROUSE
EBASCO SERVICES INC
KATHLEEN E. L. HOWE
GARRY MAURATH
ECOLOGY & ENVIRONMENT INC
MICHAEL BENNER
EG & G IDAHO INC
BRENT F. RUSSELL
ELEKTRIZITAETS-GES. LAUFENBURG -
SWITZERLAND
H. N. PATAK
ELSAM—DENMARK
ARNE PEDERSEN
ENERGY FUELS NUCLEAR INC
DON M. PILLMORE
ENERGY RESEARCH GROUP INC
MARC GOLDSMITH
ENGINEERING ANALYSIS INC
WILLIAM MULLEN
ENGINEERS INTERNATIONAL INC
ROBERT A. CUMMINGS
LIBRARY
MADAN M. SINGH
ENVIRONMENTAL DEFENSE FUND
JAMES B. MARTIN
ENVIRONMENTAL POLICY INSTITUTE
DAVID M. BERRICK
ENVIROSHERE COMPANY
ROGER G. ANDERSON
EXXON COMPANY
MICHAEL FARRELL
F.J. SCHLUMBERGER
PETER ALEXANDER
FENIX & SCISSON INC
CHARLENE U. SPARKMAN
FERRIS STATE COLLEGE
MICHAEL E. ELLS
FINNISH CENTRE FOR RADIATION AND
NUCLEAR SAFETY
KAI JAKOBSSON
FLORIDA INSTITUTE OF TECHNOLOGY
JOSEPH A. ANGELO, JR.
FLORIDA STATE UNIVERSITY
JOSEPH F. DONOGHUE
FLUOR TECHNOLOGY INC
WILLIAM LEE (F2X)
THOMAS O. MALLONEE, JR (F2X)
FUTURE RESOURCES ASSOCIATES INC
ROBERT J. BUDNITZ
GA TECHNOLOGIES INC
MICHAEL STAMATELATOS
GARTNER LEE ASSOCIATES LTD—CANADA
ROBERT E. J. LEECH
GEOLOGICAL SURVEY OF CANADA
JEFFREY HUME
LIBRARY
GEOLOGICAL SURVEY OF NORWAY
SIGURD HUSEBY
GEOMIN INC
J. A. MACHADO
GEORGIA INSTITUTE OF TECHNOLOGY
ALFRED SCHNEIDER
CHARLES E. WEAVER
GEOSTOCK—FRANCE
CATHERINE COUGNAUD
GEOSYSTEMS RESEARCH INC
RANDY L. BASSETT

GEOTHERMAL ENERGY INSTITUTE	INTERNATIONAL RESEARCH AND EVALUATION	WASTE PACKAGE TASK LIBRARY
DONALD F. X. FINN	R. DANFORD	JESSE L. YOW, JR.
GEOTRANS INC	INTERNATIONAL SALT COMPANY	LEAGUE OPPOSING SITE SELECTION
JAMES MERCER	JOHN VOIGT	LINDA S. TAYLOR
GOLDER ASSOCIATES	IRAD-GAGE	LEGISLATIVE COMMISSION ON SCIENCE & TECHNOLOGY
MELISSA MATSON	R. BOYD MONTGOMERY	DALE M. VOLKER
J. W. VOSS	ISTITUTO SPERIMENTALE MODELLI E STRUTTURE	LEIGHTON AND ASSOCIATES INC
GOLDER ASSOCIATES—CANADA	S.P.A.—ITALY	BRUCE R. CLARK
CLEMENT M. K. YUEN	FERRUCCIO GERA	LIBRARY OF MICHIGAN
GRAND COUNTY PUBLIC LIBRARY	IT CORP	RICHARD J. HATHAWAY
GRIMCO	MORRIS BALDERMAN	LOCKHEED ENGINEERING & MANAGEMENT COMPANY
DONALD H. KUPFER	PETER C. KELSALL	STEVE NACHT
GRUPPE OKOLOGIE (GOK)	LIBRARY	LOS ALAMOS NATIONAL LABORATORY
JURGEN KREUSCH	CARL E. SCHUBERT	ERNEST A. BRYANT
GUSTAVSON ASSOCIATES	ITASCA CONSULTING GROUP INC	B. CROWE
RICHARD M. WINAR	CHARLES FAIRHURST	ARENDE MEIJER
H-TECH LABORATORIES INC	ROGER HART	C. W. MYERS
BRUCE HARTENBAUM	J.F.T. AGAPITO & ASSOCIATES INC	DONALD T. OAKLEY
HANFORD OVERSIGHT COMMITTEE	MICHAEL P. HARDY	LOUISIANA GEOLOGICAL SURVEY
LARRY CALDWELL	J.L. MAGRUDER & ASSOCIATES	RENWICK P. DEVILLE
HART-CROWSER AND ASSOCIATES	J. L. MAGRUDER	JAMES J. FRILOUX
MICHAEL BAILEY	JACOBY & COMPANY	SYED HAQUE
HARVARD UNIVERSITY	CHARLES H. JACOBY	LOUISIANA STATE UNIVERSITY
CHARLES W. BURNHAM	JAMES MADISON UNIVERSITY	JEFFREY S. HANOR
DADE W. MOELLER	STEPHEN B. HARPER	LOUISIANA TECHNICAL UNIVERSITY
RAYMOND SIEVER	JAY L. SMITH COMPANY INC	LIBRARY
HARZA ENGINEERING COMPANY	JAY L. SMITH	R. H. THOMPSON
PETER CONROY	JOHNS HOPKINS UNIVERSITY	LYLE FRANCIS MINING COMPANY
HEREFORD NUCLEAR WASTE INFORMATION OFFICE	JARED L. COHON	LYLE FRANCIS
MARTHA SHIRE	KALAMAZOO COLLEGE	M.J. OCONNOR & ASSOCIATES LTD
HIGH LEVEL NUCLEAR WASTE OFFICE	RALPH M. DEAL	M. J. OCONNOR
PATRICK D. SPURGIN (5)	KANSAS DEPT OF HEALTH AND ENVIRONMENT	MARTIN MARIETTA
HIGH PLAINS WATER DISTRICT	GERALD W. ALLEN	CATHY S. FORE
DON MCREYNOLDS	KANSAS STATE GEOLOGICAL SURVEY	MARYLAND DEPT OF HEALTH & MENTAL HYGIENE
A. WAYNE WYATT	WILLIAM W. HAMBLETON	MAX EISENBERG
HITACHI WORKS, HITACHI LTD	KELLER WREATH ASSOCIATES	MASSACHUSETTS INSTITUTE OF TECHNOLOGY
MAKOTO KIKUCHI	FRANK WREATH	DANIEL METLAY
HOUGH-NORWOOD HEALTH CARE CENTER	KETTERING FOUNDATION	MCDERMOTT INTERNATIONAL
GEORGE H. BROWN, M.D.	ESTUS SMITH	KAREN L. FURLOW
HUMBOLDT STATE UNIVERSITY	KIERSCH ASSOCIATES GEOSCIENCES/RESOURCES	MELLEN GEOLOGICAL ASSOCIATES INC
JOHN LONGSHORE	CONSULTANTS INC	FREDERIC F. MELLEN
ILLINOIS DEPT OF NUCLEAR SAFETY	GEORGE A. KIERSCH, PH.D.	MEMBERS OF THE GENERAL PUBLIC
JOHN COOPER	KIHN ASSOCIATES	ROGER H. BROOKS
ILLINOIS STATE GEOLOGICAL SURVEY	HARRY KIHN	LAWRENCE CHASE, PH.D.
KEROS CARTWRIGHT	KLM ENGINEERING INC	TOM & SUSAN CLAWSON
MORRIS W. LEIGHTON	B. GEORGE KNIAZEWYCZ	VICTOR J. COHEN
E. DONALD MCKAY, III	KUTA RADIO	ROBERT DEADMAN
INDIANA GEOLOGICAL SURVEY	KUTV-TV	GHISLAIN DEMARSILY
MAURICE BIGGS	ROBERT LOY	GERALD A. DRAKE, M.D.
INDIANA UNIVERSITY	LACHEL HANSEN & ASSOCIATES INC	ROBERT EINZIGER
CHARLES J. VITALIANO	DOUGLAS E. HANSEN	WARREN EISTER
INSTITUT FUR TIEFLAGERUNG—W. GERMANY	LAKE SUPERIOR REGION RADIOACTIVE WASTE PROJECT	DUNCAN FOLEY
WERNT BREWITZ	C. DIXON	CARL A. GIESE
H. GIES	LAWRENCE BERKELEY LABORATORY	KENNETH GUSCOTT
E. R. SOLTER	JOHN A. APPS	MICHAEL T. HARRIS
INSTITUTE OF GEOLOGICAL SCIENCES—ENGLAND	EUGENE P. BINNALL	MICHAEL R. HELFERT
STEPHEN THOMAS HORSEMAN	NORMAN M. EDELSTEIN	JOSEPH M. HENNIGAN
INSTITUTE OF PLASMA PHYSICS	E. MAJER	CHARLES B. HUNT
H. AMANO	CHIN FU TSANG	HAROLD L. JAMES
INTER/FACE ASSOCIATES INC	J. WANG	KENNETH S. JOHNSON
RON GINGERICH	LAWRENCE LIVERMORE NATIONAL LABORATORY	THOMAS H. LANGEVIN
INTERA TECHNOLOGIES INC	EDNA M. DIDWELL	LINDA LEHMAN
JAMES E. CAMPBELL	HUGH HEARD	GEORGE LOUDDER
F. J. PEARSON, JR.	FRANCOIS E. HEUZE	CLIVE MACKAY
JOHN F. PICKENS	NAI-HSIEN MAO	DUANE MATLOCK
MARK REEVES	LAWRENCE MCKAGUE	W. D. MCDougald
INTERNATIONAL ENGINEERING COMPANY INC	THOMAS E. MCKONE	MAX McDowell
MAX ZASLAWSKY	ABELARDO RAMIREZ	A. ALAN MOGHISI
INTERNATIONAL GROUND WATER MODELING CENTER	LAWRENCE D. RAMSPOTT (2)	TONY MORGAN
PAUL K. M. VAN DER HEIJDE	DAVID B. SLEMMONS	CAROLINE PETTI
	TECHNICAL INFORMATION DEPARTMENT	

PETER J. SABATINI, JR.
 ZUBAIR SALEEM
 OWEN SEVERANCE
 LEWIS K. SHUMWAY
 HARRY W. SMEDES
 LEE STOKES
 M. J. SZULINSKI
 EBIMO D. UMBU
 SUSAN D. WILTSHERE

MERRIMAN AND BARBER CONSULTING
 ENGINEERS INC
 GENE R. BARBER

MICHIGAN DEPT OF PUBLIC HEALTH
 ARTHUR W. BLOOMER

MICHIGAN DISTRICT HEALTH DEPT NO. 4
 EDGAR KREFT

MICHIGAN ENVIRONMENTAL COUNCIL
 ROOM 305

MICHIGAN GEOLOGICAL SURVEY
 ROBERT C. REED

MICHIGAN UNITED CONSERVATION CLUBS
 WAYNE SCHMIDT

MIDDLETON LIBRARY
 M. S. BOLNER

MINDEN NUCLEAR WASTE INFORMATION
 OFFICE
 SHIRLEY JOHNSON

MINNESOTA GEOLOGICAL SURVEY
 MATT S. WALTON

MISSISSIPPI BUREAU OF GEOLOGY
 MICHAEL B. E. BOGRAD

MISSISSIPPI DEPT OF ENERGY AND
 TRANSPORTATION
 DON CHRISTY

MISSISSIPPI DEPT OF NATURAL RESOURCES
 ALVIN R. BICKER, JR.
 CHARLES L. BLALOCK

MISSISSIPPI MINERAL RESOURCES INSTITUTE

MISSISSIPPI STATE DEPT OF HEALTH
 EDDIE S. FUENTE

MISSISSIPPI STATE UNIVERSITY
 JOHN E. MYLROIE

MITRE CORP
 LESTER A. ETTLINGER

MONTICELLO NUCLEAR WASTE INFORMATION
 OFFICE
 CARL EISEMANN (2)

MORRISON-KNUDSEN COMPANY INC
 BILL GALE
 MICHELLE L. PAURLEY

NATIONAL ACADEMY OF SCIENCES
 JOHN T. HOLLOWAY

NATIONAL BOARD FOR SPENT NUCLEAR FUEL,
 KARNSBRANSLENAMDEN—SWEDEN
 NILS RYDELL

NATIONAL GROUND WATER INFORMATION
 CENTER
 JANET BIX

NATIONAL PARK SERVICE
 CECIL D. LEWIS, JR.
 L. L. MINTZMEYER
 PETER L. PARRY

NATIONAL PARKS & CONSERVATION
 ASSOCIATION
 TERRI MARTIN

NATIONAL SCIENCE FOUNDATION
 ROYAL E. ROSTENBACH

NATIONAL WATER WELL ASSOCIATION
 VALERIE ORR

NEW HAMPSHIRE HOUSE OF REPRESENTATIVES
 M. ARNOLD WIGHT, JR.

NEW MEXICO BUREAU OF GEOLOGY
 BILL HATCHELL

NEW MEXICO ENVIRONMENTAL EVALUATION
 GROUP
 ROBERT H. NEILL

NEW MEXICO INSTITUTE OF MINING AND
 TECHNOLOGY
 JOHN L. WILSON

NEW YORK ENERGY RESEARCH &
 DEVELOPMENT AUTHORITY
 JOHN P. SPATH (8)

NEW YORK STATE ASSEMBLY
 WILLIAM B. HOYT

NEW YORK STATE DEPT OF ENVIRONMENTAL
 CONSERVATION
 PAUL MERGES

NEW YORK STATE GEOLOGICAL SURVEY
 JAMES R. ALBANESE
 ROBERT H. FICKIES

NEW YORK STATE HEALTH DEPT
 JOHN MATUSZEK

NEW YORK STATE PUBLIC SERVICE
 COMMISSION
 FRED HAAG

NEYER, TISEO, & HINDO LTD
 KAL R. HINDO

NORTH CAROLINA STATE UNIVERSITY
 M. KIMBERLEY

NORTH DAKOTA GEOLOGICAL SURVEY
 DON L. HALVORSON

NORTHEAST LOUISIANA UNIVERSITY
 ROBERT E. DOOLEY

NORTHWESTERN UNIVERSITY
 BERNARD J. WOOD

NUCLEAR SAFETY RESEARCH ASSOCIATION
 HIDETAKA ISHIKAWA

NUCLEAR WASTE CONSULTANTS
 ADRIAN BROWN

NUCLEAR WASTE INFORMATION CENTER
 MISSISSIPPI STATE LAW LIBRARY
 JUDITH HUTSON

NUS CORP
 W. G. BELTER

OAK RIDGE NATIONAL LABORATORY
 J. O. BLOMEKE
 ALLEN G. CROFF
 DAVID C. KOCHER
 T. F. LOMENICK
 FRANCOIS G. PIN
 ELLEN D. SMITH
 SUSAN K. WHATLEY

OHIO DEPT OF HEALTH
 ROBERT M. QUILLIN

ONR DETACHMENT
 DAVID EPP

ONTARIO DEPT OF CIVIL ENGINEERING
 F. SYKES

ONTARIO HYDRO—CANADA
 K. A. CORNELL
 C. F. LEE

ORANGE COUNTY COMMUNITY COLLEGE
 LAWRENCE E. O'BRIEN

ORGANIZATION FOR ECONOMIC
 COOPERATION AND DEVELOPMENT—FRANCE
 STEFAN G. CARLYLE

PACIFIC NORTHWEST LABORATORY
 DON J. BRADLEY
 CHARLES R. COLE
 WILLIAM CONBERE
 PAUL A. EDDY
 FLOYD N. HODGES
 CHARLES T. KINCAID
 J. M. RUSIN
 R. JEFF SERNE
 STEVEN C. SNEIDER
 R. E. WESTERMAN

PARSONS BRINCKERHOFF QUADE & DOUGLAS
 INC
 T. R. KUESEL
 ROBERT PRIETO

PARSONS BRINCKERHOFF/PB-KBB
 KAROLYN KENNEDY

PARSONS-REDPATH
 KRISHNA SHRIYASTAVA
 GLEN A. STAFFORD

PB-KBB INC
 JUDITH G. HACKNEY

PENNSYLVANIA STATE UNIVERSITY
 MICHAEL GRUTZECK
 DELLA M. ROY
 WILLIAM B. WHITE

PHYSIKALISCH-TECHNISCHE BUNDESANSTALT—
 W. GERMANY
 PETER BRENNER

POTASH CORPORATION OF SASKATCHEWAN -
 CANADA
 GRAEME G. STRATHDEE

POTASH CORPORATION OF SASKATCHEWAN
 MINING LIMITED
 PARVIZ MOTTAHED

POWER REACTOR AND NUCLEAR FUEL
 DEVELOPMENT CORP—JAPAN

PRESEARCH INC
 MARTIN S. MARKOWICZ
 R.J. SHLEMON AND ASSOCIATES INC
 R. J. SHLEMON

RADIAN CORP
 RICHARD STRICKERT

RANDALL COUNTY LIBRARY

RE/SPEC INC
 GARY D. CALLAHAN
 PAUL F. GNIRK

RENSSELAER POLYTECHNIC INSTITUTE
 BRIAN BAYLY

RHOE ISLAND OFFICE OF STATE PLANNING
 BRUCE VILD

RICHTON NUCLEAR WASTE INFORMATION
 OFFICE
 BOB FREEMAN

RISO NATIONAL LABORATORY—DENMARK
 LARS CARLSEN

ROCKWELL HANFORD OPERATIONS
 RONALD C. ARNETT
 KUNSOO KIM

ROCKWELL INTERNATIONAL ENERGY SYSTEMS
 GROUP
 HARRY PEARLMAN

ROGERS & ASSOCIATES ENGINEERING CORP
 ARTHUR A. SUTHERLAND
 ROBERT E. WILEMS

ROY F. WESTON INC
 MICHAEL CONROY
 DAVID F. FENSTER
 VIC MONTENYOHL
 SAM PANNO
 JILL RUSPI
 KAREN ST. JOHN
 LAWRENCE A. WHITE

ROYAL INSTITUTE OF TECHNOLOGY—SWEDEN
 IVARS NERETNIEKS
 ROGER THUNVIK

ROYCES ELECTRONICS INC
 ROYCE HENNINSON

SALT LAKE CITY TRIBUNE
 JIM WOOLF

SAN JOSE STATE UNIVERSITY SCHOOL OF
 ENGINEERING
 R. N. ANDERSON

SAN JUAN RECORD JOYCE MARTIN	STATE UNIVERSITY OF NEW YORK AT CORTLAND JAMES E. BUGH	U.S. BUREAU OF RECLAMATION REGE LEACH
SANDIA NATIONAL LABORATORIES JOY BEMESDERFER ROBERT M. CRANWELL ROBERT GUZOWSKI THOMAS O. HUNTER A. R. LAPPIN R. W. LYNCH JAMES T. NEAL E. J. NOWAK SCOTT SINNOCK WOLFGANG WAWERSIK WENDELL WEART	STATE UNIVERSITY OF NEW YORK AT STONY BROOK S. REAVEN STONE & WEBSTER ENGINEERING CORP ARLENE C. PORT EVERETT M. WASHER STUDIO GEOLOGICO FOMAR—ITALY A. MARTORANA SWEDISH GEOLOGICAL LEIF CARLSSON SWISHER COUNTY LIBRARY SYRACUSE UNIVERSITY WALTER MEYER J. E. ROBINSON SYSTEMS SCIENCE AND SOFTWARE PETER LAGUS TECHNICAL INFORMATION PROJECT DONALD PAY	U.S. DEPT OF COMMERCE PETER A. RONA
SARGENT & LUNDY ENGINEERS LAWRENCE L. HOLISH	TERRAFORM ENGINEERS INC FRANCIS S. KENDORSKI	U.S. DEPT OF ENERGY RICHARD BLANEY
SAVANNAH RIVER LABORATORY CAROL JANTZEN	TEXAS A & M UNIVERSITY JOHN HANDIN JAMES E. RUSSELL	REBECCA BOYD
SCIENCE APPLICATION KRISHAN K. WAHI	TEXAS BUREAU OF ECONOMIC GEOLOGY WILLIAM L. FISHER	CHED BRADLEY
SCIENCE APPLICATIONS INTERNATIONAL CORP MARY LOU BROWN CONNIE COLLIER BARRY DIAL ROBERT R. JACKSON DAVID H. LESTER JOHN E. MOSIER ANTHONY MULLER DOUGLAS A. OUTLAW HOWARD PRATT MICHAEL E. SPAETH ROBERT T. STULA M. D. VOEGELE	TEXAS DEPT OF HEALTH DAVID K. LACKER	R. COOPERSTEIN
SENECA COUNTY DEPT OF PLANNING & DEVELOPMENT	TEXAS DEPT OF WATER RESOURCES T. KNOWLES	NEAL DUNCAN
SHAFER EXPLORATION COMPANY WILLIAM E. SHAFER	TEXAS GOVERNORS OFFICE STEVE FRISHMAN	JIM FIORE
SHANNON & WILSON INC HARVEY W. PARKER	TEXAS STATE HOUSE OF REPRESENTATIVES JULIE CARUTHERS	LAWRENCE H. HARMON
SIERRA CLUB MARVIN RESNIKOFF	TEXAS TECHNICAL UNIVERSITY C. C. REEVES, JR.	MICHAELLENE PENDLETON (2)
SIERRA CLUB—COLORADO OPEN SPACE COUNCIL ROY YOUNG	TEXAS WORLD OPERATIONS INC DAVID JEFFERY	PUBLIC READING ROOM
SIERRA CLUB LEGAL DEFENSE FUND H. ANTHONY RUCKEL	THE ANALYTIC SCIENCES CORP JOHN W. BARTLETT	JANIE SHAHEEN
SIMECSOL CONSULTING ENGINEERS—FRANCE MATTHEW LEONARD	THE BENHAM GROUP KEN SENOUR	U.S. DEPT OF ENERGY - CHICAGO OPERATIONS OFFICE
SOGO TECHNOLOGY INC TIO C. CHEN	THE DAILY SENTINEL JIM SULLIVAN	BARRETT R. FRITZ
SOKAOGON CHIPPEWA COMMUNITY ARLYN ACKLEY	THE EARTH TECHNOLOGY CORP DANIEL D. BUSH	PUBLIC READING ROOM
SOUTH DAKOTA GEOLOGICAL SURVEY MERLIN J. TIPTON	FRED A. DONATH (2)	R. SELBY
SOUTH DAKOTA OFFICE OF ENERGY POLICY STEVEN M. WEGMAN	JOSEPH G. GIBSON	U.S. DEPT OF ENERGY—ENGINEERING AND LICENSING DIVISION
SOUTHERN CALIFORNIA EDISON CO JOHN LADESICH	DAN MELCHIOR	RALPH STEIN
SOUTHWEST RESEARCH AND INFORMATION CENTER DON HANCOCK	JAMES R. MILLER	U.S. DEPT OF ENERGY—IDAHO OPERATIONS OFFICE
SPRING CREEK RANCH DALTON RED BRANGUS	FIA VITAR	JAMES F. LEONARD
SPRINGVILLE CITY LIBRARY	MATT WERNER	PUBLIC READING ROOM
SRI INTERNATIONAL (PS 285) DIGBY MACDONALD	KENNETH L. WILSON	U.S. DEPT OF ENERGY - OAK RIDGE OPERATIONS OFFICE
ST & E TECHNICAL SERVICES INC STANLEY M. KLAINER	THE RADIOACTIVE EXCHANGE EDWARD L. HELMINSKI	PUBLIC READING ROOM
STANFORD UNIVERSITY KONRAD B. KRAUSKOPF	THE SEATTLE TIMES ELOUISE SCHUMACHER	FRANK J. WOBBER
GEORGE A. PARKS	THOMSEN ASSOCIATES C. T. GAYNOR, II	U.S. DEPT OF ENERGY—OSTI (317)
IRWIN REMSON	TIMES-PICAYUNE MARK SCHLEIFSTEIN	U.S. DEPT OF ENERGY—RICHLAND OPERATIONS OFFICE
STATE PLANNING AGENCY BILL CLAUSEN	TIOGA COUNTY PLANNING BOARD THOMAS A. COOKINGHAM	D. H. DAHLEM
	TULIA NUCLEAR WASTE INFORMATION OFFICE NADINE COX	U.S. DEPT OF ENERGY—SALT REPOSITORY PROJECT OFFICE
	U.S. ARMY CORPS OF ENGINEERS DON BANKS	J. O. NEFF
	ALAN BUCK	U.S. DEPT OF ENERGY - SAN FRANCISCO OPERATIONS OFFICE
	U.S. BUREAU OF LAND MANAGEMENT GREGORY F. THAYN	PUBLIC READING ROOM
	U.S. BUREAU OF MINES ANTHONY IANNACCIONE	U.S. DEPT OF ENERGY—WIPP
		ARLEN HUNT
		U.S. DEPT OF LABOR
		KELVIN K. WU
		U.S. DEPT OF THE INTERIOR
		F. L. DOYLE
		PAUL A. HSIEH
		U.S. ENVIRONMENTAL PROTECTION AGENCY
		JAMES NEIHEISEL
		U.S. ENVIRONMENTAL PROTECTION AGENCY—DENVER REGION VIII
		PHIL NYBERG
		U.S. GEOLOGICAL SURVEY
		GEORGE A. DINWIDDIE
		VIRGINIA M. GLANZMAN
		DARWIN KNOCHENMUS
		GERHARD W. LEO
		EDWIN ROEDDER
		RAYMOND D. WATTS
		U.S. GEOLOGICAL SURVEY—DENVER
		M. S. BEDINGER
		JESS M. CLEVELAND
		ROBERT J. HITE
		FREDERICK L. PAILLET
		WILLIAM WILSON
		U.S. GEOLOGICAL SURVEY—JACKSON
		CARALD G. PARKER, JR.
		U.S. GEOLOGICAL SURVEY—MENLO PARK
		MICHAEL CLYNNE

U.S. GEOLOGICAL SURVEY—RESTON

I-MING CHOU
NEIL PLUMMER
EUGENE H. ROSEBOOM, JR.
DAVID B. STEWART
NEWELL J. TRASK, JR.

U.S. NUCLEAR REGULATORY COMMISSION

R. BOYLE
EILEEN CHEN
DOCKET CONTROL CENTER
GEOSCIENCES BRANCH
PAUL F. GOLDBERG
BANAD N. JAGANNATH
CLYDE JUPITER
PHILIP S. JUSTUS
WALTON R. KELLY
WILLIAM D. LILLEY
JOHN C. MCKINLEY
NRC LIBRARY
EDWARD O'CONNELL
JEROME R. PEARRING
JACOB PHILIP
FREDERICK W. ROSS
R. JOHN STARMER
NAIEM S. TANIOUS
JOHN TRAPP
TILAK R. VERMA
MICHAEL WEBER

U.S. SENATE

CARL LEVIN
BILL SARPALIUS

UNION OF CONCERNED SCIENTISTS

MICHAEL FADEN

UNITED KINGDOM ATOMIC ENERGY AUTHORITY

A. B. LIDIARD

UNIVERSITE DU QUEBEC EN ABITIBI-TEMISCAMINGUE

AUBERTIN MICHEL

UNIVERSITY COLLEGE LONDON

B. K. ATKINSON

UNIVERSITY OF ALBERTA—CANADA

F. W. SCHWARTZ

UNIVERSITY OF ARIZONA

JAAK DAEMEN
STANLEY N. DAVIS
I. W. FARMER
KITTITEP FUENKAJORN
JAMES G. MCCRAY

UNIVERSITY OF BRITISH COLUMBIA - CANADA

R. ALLAN FREEZE

UNIVERSITY OF CALIFORNIA AT RIVERSIDE

LEWIS COHEN

UNIVERSITY OF CONNECTICUT

GARY ROBBINS

UNIVERSITY OF DAYTON RESEARCH LAB

NACHHATTER S. BRAR

UNIVERSITY OF ILLINOIS AT URBANA—CHAMPAIGN

ALBERT J. MACHIELS

UNIVERSITY OF LOWELL

JAMES R. SHEFF

UNIVERSITY OF MARYLAND

AMERICAN NUCLEAR SOCIETY
LUKE L. Y. CHUANG

UNIVERSITY OF MASSACHUSETTS

GEORGE MCGILL

UNIVERSITY OF MISSOURI AT COLUMBIA

W. D. KELLER

UNIVERSITY OF MISSOURI AT KANSAS CITY

EDWIN D. GOEBEL

SYED E. HASAN

UNIVERSITY OF MISSOURI AT ROLLA

ALLEN W. HATHEWAY

UNIVERSITY OF NEVADA AT RENO

BECKY WEIMER-MCMILLION

UNIVERSITY OF NEW MEXICO

DOUGLAS G. BROOKINS

RODNEY C. EWING

UNIVERSITY OF ROCHESTER

DAVID ELMORE

UNIVERSITY OF SOUTHERN MISSISSIPPI

CHARLES R. BRENT

DANIEL A. SUNDEEN

UNIVERSITY OF TEXAS AT AUSTIN

BUREAU OF ECONOMIC GEOLOGY

CAROLYN E. CONDON

PRISCILLA P. NELSON

JOHN M. SHARP, JR.

THE GENERAL LIBRARIES

UNIVERSITY OF TEXAS AT SAN ANTONIO

DONALD R. LEWIS

UNIVERSITY OF TOLEDO

DON STIERMAN

UNIVERSITY OF UTAH

THURE CERLING

STEVEN J. MANNING

MARRIOTT LIBRARY

JAMES A. PROCARIONE

GARY M. SANDQUIST

UNIVERSITY OF UTAH RESEARCH INSTITUTE

LIBRARY

HOWARD P. ROSS

UNIVERSITY OF WASHINGTON

DAVID BODANSKY

M. A. ROBINK

UNIVERSITY OF WATERLOO

CHRIS FORDHAM

UNIVERSITY OF WISCONSIN—MADISON

B. C. HAIMSON

UNIVERSITY OF WISCONSIN—MILWAUKEE

HOWARD PINCUS

UNIVERSITY OF WISCONSIN CENTER - JANEVILLE

UNIVERSITY OF WYOMING

PETER HUNTOON

USGS NATIONAL CENTER

JIM ROLLO

UTAH DEPT OF HEALTH

LARRY F. ANDERSON

UTAH DEPT OF TRANSPORTATION

DAVID LLOYD

UTAH DIVISION OF PARKS & RECREATION

GORDON W. TOPHAM

UTAH GEOLOGICAL AND MINERAL SURVEY

MAGE YONETANI

UTAH SOUTHEASTERN DISTRICT HEALTH DEPT

ROBERT L. FURLOW

UTAH STATE GEOLOGIC TASK FORCE

DAVID D. TILLSON

UTAH STATE UNIVERSITY

DEPT OF GEOLOGY 07

V. RAJARAM, P.E.

V. RAJARAM

VANDERBILT UNIVERSITY

FRANK L. PARKER

VEGA NUCLEAR WASTE INFORMATION OFFICE

EFFIE HARLE

VERMONT STATE NUCLEAR ADVISORY PANEL

VIRGINIA CALLAN

VIRGINIA DEPT OF HEALTH

ROBERT G. WICKLINE

VIRGINIA POWER COMPANY

B. H. WAKEMAN

WASHINGTON HOUSE OF REPRESENTATIVES

RAY ISAACSON

WASHINGTON STATE DEPT OF ECOLOGY

TERRY HUSSEMAN

WATTLAB

BOB E. WATT

WEST VALLEY NUCLEAR SERVICES COMPANY INC

LARRY R. EISENSTATT

WESTERN MICHIGAN UNIVERSITY

ROBERT KAUFMAN

W. THOMAS STRAW

WESTERN STATE COLLEGE

FRED R. PECK

WESTINGHOUSE ELECTRIC CORP

WIPP PROJECT

WESTINGHOUSE IDAHO NUCLEAR COMPANY INC

NATHAN A. CHIPMAN

WESTON GEOPHYSICAL CORP

CHARLENE SULLIVAN

WEYER CORP INC

K. U. WEYER

WILLIAMS AND ASSOCIATES INC

GERRY WINTER

WISCONSIN DEPT OF NATURAL RESOURCES

DUWAYNE F. GEBKEN

WISCONSIN STATE SENATE

JOSEPH STROHL

WITHERSPOON, AIKEN AND LANGLEY

RICHARD FORREST

WOODWARD-CLYDE CONSULTANTS

RANDALL L. LENTELL

ASHOK PATWARDHAN

WESTERN REGION LIBRARY

YALE UNIVERSITY

G. R. HOLEMAN

BRIAN SKINNER

YORK COLLEGE OF PENNSYLVANIA

JERI LEE JONES