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'Nomenclature 

, . .  
- . . 

C s p e c i f i c  heat  
P  

. . 

%sf cons tan t  i n    oh sen ow c o r r e l a t i o n ,  eq. (8a )  ' r .' 

. . 

d  t u b e  diameter  

g r a v i t a t 2 o n a l  a c c e l e r a t f o n  

average heat  t r a n s f e r  c o e f f i c i e n t  over L . . .  

bo i l ing  heat  t r a n s f e r  c o e f f i c i e n t  

f u l l y  developed heat  t r a n s f e r  c o e f f i c i e n t ,  eqs. (8d) and (8e) 

heat  t r a n s f e r  c o e f f i c i e n t  in .  developing region ' .' 

l a t e n t  h e a t ' o f  vapor fza t ion  ' ' 

thermal conduc t iv i ty  

c i rcumferent ia l . , ' length  of heated s u r f a c e .  

developing l eng th ,  eq. ( 8 ~ )  

P r a n d t l  number, cp/k  

Reynolds number, 4r/v 

td d i f f u s i o n  time, eq. (1) , . ' 

Ts s a t u r a t i o n  temperature 

T wa l l  temp.erature 
W 

AT superheat .  T 
w - Ti . . 

U o v e r a l l  c o e f f i c i e n t . o f  hcnt  t r a n s f e r .  

Z v e r t i c a l  coord ina te  measured f rom. top  of  tube  

a d i f f u s i v i t y  of heat  

r . . 
f lowra te  per '  u n i t  a x i a l .  l e n g t h  of t u b e  . ' 

6 f i l m  t l ~ i c k n e s s  

Ir a b s o l u t e  v i s c o s i t y  

v kinematrc v i s c o s i t y  

P d e n s i t y  . . 

u s u r f a c e  t e n s i o n  



- - 

A model of combined b o i l i n g  and evaporat ion of l i q u i d  f i l m s  on h o r i z o n t a l  
tubes  was developed. s p e c i f i c a l l y ,  t h i s  work was d i r e c t e d  toward de- . 
veloping a  heat t r a n s f e r  model a p p l i c a b l e  t o  t h e  des ign of h o r i z o n t a l  tube  
f a l l i n g  f i l m  evaporators  f o r  OTEC. The heat  t r a n s f e r  process  i s  modelled 
as combined boi l ing  and evaporat ion of the  l i q u i d  f i l i n .  I n  modelling t h e  
behavior of s i n g l e  tubes  s p e c i a l  account i s  taken of heat t ~ a n s f e r  i n  t h e  
i n i t i a l  thermal developing region of t h e  f i lm.  

P r e d i c t i o n s  were found t o  ag ree  favorably  wi th  t h e  published experimental  
da ta  of F le tche r  e t  a l .  [1 ,2 ]  f o r  b o i l i n g  and evapora t ion  of t h i n  
water f i l m s  on s i n g l e  hor izon ta l  tubes .  The p red ic ted  upper and lower 
limits of heat  t r a n s f e r  f o r  ammonia on a v e r t i c a l  bank of p l a i n  h o r i z o n t a l  
tubes  a r e  5.4 k\l/rn2-K and 3.1 kw/rn2-K, r e spec t ive ly .  The upper l i m i t  1 . 7 i l l  

be approached when t h e  in f luence  of between-tube evaporat ion and t u r -  
bulence crea ted  by t h e  l i q u i d  f a l l i n g  from one tube t o  t h e  next  a r e  ihpor-  
t a n t .  ~ b r  an OTEC evaporator  wi th  p l a i n  tubes ,  t h e  upper  and lotier l i m i t s  
of the  o v e r a l l  U a r e  2 .33  kw/m2-K and 1.82 kW/m2-K, r e s p e c t i v e l y .  With 
ammonia-side bo i l ing  enhancement, t h e  o v e r a l l  U can be increased t o  about 
3.8  kw/m2-K. 



1 . 0  In t roduc t ion  

R e l a t i v e l y  h igh  hea t  f l u x e s  can  be achieved wi th  m a l l  t empera tu re  d i f f e r e n c e s  
by combined b o i l i n g  and evapora t ion  of t h i n  l i q u i d  f i l m s  on h o r i z o n t a l  t u b e s .  
Evapora tors  employing t h e s e  hea t  t r a n s f e r  mechanisms have been used i n  re- 
f r i g e r a t i o n  systems, d e s a l i n a t i o n  p l a n t s ,  and, more r e c e n t l y ,  have been pro- 
posed f o r  u s e  i n  Ocean Thermal Energy Conversion (OTEC) power p l a n t s .  A de- 
s i g n  of p a r t i c u l a r  i n t e r e s t  f o r  OTEC i s  t h e  h o r i z o n t a l  t u b e  f a l l i n g  f i l m  
evapora tor .  Th i s  i s  a  s h e l l  and t u b e  u n i t  w i t h  warm s e a  water  on t h e  t u b e  
s i d e  and working f l u i d  (e .g . ,  ammonia) on t h e  s h e l l  s i d e .  Working f l u i d  
i s  suppl ied  by feed  t u b e s  over  v e r t i c a l  banks of h o r i z o n t a l  t u b e s  on which 
vapor i za t ion  occurs .  The upper p o r t i o n  of a t y p i c a l  t u b e  bank compris ing 
an  evapora tor  u n i t  is  i l l u s t r a t e d  i n  F i g u r e  1. Uncvaporated f l u i d  from any 
g iven  tube  f a l l s  on t h e  next  lower t u b e .  Uncvaporated l i q u i d  c o l l c c t s  a t  
t h e  bottom of  t h e  evapora to r  and i s  r e c i r c u l a t e d .  A major  d e s i g n  c h a l l e n g e  
is  t o  keep t h e  tubes  wetted ( t o  ensu re  good hea t  t r a n s f e r )  w i t h  minimum r e -  
c i r c u l a t i o n  ( t o  minimize p a r a s i t i c  pumping) . 

Desp i t e  t h e  importance of  b o i l i n g  and evapora t ion  of  l i q u i d  f i l m s  on 
h o r i z o n t a l  tubes ,  s u r p r i s i n g l y  l i t t l e  a n a l y t i c a l  and exper imenta l  work has  
appeared i n  t h e  l i t e r a t u r e ,  e.g. [I-51. Much of  t h e  p rev ious  work w a s  
sponsored by t h e  O f f i c e  of  S a l i n e  Water (OSW) and was d i r e c t e d  toward 
d e s a l i n a t i o n .  The p r e s e n t  s tudy  is  d i r e c t e d  toward developing  a hea t  
t r a n s f e r  model which can  be a p p l i e d  t o  t h e  des ign  of h o r i z o n t a l  t u b e  f a l l -  
i n g  f i l m  evapora to r s  f o r  OTEC. Combined b o i l i n g  and evapora t ion  w i l l  
be  cons idered .  S p e c i a l  accouvt  w i l l  be  taken  of hea t  t r a n s f e r  i n  t h e  
i n i t i a l  thermal  developing r e g i o n  o f  t h e  f i l m .  P r e d i c t i o n s  w i l l  be  com- 
pared w i t h  publ ished exper imenta l  d a t a  f o r  evapora t ing  water  f i l m s  on 
h o r i z o n t a l  tubes.  The model w i l l  be a p p l i e d  t o  ammonia and hea t  t r a n s f e r  
c o e f f i c i e n t s  w i l l  be  p r e d i c t e d  f o r  v e r t i c a l  banks of p l a i n  and enhanced 
tubes .  L imi t s  of hea t  t r a n s f e r  performance w i l l  b e  e s t a b l i s h e d  f o r  
h o r i z o n t a l  t u b e  f a l l i n g  f i l m  evapora to r s  wi thout  water  s i d e  enhancement, 

2 . 0  Analys is  

For t h e  c a s e  of  a  s i n g l e  h o r i z o n t a l - t u b e  w i t h  o u t e r  d i ame te r  d ,  t h e  pro- 
blem is t r e a t e d  by "unwrapping" t h e  t u b e  t o  form a  v e r t i c a l  s u r f a c e  of  
l e n g t h  L = n d/2,  s e e  F i g u r e  2.  Within t h e  l e n g t h  L ,  two d i s t i n c t  convec t ive  
hea t  t r a n s f e r  r e g i o n s  a r e  def ined:  a  thermal  developing r e g i o n  and a  f u l l y  
developed reg ion .  I f  t h e  superhea t  i s  s u f f i c i e n t l y  h igh ,  n u c l e a t e  b o i l i n g  
can occur  i n  t h e  f i lm .  The o v e r a l l  hea t  t r a n s f e r  is  modelled as a - s u p e r -  
p o s i t i o n  of t h e  convec t ive  components and t h e  b o i l i n g  component. I n  t h e  
fo l lowing  sub-sec t ions ,  models of each  hea t  t r a n s f e r  mechanism w i l l  be  
presented  and then  inco rpora t ed  i n t o  an  o v e r a l l  h e a t  t r a n s f e r  model f o r  
s i n g l e  t ubes .  I n  a d d i t i o n  c o n t r o l l i n g  mechanisms of hea t  t r a n s f e r  f o r  a 
v e r t i c a l  bank of h o r i z o n t a l  t u b e s  w i l l  be  d i scussed .  The i n f l u e n c e  of 
vapor  c ross f low is neg lec t ed  i n  t h e  p r e s e n t  a n a l y s i s .  A d e t a i l e d  s t u d y  of  
p o s s i b l e  l i q u i d  r e d i s t r i b u t i o x l  and en t ra inment  r e s u l t i n g  from vapor  c r o s s -  
f l ow is p r e s e n t l y  under i n v e s t i g a t i o n  by t h e  a u t h o r s .  



2.1 Thermal Develop ing Reg ton 

. . . . . . . 

~ e f e r r i n ~  t o  Figure 2, l i q u i d  a t  ' t he  s a t u r a t i o n  temperature T i s  f e d  a t  
a  f lowra te  2 r  t o  t h e  top  of a  heated tube,, e s t a b l i s h i n g  a ' t h i g  f i l m  on t h e  
surface .  The feed flow 'splits evenly with r going t o  each,  s i d e .  A thermal 
developing l eng th  L i s  requi red  f o r  t h e  f i l m  t o  be superheated from t h e  

d s a t ~ r o t i ~ n  temperature t o  a f u l l y  developed 1 i n . k  p r o f i l e .  To an  observer  
moving wi th  t h e  average f i l m  v e l o c i t y ,  . r /p  6, t h e  developing temperature pro-  

' f i l e  i s  shown i n  Figure '  3. The d i f f u s i o n  t i m e  t requ i red  f o r '  the tempera- 
t u r e  f r b n t  t o  reach t h e  i n t e r f a c e  is approximatea a s :  

This  approximation is  based on a cons ide ra t ion  of 1-D t r a n s i e n t  hea t  con- 
duct ion  i n  a  s o l i d  i n i t i a l l y  a t  uniform temperature and then sub jec ted  t o  a 
sudden s t e p  inc rease  i n  temperature a t  a  boundary. The f i l m  th ickness  6 is  
est imated from t h e  well-known ~ u s s e l t  expression:  

Multiplying t h e  average f i l m  v e l o c i t y  by t h e  d i f f u s i o n  time, t h e  developing 
l e n g t h  is ca lcu la ted  t o  be:. . 

I n  t h e  thermal developing reg ion  a l l  t h e  heat  t r a n s f e r r e d  from t h e  wa l l  
goes i n t o  superheating t h e  l i q u i d  f i l m  and no evaporat ion occurs .  From a n  
energy balance in t h e  developing region,  t h e  t o t a l  heat  t r a n s f e r  per  u n i t  
depth  i s  2 I' C AT. ~ b r  t h i s  c a l c u l a t i o n  a pa rabo l i c  v e l o c i t y  p r o f i l e  and 
l i n e a r  t m p e r & u r e  p r o f i l e  were assumed a t  Z = Ld. The average heat  t r ans -  
f e r  c o e f f i c i e n t  i n  t h e  thermal developing region i s  then: 

hd = - c r 
8 P q  (4) 

The heat  t r a n s f e r  c o e f f i c i e n t  i n  t h e  thermal developing region w i l l  g e n e r a l l y  
be higher than t h a t  i n  t h e  f u l l y  developed region.  Th i s  i s  analogous t o  t h e  
case  of s i n g l e  phase convect ive  heat  t r a n s f e r  . i n  p i p e s  where t h e  heat  t r a n s -  
f e r  c o e f f i c i e n t  is s u b s t a n t i a l l y  .higher nea r  t h e  en t rance  than f u r t h e r  d'own- 
stream. . . 

2.2 Ful ly  Developed Region 

In  t h e  f u l l y  developed region con.vective heat  t r a n c f a r  leada t o  evapoxnt;ion 
at t h e  vapor / l iquid  i n t e r f a c e .  Chun and Seban [6] developed.  t h e  folJ-owing ' 
c o r r e l a t i o n  .for heat t r a n s f e r  t o  evaporat ing l i q u i d  f i l m s  on smooth v e r t  l c a l  
tubes;  

. . 



. . Turbulent : 

Both c o r r e l a t i o n s  g i v e  t h e  "local"  heat  t r a n s f e r  c o e f f i c i e n t  a s  a  f u n c t i o n  o f  
Reynolds number, 4 I ' / p .  These c o r r e l a t i o n s  were shown i n  Ref. [61  t o  be  con- 
s i s t e n t  wi th  in fe rences  made from published condensat ion d a t a .  The lam5nar 

. c o r r e l a t i o n ,  which i s  based on t h e  condensation work of Zazul i ,  assumes t h a t  
t h e  e f f e c t i v e  f i l m  th ickness  is reduced by t h e  a c t i o n  of c a p i l l a r y  waves and 
r i p p l e s .  The n e t  e f f e c t  i s  an  i n c r e a s e  i n  heat  t r a n s f e r  when compared , t o  
Nussel t .  The i n t e r s e c t i o n  of c o r r e l a t i o n s  (5a) and (5b) y i e l d s  a  pseudo- 
t r a n s i t  ion  Reynolds number: 

Th i s  should not  be regarded a s  an a c t u a l  i n d i c a t i o n  of t h e  t r a n s i t i o n  from 
laminar t o  tu rbu len t  but only a s  t h e  point  of t r a n s i t i o n  from one c o r r e l a t i o n  
t o  t h e  o the r .  The a c t u a l  t r a n s i t i o n  t o  turbulence  may be more a c c u r a t e l y  
cha ra te r i zed  by t h e  Weber number [6J. 

2 . 3  Nucleate Boil ing 
- - - - -  - 

I f  t h e  k p e r h e a t  i s  s u f f i c i e n t l y  high, b o i l i n g  may occur i n  t h e  f i l m .  It 
has been found t h a t  g r e a t e r  heat  f l u x e s  a r e  a t t a i n a b l e  wi th  bo i l ing  i n  t h i n  
f i l m s  than with bo i l ing  i n  pools ,  e .g . ,  [7-91. Apparently t h e  b o i l i n g  
mechanism i n  f i l m s  is  somewhat d i f f e r e n t  from that i n  pools .  Based on 
observat ions  with high speed cinenatography and simultaneous s u r f a c e  tempera- 
t u r e  measurements with s p e c i a l  thermocouples, Mess ler [7]  deduced that t h e  
exce l l en t  heat t r a n s f e r  in f i l m s  was due t o  increased microlayer  evapora t ion  
a t  t h e  base of the  growing bubbles. Others  suggest  t h a t  Marangoni e f f e c t s  
may be important [8 ,9 ]  . 
It was found [ 9 ]  t h a t  t h e  pool b o i l i n g  curve is' independent of l i q u i d  dep th  
above a c e r t a i n  minimum depth.  A s  t h e  depth  i s  reduced below t h i s  v a l u e  t h e  
bo i l ing  curve s h i f t s  t o  t h e  l e f t  ( i .  e . ,  t h e  heat  t r a n s f e r  c o e f f i c i e n t  in -  
c reases ) .  I n  t h e  c a s e  of water  b o i l i n g  a t  atmospheric p r e s s u r e  on h o r i z o n t a l  
surfaces ,  t h e  minimum dep th  was found t o  be about 5 mm. The t h i c h e s s  of a 
f a l l i n g  f i l m  i s  genera l ly  more than an o rde r  of magnitude smal ler  than t h i s  
value;  consequently t h e  b o i l i n g  heat  t r a n s f e r  c o e f f i c i e n t  w i l l  be g r e a t e r  t h a n  
t h a t  f o r  a  pool conf igura t ion .  

t 



~ x p e r i k e n t a ~  d a t a  f o r  b o i l i n g  o f  t h i n  f i l m s  is r e l a t i v 2 l y  ' scarce  whkn. 
compared t o  t h e  abundance of d a t a  f o r  b o i l i n g  i n  pools .  I n  view of t h i s  
f a c t ,  i t  was decided t o  u se  pool  boi l in 'g  d a t a  t o  c h a r a c t e r i z e  b o i l i n g  i n  
t h i n  f i l m s ,  wi th  t h e  lcnowlcdge t h a t  t h i s  model l ing  &sumprio'n i s  conscr-  
v a t i v e .  A widely accepted  .pool b o i l i n g  c o r r . e l a t i o n  . i s  t h a t  of Rohsenow 
[10,11] : 

. -,- 

and Csf is  a f u n c t i o n  of f l u i d - s u r f a c e  combination. Th i s  c o r r e l a t i o n  , 

w i l l  be  employed i n  t h e  p r e s e n t  s tudy .  Experimental  d a t a ,  when a v a i l a b l e ,  
w i l l  be  used i n  p re fe rence  t o  t h e  Rohsenow c o r r e l a t i o n .  

2.4 Overa l l  Model f o r  a .Single  Tube 

The o v e r a l l  hea t  f l u x  is  assumed t o  be a  supe rpos i t i on  of convec t ive  h e a t  
t r a n s f e r  and b o i l i n g .  This  procedure is e s s e n t i a l l y  similar t o  t h a t  of 
Bergles  and Rohsenow [12] f o r  determining forced  convect ive  b o i l i n g  h e a t  
t r a n s f e r  c o e f f i c i e n t s .  The average h e a t  t r a n s f e r  c o e f f i c i e n t  over  t h e  
c i r cumfe ren t i a l  l e n g t h  L i s  then: 

i i =  \ + =d 
hd E- + 

I L -..-2 
b o i l i n g  over  convect  i on  i n  
e n t i r e  l e n g t h  developing  r e g i o n  f u l l y  developed 

r e g  ion  

Laminar: ' 

Turbulent :  1 



- 
Since  h  is def ined  a s  t h e  average hea t  t r a n s f e r  c o e f f i c i e n t  over  t h e  e n t i r e  
l eng th ,  i t  should be ev iden t  t h a t  t h e  q u a n t i t i e s  ( L ~ / L )  and ( 1  - L ~ / L )  i n  
equat ion  (8) merely weight t h e  convect ion hea t  t r a n s f e r  components accord- 
ing t o  l e n g t h  over  which each is e f f e c t i v e .  Equat ions (8d) and (8e) a r e  
eva lua ted  assuming a  c o n s t a n t  f l owra t e ,  a procedure which does n o t  t a k e  
i n t o  account  t h e  th inning  of t b e  f i lm .  Comparisons wi th  a  more exac t  d i f -  
f e r e n t i a l  formula t ion  ind ica t ed  t h a t  t h e  cons t an t  f l o w r a t e  assumption i s  
good a s  long as t h e  amount of f l u i d  evaporated is small compared t o  t h e  
feed  f lowrate ."  I n  t h e  worst c a s e  ( i . e . ,  a t  t h e  f l o w r a t e  l ead ing  t o  dryout  
a t  t h e  bottom of t h e  tube)  t h e  s imple model unde rp red ic t s  t h e  hea t  t r a n s f e r  
c o e f f i c i e n t  by about 25%. A t  h ighe r  feed  f l o w r a t e s  t h e  s imple model d i f f e r s  
from t h e  more exact  formula t ion  by only  a  few percent .  A l l  p r e d i c t i o n s  
presented  i n  t h i s  paper a r e  determined from t h e  exac t  model, a l though 
r e fe rence  is made t o  equat ion  (8). Except when b o i l i n g  is  p re sen t  i n  
t h e  f i l m ,  t h e  p red ic t ed  hea t  t r a n s f e r  c o e f f i c i e n t  i s  n o t  extremely s e n s i t i v e  
t o  superhea t ,  AT. The v a l u e  of AT is  important on ly  inasmuch as it de- 

' t ennines  t h e  f l o w r a t e  a t  which dryout  occurs .  For c a s e s  with no bo i l i ng  i n  
t h e  f i l m ,  c a l c u l a t i o n s  a r e  made w i t h  AT = 6.0°C and 2.8"C f o r  water  and 
ammonia, r e s p e c t i v e l y  . When b o i l i n g  is pr'esent , t h e  superheat  employed f o r  
t h e  c a l c u l a t i o n s  w i l l  be  s p e c i f i e d  i n  each case .  

2.5 V e r t i c a l -  ~ a n k  o£- ~ o r i z o n t a i  'rubes- 

I n  t h e  c a s e  of a v e r t i c a l  bank of h o r i z o n t a l  t u b e s ,  t h e  unevaporated f l u i d  
from any given t u b e  i s  assumed t o  f a l l  on t h e  nex t  lower t ube ,  s e e  F i g u r e  
1. The bchavior  of a  t u b e  bank is  complicated by t h e  i n f l u e n c e  of  between- 
tube evapora t ion  and t i t rbulence genera ted  a s  l i q u i d  f a l l s  from one t u b e  t o  
the  next. Also vapor  c r o s s f l o w  can bc impor tan t .  A c o n s c r v a t i v c  c s t i l na t e  
of the  heat  t r a n s f e r  behavior  of a t u b e  bank car1 be  obta ined  by neglecting 
between-tube evapora t ion  and tu rbu lence ,  and ex tending  t h e  a n a l y s i s  f o r  a  
s i n g l e  tube .  I f  t h e  bank is  f e d  by l i q u i d  a t  T , t h e  tempera ture  p r o f i l e  
g e n e r a l l y  becomes f u l l y  developed somewhere on t h e  uppermost t u b e .  Thus 
t h e  behavior  of t h e  t o p  t u b e  is  s i m i l a r  t o  t h a t  of  a  s i n g l e  i s o l a t e d  t u b e  
and t h e  model of t h e  p rev ious  s e c t i o n  i s  d i r e c t l y  a p p l i c a b l e .  The l i q u i d  
reaching  t h e  second t u b e  has been superhea ted  by the f i r s t  t u b e  and t h e r e -  
f o r e  no developing l e n g t h  i s  r e q u i r e d .  Accordingly t h e  hea t  t r a n s f e r  
c o e f f i c i e n t  on t h e  second t u b e  i s  simply g iven  by t h e  Chun-Seban c o r r e l a t i o n  
( i . e . ,  h  ) i f  no b o i l i n g  o c c u r s  o r  hb + hc i f  b o i l i n g  is  p r e s e n t .  The i e a t  

C 
t r a n s f e r  c o e f f i c i e n t s  of a l l  lower t u b e s  a r e  determined i n  a  s i m i l a r  Tanner ,  
w i th  he f o r  any g iven  t u b e  c a l c u l a t e d  us ing  t h e  l o c a l  f l o w r a t e  I' of  l i q u i d  
reaching  t h a t  tube.  The ave rage  hea t  t r a n s f e r  c o e f f i c i e n t  f o r  t h e  e n t i r e  
t u b e  bank i s  then  t h e  a r i t h m e t i c  ave rage  of t h e  h e a t  t r a n s f e r  c o e f f i c i e n t s  
of a l l  t h e  i n d i v i d u a l  t ubes .  T h i s  procedure  f o r  c a l c u l a t i r i g  t h e  a v e r a g e  
hea t  t r a n s f e r  c o e f f i c i e n t  f o r  a  bank of n t u b e s  i s  e q u i v a l e n t  t o  employ- . 

ing equat ion  (8) w i t h  a n  e f f e c t i v e  l e n g t h  of L = nnd/2. 

* 
See Appendix A f o r  a  d e s c r i p t i o n ,  of t h e  d i f f e r e n t i a l  formula t ion .  



6 

The foregoing  procedure n e g l e c t s  t h e  i n f l u e n c e  of between-tube evapora t ion .  
3 

The l i q u i d  f i l m  has a n  average  supe rhea t  of  1. AT and i n  f a l l i n g  from one 
t u b e  t o  t h e  next  a p o r t i o n  of t h a t  superhea t  is  removed by evapora t ion .  A 
s imple model of between-tube evapora t ion  was developed by assuming t h a t  t h e  
l i q u i d  f a l l s  a s  a uniform shee t  w i t h  a  t h i c k n e s s  equa l  t o  tw ice  t h e  f i l m  
t h i c k n e s s  on t h e  tube .  A Kantrovich method was employed t o  s o l v e  t h e  t r a n s -  
i e n t  hea t  conduct ion problem w i t h  r e s p e c t  t o  an  obse rve r  t r a v e l l i n g  w i t h  
t h e  f a l l i n g  l i q u i d .  The time of f l i g h t  between t u b e s  was c a l c u l a t e d  assum- 
ing t h a t  t h e  l i q u i d  f a l l s  a s  a f r e e  body. For t h e  sma l l  twbe s p a c i n g s  
p r e s e n t l y  being cons ide red  f o r  OTEC ( i . e . ,  l e s s  t han  2 . 5 4  cm) t h e  model 
i n d i c a t e d  an i n c r e a s e  i n  hea t  t r a n s f e r  of no more than  about  15%. I f  t h e  
t u b e  spacing is  l a r g e ,  between-tube evapora t ion  can be more impor tan t .  The 
l i m i t i n g  c a s c  i s  where a l l  t h e  superhea t  is  rcmovcd by between-tube evapora- 
t i o n .  I f  t h i s  occu r s  t h e  next  lower t u b c  wi.11 behave a s  a  s i n g l e  rube  f e d  
by f l u i d  a t  T . Thus s i n g l e  t u b e  p r e d i c t i o n s  can  be regarded  a s  a n  uppcr  
limit f o r  h e a t  t r a n s f c r  t o  any g iven  t u b e  i n  t h e  bank. 

- .  

For condensat ion on v e r t i c a l  banks of h o r i z o n t a l  t ubcs ,  Chen [13]  used a 
between-tube condensa t ion  model t o  e x p l a i n  why t h e  Nusse l t  e q u a t i o n  under- 
$ ! e d i c t s  hea t  t r a n s f e r  c o e f f i c i e n t s  on t h e  lower tubes .  A more popular  
exp lana t ion  i s  t h a t  t h e  good heat. t r a n s f e r  i s  a r e s u l t  of t u r b u l e n c e  
produced by d r i p p i n g  and s p l a s h i n g  of t h e  condensate .  It is  l o g i c a l  t o  
assume t h a t  a s i m i l a r  mechanism o c c u r s  i n  evapora to r s .  L iu  [ 3 ]  found 
t h a t  t h e  heat  t r a n s f e r  c o e f f i c i e n t  i n c r e a s e s  w i t h  t u b e  spac ing ,  bu t  is no t  
s t r o n g l y  dependent on f lowra te .  According t o  L i u  t h e  i n i t i a l  l i q u i d  
v e l o c i t y  a t  t h e  t o p  of  a t u b e  i s  t h e  c r i t i c a l  f a c t o r  i n  de te rmining  h e a t  
t r a n s f e r  behavior.  S i n c e  t h e  l i q u i d  v e l o c i t y  depends on t h e  f a l l i n g  
d i s t a n c e ,  and not  on t h c  f l o w r a t e ,  t h e  observed behsv io r  appeared t o  b e  
reasonable .  

Neglec t ing  t h e  i n f l u e n c e  of  between-tube evapora t ion  and t u r b u l e n c e  gen- 
e r a t e d  by t h e  f a l l  ing l i q u i d  w i l l  l e a d  t o  a  c o n s e r v a t i v e  p r e d i c t i o n .  With 
t h e  r e l a t i v e l y  smal l  t u b e  spac ings  being cons idered  f o r  OTEC, t h e  in-  
f l u e n c e  of between-tube evapora t ion  and t u r b u l e n c e  may not  be  ex t remely  
s i g n i f i c a n t ;  but without  suppor t ing  exper imenta l  ev idence ,  t h e  p o t e n t i a l  
h ~ ~ p o r t a n c c  of t h e s e  e f f e c t s  cannnt be d i scoun ted .  Perhaps  t h e  s a f e s t  
c h a r a c t e r i z a t i o n  of hea t  t r a n s f e r  t o  any g iven  t u b e  i s  t o  assume t h a t  t h e  
a c t u a l  va lue  i s  bounded above by t h e  s i n g l e  t u b e  p r e d i c t i o n  and below by 
t h e  f u l l y  developed c o r r e l a t i o n  of  Chun-Seban. 

Before c l o s i n g  t h i s  s e c t i o n  a  few r e n a r k s  should  be made r e g a r d i n g  vapor  
v e l o c i t y .  The i n f l u e n c e  of a downward f l c w  of vapor  was s t u d i e d  a n a l y t i -  
ca l ly , . by  Liu [ 3 ] .  It was found t h a t  vapor  shea r .  e f f e c t s  become impor tan t  
on ly  a t  h igh  vapor .  v e l o c i t i e s .  For example, w i t h  a  2.54 cm d iame te r  t u b e  
and a  water  feed  f l o w r a t e  of r = 0.15 kgls-m a t  Ts = 100°C, t h e  i n c r e a s e  
i n  hea t  t r a n s f e r  coe f f  i c i e n t  is  less than  10% f o r  vapor  f l o w r a t e s  up t o  
9 .1  m / s .  Liu cons idered  vapor  do:mflow (and upflow) but  no t  vapor  c ross - -  
flow. A h igh  c ros s f low v e l o c i t y  can cause  d e f l e c t i o n  of l i q u i d  away from 
t h e  tubes .  Also l i q u i d  may be s t r i p p e d  from t h e  tubes . and  en t ra ' ined  i n t o  
t h e  vapor flow. These e f f e c t s ,  among o t h e r s ,  can c a u s e  r e d i s t r i b u t i o n  o£ 
1-iquid and incompf'ete'weLLiug; of t h e  t ubes ;  A d e t a i l d  sti idy of this 
problem i s  being conducted by . t h e  ' a u t h o r s .  



3.0 Resi i l ts  

The s i n g l e  t u b e  exper iments  of  F l e t c h e r  et a l .  [ 1 , 2 ]  and L iu  [3]  p r o v i d e  
d a t a  t h a t  can  be  used t o  v e r i f y  t h e  p r e s e n t  a n a l y s i s .  Using t h e  ap- 
p a r a t u s  shown i n  F i g u r e  4a,  F l e t c h e r  measured h e a t  t r a n s f e r  c o e f f i c i e n t s  
f o r  t h i n  f i l m s  of d i s t i l l e d  water [ l ]  and s e a  wa te r  [ 2 ]  on h o r i z o n t a l  
tubes .  Feedwater a t  Ts was d e l i v e r e d  v i a  a  p e r f o r a t e d  p l a t e  o n t o  a n  
e l e c t r i c a l l y  heated f ~ o r i z o n t a l  t ube .  Average hea t  t r a n s f e r  coefficients 
were determined from t h e  hca t  i n p u t ,  feedwater  s a t u r a t i o n  t empera tu re ,  and 
t h e  ave rage  t u b e  w a l l  t empera ture  a s  determined from thermocouples l o c a t e d  
c i r c u m f e r e n t i a l l y  and a x i a l l y  a long  t h e  t ube .  E x c e p t ' f o r  having a  more 
e l a b o r a t e  f eed  d i s t r i b u t i o n  system, t h e  exper imenta l  ' appa ra tu s  o f  M u ,  
F igu re  4b, i s  s i m i l a r  t o  t h a t  of  F l e t c h e r .  L i u ' s  a p p a r a t u s  h a s  t h e  added 
advantage of  being a b l e  t o  s i m u l a t e  d i f f e r e n t  t u b e  spac ings .  

F igu re  5 shows a comparison o f  p r e d i c t i o n s  w i t h  expe r imen ta l  d a t a  f o r  t h e  
case of  no b o i l i n g  i n  t h e  f i l m .  For  t h i s  comparison o n l y  t h e  low hea t  
f l u x ,  low AT d a t a  of  F l e t c h e r  [ l ]  i s  p l o t t e d ,  because a t  h i g h e r  hea t  f l u x e s  
b o i l i n g  was observed.  The d a t a  of Liu i s  a l s o  f o r  r u n s  where no b o i l i n g  
was observed.  L iu  o b t a i n e d  d a t a  ove r  a  r a n g e  of  t u b e  s p a c i n g s  bu t  o n l y  
d a t a  f o r  spac ing  less t h a n  a 2.54 c m  is  p l o t t e d .  Tube spac ings  g r e a t e r  
t h a n  t h i s  are beyond t h e  p r e s e n t  r ange  of  i n t e r e s t  f o r  OTEC. 

. A s  observed i n  F i g u r e  5, t h e  p r e s e n t  a n a l y s i s  i s  i n  good agreement  w i t h  
t h e  da t a .  The t r e n d s  i n d i c a t e d  by t h e  model a r c  r a t h e r  i n t e r e s t i n g .  A t  
low f l o w r a t c s ,  s is  l a r g c  because t h c  f i l m  i s  r e l a t i v e l y  Lhin. (The 
lowest  f l o w r a t e  p l o t t e d  i n  t h e  f i g u r e  i s  t l l a t  which l e a d s  t o  d ryou t  a t  
z = L.) A s  t h e  f l o w r a t e  i n c r e a s e s ,  t h e  f i l m  thick.rrls and consequently 
dec reases .  A t  s t i l l  h ighe r  f l o w r a t e s  hea t  t r a n s f e r  i n  t h e  deve loping  re- 
g i o n s  becomes i n c r e a s i n g l y  impor t an t ,  and g r a d u a l l y  rises. The va r -  
i ance  betweenthechun-Seban c o r r e l a t i o n  and t h e  p r e s e n t  model r e f l e c t s  t h e  
i n f l u e n c e  of t h e  thermal  deve loping  r eg ion .  Note t h e  l a r g c  d ive rgence  a t  
h i g h  f l o w r a t e s  where t h e  deve loping  l e n g t h  i s  most impor tan t .  For  re- 
f e r e n c e  t h e  Nusse l t  p r e d i c t i o n  i s  a l s o  p l o t t e d .  

. . 

A p l o t  of hea t  t r a n s f e r  c o e f f i c i e n t  versu 's  p o s i t i o n  a t  a  t y p i c a l  f l o w r a t e  
is g iven  i n  F igu re  6 .  For t h i s  c a s e  t h e  a v e r a g e  h e a t  t r a n s f e r  c o e f f i c i e n t  
i n  t h e  developing r e g i o n  i s  about  2 .7  t imes  t h e  h e a t  t r a n s f e r  c o e f f i c i e n t  
i n  t h e  f u l l y  developed r eg ion .  T h i s  g e n e r a l  behavior  i s  ana logous  t o  con- 
v e c t i v e  hea t  t r a n s f e r  i n  p i p e s ' w h e r e  t h e  hea t  . t r a n s f e r  c o e f f i c i e n t  i s  h i g h  
n e a r  t h e  e n t r a n c e  and approaches  a  f u l l y  developed v a l u e  f u r t h e r  downstream. 
I n  F igu re  6,  n o t e  t h a t  t h e  'developing l e n g t h  c o v e r s  'about  35% of  t h e  t o t a l  
c i r c u m f e r e n t i a l  ' l e n g t h  L. 

The exper imenta l  d a t a  p l o t t e d  i n  F i g u r e s  7 and 8 c o v e r s  a  wide r a n g e  of  
supe rhea t s .  The v e r t i c a l  bands around t h e  d a t a  r e f l e c t  a  AT dependence 
which is  i n d i c a t i v e  of b o i l i n g .  I n  F i g u r e  8 scree of  t h e  d a t a  p o i n t s  have 
l a r g e  v e r t i c a l  bands wh i l e  o t h e r s  have r e l a t i v e l y  s m a l l  bands.  T h i s  k i c d  
of  v a r i a b i l i t y  i s  o f t e n  found i n  b o i l i n g  d a t a  a ~ l d  i s  a t t r i b u t a b l e  t o  a g e i n g ,  
w e t t a b i l i t y ,  contamina t ion ,  n u c l e a t i o n  s i t e  s t a b i l i t y ,  and hysteresis. As 
seen  in F igu re s  7 and 8, p r e d i c t i o n s  u s ing  thc! p r e s e n t  n ~ o d e l  bound ttte 
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d a t a  ve ry  wel l .  The lower bound - i s  c a l c u l a t e d  by assuming no b o i l i n g  i n  
t h e  f i l m .  The upper bound i s  c a l c u l a t e d  by i n t r o d u c i n g  n u c l e a t e  b o i l i n g  
and eva lua t ing  t h e  b o i l i n g  hea t  t r a n s f e r  c o e f f i c i e n t  h  a t  t h e  h i g h e s t  
superhea t ;  i . e . ,  AT = 6.78OC i n  F igu re  7  and AT = 6 . o 0 t  i n  F i g u r e  8. I n  
eva lua t ing  t h e  b o i l i n g  hea t  t r a n s f e r  c o e f f i c i e n t ,  equa t ion  (8a)  was 
employed w i t h  v a l u e s  of CSf c o n s i s t e n t  w i th  t h e  recommendations of Rohsenow 
and o t h e r s  [9-11). Values of Cs = 0.0154 and 0.0122 were used i n  c a l -  
c u l a t i n g  h  f o r  t h e  2.54 cm and f .08 cm d iame te r  t u b e s ,  r e s p e c t i v e l y .  b 

To our  knowledge, t h e  p r e s e n t  model i s  t h e  f i r s t  t o  s u c c e s s f b l l y  p r e d i c t  
F l e t c h e r ' s  da t a .  F l e t c h e r  found t h a t  n e i t h e r  t h e  pool  b o i l i n g  no r  con- 

- v e c t i v e  mechanism a l o n e  could  account  f o r  t h e  behavior  of t h e  d a t a .  H e  
made no a t tempt  t o  combine t h e  b o i l i n g  and convec t ive  components. I n  
t h e  p re sen t  model, t l ~ c  d a t a  was s u c c e s s f u l l y  p r e d i c t e d  by a s u p e r p o s i t i o n  
of b o i l i n g  and convect ion ,  and inc lud ing  t h e  i n f l u c n c c  of the t he rma l  
developing reg ion .  

-- - - -  - -- - 
I n  view of t h e  f a c t  t h a t  t h e  p r e s e n t  a n a l y s i s  adequa te ly  p r e d i c t s  water  
d a t a ,  t h e  model w i l l  now b e  extended t o  ammonia, which is  t h e  most common- 
l y  s e l e c t e d  working f l u i d  f o r  t h e  OTEC power c y c l e .  F i g u r e  9  shows t h e  
p r e d i c t e d  beharior of ammonia f o r  a  s i t V * a t i o n  where no b o i l i n g  o c c u r s  i n  
t h e  f i lm .  The g e n e r a l  t r e n d  i s  s i m i l a r  t o  t h a t  of  water ,  bu t  t h e  magnitude 
o f  is less. A p l o t  of hea t  t r a n s f e r  c o e f f i c i e n t  v e r s u s  p o s i t i o n  a t  a  
g iven  f l o w r a t e  i s  g iven  i n  F i g u r e  10.  For t h i s  c a s e  t h e  ave rage  h e a t  
t r a n s f e r  c o e f f i c i e n t  i n  t h e  thermal  developing r e g i o n  i s  2.8 t i m e s  t h e  
hea t  t r a n s f e r  c o e f f i c i e n t  i n  t h e  f u l l y  developed r eg ion .  The developing  
l e n g t h  c o v e r s  about  381 of t h e  l e n g t h  I. (Reca l l  f o r  water  t h a t  hd/hc = 
2.7 and L  /L = 0.35). d 

It was prev ious ly  notcd t h a t  . equa t ion  (8)  wit.h L = nvd/2 p rov ides  a 
conse rva t ive  e s t i m a t e  of t h e  hea t  t r a n s f e r  c o c f f i c i c n t  f o r  a bank of n  
tubes .  Following t h i s  approach ,  F igu re  11 g i v e s  p r e d i c t i o n s  f o r  t u b e  banks 
ranging from n  = 1 0  t o  100. The p r e d i c t i o n  f o r  a s i n g l e  t u b e  i s  shown f o r  
reference. Over t h e  range  p l o t t e d ,  a , n e g l i g i b l e  i n f l u e n c e  of bank s i z e  i s  
obcerved as all t h e  p r ~ d i r . t . i o n s  approach  t h e  Chun-Seban c o r r e l a t i o n .  The 
on ly  n o t a b l e  e f f e c t  of bank . s i z e  i s  t h e  f  l o w r a t e  a t  which dryout  occu r s .  

Re fe r r ing  back t o  F igu re  9, some i n t e r e s t i n g  o b s e r v a t i o n s  can b e  made re- 
gard ing  t h e  behavior  of a t u b e  bank. The s i n g l e  t u b e  p r e d i c t i o n  is  r e -  
p r e s e n t a t i v e  of t h e  f i r s t  t u b e  i n  t h e  bank. The Chun-Seban c o r r e l a t i o n  i s  
r e p r e s e n t a t i v e  of t h e  behavior  of lowcr t u b e s  if between-tube evapora t ion  
and tu rbu lence  r e s u l t i n g  from t h e  f a l l i n g  l i q u i d  a r e  n e g l i g i b l y  sma l l .  
I f  t h e s e  e f f e c t s  a r e  s i g n i f i c a n t  t hen  t h e  hea t  t r a n s f e r  c o e f f i c i e n t  f o r  
t l lc bank may approach t h a t  of a s i n g l e  tube .  I n  view of t h i s  u n c e r t a i n t y ,  
c a u t i o n  should be  e x e r c i s e d  when us ing  r e s u l t s  of s i n g l e  t u b e  exper iments  
t o  c h a r a c t e r i z e  t h e  behavior  of a n  e n t i r e  bank. To a c c u r a t e l y  a s s e s s  t h e  
i n f l u e n c e  of between-tube evapora t ion  and t l l r b u l e ~ l c e  w e  recoinmend t h a t  cx- 
per jments  be performed w i t h  a  bank of a t  l e a s t  t h r e e  tubes .  These remarks 
p e r t a i n  e s s e n t i a l l y  t o  p l a i n  t u b e s  which have r e l a t i v e l y  low h e a t  t r a n s f e r  
coe f f  i c i r i i t s .  For. enl~anced s u r f n c c s  w i t h  h i g h  hea t  t r a n f  er c o e f f i c i e n t s ,  
t h e  p o t e n t i a l  improvement i n  6 r e s u l t i n g  f r o n  between-tube evapora t ion  and  
tu rbu lence  i s  r e l a t i v e l y  small, s e e  F i g u r e  12. 
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P r e d i c t i o n s  g iven  t h u s  f a r  f o r  ammonia have been f o r  t h e  c a s e  where no 
b o i l i n g  occu r s  i n  t h e  f i l m .  It i s  d i f f i c u l t  t o  i n i t i a t e  b o i l i n g  w i t h  
ammonia because i t  wets  s u r f a c e s  v e r y  w e l l  and f l o o d s  o u t  n u c l e a t i o n  s i t e s .  
A number of enhancement t echn iques  have been used t o  c r e a t e  s t a b l e  r e -  
e n t r a n t  c a v i t i e s .  Sabin  and Popendiek [14]  have experimented w i t h  double-  
sc reen  t u b e  cover ings  and Czikk e t  a l .  [ I S ]  w i t h  porous  me ta l  c o a t i n g s  
( i . e .  ,Linde High Flux s u r f a c e ) .  With t h e  Linde  High Flux  s u r f a c e ,  b o i l i n g  
of ammonia was observed even a t  t h e  lowest  measureable  supe rhea t s .  The 
w.perintentally measured b o i l i n g  hea t  t r a n s f e r  c o e f f i c i e n t  wds n e a r l y  con- 
s t a n t  a t  about h = 34.1 kw/rn2-K. F igu re  1 2  shows p r e d i c t i o n s  f o r  a n  
enhanced t u b e  wi th  h  = 34.1 kw/m2-K. Compared t o  p l a i n  t u b e s ,  t h e  in -  
c r e a s e  i n  hea t  t r a n s p e r  c o e f f i c i e n t  is  n e a r l y  t cn - fo ld .  Most of  t h e  i n -  
c r e a s e  is ,  of cou r se ,  a t t r i b u t a b l e  t o  t h e  l a r g e  b o i l i n g  component. $or 
s i m p l i c i t y  l e t  each cu rve  i n  F i g u r e  12 be  c h a r a c t a r i z e d  by i t s  minimum 
value.  With t h i s  c h a r a c t e r i z a t i o n ,  t h e  upp6r and lower l i m i t s  o f  6 
f o r  a bank of p l a i n  t u b e s  a r e  5 6 kW/m2-~ and 3, l  kW/rn2-K, r e s p e c t i v e l y .  

. .  . .  . . - .. 

Reca l l  t h a t  t h e  upper l i m i t  w i l 1  be approached when between-tube evapora- 
t'ion and tu rbu lence  a r e  impor tan t ,  and . t h e  lower l i m i t  when t h e s e  e f f e c t s  
a r e  n e g l i g i b l e .  For a .bank of enhanced t u b e s  t h e  upper' and. lower  l i m i t s  
of are 39.5. kw/m2-K and '  ,37.. 2 k!d/m2-K, r e spec t . i ve ly .  T h i s  s m a l l  s p r e a d  
i n  5 is. i n d i c a t i v e  of t h e  f a c t  t h a t  ' t h e  b o i l i n g  dominates '  ove r  convect  ion .  

Before c l o s i n g  t h e  d i s c u s s i o n  on enhancement, i t  should  be po in t ed  ou t  ' t h a t  
b o i l i n g  enhancement i s  not  t h e  on ly  means f o r  o b t a i n i n g  r e l a t i v e l y  h igh  
hea t  t r a n s f e r  c o e f f i c i e n t s  on h o r i z o n t a l  tubes .  Schu l t z  c t  a l .  [ 4 ]  ob ta in -  
ed a  c o e f f i c i e n t  of about  18.7 kw/m2-~ by th read ing  t h e  t u b e s .  Al-- 
though t h e  mechanism r e s p o n s i b l e  f o r  t h i s  improvement was n o t  g iven ,  i t  i s  
probably a t t r i b u t a b l e  t o  i n t e r m i t t e n t  we t t i ng  of c r e s t s  by waves and sub- 
sequent evapora t ion  of t h e  t h i n  l i q u i d  f i l m  which i s  l e f t  behind.  

F igure  1 3  shows a  p l o t  of t h e  o v e r a l l  U f o r  an  OTEC evapora to r  w i t h  a  wa te r  
s i d e  hea t  t r a n s f e r  c o e f f i c i e n t  of 5.7 kW/m2-K (no enhatlcemcnt) , a f o u l i n g  
conductance of 22.7 kW/m2-K, and a  wa l l  conductance of 56.8 kw/m2-K. The 
ammonia s i d e  c o e f f i c i e n t  as a f u n c t i o n  of f l o w r a t e  i s  taken  from F i g u r e  12 .  
Cha rac t e r i z ing  each cu rve  by i t s  minimum v a l u e ,  t h e  upper and lower l i m i t s  
of U a r e  2.33 kV/m2-K and 1.82 kbl/m3-K r e s p e c t i v e l y  f o r  p l a i n  t ubes .  With 
t h e  enhanced tubes  t h e  upper  and l o v e r  l i m i t s  a r e  e s s e n t i a l l y  c o i n c i d e n t  
a t  a  v a l u e  of about  3 . 8  kw/m2-K. 

4.0 Conclusions 

A model of combined b o i l i n g  and evapora t ion  o f  l i q u i d  f i l m s  on l ~ o r i z o ~ l t a l  
t u b e s  was developed. The r e s u l t s  of  t h i s  work a r e  a p p l i c a b l e  t o  t h e  de- 
s i g n  of h o r i z o n t a l  t u b e  f a l l i n g  f i l m  e v a p o r a t o r s  f o r  OTEC. I n  model l ing  

t h e  behavior  of s i n g l e  t ubes ,  s p e c i a l  account  most be taken  of t h e  i n i t i a l  
thermal  developing r e g i o n  of  t h e  f i l m .  P r e d i c t  i o n s  agreed  f a v o r a b l y  w i t h  
t h e  publ i shed  exper imenta l  d a t a  of F l e t c h e r  e t  a l .  [ 1 ,2 ]  f o r  combined 
h o i l i n g  and e v a p o r a t i o n o f t h i n  water  f i l m s  on s i n g l e  h o r i z o n t a l  t ubes .  To 

ou r  knowledge t h i s  i s  t h e  f i r s t  model t o  suc .cess fu l ly  predict .  F l e t c h e r ' s  
'data .  . . 
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The predic ted  upper and lowei limits o f  heat  t r a n s f e r  f o r  aminonia on a  
v e r t i c a l  babk of *l.in tubes  a r e  5 . 4  kld/m'!-K and 3 .I kw/rn2-K, r e s p e c t i v e l y .  
The upper l i m i t  w i l l  be approached when, t h e  in f luence  of between-tube . .  . 

evaporat ion and turbulence  c rea ted  by l i q u i d  f a l l i n g  froin one t u b e  t d  t h e  
next  a r e  important.  T e s t s  wi th  s i n g l e  tubes  a r e  inadequate  t o  a s s e s s  t h e  
in f luence  of between-tube evaporat ion and turbulence.  . W e  recommend t h a t  
f u t u r e  experiments be performed wi th  a  bank of a t  l e a s t .  t h r e e  tubes .  ' The 
experimental work should a l s o  cons ider  t h e  in f luence  of vapor crossf low.  

For an OTEC evaporator  wi th  p l a i n  tubes ,  t h e  upper and lower l i m i t s  of  t h e  , 

' . o v e r a l l  U o r e  2 . 3 3  ICIJ/I~I~-K and 1 .82  kbJ/m2-~, r e s p e c t i v e l y .  W i t h  ammonia-' 
side boiJi.ng enhancement, t h e  o v e r a l l  U can h e  i n r r r i c r d  . .. to about  3.8 kw/m2-K. 
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FIGURE 11. PREDICTED BEHAVIOR OF AMMONIA 
ON VERTICAL BANKS OF P L A I N  TUBES 

. . 
15. 

l o - -  

. . 

I I . . I . . . . 

. NH3, . .  . 

TUBE BANK 
. d  = 2 . 5 4  cm 
T S =  22.Z°C 

. . 

'NO BOILING . 

Y . . C TRANSITION TO 
.TURBULENCE . . 

. ,  I .  R e =  2660 
. X DENOTES DRYOUT . 

- 
. . I , .:. 

. I 

NUSSELT I 
I I . . .  

I I I 
' 0  .. 0 . 0 5  0.10. : 0.15 , . 0.20 



FIGURE 12.  P.REDICTED BEHAVIOR OF AMMONIA ON VERTICAL 
BANKS OF ENHANCED AND P L A I N  TUBES 
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FIGURE 13. PREDICTED OVERALL U FOR AN OTEC EVAPORATOR 
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Appendix A 

I n  Section 2.4 it  was indica ted  t h a t  equation (8) c o n s t i t u t e s  a simple 
model when the  decrease i n  I" with z is  neglected.  The inf luence  of flow- 
r a t e  w i l l  be  r e f l e c t e d  i n  t h e  va lue  of h which i n  t h e  more exact  d i f -  

c ' f e r e n t i a l  formulation is  no longer given by equations (8d) and (8e) .  Values 
of hb and h a r e  e s s e n t i a l l y  independent of f lowrate  v a r i a t i o n s  and thus  
a r e  s t i l l  g$ven by equations (8a) and (8b),  r e spec t ive ly .  The purpose of 
t h i s  Appendix is t o  present  t h e  d i f f e r e n t i a l  formulation f o r  t h e  heat  t r ans -  
f e r  c o e f f i c i e n t  i n  t h e  f u l l y  developed region,  i.e., hc. Both laminar and 
turbulent  cases  w i l l  be considered. F ina l ly  p red ic t ions  with t h e  simple 
model w i l l  be compared with p red ic t ions  using t h e  d i f f e r e n t i a l  model. 

A . l  Laminar Case 

I n  t h e  region L>z>L , t h e  temperature p r o f i l e  i s  f u l l y  developed and vapor 
is  generated by comgined bo i l ing  and evaporation. For a s i n g l e  tube of 
diameter d,  t h e  length  i s  defined a s  L = ad/2. (For a bank of n tubes,  
a lower l i m i t  of performance can be obtained by def in ing t h e  e f f e c t i v e  
l eng th  a s  L = nad/2, s e e  d iscuss ion i n  Sect ion  2.5.) An energy balance on 
a d i f f e r e n t i a l  element y ie lds :  

where 

and q /A is  t h e  heat  t r a n s f e r  due t o  bo i l ing ,  given by equation (8a) .  
~ q u a t k o n  (Al) w i l l  be evaluated us ing two d i f f e r e n t  expressions f o r  qc/A, 
f i r s t  t h e  conventional Nusselt  expression and secondly t h e  Chun-Seban 
correlat ion. 

A . 1 . 1  Formulation Using t h e  Nusselt  Expression 

The Nusselt  expression f o r  q /A i s  given a s  follows: 
C 

S u b s t i t u t i n g  equation (A3) i n t o  equation (Al) g ives  a f i r s t  order  d i f f e r e n t i a l  
equation which can be in teg ra ted  sub jec t  t o  the  boundary condi t ion  = To a t  
z = Ld t o  y ie ld :  

1 1 ' 
+ B R 2 ) ' -  (1 + B R.r] - 6 [(i + BoR$ - (1 +,BORi)']:  

3 0 0 0 



where 

The average va lue  of q /A over L <_ z <_ L is , 
c d 

u s ing  t h e  method of . i n t e g r a t i o n  by p a r t s  ,, equat ion.  (A81 can be in t eg ra t ed  t o  
o b t a i n  t h e  average h e a t  t r a n s f e r  c o e f f i c i e n t ,  her . . 

where 



.- 
The func t ion  +I w i l l  always assume v a l u e s  g r e a t e r  t han  u n i t y .  I n  equat ion  

is  t h e  Reynolds number when z=L', which can be  c a l c u l a t e d  numer ica l ly  

I n  t h e  c a s e  of no b o i l i n g  (i.e., Bo=o) , $l has t h e  fo l lowing  s impler  form 
which can be obta ined  by i n t e g r a t i n g  equat ion  (Al) w i t h  qb=o: 

(A1 Oh) 

When L = Do Re 413 , dryout  occu r s  and has a  maximum va lue  of 413 
(o r  1.33).  

0 
i 

A. 2.2 Formulation Using t h e  Chun-Seban Cor re l a t ion  

Due t o  c a p i l l a r y  waves, t h e  e f f e c t i v e  f i l m  th i ckness  f o r  heat  conduction i s  
somewhat l e s s  than  t h e  Nussel t  va lue ,  which accounts  f o r  an inc rease  i n  heat  
t r a n s f e r .  Based on t h e  work of Zazul i ,  Chun and Seban [61, t h e  
Nussel t  t h i ckness ,  6, i s  r e l a t e d  t o  t h e  e f f e c t i v e  f i l m  t h i c k n e s s  IS*, a s  
fol lows:  

1 

provided t h e  fol lowing cond i t i ons  a r e  both t r u e :  

4r 2 2 - 4 3  (2)- 2 ,  - 
1 I 

and - 4 r  - ' 13.4 
IJ 

I f  e i t h e r  cond i t i on  i s  not  s a t i s f i e d ,  then  c a p i l l a r y  waves a r e  no t  p re sen t  
and IS*/& = 1 ( i .  e . ,  t h e  a n a l y s i s  of t h e  previous  s e c t i o n  i s  a p p l i c a b l e ) .  
When cond i t i ons  (A12) and (A13) a r e  s a t i s f i e d ,  t h e  Chun-Seban c o r r e l a t i o n  i s  
employed: 

I n  t h e  t e x t  t h e  Chun-Seban c o r r e l a t i o n  was expressed i n  an a l t e r n a t e  form 
i n  terms of h  , where h  = ( q c / A X ~ ~ ,  s e e  equat ion (8d) . With q  /A expressed 
as equat ion (k~-41,  equafion (Al) can be i n t e g r a t e d  sub jec t  t o  t k e  boundary 



c o n d i t i o n  t h a t  r = r a t  z = Ld t o  y i e l d :  
0 

7 5  5' 
1 5  1 4  1 3  
- 9 0 (Reo - R$ b 7 o jReO3- R e ' ) + - b  5 o (Reo'- Re') 

1 1 1 1 

- ' 3 b2 o ( ~ e ~ '  ; Re ') + bo be0' - Re ') - 6 [tan-' (c Reo") - t a q - l k  R>)] 

b  0 (z-Ld) - -  
- 1 6  (A151 

Do 

I n  equat ion (A15), 

where B is  def ined  i n  equat ion  (A6) . The average o f  h c / ~  over  Ld z ' L i s  : 
0 

which, upon i n t e g r a t i o n ,  y i e l d s  t h e  average hea t  t r a n s f e r  c o e f f i c i e n t :  

- 1 - - 2 3 3  v2 3 - -  = q c  - - D 
0 

hc AAT 4 (T; Re o 9 IV2 (bo, (A181 

where 

D 
0 R e  

1 

- Reo 

The func t ion  q2 w i l l  always assune va lues  g r e a t e r  than  u n i t y .  I n  equat ion  
(Alga), ReL i s  t h e  Reynolds number when z  = L, which can be c a l c u l a t e d  
numerical ly  from equat ion  ( ~ 1 5 ) .  

I n  t h e  c a s e  of no bo i l i ng  i . .  , bo = 01,. $* has  t h e  fol lowing s impler  f o m  
which can be obtained by i n t e g r a t i n g  equat ion  (Al). w.ith q .  = 0: 

b 



1119 
When L - (16111) DO Reo dryout occurs and q2 has a maximum value  of 
1119 (or  1.22). 

I n  t h e  event c a p i l l a r y  waves a r e  present  i n  only a por t ion  of t h e  f i lm,  
t h e  o v e r a l l  heat  f l u x  can be obtained by ca lcu la t ing  separa te ly  t h e  con- 
t r i b u t i o n s  i n  t h e  regions  with and without c a p i l l a r y  waves, and then 
averaging the two. For t h i s  case,  t h e  average heat t r a n s f e r  c o e f f i c i e n t  i s  
given as:  

where Re is  t h e  c r i t i c a l  Reynolds number below which c a p i l l a r y  waves a r e  
not presgnt  and L is t h e  value  of z when t h e  Reynolds number is R e  . The 
c r i t i c a l  ~ e ~ n o l d s ~ n u m b e r  can be obtained from equat ions  (A12) and ( h 3 )  and 
t h e  value of LC can be obtained f rorn equation (A15) . 
A2. Turbulent Case 

For t h e  tu rbu len t  case  an energybalance y i e l d s  a d i f f e r e n t i a l  equation 
i d e n t i c a l  t o  equation ( ~ 1 ) :  

but here t h e  expression f o r  q /A is given by t h e  turbulent  form of t h e  
.C Chun-Seban c o r r c l o t  ion:. 

AAT 

which i s  equation (8e) in t h e  t e x t .  

Subs t i tu t ing  equation (A21) i n t o  equation (Al) g ives  a f i r s t  order  d i f -  
f e r e n t i a l  equation which can be in tegra ted  subjec t  t o  t h e  boundary con- 
d i t i o n  r = r a t  z = Ld t o  y ie ld .  

0 . . 



where 

and Re, R e  D a r e  def ined  p rev ious ly  i n  equa t ions  (A5), (A6), and (A7). 
0' BO* 0 

The average of q c / ~  over  Ld 5 z 5 L is 

With equat ions  (Al)  and (A22), equat ion  (24) can be  i n t e g r a t e d  t o  y i e l d  
t h e  average hea t  t r a n s f e r  c o e f f i c i e n t :  

t a n  - - [ ; . ~ e  
o a 

0 

R e O z 1 3  } 
The func t ion  4 w i l l  always assume v a l u e s  less than  un i ty .  I n  equat ion  
(A26a) RoLis  t h e  Reynolds number when z=L, which can be numerical ly  obta ined  
from equat ion  (A22) . 
I n  t h e  caee  of no b o i l i n g  e .  , BO=o), 4 has t h e  fol lowing s impler  form 
which can be obtained by i n t e g r a t i n g  equa$ion (Al) wi th  q 

b=IO : 



When L = (2019) (Dola) R e  315, dryout occurs  and ( has a minimum value  of 
315. 0 1 

A.3 Com~arison of S i m ~ l e  Model and D i f f e r e n t i a l  Formulation 

The simple model c o n s i s t s  of equation (8) with h given by equation (8d) 
f o r  laminar f i l m s  and equation (8e) f o r  turbulenf f i lms.  I n  t h e  more exact 
d i f f e r e n t i a l  formulation t h e  va lue  of hc i s  given by equation (A18) o r  (A20) 
f o r  laminar f i l m s  and equation (A25) f o r  tu rbu len t  f i lms.  

Figure A-1 g ives  a comparison of t h e  exact and simple models a s  appl ied  t o  
t h e  case  of water on a s i n g l e  hor izonta l  tube, with and without boi l ing .  
The l a r g e s t  var iance  between t h e  simple and exact  models occurs near dryout .  
On a percentage b a s i s  t h e  maximum devia t ion  a t  dryout i s  observed f o r  t h e  
case  of no boi l ing  and amounts t o  about 23%. (For cases  where c a p i l l a r y  
waves a r e  present  over t h e  e n t i r e  f u l l y  developed region,  and i f  hb = 0 and 
L ~ / L  + 0, equation ( ~ 1 9 b )  shows t h a t  t h e  maximum poss ib le  var iance  i s  22%. 

- For cases  where c a p i l l a r y  waves a r e  completely absent ,  equation (AlOb) shows -- - - - - -- -- - . - 
t h a t  the  maximum var iance  i s  33%. This l a t t e r  s i t u a t i o n  is  encountered 

0 only when the  feed flow is unsually low and represen t s  a r a t h e r  unim- 
por tant  case.)  I n  laminar flow, film-thinning tends t o  inc rease  t h e  
hea t  t r a n s f e r  c o e f f i c i e n t  r e l a t i v e  t o  a f i l m  of constant  th ickness .  
Thus the  exact  model, which accounts f o r  f i lm-thinning,  e x h i b i t s  a 
higher than the  simple mde1,which assumes a cons tant  thickness.  
Furthermore, s ince  is  higher f o r  the  exact  model, t he  f lowrate  a t  
dryout is somewhat g r e a t e r .  Comparisions f o r  ammonia, given i n  Figure 
A-2, demonstrate the  same genera l  behavior observed with water .  I n  Figures 
A-1 and A-2, i t  can be seen t h a t  the  exact  and simple models quick1.y merge 
a t  about r = 0.01 kgls-m. Although not  shown, t h e  models remain coincident  
throughout t h e  e n t i r e  laminar ranges; i.e., t o  r = 0.232 kg/s-m ( ~ e  - 3170) 
f o r  water and t o  = 0.148 kgls-m ( ~ e  = 2660) f o r  ammonia. Thus except near  
dryout the  simple model a f f o r d s  a good approximation of t h e  exact model f o r  
laminar f i l m s  on s f n g l e  tubes. 

I n  t h e  t e x t  it was indica ted  t h a t  the' Chun-Seban c o r r e l a t i o n  provides an 
ind ica t ion  of t h e  lower l i m i t  of heat  t r a n s f e r  f o r  a bank of p l a i n  tubes. 
(With boi l ing  enhancement t h e  lower, l i m i t  is  Chun-Seban + hb.) The Chun- 
Seban c o r r e l a t i o n  based on constant  f lowra te  e s s e n t i a l l y  c o n s t i t u t e s  t h e  
simple model. The d i f f e r e n t i a l  formulation a l s o  incorpora tes  t h e  Chun-Seban 
c o r r e l a t i o n  but accounts f o r  t h e  change i n  I' wi th  z .  A s  wi th  s i n g l e  tubes  
it was found t h a t  t h e  l a r g e s t  var iance  between t h e  exact  and simple models 
occurs a t  dryout ,  and i n  t h e  worst .case t h e  exact model overp red ic t s  t h e  
simple model by 22%. The var iance  between t h e  models decreases  u n t i l  t h e  
t r a n s i t i o n  Reynolds number i s  reached. Thereaf ter  t h e  models s l i g h t l y  
diverge,  but now t h e  simple.mode1 overpred ic t s  t h e  exact model. This  i s  a 
consequence o f  t h e  f a c t  t h a t  i n  t h e  tu tbu ' lent  regime, t h e  l o c a l  va lue  of hc 



decreases with f lowrate,  see  equation (8e). Accordingly t h e  simple model, 
which assumes a constant  f lowrate,  w i l l  p red ic t  a higher heat t r a n s f e r  - 
c o e f f i c i e n t  than t h e  exact  model, which accounts f o r  t h e  decreasing flow- 
r a t e .  Except f o r  c e r t a i n  l imi t ing  cases  t h e  simple model genera l ly  provides 
a good approximation t o  t h e  more exact d i f f e r e n t i a l  formulation f o r  both t h e  
laminar and turbulent  ranges. 





FIGURE A-2. COMPARISON OF EXACT AND SIMPLE MODEL'FOR AMMONIA. 
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