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PREFACE 

When one draws conclusions from data', he i s  knowingly or unknowingly using 
statistics. How good these conclusions are will depend upon how good were the 
statistical techniques used i n  working up the 'data. Similarly, a person who 
plans an experiment or any collection of da t a  i s  also using statistics i n  an 
area known as the design' of experiments. Here again,  how good the experiment 
i s  will depend upon the statistical design techniques used. The purpose of 
this text i s  t o  provide the nuclear engineer or scientist w i t h  a basic course 
in statistical design and analysis. Sufficient extra advanced material i s  
included t o  enable a student who has completed the basic course t o  deal w i t h  
problems in selected subject .areas. Specifically, this text has served as a 
basis for several training courses a t  the Bettis Atomic Power Laboratory. 

, . 
The text i s  divided into two parts. Part 1 ,  entitled Basic Statistical 
Inference, deals with the basic language and concepts of statistical 
analysis. I t  covers in seven chapters descriptive stati stic.s, probabil i ty, 
simple inference for normally distributed populations, and for non-normal 
populations as we1 1 ,  comparison of two populations, the analysis of variance, 
qual i ty control procedures, and 1 inear regression analysis. Chapters 1 , 2 ,  3, 
and 6 have been used for a short (20 hours) course in basic inference a t  
Bettis Atomic Power Laboratory. Chapters 4 and 5 can be used t o  present a 
short course on qual i ty control, and sampl ing plans. Chapter 7 has been used 
to  present a short course on regression analysis and model building; A 
semester length course (32 hours) i s  presented which includes material from 
all 7 chapters of Part 1 ,  with emphasis on Chapters 3, 6,  and 7,  and w i t h  
selected additional material on experimental designs from Part 2. 

Part 2 ,  Design of Experiments, will contain :material on the philosophy of 
experimental designs, compl etely randomi zed designs, bal anced block designs, 
incomplete block designs, nested or hierarchical designs, factorial designs, 
and response surface methodology. Two or more short courses or a semester 
course could be presented ,from t h i  s materi a1 . 
In bo th  parts of the text, sections which are either more complex or 
theoretical t h a n  t h a t  usually covered in a f i r s t  course are indicated w i t h  an 
asterisk so t h a t  the reader may skip over them on f i r s t  reading. Five 
appendices are a1 so presented t o  provide additional theoretical information t o  
the interested student. Furthermore, a particularly useful feature of this 
t ex t  i s  the coll ectlon of 17 tables of various types included with the text 
material. These tables should satisfy the majority of applications t h a t  an 
engineer or scientist faces. 

i i i  
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ABSTRACT 

This r e p o r t  i s  in tended f o r  the  use o f  engineers and s c i e n t i s t s  working i n  t h e  

nuclear  indus t ry ,  espec ia l l y  a t  the  B e t t i s  Atomic Power Laboratory.  'It serves 

as the  bas is  f o r  several  B e t t i s  in-house s t a t i s t i c s  courses. The o b j e c t i v e s  

o f  the  r e p o r t  are t o  in t roduce the reader t o  the language and concepts o f  

s t a t i s t i c s  and t o  prov ide a bas ic  s e t  o f  techniques t o  apply t o  problems o f  

t he  c o l l e c t i o n  and ana lys is  o f  data. P a r t  1 covers subjects  o f  bas ic  

inference. 



P a r t  1 : BASIC STATI.STICAL ANALYSIS 



CHAPTER 1. INTRODUCTION: STATISTICS AND OATA 

Khat  i s  s t a t i s t i c s ?  To some eng ineers  and s c i e n t i s t s  i t  i s  an e s o t e r i c  
o r  s u s p i c i o u s  sub jec t .  T h i s  a t t i t u d e  r e s u l t s  f rom a  l a c k  o f  unders tand ing  o f  
t h e  purpose and use fu lness  o f  s t a t i s t i c a l  ana lyses and i s  d~ce, no doubt  i n  
p a r t ,  t o  t h e  m i s l e a d i n g  c l a i m s  made by  some a d v e r t i s e r s  and salesmen i n  t h e i r  
a t tempt  t o  impress t h e i r  c l i e n t e l e .  w i t h  g r a p h i c a l  d i s p l a y s  and s c i e n t i f i c  
t e rm ino logy .  It , i s  hoped t h a t  t h i s  t e x t  w i l l  h e l p  reduce o r  e l  i m i n a t e  
s u s p i c i o n  as t o  t h e  u s e f u l n e s s  o f  s t a t i s t i c s  and, a t  t h e  same t ime ,  deve lop  i n  
t h e  reader  a  h e a l t h y  s k e p t i c i s m  as t o  t h e  r e a l  meaning o f  a l l  r e p o r t e d  values.  

I n  p a r t i c u l a r ,  i t  w i l l  be shown t h a t  s t a t i s t i c s  i s  no t  s i m p l y  a  t e d i o u s  
chore  o f  number m a n i p u l a t i o n ;  b u t  t h a t ,  i n  deed, t h e  s m a l l e r  t h e  da ta  base, 
t h e  more i m p o r t a n t  and v a l u a b l e  i s  t h e  p r o p e r  a p p l i c a t i o n  o f  s t a t i s t i c s .  To 
accompl ish  t h i s  w i l l  r e q u i r e  t h e  achievement o f  t h r e e  b a s i c  o b j e c t i v e s :  

1. To i n t r o d u c e  t h e  r e a d e r  t o  t h e  l a n  ua e  o f  s t a t i s t i c s .  
-$9 2. To i n t r o d u c e  and have t h e  reader  un e r s t a n d  t h e  b a s i c  u n d e r l y i n g  

o f  s t a t i s t i c a l  a n a l y s i s .  
t h e  reader  w i t h  a  b a s i c  s e t  o f  t echn iques  t o  use on h i s  

own problems o f  p lanned c o l l e c t i o n  and a n a l y s i s  o f  data.  

O f  course,  one cannot  become a  s t a t i s t i c i a n  s i m p l y  by  m a s t e r i n g  t h e  
m a t e r i a l  i n  t h i s  book. Many s o p t i i s t i c a t e d  techn iques  have been devel  oped t h a t  
a r e  beyond t h e  scope o f  t h i s  t e x t .  However, i t  i s  hoped t h a t  t h i s  t e x t  l a y s  
t h e  s t a t i s t i c a l  f o u n d a t i o n  f r o m  which an i n t e r e s t e d  r e a d e r  can b u i l d  h i s  
knowledge i n  t h e  d i r e c t i o n  i n  which h i s  work l e a d s  him. 

1.1 S t a t i s t i c s  D e f i n e d  

To r e t u r n  ' t o  t h e  ques t i on ,  s t a t i s t i c s  i s ,many  t h i n g s  t o  many people. 
The renowned s t a t i s t i c i a n ,  Dr. Georse E.P. Box, has been heard  t o  say 
" S t a t i s t i c s  i s  what s t a t i s t i c i a n s  do", and he was o n l y  h a l f  j o k i n g .  The i d e a  
beh ind such a  c i r c u l a r  d e f i n i t i o n  i s  t h a t  s t a t i s t i c i a n s  do g e t  i n v o l v e d  i n  
many areas and c r o s s  many s c i e n t i f i c ,  economic, and s o c i a l  d i s c i p l i n e s  - i n  
p e r f o n n i n g  t h e i r  tasks .  To some o f  t h e  above, t h e  s t a t i s t i c i a n  may be a  
mathemat ic ian ;  t o  t h e  mathemat ic ian ,  he may appear t o  be a  f o l l o w e r  o f  r e c i p e s  
(an  "eng ineer  o f  numbers"). To t h e  smal l  daugh te r  o f  a  s t a t i s t i c i a n ,  h e r  
daddy was "a  d o c t o r  o f  s i c k  numbers". I n  f a c t ,  he i s  none and a l l .  

More f o r m a l l y  s t a t i s t i c s  can be d e f i n e d  as "A SCIENCE WHICH GAINS 
KNOWLEDGE OF PHENOMENA BY INFERENCE I N  THE PRESENCE ~ R T A I N T Y . "  The 
t h r e e  key words i n  t h i s  d e f i n i t i o n  a r e  under l i ned .  Sc ience i m p l i e s  a  s p e c i f i c  
body o f  l o g i c a l  laws o r  theorems and a  s p e c i f i c  b o d y ~ t h o d o l o g y .  
S t a t i s t i c s  has such laws and methodology. A l though i t  nay be argued t h a t  t h e  
laws a r e  those  o f  mathemat ics,  i t  i s  t h e  a p p l i c a t i o n  o f  t h e  laws t o  r e a l - l i f e  
s i t u a t i o n s  t h a t  separa tes  s t a t i s t i c s  f rom mathematics. T h i s  a p p l i c a t i o n  i s  
in ' ference.  S t a t i s t i c s  i n f e r s  a  s t a t e  o f  n a t u r e  based on o b s e r v a t i o n s  and 
c o n j e c t u r e s  i n  o r d e r  t o  a i d  i n  a  dec is ion-mak ing process. T h i s  i s  opposed t o  
p r o b a b i l i t y ,  a  branch o f  mathemat ics,  which deduces c e r t a i n  even ts  g i v e n  an 
assumed s t a t e  o f  nature.  The t h i r d  key word i n  t h e  d e f i n i t i o n  o f  s t a t i s t i c s  
i s  unce r ta ' i n t y .  It i s  t h e  p o s i t i o n  o f  t h i s  t e x t  t h a t  n a t u r e  i s  n o t  



d e t e r m i n i s t i c .  A l though  i t  i s  p o s s i b l e  and even ve ry  l i k e l y  t h a t  some t r u e  
p h y s i c a l  r e l a t i o n s h i p s  e x i s t ,  man i s  e i t h e r  n o t  a l l o w e d  t o  observe them o r  i s  
u n a l ~ l e  t o  observe them, o r  both.  As t h e  h i s t o r y  o f  sc ience  has shown o v e r  and 
o v e r  aga in ,  we can neve r  be su re  we have a b s o l u t e  knowledge. There i s  a lways 
a  chance o f  a r r i v i n g  a t  a  wrong c o n c l u s i o n  r e g a r d l e s s  o f  how s t r o n g  t h e  
ev idence  appears. S t a t i s t i c s  d e a l s  w i t h  t h i s  chance o f  e r roneous 
c o n c l u s i o n s .  One s k e p t i c  has s a r c a s t i c a l l y  d e f i n e d  s t a t i s t i c s  as "a sc ience  
i n  wh ich  you a r e  wrong 5 p e r c e n t  o f  t h e  t ime."  A c t u a l l y  t h e r e  i s  some wisdom 
i n  t h a t  d e f i n i t i o n ,  a l t h o u g h  n o t  i n  t h e  c o n t e x t  i n  which i t  was meant. The 
p o i n t  i s  t h a t  t h e r e  i s  u n c e r t a i n t y  i n  a l l  human o b s e r v a t i o n s ,  and s t a t i s t i c s  
a t t e m p t s  t o  deal  w i t h  t h i s  u n c e r t a i n t y  i n  a  q u a n t i f i e d  manner and w i t h  a  
s p e c i  a1 i zed body o f  know1 edge. 

Hav ing e s t a b l i s h e d  t h a t  s t a t i s t i c s  i s  a  sc ience,  l e t  i t  be now known 
t h a t  s t a t i s t i c s  i s  a l s o  an a r t ,  o r  r a t h e r ,  t h a t  t h e  a p p l i c a t i o n  o f  s t . a t i s t i c s  
i s  an  a r t .  I n  d e a l i n g  w i t h  any problem t h e r e  i s  d i f f i c u l t y  i n  d e f i n i n g  t h e  
r e a l  i s s u e  and o f  d e t e r m i n i n g  what techn iques t o  app ly  i n  t h e  s n l u t i o n  t o  t h e  
prohlem. Thus, t h e  st-at;. i s t i c i a n  i n  c a n s ~ r l t a t i o n  w i t h  h i s  c l i e n t  o r  t h e  
e n g i n e e r  o r  s c i e n t i s t  h i m s e l f  must deve lop t h e  a r t  o f  a s k i n g  t h e  . r i g h t  
q u e s t i o n s  and o f  p r o v i d i n g  t h e  p r o p e r  t o o l s  t o  s o l v e  t h e  problem. 

1.2 T h e s c o p e  o f  S t a t i s t i c s ,  

S t a t i s t i c s ,  l i k e  mathemat ics,  i s  un ique i n  t h a t  i t  i s  a p p l i e d  o n l y  i n  
r e f e r e n c e  t o  some o t h e r  d i s c i p l i n e  o r  f i e l d  o f  endeavor. P h y s i c a l  and 

, b i o l o g i c a l  s c i e n t i s t s ,  eng ineers  o f  a1 1  types,  s o c i o l o g i s t s ,  p s y c h o l o g i s t s ,  
e c o n o n i s t s ,  agronomis ts ,  and p o l l s t e r s  a l l  need t o  dea l  w i t h  s t a t i s t i c a l  
i n f o r t n a t i o n  a t  one t i m e  o r  another .  S t a t i s t i c s  i s  even used t o  dec ide t h e  
a u t h o r s h i p  o f  h i s t o r i c a l  papers and t h e  age and o r i g i n  o f  bone f o s s i l s .  
A c t u a l  cases f rom t h e s e  and o t h e r  d i s c i p l i n e s  can be found i n  an e x c e l l e n t  
book f o r  t h e  layinan e n t i t l e d  " S t a t i s t i c s :  A  Guide t o  t h e  Unknown" [31].* 

I n  f a c t ,  whenever one d e a l s  w i t h  d a t a  o f  any k i n d ,  he i s  d c a l i n g  w i t h  
s t a t i s t i c s .  I t  i s  n o t  a  q u e s t i o n  of whether o r  n o t  t o  use s t a t i s t i c s ;  i t  i s  a 
q u e s t i o n  o t  whether one uses good and p r o p e r  s t a t i s t i c a l  t ech r l i q~ .~es .  To most 
peop le ,  s t a t i s t i c s  i s  synonymous w i t h  data  a n a l y s i s .  T t  i s  c e r t a i n l y  t r u e  
t h a t  d a t a  a n a l y s i s  i s  a  m a j o r  p a r t  o f  what s t a t i s t i c i a n s  do. We w i l l  i n  P a r t  
1  of t h i s  t e x t  d i s c u s s  a n a l y t i c a l  t echn iques  t o  d e s c r i b e  a  c o l l e c t i o n  o f  da ta ,  
t o  t e s t  hypotheses about  t h e  source o f  t h a t  da ta ,  t o  compare two o r  more 
c o l l e c t i o n s  of da ta  f o r  equ iva lence ,  t o  f i t  curves and m u l t i v a r i a b l e  
functions, and t o  e s t a b l i s h  l i m i t s  f o r  t h e  c o n t r o l  o f  p r o d u c t i o n  processes. 
These t e c h n i q u e s  a r e  u s e f u l  t o  s c i e n t i s t s  f rom t . h ~  has ic  r e s e a r c h e r  t o  t h c  
p r o d u c t  i o n  manager. 

' In a d d l r l o n  t o  d a t a  a n a l y s i s  and t h e  i n f e r e n c e s  drawn f rom t h e  data,  a  
second e q u a l l y  - , important  aspect  o f  s t a t i s t i c s  e x i s t s  wh ich  i s  n o t  r e a d i l y  
r e c o g n i z e d  as be ing  i n  t h e  domain o f  s t a t i s t i c s .  T h i s  area i s  t h a t  o f  d a t a  
c o l l . e c t i o n ,  o r  more a c c u r a t e l y ,  t h e  l a n n i n g  o f  t h e  c o l l e c t i o n  o f  data. T h i s  
a r e a  i s  genera l  l y  known as t h e  Des ign -5-F o xper iments ,  where "exper iments"  i s  
t a k e n  i n  a  genera l  sense t o  mean any c o l l e c t i o n  o f  data. As w i t h  computers, 
t h e  c l i c h e  "garbage in -ga rbage  o u t "  a p p l i e s  t o  s c i e n t i f i c  s t u d i e s  as wel.1. 

*Number i n .  b r a c k e t s  r e f e r  t o  re fe rence .  



Design o f  Experiments deal s w i t h  t h e  e f f i c i e n t  u t i l i z a t i o n  o f  experiments t o  
obta in the  maximum informat ion.  It i s  i n  the  e f f i c i e n t  use o f  experiments, 
and there fore  i n - t h e  e f f i c i e n t  use o f  t ime and money, i n  which many s c i e n t i s t s  
f a i l  t o  apply good s t a t i s t i c s .  Basic techniques o f  good "experimental" design 
w i l l  be discussed as necessary i n  P a r t  1 o f  t h i s  tex t ,  s ince there  i s  o f t e n  a 
d i r e c t  connection between proper design and proper analysis. P a r t  2 w i l l  be 
devoted t o  more d e t a i l e d  discussion o f  the concepts, techniques, and 
app l ica t ions  o f  the  area o f  design o f  experiment. 

I n  summary, then, s t a t i s t i c s  can be described as the  proper planning and 
analys is  o f  a c o l l e c t i o n  o f  data o r  experiment from any source. It 
incorporates mathematics, s c i e n t i f i c  theory, and empiricism. It f i t s  we1 1 
w i th  the  s p i r a l i n g  path o f  know1 edge gained known as the  S c i e n t i f i c  Method 
( see Figure 1.1 1. F i r s t  a conjecture o r  hypothesis about the  s ta te  o f  nature 
i s  made based on theory o r  past  observat ions o r  both. Then a p lan o f  
inves t iga t ion ,  i.e., an experiment, i s  developed and c a r r i e d  out. The data 
obtained are analyzed i n  a proper manner and inferences made. This leads t o  a 
new conjecture, which hopefu l ly  i s  a more accurate descr ip t ion  o f  the  t r u e  
s ta te  o f  riature under examination. S t a t i s t i c a l  analys i  s, though no t  a 

D i r e c t i o n  o f  i ncreasi ng 

Figure 1 .I., The S c i e n t i f i c  Method 

deci'sion-making process by i t s e l f ,  i s  then an. extremely useful t o o l  f o r  making 
decisions i n  a q u a n t i t a t i v e  manner. 

1.3 S t a t i s t i c s  i n  the Nuclear Indust ry  

I n  t h i s  sect ion some simple b u t  t y p i c a l  examples o f  the  app l i ca t i on  o f  
s t a t i s t i c s  i n  the  nuclear indust ry  w i l l  be discussed. It should be noted t h a t  
the techniques used are n o t  unique t o  the  nuclear industry,  b u t  are, i n  
general, equal ly  app l icab le  i n  any other  indust ry .  Many o f  the examples t h a t  
appear throughout t h i s  t e x t  are based,on the  commercial app l ica t ions  o f  
nuclear energy; i .e:, pressurized water reac tors  (PWR) .. 

1. 'Compari son o f  Cool an t  Chemistries on Mater ia l  Corrosion 

I n  the area o f  basic research, a t y p i c a l  task i s  the study o f  t he  
e f f e c t  o f  d i f f e r e n t  primary o r  secondary cool an t  chemistr ies on mater ia l  
corrosion. . Several d i f f e r e n t  chemical compositions o f  cool ants may be tes ted 
i n  a t e s t  f a c i l i t y  f o r  a given per iod  o f  t ime such t h a t  equal in format ion  
about a1 1 chemistry compositions i s  obtained. The data f o r  each coolant  
tes ted may be character ized i n  a s t a t i s t i c a l  sense by computing the  a r i t hmet i c  
average and a measure o f  spread, c a l l e d  the standard deviat ion.  A confidence 
i n t e r v a l  based on the  ava i l ab le  data may be constructed which i s  said t o  



c o n t a i n  t h e  t r u e  c o o l a n t  c o r r o s i o n  va lue w i t h  some l e v e l  o f  p r o b a b i l i t y  o r  
con f idence .  . Compari sons among t h e  averages o f  t h e  c o o l a n t s  may ,be made u s i n g  
a  t e c h n i q u e  known as t h e  a n a l y s i s  o f  v a r i a n c e  and u s i n g  an, .F- tes t .  , F i n a l l y ,  
t h e  exper imen t  may. be repea ted  o v e r  l o n g e r  t i m e  p e r i o d s  and t h e  r e l a t i o n s h i p  
o f  co r ros i .on  as a  f u n c t i o n  o f  t i m e  i s  est imated.  

2. Combining o f  U n c e r t a i n t i e s  t o  O b t a i n  a  Des ign L i r n i t  

I n  t h e  area o f  d e v e l o p i n g  des ign  l i m i t s  f o r  p l a n t  assembly t h e  
u n c e r t a i n t y  .i n v o l  ved i n  s e v e r a l  components and assembly ope r 'a t i  ons may be 
combined t o  produce a  l i m i t  wh ich  can be expected t o  be exceeded w i t h  a  
s a t i  s f a c i o r i  l y  smal l  p r o b a b i l  i ty. The i n d i v i d u a l  f a c t o r s  may be m a n u f a c t u r i n g  
t o l e r a n c e s  on d i  ameters o f  p a r t i c u l a r  components, t h e  e c c e n t r i c i t y  o f  t h e  
c e n t e r s  o f  components meant t o  be c o n c e n t r i c ,  and t h e  m i s a l i g n n e n t  p o s s i b l e  o r  
1  i k e l y  t o  occur  d u r i n g  p l a n t  assembly. 

P h y s i c i s t s  a r e  conc'erned about  s e t t i n g  des ign  l i m i t s  on a v a r i e t y  o f  
v a r l a b l e s  t h a t  c o u l d  a f f e c t  c o r e  performance. An e n t i r e  c h a p t e r  i n  n u c l e a r  
d e s i g n  r~lanual s  may he used t o  d i s c u s s  t h e  h a n d l i n g  o f  u n c e r t a i n t i e s  o f  
m a n u f a c t u r i n g  and i n s p e c t i o n  da ta ,  o p e r a t i o n a l  u n c e r t a i n t i e s ,  and des ign  model 
u n c e r t a i n t i e s .  

3. Qua1 i f i c a t i o n  o f  Too ls ,  M a t e r i a l s ,  and Vendors 

I n  developmental  work i t  i s  o f t e n  necessary t o  de te rm ine  t h e  r i g h t  
t o o l s  o r  m a t e r i a l s  t o  use o r  t o  e s t a b l i s h  t h e  c a p a b i l i t y  o f  a  t e c h n i c i a n  o r  
vendor t o  p e r f o n i l  an ass igned  task .  Tests  can be planned t o  e v a l u a t e  such 
t h i n g s  t h a t  e l  i m i  n a t e  u n d e s i r e d  sources of v a r i  a b i  1  i ty  and a1 1 ow c l e a r  
a n a l y s i s  o f  t h e  o h j e c t  o f  i n t e r e s t .  

An e x a ~ r ~ p l e  o f  a  program t o  e v a l u a t e  m a t e r i a l s  and p r o c e s s i n g  
v a r i a b l e s  i s  t h e  a n a l y s i s  o f  t h e  s t r e n g t h  o f  z i r c a l o y  i n g o t s .  One o r  more 
vendors may need t o  be e v a l u a t e d  and d i s t i n c t i o n  between t h e i r  r e s p e c t i v e  
capab i  1  i t i e s  t o  produce a c c e p t a b l e  m a t e r i a l  may be requ i red .  The compos i t i on  
o f  t h e  i n g o t s  may bc v a r i e d  t o  t r y  t o '  o b t a i n  t h e  b e s t  . p n s s i h l r l  i n g o t  
c h a r a c t e r i s t i c s .  Process v a r i a b l e s  ma,y i nc111de the  number o f  r n l l  s p ~ r f o r m e d  
and t h e  t o r c e  e x e r t e d  on ,each  r o l l ,  t h e  temperatl . l res a t  which v a r i o u s  
o p e r a t i c n s  are .per forn ied,  and t h e . t i m e  f o r  which t h e  i n g o t  i s  k e p t  a t  each 
tec ipera ture .  A1 1  o f  t h e s e '  v a r i a b l e s  c o u l d  be ana lyzed i n  one c a r e f u l  l y  
p lanned r i~u l  t i  f a c t o r  exper iment  and c o u l d  i n c l u d e .  o t h e r  response v a r i a b l e s ,  
h c s i + c s  st . rength,  as we1 1. 

4. E v a l u a t i o n  of P roduc t  l o t  

I n  p r o d u c t i o n  a c t i v i t i e s  i t  ' i s  e s s e n t i a l  t o  produce and cnnt. inue 
p r o d u c i n g  a c c e p t a b l e  m a t e r i a l .  One way t o  ach ieve .  t h i s  i s  t h r o u g h  a  sampl i n q  
p lan,  kac;!i liil uf prSc!tlllct, sclch 5 5  f u e l  c ' len~e i i l s ,  i s  sarnpled, and each samp'ie 
e lement i s  t e s t e d  . for  a c c c p t a k i l i t y .  I f  t o o  many r e j e c t a b l e  e lements a r e  
found, t h e  e n t i r e  l o t  o f  e lements i s  r e j e c t e d ,  and a p p r o p r i a t e  a c t i o n  must be 
t a k e n  t o  a d j u s t  t h e  p r o d u c t i o n  process. Another procedure  f o r  a s s u r i n g  
c c n t i n u i n g  accep tah le , .p r@uc t  i s  a  c o n t r o l .  c h a r t .  Once a  p r o d u c t i o n  process 
i s  deter r i i i  ned t o  be i n  c o n t r o l ,  i .e., p roduc i  ng accep tab le  p roduc t ,  c o n t r o l  
1  in:i t s ,  a r e  devel  opedTu-t if . . . any . . . . f u t u r e  . . . . . . - o b s e r v a t i o n  f a 1  1s o u t s i d e  t h e s e  
l i m i t s ,  t h e  process i s  d e c l a r e d  o u t - o f - c o n t r o l  and c o r r e c t i v e  a c t i o n  i s  



taken. The c o n t r o l  l i m i t s  rnay be based on t h e  v a r i a b i l i t y  o f  t h e  average o f  
seve ra l  e lements o r  on t h e  a v a i l a b i l i t y  o f  i n d i v i d u a l  elements. Process 
v a r i a b l e s  o f  i n t e r e s t  may i n c l u d e  such t h i n g s  as element d imensions,  1  oad i  ng 
and cracks.  

5. Use o f  O p e r a t i n g  P l a n t  Data  , 

D u r i n g  t h e  a c t u a l  o p e r a t i o n  o f  a  p l a n t ,  d a t a  can and shou ld  be t a k e n  
and ana lyzed t o  m o n i t o r  t h e  b e h a v i o r  of a l l  o p e r a t i n g  systems. T h i s  da ta  can 
be used t o  d e t e c t  p o t e n t i a l  d i f f i c u l t i e s  b e f o r e  t h e y  become s e r i o u s ,  t o  
i d e n t i f y  t h e  source o f  a b n o r m a l i t i e s ,  t o  e v a l u a t e  t h e  e f f e c t i v e n e s s  o f  
s p e c i f i c  programs o r  techn iques,  and t o  make ad jus tments  i n  o p e r a t i o n  
procedures as requ i red .  I n f e r e n c e s  f r o m  o p e r a t i n g  p l a n t  d a t a  a r e  p a r t i c u l a r l y  
d i f f i c u l t  t o  make because t h e  da ta  does, not ,  i n  genera l ,  come f rom c a r e f u l l y  
p lanned and executed exper iments.  Thus, u n i d e n t i f i e d  sources o f  v a r i a b i l i t y  
may e x i s t  i n  t h e  d a t a  which confound t h e  e f f e c t s  o f  t h e  v a r i a b l e  under  study.  

1.4 D e s c r i p t i v e  S t a t i s t i c s  

I n  a1 1  cases o f  s t a t i s t i c a l  a n a l y s i s ,  r e g a r d l e s s  o f  how w e l l  t h e  
exper iment  was planned, a  s e n s i b l e  f i r s t  s t e p  i s  t o  summarize t h e  d a t a  i n  some 
way so t h a t  t h e  main c h a r a c t e r i s t i c s  o f  t h e  d a t a  a r e  apparent .  The n a t u r a l  
s t e p  t o  most eng ineers  o r  s c i e n t i s t s  i s  t o  p l ~ t  t h e  d a t a  i n  some way. I n  
a d d i t i o n  t o  an i n f o r m a t i v e  p l o t  o f  t h e  d a t a  i t  i s  u s e f u l  t o  q u a n t i f y  some o f  
t h e  c h a r a c t e r i s t i c s  o f  t h e  data ,  such.as  t h e  c e n t e r ,  m i d p o i n t  o r  most 
f r e q u e n t l y  observed p o i n t  o f  t h e  data,  t h e  spread o f  t h e  data,  and perhaps t h e  
degree o f  asymmetry a n d  peakedness o f  t h e  data. A l l  o f  t hese  d a t a  
c h a r a c t e r i s t i c s  a r e  i n  t h e  domain o f  s t a t i s t i c a l  a n a l y s i s  known as d e s c r i p t i v e  
s t a t i s t i c s .  

I n  t h e  rema in ing  s e c t i o n s  o f  t h i s  c h a p t e r  some procedures f o r  p l o t t i n g  
t h e  da ta  and f o r  o b t a i n i n g , d e s c r i p t i v e  s t a t i s t i c s  w i l l  be d iscussed.  It i s  
advantageous . . . a t  - .. ' t h i s  . . . . . . p o i n t ,  however, t o  d i s t i n g u i s h  between a  p o p u l a t i o n  and a  
sample. A  o  u l a t i o n  i s  a  c o l l e c t i o n  o f  a l l  p o s s i b l e  u n i t s  h a v i n g  a  c e r t a i n  
a t t r i b u t e ,  h v i n q  i n  t h e  U n i t e d  S t a t e s ,  o r  hav ing  been produced by a  
c e r t a i n  vendor under a  c e r t a i n  c o n t r a c t .  Some p o p u l a t i o n s  a r e  f i n i t e  i n  
number, whereas some a r e  i n f i n i t e  i n  s ize .  The p o s s i b l e  outcomes from t h e  
measurements o f  t h e  l e n g t h  o f  a  f u e l  element i s  an example o f  an i n f i n i t e  
p o p u l a t i o n ,  s i n c e  t h e r e  a r e  an i n f i n i t e  number o f  p o s i t i o n s  between any two 
p o i n t s  on a  con t inuous  scale.  ( I n  p r a c t i c e ,  however, s i n c e  a l l  o b s e r v a t i o n s  
arc  ...... read t o  t h e  neares t  u n i t ,  t h e  c o l l e c t i o n  o f  o b s e r v a t i o n s  i s  d i s c r e t e . )  A 
samp!e i s  a  subset  o f  a  p o p u l a t i o n ,  i s  n e c e s s a r i l y  f i n i t e ,  and c o n s i s t s  o f  
s p e c i f i c ,  va lues f o r  each i n d i v i d u a l  i n  t h e  sample. It i s ,  s i g n i f i c a n t  t o  
remember, however, t h a t  b e f o r e  a  sample i s  a c t u a l l y  taken,  i t s  v a l u e  i s  
unknown. 

1.5 Qhservat inns  Vary 

F l i p  a  coin.  I q n o r i n g  t h e  p o s s i b i l i t y  t h a t  i t lands  on' edge, what do 
you observe? E i t h e r  a  head o r  a  t a i l .  Suppose t h e  r e s u l t  of t h e  f i r s t  f l i p  
was a  head. F l i p  again. Head o r  t a i l ?  Repeat seve ra l  t imes. Almost  s u r e l y  
you w i l l  .- . . observe . some heads and some t a i l s .  That  i s ,  t h e  r e s u l t  o f  f l i p p i n g  a  
c o i n  v a r i e s  f rom one t r i a l  t o  ano the r  ( u n l e s s  you a r e  u s i n g  a  two-headed o r  
t w o - t a i l e d  co in ! ) .  Moreover, t h e  outcome, head o r  t a i l ,  v a r i e s  i n  a  random 



fash ion,  i . e . ,  i n  an unp red i c t ab le  way. Thus, t h e  outcome o f  a  c o i n  f l i p  i s  
c a l l e d  a  random va r i ab l e ,  s i nce  t h e  r e a l i z a t i o n  o f  t h e ' a c t  o f  f l i p p i n g  va r i es  
i n  a  random fash ion.  Once observed, t he  r e s u l t  i s  a  f i x e d  q u a n t i t y ,  a  data 
po i  nt .  

How do we c h a r a c t e r i z e  t h e  random v a r i a b l e  r e s u l t i n g  f rom f l i p p i n g  a  
co i n?  We would i n t u i t i v e l y  expect t h a t  f o r  a  f a i r  co in ,  h a l f  o f  an even 
number o f  t r i a l s  w i l l  r e s u l t  i n  a  head and h a l f  i n  a  t a i l .  Suppose we f l i p p e d  
a  c o i n  100 t imes  and observed 43 heads and 57 t a i l s .  I s  t h e  c o i n  no t  f a i r ?  
I n  f a c t ,  o b t 2 i n i n g  43 heads i n  100 f l i p s  o f  a  f a i r  c o i n  i s  a  reasonable 
r e s u l t .  A second experiment o f  100 t r i a l s  may r e s u l t  i n  54 heads. 
Observat ions vary  from one t r i a l  t o  another; so t h e  r e s u l t s  o f  100 t r i a l s  can 
a l s o  be expected t o  va ry  from one t i m e  t o  another. One o f  t h e  impor tant  
ques t ions  t o  be answered i s  - how do these observat ions vary? I n  what manner 
a re  t h e  r e s u l t s  o f  random v a r i a b l e s  d i s t r i b u t e ?  along t h e  l i n e  o f  poss ib l e  
r e s u l  t s? 

One at tempt  t o  answer t h i s  ques t ion  i s  t o  take  mariy observaelons and l e t  
you r  da ta  t e l l  you how they  a re  d i s t r i b u t e d .  Th is  emp i r i ca l  approach i s  
s imp ly  t o  p l  o t  t h c  obscrvat  ions. 

1.5.1 A Dot Design 

L e t  us cons ider  t h e  f o l l o w i n g  example o f  observat ions from a  delayed 
neu t ron  gage on 100 p e l l e t s  o f  uranium f u e l  f o r  a  commerical power reac to r .  

Table  1.1. 

9  6  88 
89 95 

103 98 
109 9  7  
100 9  6  
109 I n 1  
'IU I I U3 
95 104 

113 100 
9  1  100 

Del ayed Neutron Counts* o f  Fuel Pel l e t s  (counts/gm) 

112 102 116 119 93 116 119 
97 121 117 108 104 113 94 

118 120 105 100 102 11-16 105 
102 104 122 94 109 113 111 
98 121 109 110 9  7 92 106 
99 94 113 107 114 96 92 
9 5 98 101 98 106 102 96 

116 96 100 107 9  9  95 110 
102 112 97 106 9  1  100 97 
9  7  80 101 9 9  99 104 101 

*Coded t o  make computat ion e a s i e r  by s u b t r a c t i n g  Z4,000 from t h e  ac tua l  count 
a t  eaeli pe l  l e t .  

One way t o  examine t h e  v a r i a b i l i t y  o f  t h e  data i s  t o  p l o t  each 
obse rva t i on  i n  a  dot diagram (see F igure  1.2). For  a  s u f f i c i e n t l y  l a r g e  
number o f  observat ions a  dot  diagram may leave  t h e  v iewer  wi.Lt1 a good 
unders tanding of t h e  na tu re  o f  t h e  response be ing p l o t t ed .  However, more 
o f t e n  a  d i s t o r t i o n  o f  t h e  t r u e  s t a t e  o f  na tu re  may be caused by t he  
d isc re teness  of t h e  da ta  and t h e  do t  diagram procedure when i n  f a c t  t h e  t r u e  
response i s  a  cont inuous va r i ab l e .  That i s ,  t h e o r e t i c a l l y ,  t h e  response may 
t a k e  on - any va lue  i n  a  s p e c i f i e d  range o f  values, bu t  t h e  do t  diagram on l y  
represen ts  a  p a r t  o f  t h e  t o t a l  poss i b l e  outcomes. I n  p a r t i c u l a r ,  two t h i n g s  
may happen. F i r s t ,  t h e  do t  diagram may be sca t t e red  over a wide range w i t h  
o n l y  one o r  two observat ions a t  any one value. Th is  may l e a d  t o  t h e  f a l se  
impress ion t h a t  any one va lue  i s  as 1  i k e l y  t o  'occur as any o ther ,  an 



assumpt ion which i n  most s i t u a t i o n s  i s  f a r  f rom t h e  t r u t h .  The second 
p o s s i b i l i t y  o f  d e c e p t i o n  i n  a  d o t  d.iagram i s  t h e  tendency f o r  peop le  t o  r e c o r d  
t h e  same va lue  repeated ly .  What t h i s  phenomenon -means i s  t h a t  many 
o b s e r v a t i o n s  a r e  i n  t h e  v i c i n i t y  o f  t hese  va lues b u t  a r e  r e a l l y  spread about  
these  values. .Thus, a  more r e a l i s t i c  p i c t u r e  o f  t h e  t r u e  d i s t r i b u t i o n  o f  a  
se t  o f  da ta  would be g i v e n  by  smoothing out  o f  t h e  d o t  diagram. T h i s  s t e p  i s  
accompl i shed by a  h istogram. 

8 0 8 5 90 . 9 5  100 105 110 1 1  5 120 125 
Counts Per  Gram 

F i g u r e  1.2. Dot  Diagram: Delayed Neut ron Counts o f  Fuel  P e l l e t s  

1.5.2 P l o t t i n g  a  H is togram 

A h is togram.  i s  s i m p l y  a  b a r  c h a r t  o f  f r e q u e n c i e s  o f  occur rence o f  v a l u e s  
i n  s p e c i f i e d  i n t e r v a l s .  

The f i r s t  s t e p  i n  c o n s t r u c t i r i g  a  h i s tog ram i s  t o  dec ide  on t h e  number 
and w i d t h  o f  i n t e r v a l s .  M i l l e r  and Freund [25! recommend 5  1 k 1  15 i n t e r v a l s ,  
where k  i s  t h e  number o f  i n t e r v a l s .  O the r  au tho rs  may suggest  s l i g h t l y  
d i f f e r e n t  numbers o f  i n t e r v a l s .  The d e c i s i o n  on t h e  number o f  i n t e r v a l s  i s  
u s u a l l y  based on t h e  range and number o f  da ta ,  i.e., t h e  maximum o b s e r v a t i o n  
minus t h e  minimum observa t i on .  I n  t h e  de layed neu t ron  coun t  data,  t h e  range 
i s  122 - 80 = 42. Us ing t h e  above r u l e  o f  thumb, we c o u l d  use 11 i n t e r v a l s  
w i t h  a  w i d t h  o f  4 counts ,  o r  9 i n t e r v a l s  w i t h  a  w i d t h  o f  5 counts.  The c h o i c e  
o f  i n t e r v a l  l i m i t s  o r  boundar ies  may also,  be made i n  seve ra l  ways. To ensure  
nonover l  app i  ng i n t e r v a l  s  we c o u l d  f o r  t h e  de layed n e u t r o n  example choose 
i n t e r v a l s  such as 89.5-94.5, o r  89.9-94.9 o r  90-94. Tab le  1.1 g i v e s  t h e  
f r e q u e n c i e s  f o r  t h e  l a t t e r  c h o i c e  o f  i n t e r v a l  l i m i t s ,  r e f l e c t i n g  t h e  
d i  sc re teness  o f  t h e  recorded data. 

The c l a s s  mark ii i s  t h e  m i d p o i n t  o f  t h e  i n t e r v a l  and can be used t o  
rep resen t  t h e  e n t i r e  i n t e r v a l ,  as we .sha l1  see s h o r t l y .  F i g u r e  1.3 shows t h e  
h i s tog ram f o r  t h e  f requency d a t a  g i v e n  i n  Tab le  1.2. The s t r a i g h t  l i n e s  
connec t ing  t h e  m i d p o i n t s  o f  t h e  i n t e r v a l s  a r e  c a l l e d  t h e  f requency polygon. 
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Figure 1-3. Histogram: Delayed Neutron Chnts of Fuel Pellets 
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F igu re  1.4. Cumulative D i s t r i b u t i o n  f o r  Delayed Neutron Counts 



Table 1.2. Frequency Table  o f  Delayed Neutron Counts 

Cumul a t  i ve 
Class- Re1 a t  i ve Re1 a t  i ve 

I n t e r v a l   ark xi Frequency Frequency Frequency 

I f  we reco rd  t h e  r e l a t i v e  f requency o f  each i n t e r v a l  as n./N, where ni 
i s  t h e  f requency i r i  t h e  irh i n t e r v a l  arid N - Z 11; i s  t h e  sum t o l a 1  o f  point:, 

l= 1, 
we may p l o t  t h e  cumu la t i ve  r e1  a t i v e  frequency diagram. A se r i es  o f  s t r a i g h t  
1  i n e s  connect i n q  t h e  i n t e r v a l  l i m i t s  o f  the c u l ~ ~ u l a t i v e  re1 a t i v e  f requency 
diagram i s  c a l l e d  an ogive. The cumulat ive r e l a t i v e  f requency diagram and 
og i ve  i s  shown i n  F i g u r e  1.4. 

1.6 The C h a r a c t e r i z a t i o n  o f  Data 

What i s  o f  more i n t e r e s t  than  a frequency polygon o r  an ogive, however, 
i s  t h e  k i n d  o f  smooth, cont inuous curve which may be drawn through t h e  
histogram. The h is togram g i ves  us an idea as t o  t h e  d i s t r i b u t i o n  o f  va lues 
be ing  measured. I t s  main job,  however, i s  s imply  t o  p o i n t  out  t h e  c e n t r a l  
tendenc ies  i n  t h e  data and t o  i n d i c a t e  t he  degree o f  v a r i a t i o n  i nhe ren t  i n  t h e  
data. I f  we b e l i e v e  t h a t  Mother Nature has a game p lan  f o r  delayed neu t ron  
counts/gram (and eve ry th i ng  e l s e  f o r  t h a t  matter.), t hen  t h e r e  e x i s t s  a  t r u e  
d i s t r i b u t i o n  f o r  these counts/gram. The 100 observat ions we recorded a re  a  
sample f rom a l l  conceivab le  observat ions o f  delayed neut ron counts/gram o f  
f u e l  p e l l e t s  which we may make i f  we cont inued t o  observe a l a r g e  number o f  
pe l  l e t s  f rom t h e  popu la t i on  o f  such pe l  l e t s .  

Thus, we have sampled f rom a popu la t i on  and cons t ruc ted  a h is togram o r  
p i c t u r e  o f  t h e  d i s t r i b u t i o n  o f  events recorded. Th i s  h is togram i s  an est imate 
o f  t h e  r e a l  d i s t r i b u t i o n  o f  events. How do we cha rac te r i ze  t h e  d i s t r i b u t i o n  
o f  t h i s  popu la t ion?  

1.6.1 Loca t i on  Parameters 

The tern p a r a m 6 f ~ r  rc fc r r ,  t'o c h a r a c e r t i s t i c s  o f  t he  t.t-IIF! ~ ~ n d e r l y i n g  
p o p u l a t i o n  whose d i s t r i b u t i o n  we a re  t r y i n g  t o  descr ibe.  I n f o rma t i on  about 
these  parameters i s  a v a i l a b l e  through func t ions ,  c a l l e d  s t a t i s t i c s ,  o f  t h e  
sample data. A s t a t i s t i c  summarizes t h e  i n f o r m a t i o n  about a  parameter o f  a  
d i s t r i , b u t i o n  t h a t  i s  a v a i l a b l e  i n  a  c o l l e c t i o n  o f  sample data. 

Since we a re  a f t e r  t h e  c e n t r a l  tendencies,  t h e  f i r s t  s tep  i n  



cha rac te r i z i ng  t h e  d i s t r i b u t i o n  i s  t o  r epo r t  i t s '  l o c a t i o n  o r  cen te r  value. 
Ac tua l l y ,  t he re  a r e  several  poss ib l e  choices f o r  determin ing t h i s  1  ocat i o n  
parameter. I n  .every .histogram t h e r e  i s  one value which d i v i d e s  t h e  
observat ions ' i . n .  ha. l f .  The me'dian of t h e  sample i s  t h a t  value f o r  which h a l f  
o f  t he  observat ions i s  a b o v x  h a l f  below. I f  the re  a re  an odd number o f  
observat ions, say 2n .+ 1, t h i s  median value i s  unique, hav ing e x a c t l y  n  
observat ions on e i the . r  side. If t h e r e  i s .  an even. number, t h e  median may be 
t h e  common value o f  t h e  two middle observat ions,  o r  t he  midpoint  between t h e  
two middle '  val  ues. 

A second l o c a t i o n  parameter i s  t he  -. mode. Th is  i s  t he  value having 
t he  g rea tes t  frequency o f  occurrences. The sample..m~de i s  t h e  h i ghpo in t  i n  t h e  
histogram. For t h e  delayed neutron gage data, a  qu ick glance a t . F i g u r e  1.3 
and 1.4 t e l l s  us t h a t  t h e  samp1.e median i s  i n  t h e  i n t e r v a l  100-104 and t h e  
mode. i s  i n  t he  i n t e r v a l  95-99. . For t he  sample. mode, i t  i s  u s u a l l y  s u f f i c i e n t  
t o  use t he -m idpo in t  o r  class-mark o f  t h e  i n t e r v a l ,  97, as t h e  rep resen ta t i ve  
value. The sample median can be determined more' p r e c i s e l y  by coun t ing  t h e  
observat ions and averaging t h e  50 th  and 51st l a r g e s t  values. O r ,  we can 
approximate i t  by i n t e r p o l a t i o n .  From t h e  frequency tab le ,  we see t h a t  39 : 
observat ions l i e  below 100 and 24 l i e  i n  t h e  i n t e r v a l  100-104. .Eleven o f  
these l i e  be1 ow t h e  sample medi an and 13 above. Thus' t he  median cou ld  be 
represented conceptua l l y  by t h e  'average o f  t h e  11 th  and 12th observat ion i n  
t h i s  interva.1 , assuming a1 1 24 observat ions 'were equal l y  spaced w i t h i n  t h e  
i n t e r v a l .  Since t h e  i n t e r v a l  i s  5  u n i t s  .in width,  t h e  sample median can be 
determined as f o l l o w s :  

[Note from t h e  do t  diagram, t h a t  b o t h  t he  50 th  and 51s t  observat ion are equal 
t o  102, so t h a t  t h e  median o f  t he  data i s  e x a c t l y  102.1 

The median and mode a re  i n t e r e s t i n g  and use fu l  l o c a t i o n  parameters, 
but  the must vd luable l o c a t i o n  parameter i s  t h e  mean, o r  cen te r  o f  g r a v i t y  o f  
t h e  d i s t r i b u t i o n .  The mean i s  t he  f i r s t  moment o f  t h e  d i s t r i b u t i o n ' a n d  i s  
est imated by t h e  a r i thmet  i c  average of t he  observat ions. Using t h e  frequency 
t a b l e  const ructed f o r  t he  histogram, however, we can p rov ide  an a l t e r n a t i v e  
est imate o f  t he  mean. Le t  xi be t he  classmark o f  t h e  i t h  i n t e r v a l  and ni t h e  
number o f  observat ions l y i n g  i n  t h a t  i n t e r v a l ,  then  

- 
where x i s  t he  average o f  a l l  observations. It sometimes occurs t h a t  the  end 
i n t e r v a l  i n  a. frequency t a b l e  o r  histogram i s  open ended; e.g., i ns tead  o f  an 
observat ion being between 80 and 84, i n c l u s i v e ,  we group several  i n t e r v a l s  
having none o r  very few observat ions toge ther  and s imply  record  i t  as 
represen t ing  val ues l e s s  than  80. These open-ended i n t e r v a l  s  have a r b i t r a r y  
c l  assmarks. 



I 

Measuring t h e  Spread , 1.6.2 

Knowing the  l o c a t i o n  o f  t he  cen t ra l  value (mean, mode, o r  median) o f  
t h e  h is togram i s  not  s u f f i c i e n t  i n f o rma t i on  f o r  making in fe rences  about t h e  
t r u e  d i s t r i b u t i o n .  We a l so  need t o  know how va r i ed  o r  spread /out  t h e  

: observa t ions  are. A measure o f  v a r i a t i o n  i s  c a l l e d  t he  var iance and i s  
' u s u a l l y  es t imated  by 

- 
where t h e  x u  a re  t he  ac tua l  observat ions, x i s  t h e  average, arid n  i s  t h e  
number o f  observat ions. For l a r g e  n  the  c a l c u l a t i o n  i s  obv ious ly  
cumbersome. A qu i cke r  c a l c u l a t i o n  which makes use o f  t h e  data a l ready 
t a b u l a t e d  i n  Table 1.2 i s  t o  c a l c u l a t e  

where xi i s  t h e  c lass  mark o f  t he  i t h  i n t e r v a l  and t he  summation i s  over t h e  
number o f  i n t e r v a l s .  

A measure o f  t h e  spread o f  a  d i s t r i b u t i o n  i s  t he  standard dev ia  ion ,  8 which i s  s imply  t he  square r o o t  o f  t he  var iance and i s  est imated by s  =./s . 
1.6.3 Other C h a r a c t e r i s t i c s  o f  I n t e r e s t  

There are two o t h e r  c h a r a c t e r i s t i c s  o f  a  d i s t r i b u t i o n  which a re  o f  
general  i n t e r e s t  i n  d e s c r i b i n g  a  se t  o f  data: skewness and ku r t os i s .  

Skewness i s  a measure o f  the  asymmetry o f  the  d i s t r i b u t i o n ,  i.e., 
t h e  tendency o f  a  popu la t i on  toward h i gh  o r  low values.. The usual measure o f  
skewness can be w r i t t e n -  i n  terms o f  data from a  histogram as 

For  a  symmetric d i s t r i b u t i o n ,  t h i s  measure should be zero. 

K u r t o s i s  i s  o f t e n  descr ibed as t he  measure o f  peakedness o f  t h e  
d i s t r i b u t i o n  and can be c a l  cu l  a ted  b.y 

The f l a t t e r  t h e  d i s t r i b u t i o n ,  t h e  sma l le r  t he  value becomes. However, t h e  
concept o f  k u r t o s i s  i s  no t  f r e q u e n t l y  app l i ed  when dea l ing  w i t h  most sets  o f  
data. 



A l l  o f  t h e  c h a r a c t e r i s t i c s  d i scussed  i n  t h i s  s e c t i o n  w i l l  be 
desc r ibed  more f o r m a l l y  i n  t h e  s e c t i o n  on p r o b a b i l  i t y  d i s t r i b u t i o n  f u n c t i o n s .  

1.7 E s t i m a t i n g  t h e  Mean and Var iance:  The Delayed Neu.tron Gage Example 

The mean and va r iance  o f  t h e  de layed n e u t r o n  gage da ta  c o u l d  be e s t i m a t e d  

b y  u s i n g  a l l  da ta  p o i n t s  and c a l c u l a t i n g  x and sZ d i r e c t l y .  The r e s u l t s  o f  
such a  c a l c u l a t i o n  a r e  

x = 102.99 

. . - 
Us ing t h e  g roup ing  o f  Tab le  1.2, we may e s t i m a t e  t h e  grouped mean, x  g, 

and var iance,  sg 2, as f o l l o \ ~ s :  

- - 
From (1.1) x  = 103.00 9  . . 

From (1.2) 

An e a s i e r  approach f o r  c a l c u l a t i n g  t h e  e s t i m a t e  o f  v a r i a n c e  i s  t o  code 
t h e  data. That' i s ,  l e t  u i  b e . t h e  coded v a l u e . o b t a i n e d  by 

. 

where a  conven ient  c e n t e r  v a l  ue xo i s  i5 = 102, and c  i s  a c o n v e n i e n t  s c a l  e 
value. '. . . .  . . 

. - 
'i'hus, x i  = 5 u i  t . 1 0 2 .  

. . 
. :  
1 " 



Then 

Then 

and 

(The interested reader will want to read Section 2.3.3  on the basic properties 
of means and var'ances in order to understand the relationships between K and 3 il and sx2 and su .) 

1.8 Correlation and Independence 

Before turning to the more formal mathematical devel opment of s ta t is t ics  
in chapter 2 ,  l e t  us f i r s t  consider some intuitive explanation of some 
important concepts: correlation and independence. Correlation i s  a measure 
of how much one random variable moves as another random variabTe moves. 
Figure 1.5a shows a distinct pattern of observations for two highly correlated 
variables, say the length and weight of fuel elements. I t  i s  obvious t h a t  as 
the length increases, the weight a1 so increases. The correlation 
coefficient , p , between two random variables must be between -1 and +I. If 
the random variables are independent, i. e. , there i s  no dependency of one 
variable upon another, then the correlation coefficient i s  zero. The plot of 
observations from independent random variables will resemble a shotgun 
pattern. For example, the uranium content in a fuel element i s  independent of 
the amount of an impurity present i n  the nonfuel portion of the element. 



I n  S e c t i o n  2.1 a  more formal  p r o b a b i l i s t i c  d e f i n i t i o n  o f .  independence 
w i l l  be presented. I t i s  s u f f i c i e n t  :here j u s t  t o  recogn ize t h a t  some random 
v a r i a b l e s  a re  independent and some a r e  c o r r e l a t e d ,  and how we deal w i t h  da ta  
w i l l  depend on t h e  r e l a t i o n s h i p  between va r iab les .  . 

I 
WEIGHT 
I 

URANIUM CONTENT 

F i g u r e  1.5a. C o r r e l a t e d  V a r i a b l e s  F i g u r e  1.5b. .Uncor re l  a t e d  o r  , 

. Independent Var iab les  



CHAPTER 2. PROBABILITY AND PROBABILITY FUNCTIONS 

2.0 INTRODUCTION 

How o f t e n  w i l l  a  c e r t a i n  v a l u e  occur f o r  a giv,en process? I n  t h e  delayed 
n e u t r o n  gage data,  how o f t e n  can' we expect  t o  f i nd a va lue  o f  98 o r ,  more 
reasonab ly ,  how o f t e n  shou ld  a v a l u e  between 95  and 102 occur?  The r e l a t i v e  
f requency  i s  a measure o f  t h e  p r o p o r t i o n  of t h e  t o t a l  p o s s i b l e  outcomes o f  a 
p r o c e s s  wh ich  have a c e r t a i n  common a t t r i b u t e .  The r e l a t i v e  f requency  o f  t h e  
i n t e r v a l  ( 9 5  < x < 102) i s  0.33. I n  t h e  l i m i t ,  as t h e  number o f  o b s e r v a t i o n s  
tend  toward  i n f i n i t y ,  t h e  r e l a t i v e  f requency o f  an event  coverges t o  t h e  
a c t u a l  p r o b a b i l i t y  o f  t h e  event. A l though we seldom a c t u a l l y  know t h e  
p r o b a b i l i t i e s  o f  r e a l  events ,  we must s t i l l  be a b l e  t o  c a l c u l a t e  p r o b a b i l i t i e s  
o f  c e r t a i n  events  as i f  we d i d  know t h e  t r u e  p r o b a b i l i t i e s  o f  o t h e r  events. 
Hence,*we need t o  s t u d y  t h e  b a s i c  r u l e s  o f  p r o b a b i l i t y  theory .  

2.1 D e f i n i t i o n s  and B a s i c  Laws 

L e t  us b e g i n  by d i s t i n g u i s l ~ i n g  between p r o b a b i l i t y  and s t a t i s t i c s .  
P r o b a b i l i t y  i s  t h a t  b ranch o f  mathemat ics which d e a l s  w i t h  t h e  assignment o f  
r e l a t i v e  f r e q u e n c i e s  o f  occu r rence  o f  t h e  p o s s i b l e  outcomes o f  a process o r  
exper imen t  a c c o r d i n g  t o  some mathemat ical  f u n c t i o n .  S t a t i s t i c s  i s  t h e  t h e o r y  
and p r a c t i c e  o f  d raw ing  i n f e r e n c e s  about a response o r  process based on 
assumpt ions ,  da ta ,  and t h e  laws o f  p r o b a b i l i t y .  S t a t i s t i c s  p r o p e r l y  i n c l u d e s  
t h e  problems o f  t h e  c o l l e c t i o n  as w e l l  as t h e  a n a l y s i s  of data.  A l though b o t h  
f i e l d s  o p e r a t e  i n  t h e  face of u n c e r t a i n t y  due t o  random e r r o r ,  s t a t i s t i c s  i s  
i n d u c t i v e  i n  na tu re ,  w h i l e  p r o b a b i l i t y  i s  deduc t i ve .  One t h i n g  we would l i k e  
t o  do, then,  i s  t o  deduce t h e  p r o b a b i l i t y  o f  a complex event  based on t h e  
p r o b a b i l  i t i e s  o f  c e r t a i n  s i m p l e  events ,  such as t h e  p r o b a b i l  i t i e s  o f  conlponent 
p a r t s  o p e r a t i n g  s u c c e s s f u l l y  a t  some t i m e  T. To do t h i s  we need t o  know t h e  
b a s i c  laws o f  p r o b a b i l i t y  and t h e  combinat ion  o f  events.  

We s h a l l  d e f i n e  an even t  E as some p a r t i c u l a r  occur rence f rom a s e t  o f  
many p o s s i b l e  o c c u r r e n c e m e  s e t  of a l l  p o s s i b l e  occur rences i s  c a l l e d  a 
sample space). An event  may occu r  i n  s e v e r a l  ways, so t h a t  we can c o n s i d e r  i t  
as a c o l l e c t i o n  o f  e lements a l l  of which have a carnmon a t t r i b ~ ~ t e .  Fo r  
example, t h e  occur rence of an odd face on a th row o f  a d i e  i s  an event  which 
has t h r e e  elements 1, 3, and 5.  The r o b a b i l  i t y  o f  an event  i s  t h m a t i v e  + f r e q u e n c y  o f  occur rences of t h a t  event  w l t  r e s p e c t  t o  a l l  occurrences.  The 
ass ignment  o f  a p r o b a b i l i t y  v a l u e  t o  an event  i s  de termined by  assumption, b y  
p r i o r  knowledge of t h e  even t ,  o r  by o b s e r v a t i o n  of a l a r g e  number of t r i a l s  o r  
exper iments .  We say, f o r  example, t h a t  t h e  p r o b a b i l i t y  o f  o b t a i n i n g  an odd 
face on a d i e  i s  1/2, assuminq t h a t  t h e  d i e  i s  a f a i r  one. T h i s  assignment o f  
p r o b a b i  i i ty  P ~ ( E )  t o  t h a t  event  i s  v e r i f i e d  by exper imen ta t i on .  

L e t  El and E2 be two events.  The f o l l b w i n g  a r e  d e f i n i t i o n s  o f  events  
1)dsed UII El and E2 !  

- 
E means n o t  E (i.e., E has n o t  occur red)  

El + E2 means e i t h e r  El o r  E2 o r  b o t h  occu r  

E1E2 means b o t h  El and E2 occur  

E ~ I  E2 means El occurs  g i v e n  t h a t  E2 has occurred.  



Given t h e  above d e f i n i t i o n  of events,  t h e  b a s i c  laws o r  axioms o f  p r o b a b i l i t y  
a  r e  : 

1. Bas ic  La.ws o f  P r o b a b i l i t y  

a. 0  <, Pr (E)  I 1  

c.2 I f  El and E2 a r e  m u t u a l l y  e x c l u s i v e ,  
Pr(E1 + E2) = Pr(E1) t Pr(E.2) 

d. 2  If El and E a r e  s t a t i s t i c a l l y  independent, t h e n  
% ~ ( E ~ E ~ )  = Pr(E1) Pr(E2) 

2. P r o o f s  

a. L e t  S be t h e  event t h a t  something occurs,  i.e., any event  which can 
occur i s  a  p a r t  of S, and l e t  @ be an event t h a t  never occurs. By 
t h e  d e f i n i t i o n  o f  p r o b a b i l i t y  we d e f i n e  Pr(<D) = 0  and Pr (S)  = 1. 
Thus, i f  an event cannot occur,  we say i t occurs w i t h  p r o b a b i l i t y  
zero. On t h e  o t h e r  hand, somethin always occurs w i t h  c e r t a i n t y .  
Thus, f o r  any event E, i t  T - d  as t e  ounds o f  0  and 1  i n  p r o b a b i l i t y .  

b. 1 f  E i s  " n o t  E " ,  t h e n  E and E make up a l l  events  which c o u l d  

p o s s i b l y  occur. That  i s ,  E  + = S. Hence, Pr (E t E) = Pr (S)  = 1  
(see F i g u r e  2.1). 

F i g u r e  2.1. Pr(E + r) = P ~ ( s )  = 1  

c.1 Suppose t h e r e  a r e  n l 2  ways t h a t  even ts  El and E2 may occur  toge the r ,  
n10 ways f o r  El t o  occur  a lone,  and n20 ways f o r  E2  t o  occur  a lone 

(sce F i  j u r e  2.2). 



If the  to ta l  number of possible outcomes i s  N ,  then 

However, E l  occurs in a t o t a l  of n10 + n l 2  ways, and E 2  in 1-120 + n12 ways. 
Thus 

"o+ n12 W E 1 )  = N 

Summing P r ( E 1 )  and P r ( E 2 ) ,  we see that  the term Pr(E1E2) = n12/N occurs twice. 

Subtracting t h i s  t e n  from P r ( E 1 )  + P r ( E 2 ) ,  we see the resul t  i s  Pr(E1+E2), 
i .e., 

Figure 2.2. P r ( E 1  + E 2 )  = "10 + '20 + '12 
N 

Figure 2.3. P ~ ( E ~ E * ' )  = 0 



I f  El. and E2 a re  mu tua l l y  exc l us i ve  events, t h e n  El and E2 cannot occur 

t oge the r  (see F igure  2.3). Thus, Pr(E1E2) = 0 and c.2 fo l l ows .  The obvious 
ex tens ion  ho lds f o r  t h e  p r o b a b i l i t y  o f  k mu tua l l y  e x c l u s i v e  events, 

The extens ion o f  t h e  general  case c.1 t o  k events i s  l e f t  as an exe rc i se  f o r  
t h e  reader. 

d.1 As above, 1 e t  N he t h e  t o t a l  number o f  poss ib l e  occurrences, El and 
E2 toge ther  occur i n  n12 ways, El a1 one i n  n10 ways, and E2 a1 6ne i n  
n20 ways. 

Thus, Pr(E2)  = '20 0 n12 and Pr(E1E2) = '12 
N 

-. 
N 

How many ways can El occur,  g i v e n  t h a t  E2  has occurred? 

F igure  2.4. P ~ ( E ~  I E ~ )  = '12 
"'20 + "12 

E l  may occur i n  on ly  n l 2  ways i f  E2 has a1 ready occurred 
(see F igu re  2.4). E2 may have occurred i n  n20 ways, so t h a t  

"0 + "2 

That i s ,  o f  t h e  t o t a l  number o f  ways i n  which E2 occurs, n12 of them c o n t a i n  

t h e  occ i~ r rence  o f  El a lso.  Now m u l t i p l y i n g  P ~ ( E ~ I  ~ 2 )  by Pr(E2) we ob ta i n  

I f  El and E2 a re  pa i rw ise  o r  s t a t i s t i c a l l y  independent then  t h e  occurrence o f  
E2 does not a f f e c t  t h e  p r o b a b i l i t y  o f  t h e  occurrence o f  E , i.e., Pr(E1 E ) 
= Pr(E1). Thus, d.2 fo l l ows .  The extens ion o f  d.2 i s  no 1 as obvious as t h e  
ex tens ion  f o r  c.2. The r e s u l t  i s  t h a t  i f  El, E2, ..., Ek a r e  mu tua l l y ,  o r  
s t a t i s t i c a l  l y ,  independent, then 



However, n o t e  t h a t  mutual independence requ i  r e s  not  on l y  pa i  r w i  se 
independence, Pr(E.E. )  = Pr(Ei)  P r (E j )  bu t  a l s o  independence a t  every o the r  
stage, i.e., J 

2.1.1 An I l l u s t r a t i o n  o f  t h e  Bas ic  Laws o f  P r o b a b i l i t y  

To '  i l l u s t r a t e  these  bas i c  laws of p r o b a b i l i t y  cons ider  t h e  event E  
t h a t  a  c o n t r o l  r o d  i s  s u c c e s s f u l l y  d r i v e n  i n t o  t h e  co re  when p rope r l y  
t r i g g e r e d .  Suppose independent t e s t i n g  o f  t h e  c o n t r o l  r od  mechanism has shown 
t h a t  t h e  p r o b a b i l i t y  o f  successfu l  ope ra t i on  o f  t he  rod i s  0.99, i .e., 

- 
The p r o b a b i l i t y  o f  f a i l u r e ,  E, i s ,  t h e r e f o r e  

s i n c e  E (success) and E ( f a i l u r e  = no t  success) a re  mu tua l l y  exc l us i ve  events 
and cover  a l l  poss i b l e  outcoines o f  events which cou ld  occur,  and 

I f  t h e r e  a re  2 such rods i n  a  co re  and they ac t  independent ly  when 
t r i g g e r e d  by th;! same s i g n a l ,  t h e  p r o b a b i l i t y  t h a t  both rods operate 
s u c c e s s f u l l y  ( "scram")  i s  

I f  one r o d  success fu l l y  scramming can shut down t he  reac to r ,  t h e  p r o b a b i l i t y  
o f  shutdown i s  t h e  p r o b a b i l i t y  t h a t  e i t h e r  one o r  bo th  rods scram, 

Suppose f u r t h e r  t h a t  t h e r e  i s  a  p r o h a b i l i t y  t h a t  t h c  t r i g g e r i n g  s igna l  
f o r  t h e  c o n t r o l  rods w i l l  no t  operate  properly.' The rods themselves w i l l  no t  
scram un less  t h e  s igna l  i s  t r i gge red .  Tllus, t h e  successful  operat ion,  o f  t hc  
c o n t r o l  rods i s  condi t i'onal upon t h e  successfu l  operat  i o n  .of t h e  t r i g g e r ;  ng 
device. Suppose t he  p r o h a b i l i t y  o f  successful  ope ra t i on  i s  Pr(E3) = 0.95. 
Thus,. t h e  successfu l  shutdown of t h e  r e a c t o r  r equ i r es  both t h e  successfu l  
o p e r a t i o n  o f  t h e  t r i g g e r i n g  dev i ce  and the  suc.cessfu1 scran; o f  a t  l e a s t  one o f  
t h e  two c o n t r o l  rods, E4 = E  + E2, c o n d i t i o n a l  on t h e  f i r s t  cvent t a k i n g  f p l  ace. Th i s  p robab i l  i t y  i s  ound by 



2.1.2 ' An A p p l i c a t i o n  t o  System Eva lua t i on  

It o f t e n  occurs t h a t  t he  components o f  a  system have been t es ted  
separa te ly  and t he  component r e l i a b i l i t i e s ,  i.e., p r o b a b i l i t y  o f  successfu l  
opera t ion ,  a re  known. The system i t s e l f ,  however, may not be subjected t o  
t e s t s ,  e i t h e r  due t o  t ime, expense, o r  t he  d e s t r u c t i v e  na tu re  o f  such a  
t e s t .  Suppose we a re  dea l ing  w i t h  a  two-stage system f o r  which the  f i r s t  
stage has a  backup system (see F i  j u r e  2.5). Le t  t he  p r o b a b i l i t y  o f  components 
A1, A2, and B opera t ing  success fu l l y  be PA = 0.90, P  = 0.80 and PE = 0.95, 

1 A2 
respec t i ve l y ,  ' where these p robab i l  i t i  es were determined by ex tens ive  and 
separate t es t s .  We want t o  know t h e  p r o b a b i l i t y  o f  t h e  systern opera t ing  
successfu l ly .  

L e t  S mean the  system operates success fu l l y ,  and S  and SII mean 
t h a t  stages I and I I, respec t i ve l y ,  operate success fu l l y .   ken . . 

Now, stage I operates success fu l l y  i f  A1 o r  A2 operates 
success fu l l y .  

Since A1 and A2 were t es ted  separa te ly ,  Pr(A1A2) = Pr(A1)Pr(A2). Hence, 

F i na l  ly ,  t h e  system w i l l  operate if SI operates successful  l y ,  g i v e n  SI has. 

The p r o b a b i l i t y  t h a t  the  system w i l l  operate  success fu l l y ,  g i v e n  t h e  
r e l i a b i l i t y  o f  t h e  t h r e e  component engines as 0.90, 0.80, and 0.95, i s  0.9310. 



STAGE I 

A 2  

F igu re  2.5. Two-Stage System 

*2.1.3 Bayes' Theorem. An Appl i c a t i o n  o f  Condi t ional  Probab i l  i t i e s  

A  very  bas ic  and impor tan t  a p p l i c a t i o n  o f  p r o b a b i l i t y  law d.1 was 
d iscovered  by t h e  Reverend Thomas Bayes i n  t he  l a t e  n ine teen th  century.  It i s  
s imp ly  a  double a p p l i c a t i o n  o f  law d.1 which a l lows us t o  make p r o b a b i l i t y  
statements about one event E2, g i ven  El, when we have knowledge of t h e  
p r o b a b i l i t i e s  o f  El g i ven  E2. 

Let C1 EE2 bc two s imple events nnt. independent o f  each other.  
Then 

We can a l s o  w r a l l t !  i l  

Thus, equa t ing  t h e  two, we have 

Expanding on t h i s ,  cons ider  E t o ,  occur i n  k ,mutual  l y  exc lus i ve  and 
exhaus t i ve  (i.e., t h e r e  a re  no o t h e r )  ways, El, 1 = 1, 2, ... , k. S i m i l a r l y ,  
H  may occur i n  & mutual l y  e x c l u s i v e  and exhaust ive ways H  ., j = 1, 2, .... 1 . Then Ei may occur w i t h  any of t h e  mu tua l l y  e i c l u s i v e  and 
exhaus t i ve  events H That i s ,  

j 

Ei EiHl + EiH2 + ... + EiHe . 
Now 

P ~ " ( E ~ ~ H ~ )  P r ( l l j )  , Pr(Ei) j . 0 .  
Pr(HjlEi) = ....-.. 

P r ( t i )  

*Sect ions marked by * a re  advanced t o p i c s  and may be skipped by first-time 
readers 



b 

I n  t u r n ,  however, P r ( E . H )  J = p r ( E i l l j )  Pr (Hj ) .  Thus, 

Pr(Ei) = 1 pr(E i lH j )  Pr(Hj)  
j = l  

and f i n a l l y ,  

That i s ,  we can deduce t h e  p r o b a b i l i t y  o f  Hj, g i v e n  Ei, f rom knowledge o f  t h e  

p r o b a b i l i t i e s  o f  Hj and E i lH j .  

Suppose t h r e e  furnaces a re  used t o  s i n t e r  f u e l  p e l l e t s .  It i s  observed t h a t  
t h e  furnaces handle  40,40, and 20 percent o f  t h e  p e l l e t  b lends,  r e s p e c t i v e l y .  
The p r o b a b i l i t i e s  f o r  a fu rnace  produc ing unacceptab'le g r a i n  s i z e s  f o r  pe l  l e t  
b lends a re  thought  t o  be 0.05, 0.05, 0.10, r e s p e c t i v e l y ,  based on p rev ious  
s tud ies .  I f  t h e  i n f o r m a t i o n  t h a t  a blend was s i n t e r e d  i n  a p a r t i c u l a r  f u r n a c e  
i s  n o t  kept ,  i t  may be o f  i n t e r e s t  t o  know t h e  p r o b a b i l i t y  t h a t  an 
unacceptable blend came from f u r n a c e  #3. L e t  

El = unacceptable g r a i n  s i z e  f o r  b lend  
H1 = b lend  s i n t e r e d  i n  fu rnace  #1 
Hz = b lend s i n t e r e d  i n  fu rnace  #2 
H3 = b lend s i n t e r e d  i n  fu rnace  #3 

and 

Then, Pr(E1.) = Pr(E1tll) + Pr(E1H2) +. Pr(E1H3) 

= pr(EII H ~ ) P ~ ( H ~ )  + pr(E1 I H2)pr(H2) + pr(EII H3)pr(H3). 

The p r o b a b i l i t y  t h a t  f u r n a c e  13 s i n t e r e d  a p a r t i c u l a r  blend, g i v e n  t h a t  i t  was 
d e f e c t i v e ,  i s  

Pr(E1H3) = pr (E1 I H ~ ) P ~ ( H ~ )  

Pr(t{3/E1) = ,- 

\ 

1 )  P r ( t 1 )  



Thus, t h e  p r o b a b i l i t y  t h a t  a g i ven  d e f e c t i v e  blend was s i n te red  i n  furnace #3 
i s  0.33, which i s  cons iderab ly  h i ghe r  than t h e  0.20 p r o b a b i l i t y  t h a t  any b lend 
was s i  n t e red  i n  fu rnace  #3. 

The corresponding p r o b a b i l i t i e s  f o r  t h e  o t h e r  furnaces a re  a lso  0.33. Thus, 
a1 though fu rance  #3 produced on l y  o n e - f i f t h  o f  t h e  p e l l e t  blends, i t i s  
e q u a l l y  l i k e l y  t h a t  a d e f e c t i v e  b lend came from any one o f  t he  furnaces. 

Th i s  example was s t r a i g h t f o r w a r d  and t h e  r e s u l t  reasonably i n t u i t i v e .  The 
power o f  t h e  Payes' theorem techn ique  becomes more apprec iab le  i n  more complex 
appl  i c a t i o n s .  

2.2 P robah i l  i t y  Funct ions 

Suppose we repea ted ly  r u n  t r i a l s  of an experiment. Again we i n t e r p r e t  
exper iment r a t h e r  l o o s e l y  here  as an occurrence o r  4 c t i v i t . y  which can be ---. --..-- 
observed. The l e n g t h  of t ime  i t  takes t o  d i a l  a c e r t a i n  te lephone number i s  
an exper iment as w e l l  as a l a r g e - s c a l e  i n v e s t i g a t i o n  o f  t h e  pr0p.ertie.s o f  a 
c e r t a i n  chemical. The common element i s  some c h a r a c t e r i s t i c  o f  t he  outcome 
which can he q u a n t i f i e d .  For  example, t he  r e s u l t  o f  a c o i n  f l i p  can be 
assigned a va lue 1 f o r  a head o r  0 f o r  a t a i l .  Furthermore, t h e  outcome may 
vary  f rom one t r i a l  t o  another  i n  a random, i .e., unpred ic tab le ,  manner. We 
can d e f i n e  an event E as t he  r e s u l t  t h a t e  c h a r a c t e r i s t i c  va'lue x o f  t he  
outcome i s  l e s s  than o r  equal t o  some f i x e d  va lue X. I f  t h e  frequency o f  
occurrence o f  t h e  event E tends t o  a l i m i t ,  we c a l l  x a random va r i ab l e .  I n  
p r a c t i c a l  s i t u a t i o n s ,  t h e  assurnption o f  a 1 i m i t i  ng frequency i s  reasonable. 

D e f i n i t i o n  2.1 

The rea l - va l ued  q u a n t i t y  x assigned t o  t h e  outcome o f  an experiment which 
v a r i e s  i n  an unp red i c t ab le  manner i s  c a l l  ed a . -  random . . var iab le .  - - 

2.2.1 Cumulat ive D i s t r i b u t i o n  Func t ion  

The 1 i m i t i  ng f requency o f  an event E ,  de f i ned  by x l X, i s  t h c  
p r o b a b i l i t y  o f  t h e  event, P r ( x < X ) .  The s e t  o f  p r o b a b i l i t i e s  f o r  an 
exper iment can be fo rma l i zed  by a mathematical model which de f i nes  t h e  
p o s s i b l e  values f o r  P r ( x  I X )  f o r  a l l  poss i b l e  X. By convent ion,  we say t h a t  
p r o b a b i l i t y  accumulates as we move f rom l e f t  t o  r i g h t  on t h e  r e a l  a x i s  x. 
Thus, P r ( x  l X )  i s  c a l l e d  t h e  cumu la t i ve  d i s t r i b u t i o n  f unc t i on .  

D c f i n i t i o n  2.2 

The cumula t i ve  d i s t r i b u t i o n  f u n c t i o n  ( c d f )  o f  a'random v a r i a b l e  x i s  

F(X) = P r ( x l  X),, 

To i l l u s t r a t e  what we mean by cumulates, cons ide r  t h e  f o l l o w i n g :  



Exampl e 2.'1 

Ass ign x  = 0  i f  a  t a i l  r e s u l t s  f rom t h e  t o s s i n g  o f  a  co in ,  and x  = 1, i f  a  
head r e s u l t s .  . The statement x  ,< 1, (X= l ) ,  means t h a t  e i t h e r  a  t a i l  ( 0 )  o r  a  
head ( 1 )  occurs. T h i s  i s  c e r t a i n t y ,  i.e., Pr(Head o r  T a i l )  = 1; i.e., 
P r ( x  5 1 )  = 1. 

PROB P r  ( x  5'0) = 1/2 
X S X  P r ( x  5 I )  = I 

0 

F i g u r e  2.6. Cumulat ive D i s t r i b u t i o n  o f  A Coin Toss 

~ x a m ~ l  e  2.2 

The l e n g t h  o f  a  beam ' i s  measured. The beam i s  one o f  a  l a r g e '  number o f  beams , 
o f  v a r i o u s  leng ths .  T h e o r e t i c a l l y ,  a  beam c o u l d  be of ze ro  o r  i n f i n i t e  
length .  Thus, F(0)  , =  P r ( x 5 O )  = 0, P r ( x  <a) = 1. That i s ,  t h e  p r o b a b i l i t y  
t h a t  t h e  beam has no l e n g t h  i s  zero,  and t h e  p r o b a b i l i t y  t h a t  t h e  beam has 
s h e  l e n g t h  i s  1  ( c e r t a i n t y ) .  The p r o b a b i l i t y  t h a t  t h e  beam i s  no more t h a n  X 
u n i t s  i n  l e n g t h  i s  F(X) = P r ( x  SX)., 

F i g u r e  2 .7 .~ \  Cumulat ive D i s t r i b u t i o n  F u n p t i a n  o f  t h e  
Length o f  a  Beam 

2.2.2 A D i s c r e t e  Random V a r i a b l e  

The above examples i l l u s t r a t e  t h a t  as we move t o  t h e  r i g h t  a long  X 
we i n c l u d e  more and more o f  t h e  sample space and hence t h e  p r o b a b i l i t y  o f  t h e  
event x L X  inc reases  o r  accumulates as x  increases.  Examples 2.1 and 2.2 a l s o  
demonstrate t h e  two types o f  random v a r i a b l e s :  d i s c r e t e  and cont inuous.  

A d i s c r e t e  random v a r i a b l e .  takes  on o n l y  a  coun tab le  number o f  p o s s i b l e  
outcomes. 

There may be an i n f i n i t e  number o f  outcomes, b u t  t h e  outcomes can be 
ordered i n  a  one-to-one correspondence t o  t h e  r e a l  i n t e g e r s .  An example o f  
t h i s  t y p e  o f  d i s c r e t e  random v a r i a b l e  i s  t h e  number o f  gamma emissions f rom a  
r a d i o a c t i v e  source over  a  s p e c i f i e d  p e r i o d  o f  t ime. I n  f a c t ,  a l l  -- count d a t a  



a r e  d i s c r e t e  random v a r i a b l e s .  Other  examples a r e  t h e  number o f  aces i n  .a 
hand o f  b r i dge ,  t h e  number of m u l t i p l e  b i r t h d a y s  i n  a  roomful  o f  people, and 
t h e  number o f  r e j e c t s  from a  l o t  of i tems s u b j e c t  t o  a  q u a l i t y  t e s t .  

The p r o b a b i l i t y  of o b t a i n i n g  any one o f  t h e  p o s s i b l e  outcomes can be 
computed and descr ibed f o r  a l l  va lues o f  t h e  random v a r i a b l e .  

D e f i n i t i o n  2.4 

The p r o b a b i l ' i t y  f u n c t i o n  o f  a  d i s c r e t e  random v a r i a b l e  i s  

p ( x )  = P r ( x  = X), x = 0, 1, 2  ,... ,k. 

F i g u r e  2.8 shows t h e  p r o b a b i l i t y  f u n c t i o n  f o r  a  t o s s  o f  one d ie .  F i g u r e  
'2.9 shows t h e  p r o b a b i l i t y  f u n c t i o n  f o r  a  t y p i c a l  emission count  va r iab le .  

F i g u r e .  2.8. P r o b a b i l i t y  F u n c t i o n  f o r  F i g u r e  2.9. P r o b a b i l i t y  Func t i on  
a  DSe For  Emissions Count 

We shoul d  no te  t h a t  t h e  p r o b a b i l  i t y  f u n c t i o n  accumulates, i . e . ,  

and i f  t h e  sum i s  over t h e  e n t i r e  range of x, Z p(x )  = 1. 
X 

2.2.3 A Continuous Random V a r i a b l e  

A v a r l a b l e  such as a l e n g t h  measurement may take  on an i n f i n i t e  
number o f  p o s s i b l e  values. Such a  v a r i a b l e  i s  a  cont inuous random va r iab le .  

A random v a r i a b l e  which may take  on any v a l u e  i n  a  continuum i s  c a l l e d  a  
cont inuous random v a r i  ab l  e. 



The range o f  poss ib l e  values f o r  t h e  random va r i ab l e .  x  may be from 0 t o  1  
o r  f rom 0 t o  a , o r  most genera l l y ,  f rom - a t o  a . I n  any case, t h e r e  a r e  
an i n f i n i t e  number o f  values f o r  x. O f  course, s ince  x  i s  cont inuous, t h e  
cumulat ive d i s t r i b u t i o n  f u n c t i o n  F(X) i s  cont inuous (see F igure  2.7). 
  ow ever, because o f  t h e  i n f i n i t y  o f  'poss ib le  values f o r  x, t h e  P r ( x  = X), X 
be ing  one. s p e c i f i e d  value, i s  zero. Hence, t h e  p r o b a b i l i t y  f unc t i on  as 
de f ined  f o r  a  d i s c r e t e  random v a r i a b l e  i s  i napp l i cab le .  We may, however, t a l k  
about t h e  p r o b a b i l i t y  o f  x  be ing i n  a  smal l  i n t e r v a l  about X and d e f i n e  t h e  
dens i t y  o f  p r o b a b i l i t y  i n  t h a t  i n t e r v a l .  As t h e  i n t e r v a l  w i d t h  i s  made smal l ,  
we i n  f ac t  d e f i n e  t h e  d e r i v a t i v e  o f  t h e  c d f  F(X) a t  t h e  p o i n t  X. 

'The p robdb i l  i t y  d e n s i t y  f u n c t i o n  (pd f )  f o r  a  cont inuous random v a r i a b l e  x  
i s  

(NOTE: F(x )  and f ( x )  rep resen t  t h e  f u n c t i o n  desc r i b i ng  t he ,  p r o p e r t i e s  o f  
t h e  random v a r i a b l e  x. The symbol F(X) represents  t h e  va lue o f  F ( x )  a t  
x = X. 

The p r o b a b i l i t y  o f  t h e  event X1 < x  <X2 i s  then  

I n  words, t h e  p r o b a b i l i t y  o f  t he  event i s  t h e  area under t he  p d f  o f  x  bounded 
by X1 and X 7 .  

F igu re  2.10. Probab i l  i ty Dens i t y  Func t ion  f o r  ~ o n t  inuous X 



A very  t y p i c a l  cont inuous d i s t r i b u t i o n  i s  c a l l e d  the  un i fo rm 
d i s t r i b u t i o n  which assigns equal p r o b a b i l i t y  dens i t y  t o  a l l  values i n  a 
spec i  f i ed range. 

and 

F igure  2.11. pd f  and cd f  f o r  Uniform D i s t r i bu tSon  

Phys ica l  measurements such as leng th ,  he ight ,  weight, etc:, a re  cont inuous 
random var iab les .  Other cont inuous random va r i ab les  a re  t ime elapsed between 
success ive events, o r  t h e  elapsed t ime  u n t i l  a c e r t a i n  event. Examples of 
severa l  commonly occu r r i ng  d i s t r i b u t i o n s  b o t h . d i  sc re te  and cont inuous w i l l  be 
discussed i n  Sect ions 2.4 and 2.5. 

2.3 C h a r a c t e r i s t i c s  o f  Probabi 1 i t y  Funct ions 

Thus f a r  we have discussed probabi 1 i ty func t ions ,  p robab i l  i t y  
d i s t r S b u t l o n  funct ions,  and cumulat ive d i s t r i b u t i o n  func t ions ,  mathematical 
express ions o f  t h e  ways outcomes o t  a v a r i a b l e  are d i s t r i b u t e d  according t o  
f requency o f  occurrence. Every random v a r i a b l e  has a d i s t r i b u t i o n  
f unc t i on .  Every d i s t r i b u t i o n  f u n c t i o n  can be charac te r i zed  i n  several  
ways. Knowledge of t h e  form of t h e  mathematical expression and o f  t h e  
cons tan ts  c a l l e d  parameters i nvo l ved  i n  these expressions completely descr ibes 
t h e  d i s t r i b u t i o n  f u n c t i o n  o f  a random var iab le .  However, kndwledge o f  t he  
c h a r a c t e r i s t i c s  c a l l e d  moments o f  t h e  d i s t r i b u t i o n  a l so  provildes a g rea t  deal 
o f  use fu l  in format ion.  

Moments he lp  descr ibe  such a t t r i b u t e s  o f  t he  d i s t r i b u t i o n  as t h e  cen t ra l  
1 o c a t i  on, spread, .asymmetry, and peakedness o f  a d i s t r i b u t i o n .  General ly,  a 
moment i s  t h e  A-  ex ected va lue of a f u n c t i o n  o f  the  random vari iable, and t he re  
a r e  severa l  k i n  s o . moments. The most' impor tant  and t y p i c a l ]  moments a re  
ca l  l e d  c e n t r a l  moments. 



2.3.1 Moments 

F i r s t ,  l e t  us c o n s i d e r  t h e  most bas ic  moment, t h e  f i r s t  m'oment. about 
t h e  o r i g i n .  T h i s  we c a l l  t h e  mean and i s  t h e  mean va lue  o r  expected va lue  o f  
t h e  d i s t r i b u t i o n .  That i s ,  i t T t h e  p o i n t  o f  ba lance o f  t h e  d i s t r i b u t i o n  o r  . . .  . . 

i t s  c e n t e r  o f '  g r a v i t y .   o or s impl  i c i t y ,  we w i l l  o n l y  d i scuss  cont inuous 
random v a r i a b l e s  here. F o r  d i s c r e t e  random v a r i a b l e s ,  we need o n l y  r e p l a c e  

' t h e  / s i g n  by t h e  summation s i g n  Z and drop t h e  d i f f e r e n t i a l  .) 

The F i r s t  Moment o r  Mean 

P = J x f ( x ) d x  
X 

' where t h e  i n t e g r a l  i s  over  t h e  rangeo o f  x. 

F o r  sake o f  general  i ty  , we wi 1  1  use - CD t o  g . .The symbol E(x)  means t h e  . . . . . . . . . . . . . 
expected v a l u e  o f  'x. The mean i s  c a l l e d  t h e  l o c a t i o n  parameter o f  t h e  
d i s t r i b u t i . o n  o f  x, s i n c e  ,it l o c a t e s  t h e  c e n t e r  o f  g r a v i t y  'of t h e  d i s t r i b u t i o n .  

We can d e f i n e  o t h e r  moments, c a l l  cd raw moments, o r  s imp ly  t h e  moments about - 
t h e  o r i g i n ,  i n  a  s i m i l a r  way: 

a0 

e tc .  

D e f i n i t i o n  2.8 

The moments about t h e  

-a 
. .. 

A l though these moments a r e  u s e f u l ,  more i n f o r m a t i v e  t y p e  o f  monients a re  t h e  
moments about t h e  mean, c a l l e d  c e n t r a l  moments. . . . ,  . . 



Cent ra l  Moments 
00 

We should  recogn ize  thatpl, t h e  f i r s t  moment about t h e  mean, i s  always 0. 
Fo l  l ow ing  t h e  r u l e s  o f  i n t e g r a t i o n  we see 

cD a 00 

p1 = J ( x - p  ) f ( x ) d x  = j x f ( x ) d x  - p / f ( x ) d x  
-cD -a -00 

= - = p  - p  = o  

s ince  f f ( x ) d x  = ~ ( a )  = P r ( x <  03 ) = I, 
-0g 
00 

I = 1 ' .  j x f ( x ) d r  = ~1 
-00 

The nex t  m s t  use fu l  moment i s  t h e  second moment aboyt t h e  mean, c a l l e d  t h e  9 va r i ance  c . The second c e n t r a l  moment p2  = E ( x - p  ) i s  t he  moment o f  i n e r t i a  
about t h e  mean. That i s ,  i t  measures the  degree t o  which t h e  frequency o f  a  
v a r i a b l e  spreads out as i t  moves away from i t s  mean o r  c e n t r a l  value. 

D e f i n i t i o n  2.10 

Var iance o f  a  D i s t r i b u t i o n  

T h i s  i s  always non-negat ive and o n l y  f o r  degenerate d i s t r i b u t i o n s  .,is it 
zero. The square r o o t  o f  t h e  va r iance  i s  c a l l e d  t h e  standard d e v i a t i o n  c. 

Other  impor tan t  c e n t r a l  moments are:  

1. Th i  r d  c e n t r a l  moment.: 
a0 

p 3  = e ( ~ - ~  l 3  = J(x- j3  t ( x ) d x  
-m 

p measures t h e  asymmetry o f  t h e  d i s t r i b u t i o n .  A p e r f e c t l y  
symlnetric d i s t r i b u t i o n  has p = 0. I f  a  d i s t r i b u t i o n  has a  long  
t a i l  t o  t he  r i g h t ,  p >O, a d  if t h e  l ong  t a i l  i s  t o  t h e  l e f t ,  
p.3 #: 0. Th i s  i s  cd f l e d  sl.,cwrless. 



2. Fourth central moment: 
OD 

p4  = E ( X - P ) ~ =  j ( x  - P  )4  f ( x ) d x  
-00 

p 4  measures the degree of peakedness, i.e., the degree to which a  
distribution bunches u p  t o  form a peak. Flat distributions are 
called p l  atykurtic and peaked distributions are called 
leptokurtic. The property of peakedness i s  known as,kurtosis.  

(Normal Di s t r ibut  ion) 

These moments of skewness and kurtosis are often measured in other terms: 

Higher order moments do  ex is t ,  b u t  the i r  physical interpretation i s  d i f f icu l t  
and are not of great practical importance. However, know1 edge of a l l  the 
moments i s  equivalent t o  knowledge of the form of the distribution i t s e l f .  
That i s ,  the moments completely specify a  distribution. 

The relationship between the central moments and the raw moments i s  obvious 
especial ly since the central moment i s  defined in terms of or p. I n  fac t ,  
the moments of one type can be obtained from knowledge of the moments of the 
other. 

*2.3.2 . Relationsliip between Moments I 

Consider moments about any two arbitrary points, a  and b. The 
moments will be denoted p r  ( a )  and p r  ( b ) .  By use of the binomial expansion 
theorem, 

Theorem 2.1 
CD 00 

For p r ( a )  = / (x-air f (x)dx,  ?ndpr  ( b )  = / ( ~ - b ) ~  f(x)dx , 
-a -OD 

Proof 

Consider ( q  t w ) ~ .  Expand b y  Taylor 's  series about q, = 0. Then 

(a .  1 ) 



Now s u b s t i t u t e  f o r  q and w, q = x-b and w = b-a 

Then (.2.1) becomes 

(x -b  t b - a )  = (x-a) '  = f  ( ~ ) ( x - b ) ~  (b -a l r - ' j  
j = O  

M u l t i p l y  b o t h  s i des  by f ( x )  and t a k i n g  t he  i n t e g r a l  on bo th  s ides  over x, 
we ge t  

S ince  i s  a  cons tan t  w i t h  respect  t o  x  and t h e  i n t e g r a l  i s  
independent o f  t h e  sumnat ion,  we o b t a i n  

We nlay now s u b s t i t u t e  f o r  a  and b as f o l  lows: a  = 0  and b  = I  o r  a  = p  , 
b  = 0. ' Then, s i n c e  = p , we can w r i t e  t h e  f i r s t  t h r e e  moments o f  one 
t ype  as a f u n c t i o n  o f  t h e  o t h e r  type:  

PIl = P F 1  = 0  

The r e l a t i o n s h i p  between moments f o r  r > 3 i s  l e f t  as an exerc ise  f o r  t h e  
reader.  

2 . 3 . 3  Basic P rope r t i es  o f  Expected Val ues 

L e t  y be a  random v a r i a b l e  and l e t  a be a  constant.  Denote t h e  
va r iance  o f  y  b y  Var(y) .  The f o l l o w i n g  a re  bas ic  p r o p e r t i e s  o r  r u l e s  f o r  
m a n i p u l a t i n g  means and var iances. 

The p r o o f s  f o r  these r e s u l t s  c o n s i s t  o f  sirnply l o o k i n g  a t  t h e  i n t e g r a l  ( o r  
summation) expressions and app l y i ng  t h e  b a s i c ,  r u l e s  o f  i n t e g r a t i o n .  

I n  genera l ,  we may w r i t e  down t h e  expected value o f  any f unc t i on  of a random 
v a r i a b l e ,  say g ( y )  as 



where f ( y )  i s  - t h e  p r o b q b i l  i t y  d e n s i t y  f u n c t i o n  o f  y. 

O f  p a r t i c u l a r  i n t e r e s t  i n  s t a t i s t i c s  i s  t h e  mean and v a r i a n c e  o f  a  l i n e a r  
con ib inat ion  of independent random v a r i a b l e s .  L e t  

be a  l i n e a r  s t a t i s t i c ,  t h e n  

6 )  E (y )  = E (za j x i )  =&a iE(x i )  
1 1 

I f  E(x i )  i s  t h e  same f o r  a l l  i, t h e n  

E(Y)  =x.a i  E ( x )  
1 

7 )  V a r ( y )  = 5 var(a ix i )  = z a Z i  VarCxi) 
1 1 

2  = V a r ( x )  z a  ,. i f  Var(x i )  = Var'(x),  a l l  i. 
1 

Example 2.3 

Cons ider  y = a lx l  + a2x2, E(xl) = E (x2 )  = p and Var  ( x i )  = V a r ( x 2 )  = u2, t h e n  
f o r  a l = a 2  = 1, 

E(Y) = '(al+a2) E ( x )  = 2~  

F o r  x l  and x2  - n o t  independent,  b u t  c o r r e l a t e d + ,  

Then E ( y )  = ZP as be fo re ,  b u t  

'1f two random v a r i a b l e s  a r e  c o r r e l a t e d ,  t h e n  a  change i n  one v a r i a b  
a s s o c i a t e d  w i t h  a  change i n  t h e  o t h e r ;  e.g., f o r  a  p o s i t i v e  c o r r e l a t  
c o e f f i c i e n t  p , an i n c r e a s e  i n  x l  w i l l  r e s u l t  i n  an i n c r e a s e  i n  x2. 

n e g a t i - x e  p , an i n c r e a s e  i n  x l  w i l l  result i n  a  decrease i n  x 2 .  

l e  i s  
i o n  

Fo r  



~xamp' l  e  2.'4 

For  y  = xl - x2, i .e., a1 = 1, a2 = -1, 

E(Y) = 0 

~ a i - ( ~ )  = ( a  t a  2+2ala2p) c 2  
2 

= 2  o , i f  x l  and xz a re  independent. 

L i  near s t a t i s t i c s  w i l l  be ve ry  impor tan t  i n .  maki ng' i n fe rences  about 'a 
d i s t r i b u t i o n .  Appendix A, u n c e r t a i n t y  Ana lys is  dea ls  w i t h  t he  eva lua t i on  o f  
1 i n e a r  and more general f u n c t i o n s  o f  random var iab les .  

A d i s c r e t e  d i s t r i b u t i o n  f u n c t i o n  p ( x )  i s  t h e  mathematical d e s c r i p t i o n  o f  
t h e  d i s t r i b u t i o n  of p r o b a b i l i t y  o f  t he  outcomes f o r  some d i s c r e t e  random 
v a r i a b l e ;  i.e., t h e  response x  may take on any o f  a  se t  o f  d i s t i n c t  values, 
o f t e n  f i n i t e  i n  number b u t  poss ib l y  an i n f i . n i t e  number o f  countab le  values 
which can be placed i n  a  one-to-one r e l a t i o n s h i p  w i t h  t h e  p o s i t i v e  r ea l  
i n t ege rs .  

There a re  many d i s c r e t e  d i s t r i b u t i o n s .  We w i l l  d iscuss some u f  t he  more 
impor tan t  ones. D i s c r e t e  d i s t r i b u t i o n s  u s u a l l y  deal  w i t h  count da ta  o r '  
a t t r i b u t e s  o f  a  va r iab le .  Some t y p i c a l  va r i ab l es  descr ibed by d i s c r e t e  
d i s t r i b u t i o n s  a r e  ( 1 )  t h e  success o r  f a i l u r e  o f  an outcome t o  meet o r  a t t a i n  
some s p e c i f i c  a t t r i b u t e ,  ( 2 )  t h e  number o f  successes i n  a  s e r i e s  o f  t r i a l s ,  
( 3 )  t h e  number o f  de fec t s  i n  a  product,  ( 4 )  t h e  number o f  d e f e c t i v e  p ieces i n  
a  l o t ,  and ( 5 )  t he  number o f  counts o r  emissions f r a n  a  source. 

2.4.1 Po i  r - ~ t  B i  nomi el 

The s imp les t  example o f  a  d i s c r e t e  d i s t r i b u t i o n  i s  t h e  success o r  
f a i l u r e  o f  some event o r  t r i a l .  The bes t  example o f  t h i s  i s  t h e  t oss  o f  a  
co i n :  a  head i s  a  success and a  t a i l  i s  a  f a i l u r e  ( o r  v i c e  versa). L e t  p be 
t h e  p robab i l  i t y  o f  success. Then 

, X = 1  (success) 
, x = O ( f a i l u r e )  
, otherwise. 

A t r i a l  o f  t h i s  k i n d  r e s u l t i n g  i n  success o r  f a i l u r e  i s  c a l l e d  a  " B e r n o u l l i  
t r i a l . "  The expected value o f  X i s  

O ther  moments: 



Var ( x )  = E [x - E ( x ) ]  = E ( X - ~ ) ~  

= ~ ( x ' )  - 2p E(x )  + p  2  

= E ( X ~ )  - p2 

2.4.2 Binomial  D i s t r i b u t i o n  

L e t  x  be t h e  number o f  - i t ems i n  .a sample o f  n  f rom a  popu la t i on  o f  
such items t h a t  have a  common a t t r i b u t e  and l e t  p  be t h e  p r o p o r t i o n  o f  i t ems 
i n  t he  popu1atio.n which have t h a t  a t t r i b u t e ,  t h e n  

Obta in ing  an i t em  f rom t h e  sample which has t h e  des i red  a t t r i b u t e  i s  
o f ten  c a l l e d  a  success. Thus, x  i s  t h e  number o f  successes i n  n  t r i a l s .  Note 
t h a t  t he  binomial  i s  a  two-parameter d i s t r i b u t i o n  w i t h  parameters n  and p. 
The mean o f  a  b inomia l  d i s t r i b u t i o n  i s  

and t h e  var iance can be shown t o  be 

Fi-gu're 2.12. B i  nomi a1 D i s t r i b u t i o n  f o r  n=5, p=0.50 

Data which can be c l a s s i f i e d  as success o r  f a i l u r e  accord ing t o  
whether o r  no t  they  have a  c e r t a i n  a t t r i b u t e  can u s u a l l y  be descr ibed by a  
binomi a1 d i s t r i b u t i o n .  



Exampl e  2.5 
. . 

Consider sampl i ng n  f ue l  rods. These rods e i t h e r  meet' l e n g t h  s p e c i f i c a t i o n  o r  
not. .The var i .ab le  x  i s  t h e  'number o f  f u e l  rods found i n  t he  n  rods examined 
t h a t  meet spec i f i ' ca t ions .  Suppose n  = 5 and p, t h e  p r o b a b i l i t y  o f  ob ta i n i ng  a  
"good" f u e l  rod, i s  0.6. Then,'.the p r o b a b i l i t y  o f  ' f i n d i n g  a t  l e a s t  4 rods 
t h a t  meet s p e c i f i c a t i o n s  i s  

C ' 

. . 

= 0.3370 

Extension:.  Mu1 t ino rn ia l  D i s t r i b u t i o n  

The b i  nomi a1 can be extended t o  cover  c l a s s i f i . c a t i o n  o f  outcomes i n t o  k  
ca tego r i es  r a t h e r  than 2. Th is  d i s t r i b u t i o n  i s  known as t he  mu l t inomia l  
d i s t r i b u t i o n .  

Le t  x i  be. . the number o f  . t r 5 a l s  r e s u l t i n g  i n  category i, and p.  be t h e  
p robab i l  i t y  o r i a n y  one t r i a l  o f  o b t a i n i n g  t h a t  r esu l t .  Then $he d i s t r i b u t i o n  
o f  t h e  number o f  r e s u l t s  o f  n  t r i a l s  i n t o  k  ca tegor ies  i s  g i ven  by 

k .k 
where C x i  = n  (hence xk = n-xl-x2. ..- x ~ - ~ ) ~  and .Z  p i  = 1, 

i = I I = I  

Example 2.6 

Suppose t h e  p r o b a b i l i t y  t h a t  a  c e r t a i n  k i n d  o f  va lve  w i l l  wear out i n  fewer 
t han  500 hours i s  0.50, t h e  p r o b a b i l i t y  t h a t  i t w i l l  wear out  i n  fewer than 
800 b u t  more than  500 hours i s  0.30, and .the p r o b a b i l i t y  t h a t  it w i l l  l a s t  
more t han  800 hours i s  0.20. To f i .nd t h e  p robab i l  i t y  t h a t  among 10 such 
va lves  4 w i l l  wear out  i n  feiver than  500 hours, 4 w i l l  wear out  i n .  fewer than  
800 b u t  more than  500 hours, w h i l e ,  2  w i l l '  l a s t  more than  800 hours, we have'.. 
o n l y  t o  s u b s t i t u t e  x  =n 4, g 2 ' =  4 , ,x f  = 2, n= IU, p l  = U.SU, p2 = U.30, 
p3 = 0.20, and we 



2.4.3 Hypergeometr ic  D i  s t r i b u t  i o n  

The b inomia l  d i s t r i b u t i o n  i s  an example o f  sampl ing - w i t h  
replacement. On each t r i a l  t h e  p r o b a b i l i t y  o f  a success i s  t h e  same. I n  some 
cases sampl ing i s  performed w i t h o u t  replacement. The d.i s t r i b u t  i o n  f o r  t h i s  
case i s  known as t h e  hypergeometr ic  d i s t r i b u t i o n .  

L e t  N be t h e  p o p u l a t i o n  s i z e ,  D t h e  number o f  i t ems  t iav ing t h e  
a t t r i b u t e  o f  i n t e r e s t ,  n t h e  sample s i z e ,  and x the-number of i tems i n  t h e  
sample hav ing t h e  a t t r i b u t e  o f  i n t e r e s t .  

Then, 
x = 0, 1 ,  2, ..., m i n  (D,n) 

(i.e., x  cannot  be g r e a t e r  t han  t h e  
number o f  i t ems  i n  t h e  sample o r  t h e  
number hav ing t h e  d e s i r e d  a t t r i b u t e )  

. . 

Fur thermore,  

E ( x )  = nD = np, p = D , - - 
N N 

We n o t e  t h a t  as N, t h e  p o p u l a t i o n  s i z e ,  becomes l a r g e ,  sampl ing  
w i t h o u t  r e p l  acement becomes Inore and more 1 i k e  sampl i ng w i t h  r e p l  acement. 
Thus, t h e  hypergeometr ic  approaches t h e  b i n o m i a l  d i s t r i b u t i o n  as  N --a) . 
Example 2.7 

I f  we a r e  sampl ing f rom a l o t  o f  N = 10 p i e c e s  which c o n t a i n s , 2  d e f e c t i v e  
p ieces,  what i s  t h e  p r o b a b i l i t y  o f  o b t a i n i n g  zero  d e f e c t i v e s  i n  a sample o f  
s i z e  n = 4? [D = 2, N = 10, n = 41  

2.4.4 Po i  sson D i  s t r i  h11t.i on 

L e t  x be t h e  number o f  occur rences o f  some event  i n  a g i v e n  i n t e r v a l  
o f  t i m e  o r  space, and l e t  t h e  parameter X be t h e  mean number o f  s i ~ c h  events  
i n  t h e  i n t e r v a l .  Then, 



.The Poisson d i s t r i b u t i o n  has t h e  i n t e r e s t i n g  p rope r t y  t h a t  i t s  one parameter 
i s  bo th  t h e  mean and var iance  o f  t h e  d i s t r i b u t i o n ,  i.e., 

The Poisson d i s t r i b u t i o n  can u s u a l l y  be app l i ed  t o  count - type data such as t h e  
number o f  w h i t e  c e l l s  i n  a drop o f  b lood o r  t h e  number .ot p a r t i c l e s  mleeed 
f rom a r a d i o a c t i v e  source, o r  t o  approximate t h e  b inomia l  d i s t r i b u t i o n  (see 
S e c t i o n  2.4.2) when n i s ' l a r g e  and p smal l  but  np i s  constant.  

Example 2.8 

Cons ider  t h e  number o f  a lpha p a r t i c l e s  be ing emi t ted  f rom a r a d i o a c t i v e  source 
d u r i n g  a p e r i o d  o f  10 seconds. !f t h e  average r a t e  o f  emissions i s  5 per  10- 
second i n t e r v a l ,  t he  p r o b a b i l i t y  o f  g e t t i n g  7 emissions i s  

*2.4.5 A Comparison 

Since t h e  b i  nomi a1 , hypergeometr ic,  arld Po'i sson d ' i s t r * ibu t ions  a r e  
a l l  used i n  qua1 i ty c o n t r o l  t ype  problems, a compari son o f  t h e  t h r e e  i s  
use fu l .  

Table  2.1. Comparison o f  B inomia l ,  Hypergeometric, and 
Poisson Distributions 

Probabi l i ty  Sample S l z e  Popul a t l o n  S l z e  
Parameters o f  Success p n N 

B i  nomi a1 
(w l  t h  r o p l  ace111er11) ~,II  f i x e d  spcc i  f i cd i n f i n i t e  

Hypergeometric 
(w/o rep1 acement) . D,n,N P ~ + ~  'D'X speci f i  ed f i n i t e  

N- n 

Poisson A =  np Very smal l  Unknown b u t  unknown b u t  
l a r g e  l a r g e r  than  n 



The f o l  lowing t a b l e  and f i g u r e  il l u s t r a t e  t he  re1 a t i o n s h i p  between 
t he  b inomia l  and Poisson d i s t r i b u t i o n :  

Table 2.2. B i  nomi a1 Versus Poisson 

B i  nomi a1 Poisson 

I I BINOMIAL - -- 
X 

m 
0 
K 
L 

0.1 - 

I 

Figure  2,1!l. Bi  nomial ( p  = 0.05, n=20) versus Poisson ( X = 1 )  

App l i ca t i ons  o f  t he  binomial ,  hypergeometric, and Poisson d i s t r i b u t i o n s  a re  
discussed i n  more d e t a i l  . i n  Chapters 4 and 5. 



2.4.6 Negat ive Binomial  D i s t r i b u t i o n  

Another very u s e f u l  d i s c r e t e  d i s t r i b u t i o n  i s  t he  nega t i ve  
b i  nomi a1 . Th is  d i s t r i b u t i o n  i s  used t o  determine, f o r  exarnpl e, how many 
t r i a l s  w i l l  be r equ i r ed  before t h e  r t h  success i s  obtained. The d e r i v a t i o n  i s  
as f o l  1  ows : 

The p r o b a b i l i t y  o f  g e t t i n g  t h e  r t h  success i n  exac t l y  t he  x t h  t r i a l  i s  

P r  r t h  success on = Pr  r - 1  success i n  Pr(success) 
(x th  t r i a l  (n-1 t r i a l s  

r x - r  ( )  p  - , x z  r l  q 

I- " 1, L,.... 

I f  we now l e t  k  = x - r ,  x =  k+r ,  we have 

k t r  1  
P ( ~ )  = P r  ( r t h  success on k t r t h  t r i a l )  = ( r - ; ) ~ ~ ( l - p ) ~ ,  k= 0, 1, 2,. ... 

To see t h a t  t h i s  i s  a l e g i t i m a t e  p r o b a b i l i t y  f unc t i on ,  we need t o  
recogni.ze t h e  f a c t  t h a t  

so  t h a t  the p r o b a b j l i t i e s  p ( k )  add t o  1. 

The mean and var iance o f  t h e  negat ive binomial  d i s t r i b u t i o n  f o r  t he  
random v a r i a b l e  k  = x - r  can he shown t.o be 

Thus, t h e  mean and var iance o f  x, t h e  t o t a l  number a f  t r i a l s  req l -~ i red  t o  
v b t a i n  t h e  r t h  success, a re  ob ta ined  us ing  t h e  bas ic  p rope r t i es  o f  expected 
va lues ( S e c t i n n  ?.3.3),  

2.5 Continuous D i s t r i b u t i o n s  

Most measurement da ta  o f  phys ica l  p rope r t i es ,  such as leng th ,  width,  
weight,  .etc. ,  are continuous. A b r i e f  d e s c r i p t i o n  o f  some o f  t h e  more 
impo r tan t  cont inuous d i s t r i b u t i o n s  which do descr ibe  r ea l  va r i ab l es  f o l  lows. 



2.5.1 Rectangular D i s t r i b u t i o n  

The rec tangu la r  o r  un i fo rm d i s t r i b u t i o n  i s  

The pr imary uses of t he  uni form d i s t r i b u t i o n  i s  i n  s i t u a t i o n s  where 
any value i n  a range i s  e q u a l l y  l i k e l y  t o  occur. It i s  a l s o  used t o  
approximate a  re1 a t i v e l y  snial 1  range o f  va l  ues f o r  another cont inuous 
d i s t r i b u t i o n ,  i .e., i n  drawing histograms. 

More genera l l y ,  x  cou ld  range from a t o  b, where a  and b  cou ld  be 
any values such t h a t  b  >a. Then t he  d i s t r i b u t i o n  f u n c t i o n  becomes 

and 

f ( x ) =  1  , a < x < b  
b-a 

E(x )  = b  + a  and. Var(x)  = 
2 

I n  t h e  n o t a t i o n  above, b  = 8 ,  a  = 0. 

The next two d i s t r i b u t i o n s  are used ex tens i ve l y  i n  r e l i a b i l i t y  and 
1  i f e - t e s t i n g  problems. 

2.5.2 Gamma D i s t r i b u t i o n  

L e t  x be t h e  t ime t o  f a i l u r e  o f  some component t h a t  f o l l o w s  a  gamma 
d i s t r i b u t i o n ,  

where p i s  a  shape parameter, X i s  a  sca le  parameter and T ~ i s  a  gamma 
func t ion .  For  i n t e g e r  p ,  Ta = ( - 1 )  The mean and var iance o f  x  are 

The gamma d i s t r i b u t i o n  has found wide u s a g e - i n  r e l i a b i l i t y  work f o r  d e s c r i b i n g  
t h e  mean t ime t o  f a i l u r e ,  t h e  mean t ime  between f a i l u r e s ,  and f o r  o the r  l i f e -  
t e s t i n g  types o f  problems. 

2.5.3 Exponent i a1 D i  s t r i  bu t  i o n  

The exponent ia l  d i s t r i b u t i o n ,  a s i n g l e  parameter spec ia l  case o f  t h e  
gamma d i s t r i b u t i o n ,  has found wide usage also. The exponent ia l  d i s t r i b u t i o n  
i s  



where E(x )  = X , 
2  Var(x)  = X . 

Some uses of t he  exponent ia l  d i s t r i b u t i o n  a re  i n  desc r i b i ng  f a i l u r e  
t imes  o f  e l e c t r o n  tubes, r e s i s t o r s ,  and capaci tors .  

Suppose t h e  mean t ime t o  f a i l u r e  o f  a  p a r t i c u l a r  t ype  o f  capac i t o r  i s  known t o  
be 5 years.  I f  the  l i f e t i m e  f o l l ows  an exponent ia l  d i s t r i b u t i o n ,  t h e  
p r o b a b i l i t y  t h a t  a  g i ven  c a p a c i t o r  l a s t s  l e s s  than  10 years i s  

p=l (EXPONENTIAL) 

F igu re  2.15. Gamma D i s t r i b u t i o n s  

2.5.4 Weibul l  D i s t r i b u t i o n  

A three-parameter d i s t r i b u t i o n  which i s  a f u r t h e r  gener;al- izal iun o f  
t h e  gamma d i s t r i b u t i o n  i s  t h e  Weibul l ,  

'Y x-y f ( x l  = (+) )'-I e x p [ - (  )'I, x 2 r 
where t h e  a d d i t i o n a l  parameter i s  a  l o c a t i o n  parameter. The mean and 
var iance  a re  

Since t h e  torm o f  the  p r o b a b i l i t y  dens i t y  f u n c t i o n  i s  so complicated, t h e  
cumula t i ve  d i s t r i b u t i o n  f u n c t i o n  

i s  o f t e n  used.. 



The Weibul l  d i s t r i b u t i o n  has been used success fu l l y  t o  descr ibe t h e  
behavior o f  t he  l i f e t i m e  o f  c e r t a i n  mechanical par ts ,  b a l l  bear ings, 
e l e c t r o n i c  components, and subassemblies. 

F igure  2.16. Weibul l  D i s t r i b u t i o r )  

2.5.5 Normal ~i s ' t r i b u t  i o n  

L e t  x  be a  response being measured, such t ha t ,  

where p i s  t h e  mean, a n d u 2  i s  t h e  var iance o f  ' the d i s t r i b u t i o n ,  

The normal d i s t r i b u t i o n  i s  t h e  one that: occurs most o f t e n  i n  
p rac t i ce .  Most phys ica l  measurements such as length,  he igh t ,  and weight t end  
t o  be normal l y  d i s t r i b u t e d .  Beside t h i s  f ac t ,  however, t h e  normal 
d i s t r i b u t i o n  i s  extreme,l.y, va luab le  because of a  r e s u l t  known as a  c e n t r a l  
1 i m i  t theorem. The c e n t r a l 1  im i ' t -  theorem s ta tes  t h a t  t h e /  average P o f  n  
independent obse va t ions  which f o l l o w s  some d i s t r i b u t i o n  w i t h  f i n i t e  mean p 
and var iance u E  w i l l  t e n d  t o  have a  normal d i s t r i b u t i o n l w i t h  mean and 
var iance v2/ "  f o r  s u f f i c i e n t l y  l a r g e  n. By " tend",  i t  i s  meant t h a t  as n  
becomes l a rge r ,  t h e  approximat ion o f  t he  exact d i s t r i b u t i o n  by t he  normal 
becomes b e t t e r  and be t t e r .  For tuna te ly ,  " s u f f i c i e n t l y  . large n" i s  r e l a t i v e l y  
smal l  f o r  most cases,even as . low as 3 o r  4 f o r  n i c e l y  behbved, symmetric 
d i s t r i b u t i o n s .  The c e n t r a l  1  i m i t  theorem w i l l  be discussed i n  more d e t a i l  i n  
connect ion w i t h  in fe rences  on t h e  mean o f  a  d i s t r i b u t i o n  i;n Chapter 3. 

A t h i r d  reason f o r  t h e  prominence o f  t he  normal ! i s t r i bu t i on  i n  
s t a t i s t i c s  i s  t h a t  many o t h e r  d i s t r i b u t i o n s  converge t o  a  yormal d i s t r i b u t i o n  
under appropr ia te  cond i t ions .  'For example, t he  binomi a1 apd Poisson 
d i s t r i b u t i o n s  bo th  tend toward a  normal d i s t r i b u t i o n  as t h e i r  means np and A ,  
r espec t i ve l y  , get 1  arge. 



There a r e  an i n f i n i t e  number o f  normal d i s t r i b u t i o n s  t h a t  can be 
rep resen ted  by t h e  two paramete rsp  and u2. Since i t  i s  d i f f i c u l t  t o  
i n t e g r a t e  t h e  normal d i s t r i b u t i o n ,  i t  was necessary t o  compute t a b l e s  o f  a  
normal v a r i a b l e .  To a v o i d  a  mu1 t i t u d e  o f  d i f f e r e n t  normal d i s t r i b u t i o n  
t a b l e s ,  a  .s tandard - normal v a r i a b l e  was d e f i n e d  and tab led.  

L e t  x be a  normal d i s t r i b u t i o n  w i t h  mean p and va r iance  uL and 

denoted by N( p , u '). Then 

i s  a  s tandard  normal v a r i a b l e  and has a  mean o f  0  and a  va r iance  o f  1, i.e., z 
i s  d i s t r i b u t e d  as N(0, l ) .  A l l  p r o b a b i l i t y  statements about a normal 
d i s t r i b u t i o n  can be answered, then,  by r e f e r r i n g  t o  t h e  s tandard ized  normal. 

Example 2.10 

Suppose we w ish  t o  determine t h e  p r o b a b i l i t y  t h a t  t h e  l e n g t h  of a rod i s  l e s s  
t h a n  40.2 inches when i t  i s  known t h a t  t h e  d i s t r i b u t i o n  o f  t h e  l e n g t h  o f  such 
manu a c t u r e d  rods i s  normal w i t h  mean o f  40 inches and a  va r iance  of 0.04 3 i n c h  . Thus, u = 0.2 i n c h  and 

z  = X-p = 40.2-40 = 1'. 
CS 0.2 

Then, 

where P r ( z > l )  i s  f rom.  Table  111, Normal D i s t r i b u t i o n .  

F i g u r e  2.17. Normal D i s t r i b u t i o n  
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CHAPTER 3 
INFERENCE ABOUT A SINGLE POPULATION: NORMAL DISTRIBUTION 

3.0 INTRODUCTION 

The ob jec t  o f  s t a t i s t i c s  i s  t o  i n f e r  t h e  p r o p e r t i e s  o f  some measurement 
o r  response f o r  use i n  desc r i b i ng  o r  p r e d i c t i n g  t h a t  measurement o r  response. 

We know t h a t  no ma t t e r  what we a re  measuring o r  con t ro l l i , ng ,  and even 
'under t h e  best  o f  cond i t i ons ,  observat ions 

1. va ry  f rom one t r i a l  t o  another, 
2. f o l l o w  some d i s t r i b u t i o n  f unc t i on ,  
3. have moments, p a r t i c u l a r l y  a  mean and variance. 

These f a c t s  we summarize i n  t h e  n o t a t i o n  of a  model, 

where xi i s  t h e i ' t h  observa t ion  o f  some phenomenon whose t r u e  va lue i s  p , 
and ~i 1s a  random e r r o r  f o r  t h e  i t h  observa t ion  which we assum t o h a v e  some 5 d i s t r i b u t i o n  f u n c t i o n  w i t h  a  mean and var iance, u s u a l l y  0  a n d u  , 
respec t i ve l y , '  and, ve ry  impo r tan t l y ,  each e r r o r  i s  independent, o f  every o ther .  

For t h e  moment cons ider  & f i x e d  and known. Then xi i s  a  random v a r i a b l e  
c o n s i s t i n g  o f  a  constant  p and a  random e r r o r  t e n  E . Thus, 

I f  E( ei) = 0, p i s  t h e  expected va lue o r  mean o f  t h e  d i s t r i b u t i o n o f  x ' s ,  and 

That i s ,  s ince  p i s  a  constant ,  t h e  va r iance  o f  t h e  observa t ion  x  i s  t h e  same 
as t h e  var iance o f  t h e  e r ro r .  It i s  i n  these p r o p e r t i e s  o f  t h e  d i s t r i b u t i o n ,  
t h e  Illedri and var iance, t h a t  we a re  most ' i n t e res ted .  Es t imat ion  theory  i s  t h e  
body o f  procedures t h a t  lends i t s e l f  t o  answering quest ions about parameters 
o f  a  d i s t r i b u t i o n .  It prov ides us ways. o f  de te rmin ing  bes t  guesses which a re  
optimum i n  some sense (see Appendix B). The idea i s  t o  i n f e r  t h e  value o f  
impor tant  parameters based on t h e  i n f o r m a t i o n  t h a t  i s  a v a i l a b l e  i n  a  se t  o f  
data. I n f e rence  may take  t h e  form o f  

1. a t c s t  o f  hypothes is  o f  a p a r t i c u l a r  value o f  a  parameter, 
2. a conf idence i n t e r v a l  o f  f e a s i b l e  values o f  a  parameter, 
3. o t h e r  t ypes  n f  i n t e r v a l s  concerning a  s i n g l e  f u t u r e  observa t ion  o r  

concerning t h e  popu la t i on  as a  whole, o r  
4. a  t e s t  f o r  a  d i s t r i b u t i o n  which p r o p e r l y  descr ibes  a  set  o f  data. 

I n  t h i s  chapter  we s h a l l  beg in  w i t h  a  s imple t e s t  o f  hypothes is  o f  t h e  
mean o f  a  normal d i s t r i b u t i o n  and t hen  proceed t o  es t ima t i on  o f  t h e  mean and 
var iance and t h e i r  assoc ia ted t e s t s  o f  hypotheses and i n t e r v a l s .  We conclude 



t h e  chap te r  w i t h  an examinat ion of t h e  adequacy.of t h e  assumption o f  a normal 
p o p u l a t i o n  f o r  descr . ib ing a se t  of data, and a sec t i on  on t h e  d e t e c t i o n  and 
t r ea tmen t  o f  ou t  1 i ers. 

3.1 A S imple Test o f  Hypothes is  

Suppose we a re  sampl ing f rom a normal d i  t r i b u t i o n  whose mean i s  unknown 3 bu t  whose var iance  i s  known and denoted by 0 . Suppose t h e  response be ing  
measured i s  t h e  number o f  hours  pe week put  i q  by a member o f  f i r s t - 1  i n e  
management and f u r t h e r  suppose = 1 h r .  . If you b e l i e v q  t h e  mean 
number o t  hours 'worked per  week t o  be 50 hours, what can we say i f  we o b t a i n  a 
s a m ~ l e  va lue  o f  44 hours f o r  one i n d i v i d u a l  f o r  one week? Thus, we would l i k e  
t o  kit t h e  hypo thes is  t h a t  t h e  mean p o f  t h e  d i s t r i b u t i o n  o f  hours per  week 
worked by f i r s t - l i n e  management personngl i s  50 hours, g i ven  t h a t  t h e  
d i s t r i b u t i o n  i s  normal w i t h  va r iance  a L  = 16. 

The t e s t  i s  c a r r i e d  ou t  by conve r t i ng  t h e  d i s t r i b u t i o n  t o  a standard 
normal z (somet irnes c a l  'I ed a nnrmal dev ia te )  and determin ing t h e  pt-obabi 1 i Ly 
o f  o b t a i n i n g  t h e  g iven data p o i n t  under t h e  assumption t h a t  t h e  hypothes is  
( u s u a l l y  r e f e r r e d  t o  as t h e  n u l l  h o-thesis) i s  c a r r ~ c t .  I f  t h i s  p r o b a b i l i t y  -+ i s  no t  t o o  smal l ,  we would t e n t a t ~ v e  y accept t h e  n u l l  hypothes is  as a l i k e l y  
va lue  o f  p. I f  it i s  t o o  smal l ,  we would r e j e c t  t h e  hypothesized value as 
reasonable,  f o r  i f  i t  were c o r r e c t ,  t h e  event recorded would be a " r a r e "  
event. 

A r a r e  event i s  by d e f i n i t i o n  something which occurs r a r e l y ,  i.e., w i t h  
smal l  p r o b a b i l i t y .  How sma l l?  I n  many p r a c t i c a l  s i t u a t i o n s ,  a r a r e  event i s  
d e f i n e d  as something hav ing l e s s  than  0.05 p r o b a b i l i t y  o f  occurr ing.  On o the r  
occasions a va lue  of.0.025, 0.01, o r  even 0.10 i s  used. Th is  p r o b a b i l i t y  
va lue f o r  a r a r e  event i s  c a l l e d  t h e  s i g n i f i c a n c e  l e v e l  a o f  a t e s t  o f  
hypothes is .  Al though a = 0.05 has become a standard value, i t  i s  by no means 
m a j i c a l .  I n  f a c t ,  t h e  s i z e  o f  a i s  a r b i t r a r y  and should be determined by t h e  
exper imenter  f o r  t h e  s i t u a t i o n  a t  hand. S ince we r e j e c t  a hypothesized va lue 
i f  t h e  p r o b a b i l i t y  o f  i t s  occurrence i s  l e s s  than Q ,  we see t h a t  a i s  i n  fac t  
t h e  probabi  1 i ty of e r roneous ly  r e j e c t i n g  a t r u e  hypnthef is ,  What should  
deteriai ne you r  cho ice o f  s i g n i f i c a n c e  l e v e l  i s  you r  w i  11 i ngness, o r  
unw i l l i ngness ,  t o  make such an e r r o r .  

Besides de te rmin ing  t h e  s i z e  o f  t h e  s i gn i f i cance  l e v e l  o f  a t e s t  o f  
hypothes is ,  we niust a l s o  i n d f c a t e  i n  what d i r e c t i o n  o r  d i r e c t i o n s  we may 
ubserve an e r r o r .  I n  o t h e r  words we need t o  s p e c i f y  an a l t e r n a t i v e  hypothes is  
t o  accept if we r e j e c t  t h e  o r i g i n a l  o r  n u l l  hypothesis.  be t  us dcnote the  
nu'l 'I hypo thes is  by Ho: p = po. Then t h e  f o l  l ow ing  a l t e r n a t i v e s  a re  poss ib le :  

A s p e c i f i c  a l t e r n a t i v e  va lue i s  considered. Th i s  would i n  general 
r e q u i r e  a l o t  o f  p rev ious  i n f o rma t i on  and a w e l l  de f i ned  problern. 
P r a c t i c a l  s i t u a t i o n s  would no t  u s u a l l y  be so c l e a r  cut .  



2. HA: 1 < po ( o r  CL > pol 

T h i s  i s  a one-sjded t e s t  o f  hypothesis. We suspect t h a t  if. Ho i s  
f a l se ,  then  t h e  t r u e  value i s  l ess  t han  ( o r  g rea te r  than)  pO b u t  
no t  g rea te r  ( l ess ) .  More data i s  necessary t o  determine a spec i f i c  
va l  ue. Problems concern i  ng product improvement usual l y  i n v o l v e  a 
one-sided a1 t e r n a t i v e  hypothesis. 

Th i s  i s  a two-sided t e s t  o f  hypothesis. I f  Ho i s .  f a l s e  we do no t  
have any i n d i c a t i o n  be fo re  t h e  t e s t  which d i r e c t i o n  t h e  t r u e  va lue  
i s l i k e l y  t o  be from t h e  hypothesized value. Comparisons o f  . 

products usual l y  i nvol  ve two-sided a l t e rna t i ves .  

Return ing t o  t he  hours worked per  week problem, we may f o rma l i ze  t h e  
dec i  s i on  process as f o l  1 ows: 

Example 3.1 Assume x fo l lo i vs  a N( p, c2 = 16)  d i s t r i b u t i o n  

Since HA i s  a two-sided a l t e r n a t i v e ,  we d i v i d e  a i n t o  two equal par ts ,  
a l l o c a t i n g  2-.l/2% o f  t h e  t o t a l  d i s t r i b u t i o n , t o  each t a i l .  S ince 0.0668 > 
0.025, we do not r e j e c t  H : p =  50-based on t h e  s ing ' le  observa t ion  x = 44. We 
t e n t a t i v e l y  accept p = 58 u n t i l  evidence t o  t h e  con t ra r y  appears. 

. . 

0.0668 

- 2 - 1  0 1 2  
2 

F i g u r e  3..l.a. P r ( z  <-1.5) 

Example 3.2 Normal D i s t r i b u t i o n  



Observed: xo  = 415 zo = - P o  = 415 - 400 - 2.5 
6 

- 
Q 

. . P r ( x  > 415) = P r  ( z  > 2.5) = 0.00621 

S i  nce 0.00621 < 0.05, r e j e c t  H o :  p = 400. The mean i s  e v i d e n t l y  g r e a t e r  than  
400. 

F i g u r e  3.1 .b. P r ( z  > 2.5) 

3.2 Conf idence I n t e r v a l  f o r  t h e  Mean 

Suppose XI, x2, ..., xn a r e  independent measurements o f  some phys ica l  
c h a r a c t e r i s t i c ,  such as l e n g t h  o r  weight. I f  E(xi) = p ,  f o r  a l l  i, then  

Thus, t h e  mean o f  t h e  average i s  t h e  same as t h e  mean o f  t he  inrlivid-llta! 
v a r l  a b l e s .  Hence, x i s  c a l l e d  an unbiased es t ima te  o f  p. Any s i n g l e  
obse rva t i on  can be used as a p o i n t  es t imate  o f  p gut  we g r e a t l y  p r e f e r  5. 
Why? Consider t h e  va r iance  o f  2 .  I f  Va r ( x . )  = o f o r  a l l  i, and s ince  a l l  x  
a r e  independent o f  each o t h e r  as we1 1  as a1 1 d i s t r i b u t e d  i n  t h e  same manner, 
then 



That i s ,  5 has a var iance which i s  l / n  as l a r g e  as t h e  var iance o f  a  s i n g l e  
observat ion.  Thus, t h e  v a r i a b i l i t y  of X i s  much sma l le r  than  t h e  v a r i a b i l i t y  
o f  a  s i n g l e  observat ion.  We a re  more sure o r  con f i den t  o f  t h e  l o c a t i o n  o f  t h e  
mean p. 

However, i f  on l y  t h e  average Z i s  repor ted,  we s t i l l  know no th i ng  about - 
t h e  var iance o f  t h e  es t imate  and do no t  know whether t o  p lace  much f a i t h  i n  x 
as a good est imate o f  p o r  not. To descr ibe  whether o r  not  X i s  a  good 
es t imate  we need t o  know i t s  ar iance,  o r  an es t imate  o f  t h e  variance. For 
t h e  moment we s h a l l  assume uq i s  known and proceed t o  d e f i n e  an i n t e r v a l  
es t imate  f o r  p . 
3.2.1 I n t e r v a l  Est imate f o r  Mean p 

To decide how good x i s  as an es t imate  f o r  )I , we need t o  know how 
l i k e l y  o r  probable Y i s  as a  va lue f o r  a compared t o  o the r  values. Th is  
t ype  o f  i n fo rmat ion  i s  prov ided i n  an i n t e r v a l  statement f o r  p . I f  X i s  t h e  
average o f  t h e  n  observat ions,  and a2 i s  t h e  known var iance o f  xi, then  an 
i n t e r v a l  es t imate  f o r  p i s  

That i s ,  x i s  repor ted  along w i t h  i t s  standard dev ia t ion ,  sometimes c a l l e d  t h e  
standard e r ro r .  O f  course, another  i n t e r v a l  i s  ST +, 2 a/&, and y e t  another  
i s  TT + 3 a/ fi. I n  f a c t ,  t h e r e  a re  any number o f  poss ib l e  i n t e r v a l  
estimates. Which one should we use? 

L e t  us f i r s t  recognize t h a t  t h e  l a r g e r  n  i s ,  i.e., t h e  more observat ions 
taken, t h e  sma l le r  w i l l  be t h e  i n t e r v a l .  The sma l le r  t h e  i n t e r v a l  es t imate  
i s ,  t h e  more con f i den t  we a re  i n  t h e  est imated value o f  p . But what i s  t h e  
p r o b a b i l i t y  t h a t  t h e  i n t e r v a l  even con ta ins  t h e  t r u e  va lue o f  p ? That 
depends on t h e  m u l t i p l e  o f  i n  t h e  i n t e r v a l  .expression. It a lso  depends on 
t h e  p r o b a b i l i t y  d i s t r i b u t i o n  o f  F. The d i s t r i b u t i o n  o f  Y may be o f  t h e  same 
gene a1 form as t h e  d i s t r i b u t i o r i  o f  t h e  i n d i v i d u a l  x ' s  bu t  w i t h  a  var iance 5 a /n. Th is  d i s t r i b u t i o n  cou ld  be normal, binomi a1 , Poisson, exponent ia l ,  
e tc .  But some o f  these d i s t r i b u t i o n s  a re  o r  can be asymmetric, and we have 
presented a symmetric i n t e r v a l .  

O f  course, we a re  no t  r e s t r i c t e d  t o  a  symmetr i .~  i n t e r v a l .  I f  we know t h e  
exact d i s t r i b u t i o n  o f  2 ,  we can f i n d  va luespL  and p .  a l o w e r  and upper' I ' l i m i t  o f p ,  which would encompassp w i t h  a h i gh  proba i l i t y  c a l l e d  t h e  - 
conf idence 1 evel ,  y . That i s ,  we cou ld  c a l c u l a t e  two values based on x  
and a / f i  such t h a t  95% o f  t h e  t ime  when we take  observat ions.  and cons t ruc t  
t h e  i n t e r v a l ,  t h e  i n t e r v a l  w i l l  c o n t a i n  t h e  t r u e  mean p .  I n  o t h e r  words, 95% 
( o r  0.95 p r o b a b i l i t y )  i s  t h e  measure o f  .our conf idence i n  t t i e  l o c a t i o n  o f  p. 
We c a l l  such an i n t e r v a l  a  95% conf idence i i t e r v a l .  We can, o f  course, use 
any p r o b a b i l i t y  va lue i ns tead  o f  0.95, e.g., 0.90, 0.99, o r  even 0.67. The 
i n t e r v a l  measures our  degree o'f b e l i e f  f o r  p . Our be1 i e f  i s  g rea tes t  a t  
p = X, ou r  best  est imate o f  p. AS we move away froin 5 ( ,  our  degree o f  be1 i e f  i n  



F i g u r e  3.2. Degree o f  B e l i e f  

p decreases, b u t  we are w i l l i n g  t o  accept these values o f  p as poss ib l e  o n l y  
up t o  a  po in t .  Those p o i n t s  beyond which we w i l l  no longer  b e l i e v e  as 
p o s s i b l e  values of p a re  t h e  i n t e r v a l  boundaries p L and pu. The degree o f  
our  be1 i e f  i n  t h e  val  ue o f  p .becomes so smal l  ( i  . e . ,  t.he probabi 1  i ty  . i s  so 
sma l l )  a t  i t L  o r  pU t h a t  we say wc cannot b e l i e v e  i t .  B u l  95% o f  t h e  
d i s t r i b u t i o n  1  i es between t h e  boundaries. 

The above has been a  general  d iscuss ion  o f  conf idence i n t e r v a l s  f o r  p. 
I n  t h e  next  sec t i on  we w i l l '  see t h a t  one d i s t r i b u t i o n  u s u a l l y  s u f f i c e s  f o r  a l l  
con f idence  i n t e r v a l  s. f o r  means. 

. . 

3.2.2 The Cen.tra1 . L i m i t  Theorem 

I n  t h e  above s e c t i o n  i t  seems t h a t  we a re  faced w i t h  t h e  problem o f  
d e t e r n i n i n g  t h e  d i s t r i b u t i o n  of t h e  i n d i v i d u a l  measurements, and then, so l v i ng  
t h a t ,  must f i n d  i n  some cases .asymmetric 1  i m i t s  around. ?. I n  p rac t i ce ,  f o r  
t h e  p rob l  em o f  p r o v i d i  ng conf idence i n t e r v a l s  f o r  a  mean, we do no t  have a l l  
these problems because o f  a  simp1 e  but powerful  theorem known as t he  c e n t r a l  
1  l m i t  theorem. 

Theorem 3.1 

I f  XI, X?, ... , xn a r e  i d e n t i c a l l y  and independent ly d i s t r i b u t e d  w i t h  
mean p and var iance  a 2, then  Tx i s  d i s t r j b u t  ed approx imate ly  as a  normal 
d i s t r i b u t i o n  w i t h  mean p and var iance a I n  f o r  s u f f i c i e n t l y  l a r g e  n  (see 
Appendix C). 

I n  p r a c t i c e  n does not  have t o  be very l a r g e  f o r  t he  approx imat ion o f  t h e  
normal d i s t r i b u t i o n  t o  t h e  t r u e  d i s t r i b u t i o n  t o  be good. For symmetric 
d i s t r i b u t i o n s ,  n  = 3 o r  4 i s  usual l y  s u f f i c i e n t .  For  asymmetric 
d i  s t r i b u t  ions ,  n  depends on t h e  degree, o f  asymmetry but ,  again, moderate s i z e  
such as n  = 6 t o  8 i s  u s u a l l y  l a r g e  enough. 

Now, g iven  t h a t  i i s ,  f o r  p r a c t i c a l  purposes , .d is t r ibu ted  norma l l y  w i t h  
2 meanpand variances I n ,  we can w r i t e  down a  symmetric 95% conf.idence i n t e r v a l  

f o r  p, which i s  i n  f a c t  t h e  s h o r t e s t  poss ib l e  95% conf idence i n t e r v a l ,  

x  !: 1.96 a l f i  . 



For 90% conf idence t he  value i s  f 1.645 CIA, o r  i n  general 

where y = 1- a = 0.90 i s  t h e  conf idence leve l .  Note t h a t  f o r  repeated 
samples, X w i l l  vary, but  t h e  w id th  o f  t h e  i n t e r v a l  i s  always t h e  same, 
s i nce  a i s  assumed known. An i n t e r p r e t a t i o n  o f  a  95% conf idence i n t e r v a l ,  
then, i s  t h a t  f o r  repeated samples o f  s i z e  n, 95 ou t  o f  100 ( o r  19 o f  20) 
i n t e r v a l  s  p rope r l y  const ructed wi 1  1  con ta in  t h e  c o r r e c t  va l  ue p . 

- 
Figure  3.3. 95% Confidence I n t e r v a l s :  x f 1.96 

Another i n t e r p r e t a t i o n  i s  t h a t  our b e l i e f  i n  t h e  value o f  p i s  a  random 
va r ' ab le  w i t h  a  normal p r o b a b i l i t y  dens i t y  f u n c t i o n  w i t h  mean X and var iance 2 a In.  That i s ,  K i s  t h e  most be1 i evab le  value o f  p , b u t  o the r  values a r e  
a1 so probable. We s t r e t c h  our  degree o f  be1 i e f  so t h a t  95% o f  t h e  values i n  
t h e  d i s t r i b u t i o n  a re  considered poss ib le ,  b u t  anyth ing beyond f 1.96 a/fi, 
we w i l l  dec la re  unbel ievable.  

n 

I - 
Not be1 i eved x 

F igu re  3.4. Degree o f  B e l i e f  i n  p 

As a ' r esu l t  o f  t h e  c e n t r a l  1  i m i t  theorem, then,. we have 'an ' u n i f i e d  
approach t o  t h e  problem o f  es t ima t i ng  t h e  mean, t h e  l o c a t i o n  parameter o f  a  
d i s t r i b u t i o n ,  and a procedure fo r  eva lua t i ng  t h e  usefulness, o r  p rec i s i on ,  o r  
reproducab i l  i t y  . o f  t h a t  est imate. Th is  approach i s  t h e  conf idence i n t e r v a l  
f o r  t h e  mean, 

Example 3.3 

Twelve readings o f  f u e l  concen t ra t ion  a re  taken on a measuring dev ice  
which i s  kn wn through a l ong  h i s t o r y  o f  observat ions t o  have a var iance a 9 

2 
o f  51 (ppm) . The average o f  the  n = 12 readings was X = 93 ppm. The two- 
s ided  90% conf idence i n t e r v a l  f o r  mean f u e l  concen t ra t ion  i s  



I n t e r p o l a t i n g  from Table  111, z 05 = 1.645; f rom above, i = 93 and t he  
s tandard  d e v i a t i o n  i s  o = 9. ~ i b s ,  

93 +. 4.3 ppm 

Thus, w i t h  90% con f idence  (1-0.05-0.05) and .va r iance  known, t h e  t r u e  mean f u e l  
c o n c e n t r a t i o n  as measured by a  p a r t i c u l a r  ins t rument  i s  between 88.7 and 97.3 
PPm* 

Example 3.4 

E i g h t  observa t ions  a re  taken  on t he  green dens i t y  o f  f u e l  p e l l e t s  a f t e r  
compaction. The r e s u l t s  a r e  0.54, 0.48, 0.59, 0.52, 0.46, 0.53, 0.45, and 
0.43. Assume they  f o l l o w  a  normal d i s t r i b u t i o n  

Then, i f  u 2  = 0.0025 

'rhe.95% con f idence  i n t e r v a l  f o r  t h e  mean value o f  t h e  d i s t r i b u t i o n  o f  green 
d e n s i t i e 5  o f  f u e l  p e l l e t s  i s  

*3.2.3 A Second Cent ra l  L i m i t  Theorem 

There i s  a second, more general , c e n t r a l  1  i m i  t theorem (CLT-I I )  
which we w i l l  s t a t e  w i t hou t  prnnf. If we cons ider  t h a t  most observat ions x 
a r e  a  represer r ta t i ve  o f  some d e t e n i  n i s t i c  f u n c t i o n  p per turbed by somc random 
e r r o r  E ,  we have t h e  model 

x = p +  r .  

I n  many s i t u a t i o n s  t h i s  e r r o r  term E i s  assumed t o  be norma l l y  d i q t r i h u t e d .  
The second c e n t r a l  l i m i t  theorem g ives  a  j u s t i f i c a t i o n  f o r  t h i s  assumption. 
I n  r e a l i t y  most e r r o r s  E a re  no t  s i n g l e  e r r o r s  bu t  an accumulat ion o r  ne t  
r e s u l t  o f  many e r r o r s  from known sources and unknown sources, i d e n t i f i a b l e  and 
u n i d e n t i f i a b l e .  For exarnpl e, i n  r e c n r d i  ng t h e  percent conccn t ra t i on  o r  a 
c e r t a i n  molecu le  du r i ng  r eac t i on ,  t h e  reading may he sub jec t  t o  e r r o r s  
regard1 ng 

1. exact  t i m e  o f  read ing  
2. i n i  t i  a1 concen t ra t ions  
3. temperature 
4. pressure 
5. atmospheric c o n d i t i o n s  
6. r e c o r d i  ng dev ices 
7. o p e r a t o r ' s  a t t i t u d e  and c o n d i t i o n  



The p o i n t  i s  t h a t  many f a c t o r s  c o n t r i b u t e  t o  t he  f i n a l  e r ro r ;  but, accord ing 
t o  CLT-I1 as long  as a l l  e r r o r s  f o l l o w  c e r t a i n  bas ic  cond i t i ons  ( i  .e., a l l  
d i s t r i b u t i o n s  have mean, var iance, and t h i r d  absolute moment) and no one e r r o r  
dominates a l l  t h e  others ,  then t h e  d i s t r i b u t i o n  o f  t h e  t o t a l  e r r o r  q u i t e  
l i k e l y  has a normal d i s t r i b u t i o n  regard less o f  t h e  d i s t r i b u t i o n s  o f  t he  
i n d i v i d u a l  er rors .  

Formal ly,  t h e  theorem s ta tes :  

  he or em 3.2 

L e t  xi be independent ly d i s t r i b u t e d  random va r i ab les  w i t h  
d i s t r ~ b u t i o n  f unc t i ons  f i (x i ) ,  means pi, var iances cZi, and f i n i t e  

3 t h i r d  absolute moments w i, 

113. 
Le t  p = Z p  0' X U ,  and a = ( z w ~ ~ )  

I f  l i m .  a = 0, then Zx i  i s  d i s t r i b u t e d  as a normal d i s t r i b u t i o n  
n--cO U 

2 w i t h  mean p and var iance u . 
3.3 Hypothesis Test f o r  Mean, Variance Known 

I n  Sec t ion  3.1 we discussed t h e  bas ic  l o g i c  behind a t e s t  o f  
hypothesis. I n  Sec t ion  3.2 we found t h a t  because o f  t h e  c e n t r a l  1  i m i t  
theorem, t h e  average i i s  normal l y  d i s t r i b u t e d  w i t h  meanp9nd var iance U2/n. 
We say then t h a t  t h e  sampling d i s t r i b u t i o n  o f  Z i s  N ( p , a  /n) o r  t h a t  t h e  
normal i s  t he  re fe rence  d i s t r i b u t i o n  f o r  T. Thus, us ing 

we may o b t a i n  a  much more p rec ise  t e s t  o f  hypothes is  by us ing n observa t ions  
r a t h e r  than 1. 

Example 3.5 

suppos'e a  sampl o f  3 6  obsei-vations were taken- f rom a popu la t i on  w i t h  a  
known var iance o f  U' = 9. The  average was X = 6. I f  we hypo thes ize  t h a t  t h e  
mean i s  H O : p  = 5  against  t he  a l t e r n a t i v e  N A : p  >5, what i s  t h e  p r o b a b i l i t y  o f  
ob ta i n i ng  K = 6 o r  h igher? 



2 Then t h e  random var iab le  x i s  N (p = 5,. 4 = 9  ) The standard 
n 36 - 

normal dev ia te  s t a t i s t i c  i s  z = x - p = X-5 - , and 
'T 112 

= Pr(z > 2 )  = 0.0228 (from Table 111) 

F igure  3.5. P r ( i  > 6 )  = P r  ( 2  > 2 )  

Since 0.0228 i s  l.ess than t h e  s ign i f i cance  l e v e l  o f  a = 0.05, we may declare 
p0 = 5 t o  be an unreasonable quess o f  p , since i t  leads t o  a " r a r e  event" 
f o r  K. 

Cxampl e 3. G 

Ho:p= 10, u2 = 16, n = 16 

,,HA: p f 10, ( A  two-sided a l t e r n a t i v e  hypothesis) 

o r  P r (z  < -2) = 0.0228 - A r a r e  event, Reject HO:p = 10. 

Another way t o  view hypothesis t e s t i n g  i s  by examining the  confidence 
i n t e r v a l .  f o r  a p a r t i c u l a r  conf idence l e v e l  1 - a a l l  values o f  p which are 
between the  l i m i t i n g  values are  not  contradic ted by the  data. Thus, a 
conf idence i n t e r v a l  serves as a m u l t i p l e  t e s t  o f  hypothesis. 

Exampl e 3.7 

For  Example 3.5, we had x =  6, c 2  = 9 ,  n = 36. A 95% two-sided 
conf idence i n t e r v a l  f o r  p i s  X + ~0.025 a/ 6, 



Thus, a1 1, values f o r  p . between 5.0 and 7.0 are not  contradic ted by t h e  
data. There . i s  no evidence t o  r e j e c t  any o f  these values, based on t h e  95% 
confidence i n te rva l .  

3.4 An Estimate o f  the. Variance 

I n  the  previous sect ions we have assumed the  variance u2 o f  t he  
d i s t r i b u t i o n  o f  observations t o  be known. I n  most cases, t h i s  i s  an 
u n r e a l i s t i c  s i tua t ion .  We requ i re  an est imate o f  the  variance f ro$  t h e  same 
data from which we est imate t h e  mean. O f  course,.an est imate o f u  from 
another se t  o f  data may be -used , . i f  avai lab le,  as long as the re  i s  some 
assurance t h a t . t h e  variance i s . t h e  same f o r  both sets. 

Assuming t h a t  t he  observat ions XI, x2, ... , xn come from a normal 

2 d i s t  i b u t i o n  withmean p and variance u2, we w i l l  use t h e  est imate s f o r  
o-5, where 

o r  equivalent ly ,  

Note t h a t  s2 i s  not t h e  maximum l i k e 1  ihood estima e f o r  u2 g i v e n  i n  h Appendix B.l.c,-but i s  an unbiased est imate o f  a .. 

3.4.1 The Chi-square ( x ') D i s t r i b u t i o n  f o r  s2 

To show' t h a t  s2 i s  unbiased f o r  u2, we need t o  g ive  i t s  
d i s t r i b u t i o  . Let  xi be a no'rmally d i s t r i b u t e d  va r iab le  w i t h  mean p and 
variance u'; then 

The d i s t r i b u t i o n a l  form i s  

2 Let u i  = z ui > 0. Then, apply ing t h e  proper transformation, we have 
is 

*The symbol, - means " i s  d i s t r i b u t e d  as". 



which i s  known as a chi-square d i s t r i b u t i o n  w i t h  one dkgree of freedan, x 
1 '  

That i s ,  a  squared normal dev ia te  has a X  : d i s t r i b u t i o n .  Now, 

consider  n  independent var iab les  x i ,  i = 1, 2, ... ,n, i d e n t i c a l l y  d i s t r i b u t e d  

2 as N ( P  , u ). . Then, each ui , where 

has a  X :  d i i t r i b u t i o n ,  and 

'I 

has a X d-islr*. ibutlon, where 

2 Thus, t h e  sum o f  n  independent squared normal deviates has a  
' x n  

d i s t r i b u t i o n ,  where the  parameter n, o r  degrees o f  freedom, i s  t he  number of 

independent normal deviates involved i n  u. The mean o f  X :  d i s t r i b u t i o n  i s  

n, and i t s  var iance i s  2n, an important fact .  

2  Now, r e t u r n i n g  t o  s  , 

p (xi - )  
But,. i - i s  d l s t r l b u t e d  as x w i t h  mean n, and 

u' 2 
2 

n c n . 2  12- KT. . I  
u .  u I n  

2 2  i s  d is t r i .bu ted  as X: w i t h  mean 1. Thus, X ( x i  - p ) 2  fol lows a . ~  X n  . . 
2 d i s t r i b u t i o n ,  and n ( i  - P )  f o l l ows  a  u2  X :  d i s t r i b u t i o n  and, b.y 

Cochran' s t heore~n, 

x i  - - n  - = z ( x i  - 2 )  2  



d i s t r i b u t i o n  w i t h  mean (n-1) u2. Hence, (n-1)s'- u2 x ~ ~ - ~  f o l l o w s  a u X 

Thus, we have shown t h a t  s2 f o l l o w s  a x 2  d i s t r i b u t i o n  and i s  an unbiased 

est imated o f  u2. I n  general we denote t h i s  f a c t  by v s 2 / u  2 - ~ 2 v  , where v i s  

t h e  degreee o f  freedom f o r  s2. The x d i s t r i b u t i o n  i s  c a l l  ed t h e  re fe rence  

2 d i s t r i b u t i o n  f o r  s  and i s  used i n  making in ferences about a  s i n g l e  

variance. Note t h a t  a l though t h e  n observat ions a re  n independent normal 

va r iab les ,  we have n-1 degrees o f  freedom f o r  s2 here  i n  t he  s i t u a t i o n  o f  

sampling from a s i n g l e  populat ion,  s ince  we sub t rac t  n i 2  from 1 x Z i .  We l o s e  

one degree o f  freedom due t o  e s t i ~ n a t i n g  p by Z. 

Figure  3.6. Chi-Square D i s t r i b u t i o n s  

I n  o the r  words, a  l i n e a r  c o n s t r a i n t  has been placed on t he  n i n d i v i d u a l  
observat ions; t h a t  i s ,  by d e f i n i t i o n  o f  Ti, t h e  term Z(xi-2) must sum t o  
zero. Th is  f a c t  reduces t h e  freedom o f  t h e  n observat ions by 1 dimension. 
Consider t h a t  p r i o r  t o  observat ion,  XI, x2, .. .. , xn may be f ree t o  de f i ne  any 
p o i n t  i n  n-dimensional space. I f  a r e s t r i c t i o n  i s  appl ied,  such as - C (xi-x) = 0, an anchor has been placed on t h e  observat ions,  1  i m i t i n g  t h e i r  
freedom t o  n-1 dimensions. I n  general ,  f o r  every parameter t h a t  i s  est imated, 
such as t h e  mean, p , a new r e s t r i c t i o n  i s  placed on t h e  data. As a r e s u l t ,  
t h e  degrees o f  freedom l e f t  t o  est imate t he  var iance from t h e  observat ions a r e  
reduced from n independent observat ions, i f  a l l  parameters a re  known t o  

' v  = n-p ,  where p parameters (i.e., 1  i n e a r  r e s t r i c t i o n s )  a r e  estimated. 

3.4.2 In fe rence  on t h e  Variance 

 owt that we have  an est imate s2 f o r  the  variance, we ay ask i f  t h e  
es t imate  o f  0' i s  any good, o r  i f  some hypothesized value f o r  t~' i s  
reasonable. Le t  us do two examples. 

Example 3.8 

The th ickness  o f  n i ne  f l a t  metal components a're measured t o  determine t he  
var iance o f  t h e  manufactur ing process. That i s ,  i t  i s  des i red  t o  determine 
how p rec i se l y .  .the process can reproduce a component o f  average thickness. The 
var iance Inc ludes  component t o  componcnt d i f f e rences  as we l l  as measurement 
uncer ta in ty .  Assuming a normal d i s t r i b u t i o n  f o r  these measurements, an 
unbias d est imate o f  t h e  var iance based on t h e  data below i s  found t o  be 8.75 5 ( m i l s )  . 



Component Thickness ( m i l s )  

151 1  1  
151 1  1  s  = 2.96 m i l s  
146 - 4  .1 6 

A l t e r n a t e  methods o f  c a l c u l a t i o n :  

z ( x i  - j o 2  = ~ x ? - n $  
i 1 

1. Tes t  o f  Hypothes is  

A one-sided t e s t  o f  hypothes is  t h a t  t h e  t r u e  var iance i s  (2.5 m i l s ) '  
i s  based on a  ch i -square d i s t r i b u t i o n  w i t h  v=n-1=8 deyrees o f  freedom. For 
a  ' 5 %  s i g n i f i c a n c e  l e v e l ,  t h e  t e s t  i s  as f o l l o w s :  

H,: o2 = (2.5)' , n=9, a=0.05 

HA: > (2.5)' 

2 2 Test s t a t i s t i c  = X: = u s  / o 

F igu re  3.7. A X ;  D i s t r i b ~ ~ t i n n  

2 The va lue o f  a  X 8  d i s t r i b u t i o n  t h a t  all 'ows 5% of t h e  d i s t r i b u t i o n  i n  t h e  

r i g h t  hand t a i l  i s  approx imate ly  1'5.5 (Tab le  I V ) ,  Thus, i f  t h e  c a l c u l a k d  

2 v a l u e b f  X 8  basedon  V *  = ( ~ . 5 ) ~ e x c e e d s  15.5, t h e o b s e r v a t i o n  of s2=8.75 



can be considered a r a r e  event and the  nu1 1 hypothesis u2 = (2.5)' can be 
re jec ted  a t  t h e  5% s i g n i f i c a n c e  l eve l .  

Since 11.2 < 15.5, t h e r e . i s  no reason t o  r e j e c t  Ho. 

2. Confidence I n t e r v a l  

A two-sided 95% conf idence i n t e r v a l  f o r  u2 i s  obtained by 
considering t h e  probabi l  i t y  statement 

where 

Solv ing the  i n e q u a l i t y  f o r u '  r e s u l t s  i n  

From the  above, vs2 = 70, and from Table I V ,  

= 17.5 and 2 
'8,0.975 = 2.18, we get 

Note t h a t  c 2  - (2.5)' i s  w i t h i n  the  i n t e r v a l ,  so t h a t  a 95% two-sided t e s t  
would not r e j e c t  t h i s  hypothes's. A1 so, note t h a t  t he  i n t e r v a l  i s  not 
symrnftr4c about the  est imate s' = 8.75. This  i s  because the  d i s t r i b u t i o n  o f  
a x w i t h  8 degrees o f  freedom i s  i t s e l f  h i g h l y  asymmetric. 

F igure  3.8. A 95% Confidence I n t e r v a l  f o r  0' based on X ;  



Example 3.9 

Cons.ider ob ta in ing  120 observat ions on beginning o f  l i f e  loading o f  a 
type o f  f u e l  rod. Suppose t h e  est imate o f  variance o f  these observations was 

determined t o  be s2 = 205.8 ( 1 0 ' ~  gm12 w i t h  n-1 = 119 degrees o f  freedom. 

2 Thus, v s  - - 119s2 i s  a var iable.  I s  205.8 an unusual value t o  cr 77- 119 

o b t a i n  from d i s t r i b u t i o n ?  Using the  reference d i s t r i b u t i o n  
119 119 

9 we 

need t o  c a l c u l a t e  

where c2 i s  the hypothesi red  value being examined and the symbol 10 
0 

means "g iven the  value o f  0 2." Suppose we t e s t  Ho: r 2  = 225. Then, 

From a t a b l e  o f  X 2  distributions we f i nd  t h a t  f o r  v = 120, (our case has 

v = 119), P r  ( X 2  > 108.8) i s  about 0.75. However, most tab les  do n o t  go 
120 

as h l g h  as v  = 120. I n  fac t ,  many tab les  stop a t  u = 30. The reason i s  t h a t  

as-.v gets large,  the d i s t r i b u t i o n  approaches a normal d i s t r i b u t i o n .  Thus, 

s tandard iz ing  X2.  by sub t rac t i ng  the  mean v and d i v i d i n g  by the standard 

d e v i a t i o n  6, 2 
X - v  

z = ' i 5  an N ( O ,  1 )  va r iab l c  . 
5 

(Other  approximations o f  a chi-square t o  a standardized normal d i s t r i b u t i o n  
e x i s t  which are s l i g h t l y  more accurate than the  above approximation f o r  
moderate v  . The approximation used here i s  the most s t ra ight forward.)  



T h i s  i m p l i e s  t h a t  we accept  Ho: u2 = 225. 

A 95% c o n f i d e n c e  i n t e r v a l  f o r  u2 may a l s o  be c a l c u l a t e d  u s i n g  a  normal 
approx imat ion .  F o r  a  two-s ided,  95% i n t e r v a l ,  we need t o  detern i ine  z ./2 f r o m  

119 x 205.8 -119 

T h i s  i m p l i e s  -1.96 < z = u 
2 

< 1.96, 
15.43 

. . 
which i n  t u r n  i m p l i e s  

Thus, as F i g u r e  3.10' shows, a  95% conf idence i n t e r v a l  f o r  u2 on t h e '  l o a d i n g  
d a t a  i s  [164,.276]. ( ~ o t e  t h a t  225 i s  w e l l  w i t h i n  t h e  i n t e r v a l  -and shou ld  be 
accepted. ) 

F i g u r e  3.9. A X 2  D i s t r i b u t i o n  
119 

6  1 



F i g u r e  3.10. 95% Conf idence I n t e r v a l  f o r  aZ (Normal Approximat ion) 

3.5 I n fe rence  on t h e  Mean, Var iance Unknown 

It i s  most common t h a t  we do no t  k n ~ w  the  var iance of t.hs popu la t i on  f r o m  
which we sample. hence we need t o  es t imate  t h e  var iance by s  . Then, t o  t e s t  
hypotheses on t h e  mean o f  a  d i s t r i b u t i o n ,  we cannot use t h e  normal dev ia te  
s t a t i s t i c  z. Instead, we2use an qpprox imat ion t o  t h e  N(0, 1) v a r i a b l e  which 
depends on t h e  es t imate  s  o f  u' as we1 1 as n  and p . This  d i s t r i b u t i o n  i s  
c a l l e d  t h e  t, o r  more p rec i se l y ,  t h e  Student- t  d i s t r i g u t i o n .  

3.5.1 The t - D i s t r i b u t i o n  

L i k e  t h e  standard notmal d i s t r i b u t i o n ,  t h e  t - d i s t r i b u t i o n  i s  a l s o  a  
be'l 'I-shaped curve w i t h  mean 0, b u t  i t  i s  a  more spread ou t  d i s  r i b u t i o n .  It i has one parameter, v , t h e  degrees o f  freedom o f  t h e  est imate s  . Thus, t h e  t- 
d i s t r i b u t i o n  i s  an approx imat ion t o  t h e  standard normal d i s t r i b u t i o n  which 
depends on ho good, t he  es t imate  o f  var iance is .  I f  n  were large,  t h e  !?' es t ima te  of a would be q u i t e  good and t h e  t - d i s t r i b u t i o n  would be very  c l ose  
t u  ' the nurmal. FOr Sinai 1  n, t h e  f ac t  t h a t  t h e  var iance es t imate  i s  no t  as 
accura te  r e s u l t s  i n  t h e  t - d i s t r i b u t i o n  being f l a t t e r  and more spread than  t h e  
s tandard normal. 

F i gu re  3.11. t4 vs N(0, 1 )  



By d e f i n i t i o n ,  a  t - v a r i a b l e  i s  a  f u n c t i o n  o f  a  norma3 d e v i a t e  z and 
a  x,: d i s t r i b u t i o n  which i s  independent of z and es t ima tes  o . 
Speci  f i c a l  ly,  

For  i n f e r e n c e  about t h e  mean p of a normal d i s t r i b u t i o n ,  we know t h a t  

and U S  
2  2  

- X, , w h e r e  U =  n -  1. 
9 

Thus, 
S 

Thus, t h e  t i s  l i k e  t h e  normal d e v i a t e  z t h a t  i s  used i n  t e s t s  o f  hypotheses 
f o r  t h e  mean when t h e  var iance'  i s  known. It i s  approximated f o r  t h e  case when 
t h e  va r iance  i s  unkown by s u b s t i t u t i n g  the. e s t i m a t e  s  f o r  t h e  s tandard  
d e v i a t i o n  . The f u n c t i o n a l  form o f  t h e  t - d i s t r i b u t i o n  i s  

and has a  mean o f  0 and va r iance  u 
u - 2  . 

The va lue  f o r  which 5% o f  t h e  d i s t r i b u t i o n  i s  i n  one t a i l  o f  t h e  
d i s t r i b u t i o n  i s  n o t  1.645 as f o r  t h e  normal d i s t r i b u t i o n ,  b u t  i s  something 
l a r g e r ,  depending on. Y ;  e.g., 

3.5.2 Conf idence I n t e r v a l  f o r  t h e  Mean 

A co f i d e n c e  i n t e r v a l  f o r  t h e  mean when t h e  va r iance  i s  unknown and 
es t ima ted  by s4 i s  c o n s t r u c t e d  i n  e x a c t l y  t h e  same way as i n  t h e  v a r i a n c e  
known case, where we now rep1 ace o by s  and z a ~ 2  by  t, , a 12; i .e. , a  95% 
con f idence  i n t e r v a l  i s 



Example 3.10 

The observa t ions  on t h e  volume percent  o f  a  s o l i d  l u b r i c a n t  added t o  f u e l  
composi t ions before compaction i n t o  green p e l l e t s  a re  1.20, 1.27, 1.33, 1.19, 
1.09, and 1.24. Assume they  f o l l o w  a  normal d i s t r i b u t i o n :  

From t h e  t a b l e ,  t5,0.025 = 2.571 

which g ives  1.22 - 2.571 x  3.33 x  lo-' < p <  1.22 + 2.571 x 3.33 x  lo- '  
1.22 - 0,086 < p <  1.22 + 0.086 

Thus, w i t h  95% con f idence  p l i e s  w i t h i n  

C1.134, 1.3061 

A 99% conf idence i n t e r v a l  would use t5 0  005 = 4.032 and would i n c l u d e  
3 -  

That i s ,  w i t h  99% c o n f i d e n c e , p i s  captured by t h e  i n t e r v a l .  

A t e s t  o f  hypothes is  would be performed j u s t  as before,  a l s o  w i t h  s  
and t v  rep lac i ng  o and z. I n  t h e  above example, any va lue o f  p which may be 
hypothes ized between 1  . I34 and 1.306 would no t  be r e j e c t e d  by t h e  data f o r  a  
5% two-sided t e s t ,  s i nce  they  l i e  w i t h i n  t h e  95% confidence fnterva?. 

3.6 Determin ing Sample S ize  n  

We recognize t h a t  dec is ions  based on observed data which a re  sub jec t  t o  
e r r o r s  o f  a  random na tu re  are,  i n  t u r n ,  sub jec t  t o  e r ro r .  We d e f i n e  these  
e r r o r s  i n  t h e  d e c i s i o n  process o f  a  t e s t  o f  hypothesis.  Con t ro l  l i n g  t h e  s i z e  
o f  t h e  e r r o r  i n  t h e  d e c i s i o n  making process, however, i s  t h e  o b j e c t  o f  
s t a t i s t i c a l  theory ,  p a r t i c u l a r l y  t h e  area we w i l l  l a t e r  c a l l  t h e  des ign o f  
ex erirnents. I n  t h e  present  con tex t  o f  d e a l i n g  w i t h  a  s i n g l e  popula t ion,  t h e  
se e c t i o n  o f  a  sample s i z e  i s  t h e  c o n t r o l  l i n g  f a c t o r  i n  t h e  s i z e  o f  t h e  e r r o r s  + 
o f  i nference. 



3.6.1 : Determinat ion o f  n f o r  Given Confidenc'e I n t e r v a l  Width 

The 's ing le  most important aspect i n  determing the  s i ze  o f  i n fe rence .  
e r ro rs  i s  t he  sample s ize  n. I n  some instances i n  which t h e  experimenter i s  
seeking t o  gain in format ion ra the r  than t e s t  any p a r t i c u l a r  hypothesis, t h e  
sample 'size may be chosen, t o  assure a confidence . i n t e r v a l  o f  a .  spec i f ied  
width. 

Suppose tha t .we wish t o  determine t h e  mean value o f  a process w i t h  a 
h igh degree .o f  precision.. More prec ise ly ,  suppose we des i re  t h a t  t h e  
estimated value X be w i t h i n  + q' u n i t s  o f  t he  t r u e  mean, i. e .  , 

w i t h  a high degree o t  confidence. Equivalent ly ,  we des i re  t h e  confidence 
i n t e r v a l  f o r  p t o  be no longer than 2q. If we standardize the  s t a t i s t i c  X, we 
f i n d  

where u i s  t he  known standard dev ia t ion  o f  xi and lei2 i s  t h e  appropr iate 

normal deviate value. Thus, t o  assure w i t h  100(1- a )% conf idence. t h a t  X i s  
w i t h i n  q u n i t s  o f  L L ,  when u i s  known, we need on ly  t o  solve for  n, 

Suppose t h a t  you want t o  determine how many observations would be 
requ i red  t o  est imate the  mean center g ra in  s ize  o f  f u e l  pel  l e t s  t o  w i t h i n  
q = 0.50 ASTM numbers w i t h  95% confidence. For u = 0.66 ASTM No. : 

= 7 observations, 

where t h e  value o f  n 'is rounded up t o  the  nearest i n tege r  t o  ensure t h a t  t h e  
confidence l e v e l  i s  a t  l e a s t  t h e  value stated. 

The above i s  a wel l-def ined- problem, since q i s  speci'fied, e i s  known, and 
a42 e a s i l y  obtained given t h e  confidence l e v e l  desired. I f u i s  unknown, 

rep  acing u by s and z a 1 2  by t, ,a/2,  we need t o  solve 

where f o r  est imat ing t h e  mean o f  a  population,^ = a - 1. This i s  an i t e r a t i v e  
process, however, s ince v and n must be i n  c lose agreement. A l te rna t i ve l y ,  
instead o f  spec i fy ing  an absolute value o f  q, we can def ine  q i n  terms of t h e  
number o f  standard deviat ions K i s  t o  be from p . That i s ,  s ince s i s  an 
est imate o f  u, l e t  q = Ds. 



As a f i r s t  approximation; we can .use z instead o f  t t o  solve f o r  n.. 

3.6.2. . E r ro rs  o f  a Test o f  Hypothesis 

We have seen t h a t  we can perform s t a t i s t i c a l  t e s t s  f o r  t h e  purpose' 
o f  accept ing o r  r e j e c t i n g  as reasonable a hypothesized value o f  a parameter. 
We assign a l e v e l  o f  s i gn i f i cance  a t o  t h e  t e s t ,  i n d i c a t i n g  t h a t  we are no t  
p o s i t i v e  i n  our judgment. We can, i n  f a c t ,  make two e r ro rs  i n  judgment: 

"1. Reject a t rue .  hypothesis (Type I e r r o r )  
2. Accept a false hypothesis (Type I1  error)  

We would l i k e  t o  make these e r ro rs  as i n f requen t l y  as possible. We 
determine the  frequency o f  these e r ro rs  by t h e i r  probabi l  i t y  o f  occurrence. 

' 

. P r  (Reject a t r u e  hypothesis) = a 
P r  (Accept a f a l s e  hypothesis) =P 

We should s e e ' t h a t  Type I e r r o r  i s ,  i n  fac t ,  the  d e f i n i t i o n  o f  a s ign i f i cance  
test, i .e., f o r  a one-sided t e s t  o f  Ho: p =  p, against  HA: p>pA, 

P r  (Reject a t r u e  hypothesi s) 

= P r  ( r e j e c t  Ho I Ho t r u e )  

Thus, i n  t e s t i n g  f o r  a mean, r e j e c t i n g  Ho: p = po i n f e r s  f i n d i n g  a value o f  X 
which i s  greater  than ( o r  l ess  than)  some c r i t i c a l  value Fc it. def ined t o  be-  
t h e  boundary o f  reasonableness f o r  x coming from a ,  d i  s t r i b u f  - ,on w i t h  a mean - 
o f  .po. I n  o ther  words, K i s  i n  t h e  r e j e c t i o n  region, x >'i(ojt, and we 
r e j e c t  po as a reasonable value o f  p a t  t h e  s ign i f i cance  l eve  a used. 
However, i t  i s  possib le t h a t  X comes from the  d i s t r i b u t i o n  w i t h  IL = po. If 
so, we would be making an e r r o r  of Type I. .The p r o b a b i l i t y  o f  r e j e c t i n g  a 
t r u e  hypothesis i s  denoted by a .  

ACCEPTp, 

loo a 70 
PR(P>PcR,T I pol = a 

. . 

F igure  3.12. Type I E r r o r  



- 
x < zcri 
b u t  p= p 
chances 

On the other hand, we could accept Ho: p =  p, !falsely. If we found 
t ,  and acceptedp= we could a1 so be i n  errdr. .: Suppose p # p i  
'0 + 2 or p7p0 + Co;tc. Then we commit Type I1 prror. What are the 
of doing th is?  The probability of committing Typei I1  error depends 

on. p , the correct value, or ,  as we shall see, some a1 ternat i ve value fo r  p 
which we would 1 ike . to  uncover.. We would l ike to  keep the probability of this 
type of error  as low as possible. In fact ,  i t  i s  a measure of a good 
hypothesis t e s t  that the probability of Type 1'1 error is small. For a one- 
sided t e s t ,  then, 

Pr (Type 11 error) = Pr (Accept Ho I Ho fa1 se) 

i s  the c r i t ica l  value. dividing the acceptance where, for'  testing means, gcrit 
and rejection regions for p = p . However, the probabi 1 i ty of Type I I error  
depends not on po but  on some otRer p. 

For t e s t s  of means, the general procedure i s  often as follows: 

a) Choose a sample size n. 

b) Choose a significance 1 eve1 Q (the size of Type I 
error  you w i  1 l a l l o w ) a n d p o t h e s i z e  H,: p = p ,. 

' c)  Calculate : for a one-sided t e s t ,  

or,  for a two-sided t e s t ,  

d) getermineB=Pr (Type I1 error) f o r  various other values o f p  

Take sample and calculate x from data, e i ther  accepting or  e) 
rejecting po. 

For a given p , i f  fl i s  large, the t e s t  is  not as good as i t  should be. 

1'n section .3.6'.3 we will see that t h e  Type I1 error s ize can.be specified . for  
a given p of conc.ern, and used along w i t h  the Type I e r ror  size to determine 
the sample s ize.n required to achieve the required hypothesis tes t .  This 
i l lus t ra tes '  the interdependency of a ,  fl , and n in the construction of proper 
t e s t s  of hypotheses on means. Given any two, the third value can be 
determined. 



A  p l o t  of t h e  p r o b a b i l i t y  o f  Type I1 e r r o r  i s  c a l l e d  t he  Operat ing 
C h a r a c t e r i s t i c  Curve (OC Curve) o f  t h e  t es t .  From i t  we can see 'how good a  
t e s t  i s - f o r  g iven  a l t e r n a t i v e  values o f  p, and compare i t .  t o  OC curves f o r  
o t h e r  t e s t s  ( d i f f e r e n t  n  . o r  a).. . The o the r  s i d e  o f  t h e  OC c o i n  i s  c a l l e d  t h e  
p o w e r . o f  t h e  t e s t .  That i s ,  t h e  ower i s  t h e  p r o b a b i l i t y  o f  r e j e c t i n g  Ho when g, H  i s  f a1  se, a  c o r r e c t  .judgment, u t  o r  a  s p e c i f i e d  a l t e r n a t i v e  hypothesis. 
TRUS, t h e  power measures t h e  c a p a b i l i t y  of a  t e s t  t o  r e j e c t  Ho :p=  po i n  f a v o r  
o f .  c o r r e c t l y  accept ing an a1 t e r n a t i v e  H  : p = PA. The OC and power curves f o r  e a  one-sided t e s t  a re  .shown i n  F i g u r e  3. 3. 

F i gu re  3.13. OC curve and Power Curve f o r  One-Sided. Test o f  Hypothesis 

Note t h a t  when p = p O ,  P = 1  - a a n d  a =  1  - @ .  That i s ,  when p =  po, 

P r  ( r e j e c t  Ho: p =  po  1 p =  po  ) = a  , t h e  Type I error .  For a  two-sided t e s t  

o f  hypothesis,  t h e  OC and power..curves a re  as. shown i n  F igu re  3.14. 

POWER ( I - @ )  

F igu re  3.14. OC curve and Power Curve f o r  Two-Sided Test o f  Hypothesis 



Example 3.12 

Consider observing t h e  c e n t e r ' g r a i n  s i z e  o f  25 f u e l  p e l l e t s .  The t a r g e t  
va lue f o r  cen te r  g r a i n  s i z e  i s  ASTM No. 5.5 and i t  i s  d e s i r a b l e  t o  de tec t  a  
mean cen te r  g r a i n  s i z e  o f  ASTM 6.0 o r  higher.  Suppose past  ana l ys i s  has 
i n d i c a t e d  a  standard d e v i a t i o n  f o r  cen te r  g r a i n  s i z e  o f  0.66 (ASTM No.). 
Thus, f o r  a  5% one-sided s i g n i f i c a n c e  t e s t  f o r  t he  mean, we have 

s i g n i f i c a n c e  l e v e l :  a '= 0.05 

- 
1. Determine xcr i t :  

Type I e r r o r :  P r ( i  > icrit 1 = 5.5) 
- 

- 
so: z 0 . 0 ~  = 1.645 = ' c r i t  - 5'5 

0.132 

=Pr (Re jec t  H0 1 H0 t r u e )  

2. Type I 1  E r r o r :  

Fo r  p = G.0, what i s  p r o b a b i l i t y  o f  f a l s e l y  accept ing H O : p =  5.5? 

(Accept Ho) 
P r ( 2  < 5 . 7 2 ) p =  6 ) = ?  

i .e., p robab i l  i ty  o f  f a1  s e l y  accept ing . p = 5.5 when p r e a l  l y  equals 
6.0, i s  o n l y  0.017, when n  = 25 and qrit = 5.72. 

O r  power o f  t e s t  t o  determine t h a t  p = 6  and not  equal t o  5.5 i s  
0.983, a pnwerful  t e s t  f o r  d i s t i n g u i s h i n g  between 5.5 and 6.0! 

Other values o f  p may be pos tu l a ted  and an OC curve o r  power curve 
drawn. 



Table 3.1. 
OC and Power f o r  Test on Mean Gra in  S i z e  

CL Pr  (Accep t )=P Power=Pr (Re jec t  H,)=l - P  

OC CURVE POWER 

0.91 
fl. 983 

F i g u r e  3.15. OC and Power Curves f o r  T e s t  ?n Mean Grain S i z e  

- Th~rq, w i t h  a pnwpr nf fl.98.3 t h e  t e s t  on ;. w i t h  n = 25 and 

X c r i  t = 5.72 w i l l  de tec t  p =  6.0 and r e j e c t  p =  5.5; o r ,  i n  o t h e r  words, t h e  

e r r o r  we make i n  r e j e c t i n g  p =  5.5 f a l se1  i s  a t  most 0.05, and t h e  e r r o r  o f  
accep t ing  tio:p= 5.5 f a l s e l y  when p =  6. $ i s  a t  most 0.014. 



3.6.3 Determinat ion o f  Sample Size Using Type I and Type I 1  Er ro r ,  
Variance Known 

The most use fu l  aspect o f  Type I 1  e r r o r  i s  no t  i n  determin ing t h e  
s i z e  o f  t h e  e r r o r  o f  f a l s e l y  accept ing H a f t e r  t h e  t e s t  has been determined, 
but  i n  determining t he  t e s t  i t s e l f ;  tha?  i s ,  i n  de te rmin ing  t h e  sample s i z e  n 
requ i red  and t h e  c r i t i c a l  va lue requ i red  i.n o rde r  t o  produce a t e s t  which w i l l  
g i ve  both a low Type I e r r o r  p robab i l  i ty and a low Type I I e r r o r  p robab i l  i t y  
f o r  some p a r t i c u l a r  a l t e r n a t i v e  hypothesis which you have i n  mind. 

Suppose you a re  i n  charge o f  accept ing o r  r e j e c t i n g  a l o t  o f  s t e e l  
rods. The manufacturer o f  t h e  rods c la ims t h e  b o l t s  t o  have a diameter o f  20 
mi ls .  (i.e., HO:p = 20). YOU know t h a t  i f  t h e  average b o l t  d iameter i s  as 
l a r g e  as 24 m i l s  (H : p =  24), you w i l l  have t o  throw ou t  t h e  l o t .  So, you 
a re  i n  a  p o s i t i o n  o? want ing t o  r e j e c t  t he  l o t , i f  i t  i s  good, w i t h  on l y  a  
small p r o b a b i l i t y ,  bu t  i f  i t  i s  bad ( i .e .?p>24)  you want a  h i gh  p r o b a b i l i t y  
o f  de tec t i ng  it. Thus, f i x  a, t h e  s i g n i f i c a c e  l e v e l  f o r  your  t e s t  o f  p = 20, 
a t  a  pre-determined l e v e r s u c h  as 0.05 o r  0.01, and s e l e c t  a  second 
p r o b a b i l i t y  l e v e l ,  P ,  f o r  making t h e  second type  e r r o r  o f  accept ing a bad l o t ,  
i .e., accept ing a 1  o t  whose r e a l  mean diameter i s  24 mi 1  s. 

Example 3.13 

Consider again t he  cen te r  g r a i n  s i z e  problem i n  Example 3.12. You would 
1 i k e  t o  cons t ruc t  a  t e s t  t o  accept t h e  hypothes is  t h a t  p = 5.5 (ASTM No.) w i t h  
a  0.05 s i g n i f i c a n c e  l eve l .  On t he  o the r  hand, you want t o  be r e l a t i v e l y  sure  
t h a t  i f  t h e  t r u e  mean cen te r  g r a i n  s i z e  f o r , t h i s  batch o f  p e l l e t s  i s  as h i g h  
as 6.0 (ASTM No.), you do not  accept t h e  n u l l  hypothes is  t h a t  p = 5.5. 
Suppose you ass ign a p r o b a b i l i t y  l e v e l  o f  P = 0.10 f o r  making t h i s  Type I 1  
e r ro r .  Furthermore, s ince  t ime spent means money spent, you want t o  per form 
t h i s  t e s t  as cheaply as poss ib l e  i n  o rde r  t o  achieve you r  goals.. I n  Example 
3.12, a  t e s t  us ing n = 25 samples gave P = 0.017 f o r  HA: p = 6.0. To 
determine how many fewer observat ions a re  requ i red  t o  g i v e  P = 0.10, we 
proceed as f o l  1  ows : 

a. P r  ( r e j e c t  H , I ~ =  5.5) = 0.05. 

Th is  imp l ies  

Then 

[Suppose u i s known t o  be 0.661 

- 1.645 = c r i t  - 5.5 
'0.05 ' 0.66/ 6 

Th i s  imp l ies  P r ( x  < X c r i t l p =  6.0). 

Then 



From a. and b. we have two equat ions i n  t h e  two unknowns n  and jicrit. 
S o l v i n g  f o r  n; we have 

That  i s ,  i n  o rde r  t o  have a t  most 0.05 p robab i l  i t y  o f  r e j e c t i n g  p = 5.5 
f a l s e l y  - and 0.10 p r o b a b i l i t y  of accept ing p = 5.5 when p r e a l l y  equals 6.0, we 
need n  = 15 observat ions.  S u b s t i t u t i n g  back i n t o  a. we o b t a i n  

Thus, t h e  t e s t  i s  t o  ta'ke 15 observa t ions  w i t h  a  d e c i s i o n  l i n e  a t  5.78, i.e., 

i f  -j? > 5.78, r e j e c t  H O : p =  5.5, accept p =  6.0 

i f  x 1 5 . 7 8 ,  acccpt  Ho: p = 5.5 

For  t h e  t e s t , ~ < 0 . 0 5 ,  P 5 0.10. 

The procedure i s  general .  I n  general terms, f o r  HA: > p ,  

S o l v i n g  f o r  n, 

where zQ and  zl- p are  normal d e v i a t e  values hav ing 100 a % and 100 (1-  B ) %  o f  
t h e  d i s t r i b u t i o n - t o  t h e  r i g h t  o f  t h e  c r i t i c a l  value, po i s '  t h e  o r i g i n a l  
hypot  hes i s  , p~ i s  t h e  a l t e r n a t i v e  hypothes is  under c o n s ~ d e r a t i o n ,  and u 2  i s  
t h e  known var lance  o f  t h e  measurement. 



- 
Po X 

C R l T  PA 
( 5 . 5 )  ( 5.'7 8 ) (6 .0 )  

F igure  3.16. Type I and Type I I Er ro r :  One Sided A l t e r n a t i v e .  

Note: 1. i f  p = 0.50, zp = z -p= 0.' Th is  i s  e f f e c t i v e l y  what happens d when Type I 1  e r r o r  consi  e ra t i ons  a re  ignored: 

2 .  For  a  two-sided t e s t  f o r  pO, j u s t  reduce a t o ,  a 1 2  i n  each t a i l  
o f  t h e  d i s t r i b u t i o n ;  but  s ince  t h e  n u l l  hypothes is  can o n l y  be 
i n  e r r o r  on one s i de  o f  P,, t h e r e  i s  no need t o  p a r t i t i o n  p 
i n t o  two par ts .  

3. It i s  r equ i red  t h a t  6' be known. 

F igure  3.17. Type I and ~ y p e  I 1  Er ro r :  Two Sided A l t e r n a t i v e  



3.6.4 Sample S ize De te rmina t ion :  Var iance Unknown . 

p r e v i o u s l y  we assumed t h a t  u 2  was known i n  o rder  t o  determine t h e  
sample s i z e  r e q u i r e d  t o  assure a t e s t  w i t h  a =  0.05 ( p r o b a b i l i t y  o f  Type I 
e r r o r )  and p= 0.10 (Pr  b a b i l i t y  o f  Type I 1  e r r o r ) .  We may s t i l l  determine n 
us i ng  an es t ima te  o f  u' bu t  we can expect n t o  be l a r g e  due t o  t h e  u n c e r t a i n t y  
i n v o l v e d  i n  es t ima t i ng  t h e  var iance. 

We cou ld  begin  by making a rough guess o f  u, h o p e f u l l y  based on some 
p r i o r  i n fo rmat ion .  Even so, we do no t  know n and hence do no t  know which 
t - d i  s t r i  b u t i o n  t o  use. We c o u l d  proceed as f o l l ows :  

1. E i t h e r  guess n and l ook  up tn-l, , o r  use a b a l l  park va lue o f  

t such as 2 f o r  tOe025 ,  1.3 f o r  t0.10 and 1.7 f o r  t0.05. 

2. Using these  approximate t values and our  g ~ l p s s  & o f  u , 
so l ve  f o r  n(., 

N 

where t, and a r e  t h e  approximate t - v a l  ues f o r  Type I and 
Type I 1  e r r o r s  r e s p e c t i v e l y ,  po i s  t h e  hypothesized va lue 
f o r  p and pA i s  t h e  a l t e r n a t i v e  value we a re  guarding against .  

3. I f  n i s  no t  what was guessed p rev ious ly ,  repeat  t h e  process 
by u&?Ag t,, ( l ) - ~ , a  a,nd t n ( l ) - ~ ,  I - @ *  

2 
"2) = n - ,  a n - ,  I- f l  

4. Cont inue u n t i l  two successive n ' s  agree. Check t o  see t h a t  t h e  - cor responding c r i t i c a l  values Fcrit  obta ined  f rom t h e  two 
equat ions 

a re  i n  reasonable agreement. 

Remember t h a t  these  values, n and Xcrit f o r  a  and p cons idera t ion ,  depended on 
a guess of u . 

An a l t e r n a t i v e  approach i s  t o  cons ider  an a l t e r n a t i v e  hypothes is  
f o r  p i n  terms o f  t h e  s tandard 'dev ia t ion,  u. That i s ,  i n s tead  o f  guessing u, 
c h o o s e p A  t o  be po + DCT , where D i s  some constant.  The p rev ious  procedure 
then  o n l y  changes i n  t h a t  i n  p lace  o f  

Q , we have u - 1 * - 
PA -. PO Po + D u  - pO D 



then " ( i )  = (ti,.-ti,1-B12 . 
02 

Example 3.14 

Consider again the  center g ra in  s ize  data. Suppose we want t o  t e s t  
Ho: p = 5.5 and want t o  detec t  a .mean o f  5.5 + 2 0 , i f  i t  ex is ts .  Thus, 
H A : p  = 5.5 + 2 0 .  Using. = 0.025 a n d B =  0.10, and = 2 and 
F0.90 = -1.3, we get  on the  f i r s t  i t e r a t i o n  

2. f o r  n = 3, t2, 0.025 = 4.303, t2,0.g0 = -1.886 

3. f o r  n=10, t9 0 025=2.Z62, t9 = - 4  -383 
3 -  9 -  

= (2.262 + 1 .38312 = (3.64512 = 3.3 - 4 
4 

4. f o r  n = 4,t3,0.025 = 3.182, t3,0.90 = -1 -638 

- 23.2 = 5.8-6 

7. Stop 

To t e s t  p = 5.5 w i t h  a probabi l  i t y  o f  f a l s e l y  r e j e c t i n g  Ho o f  Q = 0.025, 
i f  p >5.5 and. t o  de tec t  a t r u e  mean o f  2 0 from 5.5 w i t h  p r o b a b i l i t y  o f  1 - P  = 
0.90, we need 5 observations. The t e s t  i s ,  

accept Ho:p = 5.5 i f  

and accept HA:p= 5.5 + 2 0  and r e j e c t  tio: i f  



Th i s  i s  a  l o t  of work if your  i n i t i a l  quess f o r  t h e  t va lue i s  f a r  
o f f .  F o r t u n a t e l y ,  t h e r e  i s  a  t a b l e ,  Table I X ,  which g ives sample s i zes  
r e q u i r e d  f o r  va r ious  a, P, and D. We see f o r  D = 2, a = 0.025, and 
p = 0.10, t h a t  n  = 5. 

Table 3.2 
Summary o f  Computation 

Note t h a t  i f  we a r e  o n l y  concerned w i t h  t h e  w id th  o f  t h e  conf idence 
i n t e r v a l  f o r  p , set  p =  0.50 and t l - p =  0. 

3.7 To lerance I n t e r v a l s  f o r  a  Normal Popu la t ion  

We a re  a l l  f a m i l i a r  by now w i t h  a  l O O y %  = 100% ( 1 - a  ) conf idence 
i n t e r v a l .  The conf idence i n t e r v a l  i s  a  statement about t h e  l o c a t i o n  o f  a  
parameter. It g ives  t h e  conf idence t h a t  we p lace  i n  our es t imate  o f  t he  
parameter by p l a c i n g  bounds on t h e  spread o f  values which may be p l a u s i b l e  as 
va lues f o r  t h a t  parameter, based on t h e  da ta  a t  hand. I n  terms o f  es t ima t i ng  
t h e  mean, we a r e  sure, a t  l e a s t  95% of t h e  t ime  t h a t  when we c a l c u l a t e  a  
con f idence  i n t e r v a l  P t t n -1 ,0 .025~ l  A, t h e  i n t e r va l ,  w i l l  a c t u a l l y  c o n t a i n  
t h e  t r u e  mean p . 

There a re  o t h e r  k i nds  o f  i n t e r v a l s ,  however, which a re  o f  g rea t  
importance. One i n t e r v a l  p laces bounds on t h e  p r o p o r t i o n  o f  t h e  sampled 
p o p u l a t i o n  conta ined w i t h i n  i t  a t  ,a c e r t a i n  degree o f  conf idence. Th i s  i s  
known as a  t o l e rance  i n t e r v a l ,  o r  t o  d i s t i n g u i s h  i t  from o the r  t ype  o f  
i n t e r v a l s  whi:'ch-'al"so -go"Ky--fhe name o f  to le rance ,  we may r e f e r  t o  these 
i n t e r v a l s  as s t a t i s t i c a l  t o l e r a n c e  content  i n t e r v a l s .  . We sha l 'I discuss f i r s t  
normal t o 1  erance i n t e r v a l  s  and 1 a t e r  proceed t o  d i  s t r i b u t  i o n - f r e e  t o l e r a n c e  
i n t e r v a l s  i n  Chapter 4. 

3.7.1 Cons t ruc t i on  o f  Two-sided Tolerance I n t e r v a l s  

For a  two-sided t o l e r a n c e  i n t e r v a l ,  a  p r o p o r t i o n  P  o f  t h e  popu la t i on  
i s  s a i d  t o  be w i t h i n  two l i m i t s ,  t h e  lower  l i m i t  determined by xL = P - Ks, - 
and t h e  upper l i m i t  determined by XU = x + Ks, where 57 i s  t h e  averaqe 
o f  t h e  n  observa t ion  i n  t h e  sample, s  i s  t h e  est imated standard dev ia t i on ,  and 
k i s  a . t a b u l a t e d  value dependent on t h e  sample s i ze ,  t h e  p ropo r t i on  o f  t h e  
p o p u l a t i o n  i n  t h e  i n t e r v a l ,  and t h e  conf idence l eve l .  Table V I I ( a )  g i ves  
va lues o f  K  f o r  va r ious  sample s izes,  p ropo r t i ons  and conf idence l eve l s .  Note 
f o u r  t h i n g s  about t h i s  i n t e r v a l :  

1. It d e a l s . o n l y w i t h  ano rma l  popu la t ion ,  
2. K  depends on 3 values, n, y , and P, 
3. It i s  a  two-sided i n t e r v a l ,  



4. It determines t h e  bounds o f  a  p r o p o r t i o n  o f  t h e  p o p u l a t i o n ,  n o t  
j u s t ,  t h e  sampled data. A  p o p u l a t i o n  c o n s i s t s  o f  - a l l  values, 
p a s t ,  present ,  and f u t u r e .  

For a  sample s i z e  o f  10 observat ions,  a  p r o p o r t i o n  o f  P  = 0.99 o f  t h e  
p o p u l a t i o n  and a  con f idence  l e v e l  o f  y = 0.95, we f i n d  K = 4.433. Thus, a t  
l e a s t  99% o f  t h e  p o p u l a t i o n  should  f a l l  between Z - 4.433 s  and x + 4.433 s  
w i t h  95% confidence: T h i s  i n t e r v a l  i s  commonly denoted as 95/99 t o l e r a n c e  
i n t e r v a l .  

I n  t h e  above d i s c u s s i o n  and f o r  t h e  va lues i n  Table  V I I ( a ) ,  i t  has been 
assumed t h a t  t h e  s tandard d e v i a t i o n  s  i s  based on t h e  data  on hand. Weissberg 
and Bea t ty  [32] have developed t a b l e s  f o r  t h e  c o n s t r u c t i o n  o f  two-sided 
t o l e r a n c e  i n t e r v a l s  based on a  normal d i s t r i b u t i o n  t h a t  a l l o w  f o r  t h e  e s t i m a t e  
o f  va r iance  t o  be based on an independent ly  ob ta ined  s e t  o f  da ta  from t h a t  
used t o  es t ima te  t h e  mean. 

Exampl e 3.15 

Consider aga in  t h e  g r a i n  s i z e  data  o f  Example 3.12. Assuming g r a i n  s i zes  
f o l l o w  a  normal popula t ion,  suppose t h e  es t ima te  o f  the mean i s  2 = 5.92 and 
s  = .  0.66, w i t h  n  = 25. 

A  95/99 Tolerance I n t e r v a l  i s  

That i s ,  w i t h  95% conf idence,  a t  l e a s t  99% o f  t h e  p o p u l a t i o n  o f  g r a i n  s i z e s  
can be expected t o  l i e  w i t h i n  (3.64, 8.20). [Note: The usual n o t a t i o n  i s  y/P 
Tolerance I n t e r v a l ,  where y, t h e  con f idence  l e v e l  i s  t h e  f i r s t  number t o  
appear, and P, t h e  p r o p o r t i o n ,  t h e  second number.] O ther  i n t e r v a l s  a r e  g i v e n  
be1 ow: 

L i m i t s  
y =  1  - a P  K ( n  = 25, y ,  P) Lower . Upper 

9  5  95 2.631 4.20 7.64 

L e t  us cons ide r  another. exampl e. 
. , . . 

Example 3.16 . . . ,. 

A l a r g e  shipment o f  0  gauge w i r e  i s  received. It i s  d e s i r e d  t h a t  these w i r e s  
meet upper and lower  s p e c i f i c a t i o n  1  i m i t s  (i.e., f a l l  between l i m i t s )  on t h e  
diameter. A sampl e  o f  15 observa t ions  were taken, t h e  r e s u l t s '  be ing  - 
x  = 0.338, s  = 0.012. 



A 99/99 To1 erance I n t e r v a l  i s ,  ca l  cu l  ated. 

0.338 f K(n  = 15 , y=  0.99, P = 0.99,)s 

0.338 + 4.605 (0.012) 

0.338 + 0.05526 

0.282, 0.394 

[Note: Round lower  1  i m i t  down, upper l i m i t  up] 

Thus, w i t h  99% conf idence, we can expect t h a t  a t  l e a s t  99% o f  t h e  w i res  w i l l  
have a  d iameter  between 0.282 and 0.394 inches. The impor tant  quest ion, then, 
i s  how do ;hese values compare w i t h  the  s p e c i f i c a t i o n  l i m i t s ?  I f  t h e  
c a l c u l a t e d  s t a t i s t i c a l  t o l e rance  o r  content  i n t e r v a l  i s  w i t h i n  t h e  
s p e c i f i c a t i o n  l i m i t s ,  

spec. l i m i t s  

 TO^ d:a%] 
L i m i t  L i m i t  

then  a l l  i s  we l l .  I f  one o r  bo th  o f  t h e  c a l c u l a t e d  to le rance  l i m i t s  a re  
o u t s i d e  t h e  s p e c i f i c a t i o n  l i m i t s ,  then  t h e  q u a l i t y  o f  t he  l o t  i s  suspect. 
Perhaps t h e  l o t  i s  o f  i n s u f f i c i e n t  q u a l i t y  f o r  use, o r  perhaps, a  sma l le r  
t o l e r a n c e  i n t e r v a l ,  e.g., 95/90, would f a l l  w i t h i n  t h e  specs which would be 
acceptable t o  you. F i n a l l y ,  i t  i s  poss ib le  t h a t  t h e  s p e c i f i c a t i o n s  are t o o  
t i g h t .  It i s  up t o  t h e  sub jec t  exper ts  t o  c l a r i f y  t h i s  problem. 

3.7.2 Cons t ruc t ion  o f  a  One-sided Tolerance L i m i t  

For  a  one-sided s ta t i s t i ca l . to le rance  content  l i m i t ,  - a  p r o p o r t i o n  o f  
t h e  popu la t i on  w i l l  l i e  below - a c e r t a i n  upper l i m i t ,  xu = x  + Ks, o r  above a  
c e r t a i n  lower  l i ~ n i t ,  x~  = x  - Ks, where K  i s  t h e  t abu la ted  values f o r  one- 
s ided  l i m i t s  found i n  Table V I I ( b ) .  These values o f  K d i f f e r  from those o f  
Table V I I ( a )  f o r  a  two-sided i n t e r v a l .  For  example, f o r  10 observat ions, a  
p r o p o r t i o n  o f  0.99 and a  conf idence l e v e l  o f  0.95, we f i n d  K = 3.981. 

Example 3.17 

One-sided Tolerance I n t e r v a l ,  Normal. D i s t r i b u t i o n  

The n  = 25 r o t o r  sha f t  d iameters h  d  an average o f  E = 0.249 in .  and an 
es t imated  var iance o f  0.000009 in.'. A one-sided 90195 t o l e rance  1  i m i t  f o r  
r.otor s h a f t  d iameters i s  



Thus, w i t h  90% confidence, a t  l e a s t  95% o f  a l l  r o t o r  sha f t s  i n  t h i s  popu la t i on  
w i l l  have diameters under 0.255. (K  obta ined from Table V I I ( b ) . )  

3.8 P r e d i c t i o n  I n t e r v a l  

Suppose a  s t a t i  s t i c ' a l  t o 1  erance i n t e r v a l  has been c a l  cu l  ated. Now,how 
many i tems i n  a  f u t u r e  l o t  o f  i tems may we expect t o  fa1  1  w i t h i n  these 
l i m i t s ?  (We may gene ra l i ze  a  t o l e rance  i n t e r v a l  t o  c o n s i s t  o f  no t  j u s t  a  
symmetric i n t e r v a l  about t h e  average, bu t  any i n t e r v a l  con ta in i ng  a  des i red  
p ropo r t i on  o f  t he  populat ion,  such as t he  upper qua r te r  o f  values.) One way 
t o  answer t h e  quest ion i s  t o  say t h a t  if a  95/95 , i n t e r v a l  were presented and 
n  = 100 new i tems were i n  quest ion, we cou ld  expect ( w i t h  95% conf idence) t h a t  
100 P% o f  t h e  N i tems would f a l l  w i t h i n  t h e  c a l c u l a t e d  l i m i t s ,  i.e., 
0.95 x  100 = 95 o f  t h e  100 new observat ions w i l l  be w i t h i n  t h e  p rev ious l y  
ca l cu la ted  i n t e r v a l .  A l though.  t h i s  i s  a  reasonable approach, t h e r e  i s  y e t  
another type o f  i n t e r v a l  assigned s p e c i f i c a l l y  t o  answer t h i s  quest ion. 

A  p r e d i c t i o n  i n t e r v a l  t e l l s  us w i t h i n  what 1  i m i t s  we may expect t o  f i n d  
one o r  more f u t u r e  observat ions from a  normal d i s t r i b u t i o n .  The general 
t heo ry  can be seen from examining t h e  problem o f  p r e d i c t i n g  an i n t e r v a l  f o r  
one f u t u r e  observat ion. 

L e t  i be t he  estima e  o f  t h e  mean p o f  $ N ( p , u 2 )  populat ion.  Since h x i  = p + ~ i ,  ei -N (0, o ) we see t h a t  f o r  a  f u t u r e  observa t ion  

2  ii = P + E , where 9-N( p, - u ) and E"N(O, u 2 ) .  
n  

Thus, ; f o l l o w s  a  normal d i s t r i b u t i o n  w i t h  mean p and var iance  ( 0' + - u 2 ) .  
Thus, n  

A - A - 
X -  X -  - X - X  

tn -1  7- v a r (  i )  J m  

where s2 i ' s  t h e  es t imate  o f  '0'. Then 

a. A  95% p r e d i c t i o n  i n t e r v a l  f o r  a  s i n g l e  f u t u r e  observa t ion  i s  

b. For an average o f  q f u t u r e  observat ions, we would have 

[Note degrees o f  freedom f o r  - t  i s  s t i l l  t h e  degrees o f  freedom o f  s2, 
i.e., n - I ]  

c. For  a  p r e d i c t i o n  i n t e r v a l  con ta in i ng  - a l l  o f  k f u t u r e  observat ions, 
we r e a l l y  need t o  i n t e g r a t e  a  mu1 t i v a r i a t e  t - d i  s t r i b u t i o n  over t h e  app rop r i a te  
range, i ,e,, f i n d  o r  so lve  



where A - 
x i -  X 

, ' i = 1, 2, ..., k, and + L a r e  t h e  l i m i t s .  

These va lues  were d w e l  oped by J. Hahn and g i v e n  i n  Tab le  V I  11. An 
a p p r o x i m a t i o n  which always ove r -es t ima tes  t h e  w i d t h  o f  t h e  i n t e r v a l  i s  

i.e., i n s t e a d  o f  u s i n g  tn,, , reduce a  by a. f a c t o r  o f  k  
' u / 2  

and, use u /2k .  

T h i s  i s  t h e  r e s u l t  o f  a s ~ u m i n g  each t i - i s  independent o f  each o t h e r  (wh ich  
the,y a r e  n o t  s i n c e  each xi depends on x )  and 

i f  'each i n d i v i d u a l  i n t e r v a l  i s  a t  t h e  (1- a  ) l e v e l .  

[P roo f :  i f  P r (  S  = 1  -a, , P r (  S2) = 1 - a 2  

Pr(SISp) = Pr(S1) + Pr (S2)  - Pr(S1 + 52) 

= 1 - a 1  + 1 - a 2  - Pr(S1 +S2) 

b u t  max Pr(S1 + S2) = 1 .  Therefore, 

Thus. if w e  make each t e s t  a t  t h e  a / k  l e v e l  (use t n / 7 t  f o r  two- 
s i d e d  t e s t ) ,  t h e  t o t a l  p r o b a b i l i t y  w i i l  be 21- a . _I 

The prob lem i s  t h a t  f o r  some k, t h e  t v a l u e  i s  d i f f i c u l t  t o  f i nd '  i n  
t a b l e s  and needs t o  be i n t e r p o l a t e d .  Exact  predict iuli i v ~ t e r v a l  s a r e  a v a i l  a b l e  
frorn Hahn's t a b l e s ,  where t h e '  p r e d i c t i o n  i n t e r v a l i s  o f  t h e  f o r m  5i + r s ,  and r 
i s  p r o v i d e d  i n  Tab le  V I  I I. Approximate p r e d i c t i o n  i n t e r v a l  s  f o r  l a r g e  enough 
n  and k  a r e  always a v a i l a b l e  f o r  o t h e r  d i s t r i b u t i o n s  v i a  a  normal . . app rox ima t  ion.  



Example 3.18 

Suppose the  average ' radius o f  n  = 15 f u e l  pe l  l e t s  was determined t o  be - 
x  = 0.338 in.  w i t h  an est imated standard d e v i a t i o n  o f  s  = 0.012 in .  With 95% 
confidence, t h e  p r e d i c t i o n  i n t e r v a l s  f o r  k  = 1, 5, and 10 f u t u r e  p e l l e t s  be ing 
i n  t h e  i n t e r v a l  a r e  

- 
x + r (k,  n, y ) s  

The approximate p r e d i c t i o n  i n t e r v a l  i s  

where r' = ( 1  + l / n ) l / Z  tn-,, 

Fo r  t he  above data, t h e  approximate i n t e r v a l s  a re  

Approximate P r e d i c t i o n  I n t e r v a l s  

- The p r e d i c t i o n  i n t e r v a l  f o r  t h e  average, o f  t h e  k  f u t u r e  observat ions i s  
x  + r "s ,  where 

For t he  above data, t h e  i n t e r v a l s  are:  

k  ( ~ / k  + l /n )1 /2  rll x? :  r" s  
- 

3.9 I n fe rence  About t he  D i s t r i b u t i o n  

We now . t u r n  t o  a  very  fundamental question.' How do we know whether t h e  
d i s t r i b u t i o n  we have assumed i s  appropr ia te?  Imp1 i c i  t ly ,  i n  a l l  o t he r  
s t a t i s t i c a l  in fe rences  we make we assume we know t h e  d i s t r i b u t i o n ,  u s u a l l y  a  
normal distr ' ibut ion. a It. would be reassur ing  t o  know t h a t  t h e  d i s t r i b u t i o n a l  
assumption i s  co r rec t .  For a  s u f f i c i e n t l y  l a r g e  sample s ize,  i t  may we l l  be 
t h a t  a  histogram adequately descr ibes a  p a r t i c u l a r  d i s t r i b u t i o n ,  whose. 
parameters may then be estimated. For a  small sample s ize,  however; a  
h is togram would not  y i e l d  s u f f i c i e n t  i n f o rma t i on  about t h e  d i s t r i b u t i o n .  What 



i s  needed i s  an a n a l y t i c a l  approach. Such an approach i s  t h e  goodness o f  f i t  
t e s t  f o r  a  d i s t r , i b u t i o n . .  The o b j e c t  i s  t o  hypothes ize a  d i s t r i b u t i o n  and t hen  
t e s t  t h e  da ta  ' f o r  t he  adequacy o f  t h e  f it o r  agreement between data and t h e  
hypo thes i  zed probabi  1  i t y  d i  s t r i  bu t  ion. 

I n  f a c t ,  a  h is togram o r  some o t h e r  k i n d  o f  p l o t  i s  an essen t i a l  f i r s t  s tep i n  
de te rm in i ng  t h e  d i s t r i b u t i o n  t o  be hypothesized. I n  add i t i on ,  one 's  knowledge 
o f  t h e  phys i ca l  s i t u a t i o n  shou ld  be u t i l i z e d  i n  a r r i v i n g  a t  a  n u l l  
hypothes is .  The t e s t  compares t h e  observed data a t  each data p o i n t  i f  
d i s c r e t e ,  o r  i n  each h is togram c e l l  i f  cont inuous, w i t h  t he  expected number o f  
observa t ions  p red ic ted .  by t h e  hypothesized d i s t r i b u t i o n .  

3.9.1 The Chi-Square Goodness o f  F i t  'Test 

The o b j e c t i v e  here i s  t o  t e s t  t he  n u l l  hypothes is  t h a t  a  c o l l e c t i o n  
o f  da ta  f o l l o w s  a  c e r t a i n  d i s t r i b u t i o n  f unc t i on ,  f ( x ) .  Thus, 

I I u :  xi - . f ( x )  

HA: xi no t  d i s t r i b u t e d  as f ( x ) .  

The da ta  can be cons idered t o  be outcomes from a  mu l t inomia l  d i s t r i b u t i o n :  
e x a c t l y ,  i f  t h e  data i s  d i s c r e t e ;  approx imate ly  by use o f  d i s c r e t e  i n t e r v a l s  
as i n  t h e  c o n s t r u c t i o n  o f  a  histogram, i f  t h e  data i s  continuous. The form on 
t h e  n ~ u l  t i n o m i a l  d i s t r i b u t i o n  i s  

where ni a r e  t h e  number o f  observa t ions  found i n  t h e  i t h  i n t e r v a l ,  xi,l<x<xi 
pi i s  t h e  t r u e  p r o b a b i l i t y  o f  an observa t ion  x  from t h e  hypothesized 9 

d i s t r i b u t i o n  f ( x )  f a l l i n g  i n t o  t h e  i t h  i n t e r v a l ,  i.e., 

I P r ( x  = xi), i f  f ( x )  d i s c r e t e  
P1 = 

[ ~ r ( x ~ - ~  < x  < xi), i f  f ( x )  c o r ~ i i r ~ u o u s  

and a l s o  

E(ni) = npi 

Var (ni) = n p i  ( I  - pi) 
. . ' I t makes sense, then,  t h a t  i f  f ( x )  i s  t h e  c o r r e c t  hypothesized 

d i s t r i b u t i o n  f o r  t he  data obtained, t h e  observed numbe'r o f  observat ions n i  i n  
each i n t e r v a l -  should agree w i t h  t h e  expected number o f  observations,E. = npi, 
i n  each i n t e r v a l .  . Of  course, t h e  agreement i s  no t  expected t o  be perFect due 
. t o  random v a r i a t l o n .  Thus, t h e  hypothes is  t e s t  must answer t h e  quest ion,  
"Does t h e  data c o n f i r m  o r  c o n t r a d i c t  t h e  assumption t h a t  f ( x )  i s  t h e  
u n d e r l y i n g  d i s t r i b u t  j on?"  



The Chi-Square goodness-of - f i t  t e s t  has been devised t o  answer t h i s  
question. It i s  based on a approximate d i s t r i b u t i o n  f o r  t h e  l i k e l i h o o d  r a t i o  
t e s t ,  a d iscuss ion  o f  which i s  beyond t he  scope o f  t h i s  t ex t .  However, t h e  
a p p l i c a t i o n  o f  t h e  t e s t  i s  as fo l lows:  The t e s t  i s  t o  compute t h e  f o l l o w i n g  
s t a t i s t i c :  

where Oi a re  t h e  observed frequencies i n  each i n t e r v a l ,  i = 1, 2, ..., k, 

Ei = npi a r e  t he  expected f requencies based on 'an assumption o f  f ( x ) .  

The t e s t  s t a t i s t i c  i s  approximately a x:, where t h e  degrees of freedom v i s  
t h e  number o f  outcomes k minus t he  number o f  l i n e a r  r e l a t i o n s h i p s  s a t i s f i e d  by 
Oi - Ei (e.g., C(Oi - E.)  = n - n = 0). I n  general, i f  t h e  d i s t r i b u t i o n  i s  1 

complete ly  hypothesized, then  v =. k - 1, bu t  i f  parameters of t h e  d i s t r i b u t i o n '  
need t o  be est imated, a degree o f  freedom i s  l o s t  f o r  each such parameter 
est imated from the  data. How good t he  approximat ion i s  depends on t he  
expected frequency i n  t h e  i n t e r v a l  o r '  c e l l  w i t h  smal lest  probabi 1 i t y  of 
occurr ing.  A good r u l e  o f  thumb t o  f o l l o w  i s  t o  r e q u i r e  Ei 25 f o r  a1 1 i. 

Thus, s i nce  we never know t h e  exact d i s t r i b u t i o n  from which we a r e  
sampling w i t h  100% assurance, we may t e s t  our assumption o f  a p a r t i c u l a r  
d i s t r i b u t i o n  by cons t ruc t i ng  a histogram, p o s t u l a t i n g  a d i s t r i b u t i o n ,  

2 c a l c u l a t i n g  X, and comparing t o  a c r i t i c a l  value. I f  i t  i s  l a r g e r  than t he  
c r i t i c a l  va lue a t  t h e  95% l e v e l ,  we say t h a t  t h e  data c o n t r a d i c t s  t h e  
assumption o f  the  d i s t r i b u t i o n  postulated. 

3.9.2 Examples of t h e  Goodness-of-Fit Test 

We present  here two exampl es, bo th  deal i ng w i t h  t he  normal 
d i s t r i b u t i o n ,  t h e  f i r s t  assuming a s p e c i f i c  va lue f o r  t h e  mean and var iance, 
t h e  second us ing est imates o f  these parameters.. To o b t a i n  Ei, t h e  expected 
frequencies,  we need t o  f i n d  t h e  p r o b a b i l i t y  o f  an event < x < xi. To 
f a c i l i t a t e  t h e  coniputatIun we s tandard ize t he  hypothesized normal 

2 d i s t r i b u t i o n ,  f ( x ) -  N (  F, u ) ,  and evaluate t h e  cumulat ive d i s t r i b u t i o n  as 
f o l  1 ows : 

To get  t h e  f requencies i n  t h e  i n t e r v a l s  z ~ - ~  < z <zi, we t ake  t h e  d i f f e r e n c e  

I f  t h e  medn ,dnd var iance a re  estimated, we rep lace  p by x and u by s. 

Example 3.19 

Consider the  delayed neturon count data on 100 f u e l  p e l l e t s  g iven  i n  
Table 1 .l. It has been hypothesized t h a t  t h e  data f o l l ows  a normal 



d i s t r i b u t i o n  w i t h  a mean o f  100 and a standard d e v i a t i o n  o f  9.0 counts per  
gram. (The i n t e r v a l  bounds have been rede f ined  s l  i g h t l y  f o r  convenience). 
The data  i s  summarized i n  Table 3.3. 

Table 3.3 
Delayed Neutron Counts Per Gram: p = 100,u= 9.0, n = 100 

I n t e r v a l  Upper Zi = - X i  -p Expected Observed 
Bound < x<xi ) u Pr(zi-l < z < zi) pi Ei = np i O i  

The r e s u l t  o f  t h i s  t e s t  i s  t o  reject t h e  assumption t h a t  t h e  d i s t r i b u t i o n  

2 '  o f  delayed neut ron count's per gram i s  N(100, 9 ) s ince  t h e  x 2 - t e s t  exceeds i t s  
. c r . i t i c a 1  value. However,. n o t e  t h a t  t h e r e  are  t h r e e  assu~ i~p t ions  i m p l i c i t  i n  

t h a t  n u l l  hypothesis;  i.e., n o r m a l i t y , p =  100, and a =  9. I n  t h e  nex t  
example, a t e s t  w i l l  be made on norma l i t y ,  bu t  t h e  est imates o f  t h e  mean and 
var iance w i l l .  be used. 

Exampl e 3.20 

Tes t  . t h e  hypothes is  t h a t  t h e  under l y ing  d i s t r i b u t i o n  can be considered t o  be 
normal, b u t  u s e . t h e  est imated mean and var iance from Sec t ion  1.7; X = 103.0, 
s = 8.7. .The c a l c u l a t i o n s  a re  sulrl111dr.i~ed i n  Table 3.4, Note t h a t  t h e  
i n t e r v a l s  (85 'and 85 3 Xi < 90 hdva been combined t o  conform w i t h  t h e  r u l  e-nf- 
thumb t h a t  the  expected value f o r  an i n t e r v a l  should be about 5 o r  more. 

Table 3.4 
Delayed Neutron Counts: x = 103.0, s = 8.7, n = 100 - 

I n t e r v a l  Uppi?r zi = - X i  'X Expected Observed (Oi-Ej ) 2 

Bourld (xi- 5 x<xi ) s ~ r ( z ~ - ~  < z < zi) p i  Ei = n p ,  O i  = .- . - 
E i 



Since t h e  mean and va r iance  were bo th  est imated, 2  degrees o f  freedom 

2 must be sub t rac ted  f o r  t h e  x2  d i s t r i b u t i o n .  Thus, X 8-1-2 = x 2  = 8.76. 
5 

The 5% va lue  f o r  a  Chi-Square w i t h  5  degrees o f  freedom i s  11.07. Thus, we 
would accept t h e  hypothes is  t h a t  t h e  delayed neu t ron  data  i s  no rma l l y  
d i s t r i b u t e d  w i t h  an est imated mean 103.0 and an est imated s tandard d e v i a t i o n  
o f  8.7 counts. 

I n  Chapter 4  examples. h i 1  1  be g iven  f o r  t e s t i n g  t h e  hypothes is  t h a t  
an u n d e r l y i n g  d i s t r i b u t i o n  f o r  a  p o p u l a t i o n  i s  non-normal. 

3.9.3 Cumulat ive P r o b a b i l i t y  P l o t s  

Another  techn ique f o r  t e s t i n g  t h e  d i s t r i b u t i o n  o f  a  c o l l e c t i o n  o f  
data i s  t o  p l o t  t h e  data on s p e c i a l l y  c o n s t r u c t e d  p r o b a b i l i t y  paper. Such 
paper i s  commercial l y  a v a i l  a b l e  f o r  many d i s t r i b u t i o n s ,  p a r t i c u l a r l y  t h e  
normal and t h e  Weibu l l  d i s t r i b u t i o n s ,  and can be r e a d i l y  c o n s t r u c t e d  f o r  any 
d i s t r i b u t i o n .  For  a  smal l  number o f  da ta  p o i n t s  (<20) ,  t h e  i n d i v i d u a l  
observa t ions  themselves can be p l o t t e d  on a  cumu la t i ve  p r o b a b i l i t y  scale. For 
l a r g e  data  se ts ,  t h e  upper bound o f  an i n t e r v a l  can be p l o t t e d  on a  cumu la t i ve  
p r o b a b i l i t y  scale. I f  t h e  data  f o l l o w s  t h e  d i s t r i b u t i o n  hypothesized, a  
s t r a i g h t  l i n e  can be reasonably  drawn th rough  t h e  p l o t t e d  po in ts .  If severe 
depar tures f rom t h e  l i n e  e x i s t s ,  t h i s  i s  cons idered evidence t h a t  t h e  
hypothes ized d i s t r i b u t i o n  i s  inadequate. T h i s  procedure i s  approximate i n  
t h a t  no q u a n t i t a t i v e  measure o f  "goodness" i s  a v a i l a b l e  t o  determine i f  t h e  
d i s t r i b u t i o n  f i t s  t h e  data. Hence, whenever poss ib le ,  an a n a l y t i c a l  t e s t ,  
such as t h e  Chi-Square t e s t  d iscussed above, should  be app l ied.  However, t h e  
cun iu la t ive  p r o b a b i l i t y  p l o t  on s p e c i a l  paper i s  an excel  l e n t  v i s u a l  a id ,  and 
w i t h  some p r a c t i c e ,  good judgment can q u i c k l y  be developed. 

To i l l u s t r a t e  t h i s  technique, cons ide r  aga in  t h e  delayed neut ron da ta  
i n  Table 1  .l. I n  F i g u r e  3.18 t h e  upper bounds o f  t h e  i n t e r v a l s  ( taken  h e r e  as 
i n  Examples 3.19 and 3.20 t o  be 85, 90, e tc . )  a r e  p l o t t e d  on t h e  h o r i z o n t a l  
ax is ,  and t h e  observed cumu la t i ve  f requenc ies  a re  p l o t t e d  on t h e  v e r t i c a l  a x i s  
on a  spec ia l  p r o b a b i l i t y  scale.  A hand-drawn l i n e  has been passed th rough  t h e  
p l o t t e d  po in ts .  With exper ience you w i l l  f i n d  t h a t  these  p o i n t s  a re  w e l l  
s i t u a t e d  about t h e  l i n e  so t h a t  t h e  judgment here i s  t h a t  ' t h e  . d i s t r i b u t i o n  
does appear t o  be.norma1. Th is ,  o f  course, agrees w i t h  t h e  r e s u l t s  f rom 
Exampl e  3.20. 

An a d d i t i o n a l  f e a t u r e  i s  t h a t  because we know much about t h e  normal 
d i s t r i b u t i o n ,  once we have accepted i t  as t h e  d i s t r i b u t i o n ,  we can a l s o  o b t a i n  
es t imates o f  t h e  mean and s tandard d e v i a t i o n  f rom t h i s  p l o t .  The 50% value, 
X0.50 (i.e., t h e  va lue  o f  counts pe r  gram t h a t  corresponds t o  t h e  p o i n t  on t h e  
drawn l i n e  t h a t  i n t e r s e c t s  t h e  0.50 p r o b a b i l i t y  va lue)  i s  an es t ima te  o f  t h e  
mean. Here i s  i t found t o  be 104 .counts per  gram, compared t o  103 used i n  
Example 3.20. The standard d e v i a t i o n  can be est imated by f i n d i n g  t h e  va lue 
which i s  1  IT f rom t h e  mean. From Table  111, we f i n d  ( P r ( z < l )  = 0.8413. Thus, 
f rom F i g u r e  3.18, X0.84 = 113 and cr i s  es t imated by X0~84-X0~50=113-104 = 9. 

- 
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Thus, a  cumulat ive p r o b a b i l i t y  p l o t  can be used t o  t e s t  the  
hypothesis o f  no rma l i t y  o f  a  c o l l e c t i o n  o f  data; and i f  judged acceptable 
rough est imates can be obta ined f o r p  and u o f  t h i s  d i s t r i b u t i o n .  

This compares w e l l  w i t h  t h e  usual est imate o f  s  = 8.7. 

*3.10 Out1 i e r s  

An o u t l i e r  i s  an observat ion t h a t  i s  s i g n i f i c a n t l y  d i f f e r e n t  
from t h e  r e s t  o f  t h e  sample. An observat ion t h a t  comes from a  s u f f i c i e n t l y  
d i f f e r e n t  d i s t r i b u t i o n  than  t he  r e s t  o f  t he  observat ions should appear as an 
o u t l  i er ,  bu t  a l l  observed o u t l  i e r s  are no t  necessa r i l y  maverick 
observat ions. A t r u e  o u t l i e r  may come from a  d i s t r i b u t i o n  w i t h  a  d i f f e r e n t  
mean o r  a  d i f f e r e n t  var iance, o r  both, than t h e  r e s t  o f  t h e  data, o r  even have 
a  d i f f e r e n t  f u n c t i o n a l  form f o r  t h e  p r o b a b i l i t y  dens i t y  func t ion .  

Usual l y  t r u e  o u t l  i e r s  r e s u l t  from m i  stakes r a t h e r  than random 
e r ro r s ;  mistakes such as the  t r a n s p o s i t i o n  o f  d i g i t s ,  a  misplaced decimal, o r  
use o f  t he  wrong standard o r  measuring device o r  procedure. These types o f  
t r u e  o u t l i e r s  are o f t e n  e a s i l y  de tec ted  and t h e i r  omission from the  data leads 
t o  more p rec ise  and accurate analyses. On t h e  o the r  hand, some observed 
o u t l i e r s  may be t h e  most impor tant  i n f o rma t i on  i n  the  sample i f  i t  t r u l y  
i nd i ca tes  t h e  p o t e n t i a l  v a r i a b i l i t y  o f  t he  process f rom which t he  data comes. 

For  example, cons ider  a  co r ros ion  t e s t  o f  an element i n  which 
t h e  depth o f  co r ros ion  i s  recorded f o r  each o f  200 s i tes .  The occurrence o f  
one observed o u t l i e r  may be i n d i c a t i v e  o f  the  d i f f i c u l t y  o f  producing 
co r ros ion  r e s i s t a n t  elements, r a t h e r  than i n d i c a t i n g  a  bad observat ion caused 
by mis takes i n  data t a k i n g  o r  t ransmission. 

I n  the  next sect ion,  t h r e e  t e s t s  f o r .  de tec t i ng  an o u t l i e r  w i l l  
be presented. Once having f lagged an observa t ion  as an o u t l i e r ,  t he re  i s  
s t i l l  t h e  ques t ion  o f  what t o  do w i t h  it. Sec t ion  3.10.2 b r i e f l y  discusses 
some p o s s i b i l i t i e s ,  but  i t  should be noted here t h a t  t h e  recommended procedure 
f o r  handl ing o u t l i e r s  i s  t o  keep i t , unless a  reason can be es tab l i shed  t h a t  ; 

j u s t i f i e s  i t s  d ismissa l  o r  mod i f i ca t ion .  

3.10.1 Tests f o r  O u t l i e r s  

Many t e s t s  f o r  t h e  de tec t i on  o f  o u t l  i e r s  e x i s t ,  b u t  gene ra l l y  
r e q u i r e  t he  assumption o f  no rma l i t y  f o r  t h e  d i s t r i b u t i o n  o f  t h e  under ly fng  
populat ion. The procedures g iven  below assume a  normal d i s t r i b u t i o n  and t e s t  
f o r  t h e  ex is tence o f  a  s i n g l e  o u t l i e r .  Hence, t h e  t e s t s  a re  one s ided 
hypothesis t e s t s  f o r  t he  n u l l  hypothes is  t h a t  the  extreme observat ion xe 
belongs t o  t h i s  populat ion. 



A. The r- test ;  

Order  t h e  n 1 7  observat ions such t h a t  x  < x2 <... < xn. 
Then t o  t e s t  f o r  t h e  extreme va lue xl, l e t  

I f  r10 i s  g rea te r  than  t h e  c r i t i c a l  value f o r  rlO, a  ,found 

i n  Table XV, a t  t h e  des i r ed  s i g n i f i c a n c e  l e v e l  a ,  then x l  
i s  dec la red  t o  be an out1 i e r .  

To t e s t  f o r  an extreme va lue t h a t  i s  t h e  l a r g e s t  
observa t ion ,  use 

Equ iva len t  formulae f o r  8 I n I 10, 11 1 . n . 1  13, and 
14 5 n 5 30 are g iven  i n  Table XV. 

B. The T-Test: Standard D e v i a t i o n  Obtained ' from Same Sample 

A t e s t  known as t he  T - t es t  can be used i n  which t h e  
s tandard d e v i a t i o n  o f  t h e  unde r l y i ng  d i s t r i b u t i o n  i s  
est imated from the  a v a i l a b l e  sample; i .e., 

Th i s  t e s t  c a l c u l a t e s  t he  extreme student ized dev ia te  as 

I f  T exceeds t h e  c r i t i c a l  value, Tn,(l g i ven  i n  Table X V I ,  a t  
t h e  des i r ed  s i gn i f i cance  1 eve1 , t h e  6xtreme observa t ion  i s  
cons idered t o  be an o u t l i e r .  

C. The T-Test: Standard Dev ia t i on  Obtained From an Independent 
Sampl e 

T h i s  t e s t  i s  t h e  same as t h e  T - t es t  above except t h a t  here 
t h e  s tandard d e v i a t i o n  o f  t h e  under ly ing  d i s t r i b u t i o n  i s  
es t imated  from an independent sample, such as might  be 
ob ta ined  i n  a  study t o  e s t a b l i s h  t h e  p r e c i s i o n  o f  t h e  A 

process.. The degrees o f  freedom o f  t h i s  estimate, u , are  
no t  dependent on t h e  number o f  observat ions used t o  est imate 
t h e  mean. Now i f  



- 
xe - x  

T  = .T >Tn * v ,a  ( f rom Table X V I I )  

t h e  observa t ion  i s  dec lared an o u t l i e r .  

Example 3.21 

Three observat ions on t he  counts per  gram f o r  a  s i n g l e  f u e l  p e l l e t  are 
obtained by a  delayed neutron gage: 

Test A:  

Th i s  i s  l e s s  than  t he  a  = 0.01 value f o r  n  = 3  o f  0.988'obtained from 
Table X V .  Thus, t h e  r - t e s t  does no t  dec la re  t h e  observa t ion  24933.2 t o  be an 
o u t l i e r  a t  t he  1% l e v e l  o f  s ign i f i cance .  

Test B: 

We see from Table X V I  t h a t  t h i s  value i s  r i g h t  a t  t he  c r i t i c a l  value a t  t he  
a  =0.05, 0.025 and 0.01 leve ls .  Th is  i n d i c a t e s  t h a t  t h i s  t e s t  us ing  s  i s  no t  

s u f f i c i e n t l y  s e n s i t i v e  t o  de tec t  an o u t l i e r  f rom t h i s  small group o f  data. 

Test C :  

It i s  known from 3  observat ions on each o f  20 o t h e r  p e l l e t s  t h a t  
t h e  standard dev i 'a t ion can be est imated as 

A 
u = 79.03 w i t h  40 degrees o f  freedom. 

Then - 
X - X  e  T =  A 

- - 24933.2 - '  24722.2 = 2.67 
u 79.03 

The c r i t i c a l  value from Table X V I  I f ~ r  a = 0.01 i s  2.34. Thlrs, wit.h more 
i n f o rma t i on  suppl i e d  on- u f rom an independent sample, we dec la re  t h e  
observa t ion  24933.2 i n  t h i s  sample o f  3  t o  be an o u t l i e r .  

The f a c t  t h a t  each o f  t he  t h r e e  t e s t s  y i e l d s  d i f f e r e n t  r e s u l t s .  a t  t h e  
1% s i g n i f i c a n c e  l e v e l  i l l u s t r a t e s  t h e  d i f f e r e n c e  i n  t h e  s e n s i t i v i t y  o f  t h e  
t e s t s  f o r  de tec t i ng  o u t l i e r s  due t o  t h e  amount o f  i n f o rma t i on  conta ined i n  t h e  
data. The r - t e s t ,  which s imply  uses r e l a t i v e  d is tances between s p e c i f i e d  



values, con ta ins  t h e  l e a s t  in fo rmat ion  o f  the  t h ree  t e s t s  and f a i l s  t o  de tec t  
an o u t l i e r .  The T- tes t  us i ng  t h e  es t imate  o f  t h e  standard d e v i a t i o n  from t h e  
same sample incorpora tes  more i n f o r m a t i o n  w i t h  the  r e s u l t  t h a t  t h e  extreme 
va lue  i s  now found t o  be on t h e  border  l i n e  between being c a l l e d  an o u t l  i e r  
and not  be ing .  ca l  l e d  an o u t l  i er. The T- tes t  us ing an independent sample t o  
es t ima te  t h e  s tandard d e v i a t i o n  u t i l i z e s  i n fo rma t i on  i n  a d d i t i o n  t o  t h e  sample 
be ing  examined. Because o f  t h i s  a d d i t i o n a l  i n f o rma t i on  i t  becomes a  more 
s e n s i t i v e  t e s t  and i s  thus  ab le  t o  de tec t  an o u t l i e r .  Which t e s t  should be 
a p p l i e d  i n  a  g i ven  s i t u a t i o n  depends upon the  amount o f  i n f o rma t i on  ava i lab le .  

The above t e s t s  are f o r  t h e  de tec t i on  o f  a  s i n g l e  o u t l i e r .  To de tec t  
more t han  one o u t l ' i e r ,  t h e  above t e s t s  can be performed s e q u e n t i a l l y  by 
t h row ing  ou t  t h e  f i r s t  de tec ted  o u t l i e r  and t e s t i n g  t h e  remaining sample as 
t h e  o r i g i n a l  sample was tested.  Unless t he  sample i s  q u i t e  large,  however, i t  
i s  u n l i k e l y  t h a t  more than  one t r u e  o u t l i e r  can be detected. 

Having detected an o u t l  i e r ,  what do we do w i t h  i t ?  We don ' t  want t o  
i gno re  i t  complete ly  i f  i t  c a r r l e s  Important irifor-111at iur~ dLout the process. 
On t h e  o t h e r  hand, we a re  p e n a l i z i n g  ourse lves w i t h  an erroneous mean and an 
i n f l a t e d  s tandard d e v i a t i o n  i f  we keep a  completely spur ious observat ion. 

Three suggest ions a re  considered below: 

A. The Anscombe Rule:  

De le te  a  de tec ted  o u t l i e r .  Th is  i s  a  severe s tep t o  take. To 
reduce t h e  r i s k  o f  er roneously  th row ing  ou t  va luab le  
in fo rmat ion ,  i t  i s  suggested t h a t  t h e  s i g n i f i c a n c e  l e v e l  t o  use 
i n  t h e  t e s t  f o r  o u t l i e r s  should be 0.01 o r  less. 

O .  The Winso r i za t i on  (.W),-u 

Replace t h e  de tec ted  o u t l i e r  by i t s  nearest neighbor. 

C. The Semi-Wi n s o r i z a t i o n  (S )  Rule: 

Replace t h e  detected o u t l i e r  by t h e  c r i t i c a l  t e s t  value, 

A new xe = 2 f T, CT 

where x i s  t h e  o r i g i n a l  average, 

Tnis t he  a - l e v e l  value f o r  e i t h e r  T- test ,  and 

i s '  t he  est imated standard d e v i a t i o n  f o r  t h e  t e s t  used. 

Rules W and S a r e  at tempts t o  p r o t e c t  against  f a l s e l y  d e c l a r i n g  
an extreme va lue an o u t l  i e r .  Thus, an o value o f  0.05 o r  0.01 may, be 
s a t i s f a c t o r y .  Many a l t e r n a t i v e s  a re  poss ib l e  and the  best  procedure f o r  a 
s p e c i f i c  case may change from case t o  case. 



CHAPTER 4 
INFERENCES ON NON-NORMAL POPULATIONS 

Thus f a r  we have assumed t h a t  t h e  d i s t r i b u t i o n  o f  t he  sampled 
observat ions i s  a  normal d i s t r i b u t i o n ,  o r  a t  l e a s t  t h a t  t h e  d i s t r i b u t i o n  o f  an 
average of n  observat ions i s  normal. I n  t h i s  chapter  we w i l l  b r i e f l y  examine 
t he  problem o f  es t ima t i on  and i n f e r e n c e  f o r  parameters o f  some commonly 
occu r r i ng  non-normal d i s t r i b u t i o n .  A f t e r  a  review o f  t h e  maximum l i k e l i h o o d  
p r i n c i p l e  o f  es t ima t i on  we w i l l  deal s p e c i f i c a l l y  w i t h  t h e  binomi a1 , Poisson, 
and exponent ial  d i s t r i b u t i o n s .  

4.1 Review o f  Maximum L i  k e l  i hood C r i  t e r i  a 

To o b t a i n  t he  most l i k e l y  value of a  parameter g iven  a  s e t  o f  data,  
we maximize t h e  j o i n t  d i s t r i b u t i o n  f u n c t i o n  f ( x f ,  x2? ..., xn18). For  n  g i ven  
observat ions randomly taken, we w r i t e  t he  same u n c t i o n  as a  l i k e l  ihood 
f u n c t i o n  

where @ represents a  set  o f  one o r  more parameters. I f  t h e  range o f  x i  does 
not  depend on 8 , then  we make maximize L ( @  1 3) by s o l v i n g  t h e  d e r i v a t i v e  o f  
t he  l i k e l i h o o d  f u n c t i o n  f o r  Oj, 

where x  represents  t h e  se t  o f  n  x 's .  I f  t h e r e  a re  more than  one 8 ., we must 
solve The r e s u l t i n g  d i f f e r e n t i a l  equat ions simultaneously.  The reader i s  
r e f e r r e d  again t o  Appendix B. f o r  more d e t a i l s .  

4.2 In fe rence  on a  Binomial D i s t r i b u t i o n  

The d i s t r i b u t i o n  known as a  b inomia l  has the  f o l l o w i n g  form 

where p  may be ( 1 )  t h e  p r o b a b i l i t y  o f  success; i.e., a  s e l e c t i o n - o f  an i t e m  
which meets some spec i f i ca t ions ,  o r  ( 2 )  t h e  p r o p o r t i o n  o f  de fec t i ves  i n  a l o t ,  

, o r  (3 )  t h e  percentage of c e r t a i n  components t h a t  meet some s p e c i f i c a t i o n .  

Suppose we sample from a  b inomia l  popu la t i on  w i t h  parameters p  and n  
a  t o t a l  o f  k  times. Thus, x l ,  x2, .. . , xk a r e  a  random sample from a  b inomia l  
(n, p). The maximum l i k e l  i hood es t imate  q f  p  i s  obta ined as f o l l ows :  

nk- Zx i  



k 
JnL(p) = z  x i  J n  p + (nk - =xi )  Jn (1-p) 

i=l i=l 

x x i  ( n k - X x i )  d= + 
d P P 1-P (-1) = 0 

k 
Thus t h e  est imate o f  p i s  the  average i = x x i / k ' d i v i ded  by n, t h e  sample 

i = l  . . 
size. Since E(xi) = np, the expected value and the  variance o f  6 a r e  

We can q u i c k l y  see, however, t h a t  sampl i ng  k t imes from a binomial populat ion 
(n, p)  i s  equivalent  t o  sampling from a s i n g l e  binomial populat ion w i t h  
parameters (N, p) , where N = nk. Then, 

N 
X X i  

A p = -  i.1 , E ($) = p, ~ a r  (a) = 
N 

To ob ta in  a conf idence i n t e r v a l  f o r  p, we proceed as fo l l ows :  

Find pl and p2 such t h a t  

1. p1 i s  t h e  l a rges t  value o t  p f n r  which' 

2. p2 i s  t he  smallest. vsl~re nf p f a r  which 

Pr( .xS x,) -$:(;)PX (1  - ,,)n - x s  a / ? ,  

pa < p < p2 i s  a 100(1 - a  )% confidence i n t e r v a l  f o r  p, where xo i s  an 
observe value. This choice o f  p l  and p2 gives the  shor tes t  poss ib le  
i n t e r v a l  . 



F igu re  4.1 ~ a - i l s  o f  a  Binomial  D i s t r i b u t i o n  pl: < p <  p2 .. . , 

Note t h e  i n e q u a l i t y  signs. Th is  i S  due t o  t h e  d i s c r e t e  'na tu re  o f  t h e  b i n a n i a l  
va r iab le .  For  a  g iven  p r o b a b i l i t y  l e v e l ,  t h e r e  may no t  .be  a  d i s c r e t e  x  va lue 
t o  correspond, t o  . i t .  Convent iona l ly ,  we f i n d  t h e  va lue  .of . 'x  which g ives  lq/2 
i n  p r o b a b i l i t y '  i n  t h e ' t a i l  regions. . . .  . . 

Example 4.1 

Suppose . n  = . 2 0  and .xo = 2  defec, t ive:pieces were found. Cbnst ruct  a  95% 
conf idence i n t e r v a l  f o r  p. We need t o  so lve .  . . 

and 20-x I a12 =.0.025 



For tunate ly ,  tab1 es and cha r t s  a re  ava i l ab le  f o r  cons t ruc t ing  i n t e r v a l s  f o r  
p ropor t ions .  Table X I  g ives curves f o r  y = 1- a = 0.95 and 0.99 Reailing 
these curves i n d i c a t e  t h a t  w i t h  95% conf idence p l  = 0.01, p2 = 0.32. Using a 

t a b l e  o f  binomial p r o b a b i l i t y  values (Table I )  and i n t e r p o l a t i n g  we can v e r i f y  
these values. Thus, we can say w i t h  95% conf idence o r  be t te rn tha t  p i s  
conta ined w i t h i n  0.01 < p < 0 32, where n = 20, xo = 2, and p = 0.1. 

4.2.1 ANormal Approximation f o r  theBinomia1 

I f  n i s  s u f f i c i e n t l y  l a r g e  and p i s  n o t  extremely small o r  
ext remely large,  an approximating confidence i n t e r v a l  f o r  a porpor t ion  may be 
obta ined frnm a normal approximation. The procedure i s  t o  standardize t h e  
b inomial  v a r i a b l e  

A 
D i v i d i n g  through both s ides by n, we have p = x/n, 

The two-sided i n t e r v a l  woul d be 
A 

n 

However, t h i s  conta ins p. Rep1 ace p by i t s  bst imi j te  $ = x l n  and we ob ta in  

A 
For  p very small o r  very la rge ,  t h i s  approximate i n t e r v a l  could r e s u l t  i n  
values l e s s  than 0 o r  l a r g e r  than 1. 

A 
For  n = 20, xo = 2, p = 0.1 as before, a 95% confidence i n t e r v a l  f o r  p us ing a 
normal approximation i s  obta ined as f o l l  ows: 

then 0.1 i 1.96 (0.067) 

and the i n t e r v a l  i s  (-0.03, 0.23). (compared t o  (0.01, 0.32) found prev ious ly ) .  



Although -0.03 i s  impossible,  us ing  0 f o r  a  lower  bound i s  not  a  bad 
approximation. However, 0.23 i s  f a r  from 0.32. The normal approximat ion can 
be improved somewhat by adding a c o r r e c t i o n  f a c t o r  o f  * 1 t o  x: - 

2 

Th i s  i s  b e t t e r  i n  t h a t  i t  g ives  a wider  i n t e r v a l ,  a l though here t h e  negat i ve  
value i s  inappropr ia te .  The problem w i t h  t he  i n t e r v a l s  suggested here i s  t h e  
sample size. For a  conf idence i n t e r v a l  based on a normal d i s t r i b u t i o n  t o  be 
adequate, t h e  d i s t r i b u t i o n  o f  x/n must approach a normal d i s t r i b u t i o n .  For  
t h i s ,  n  must be s u f f i c i e n t l y  large.  M i l l e r  and Freund [25] suggest n  > 100. 
Also note t h a t  x/n - p i s K a  t - d i s t r i b u t i o n  s ince  - 1 p(1-p) i s  no t  - 

an es t imate  of ~ a r ( $ )  t h a t  i s  s t a t i s t i c a l l y  independent o f  8 ,  as P and s2 a r e  
s t a t i s t i c a l  l y  i ndependent. 

4.2.2 Comparing Two Propor t ions  

Consider cornparins t h e  ~ r o ~ o r t i o n  o f  de fec t i ves  f rom two l o t s  o f  . , 
mate r ia l .  Sample nl observat ions from one popu la t ion  and n2 from t h e  other. 
To t e s t  

aga ins t  HA: pl f p2, 

I we cons ider  t h e  t e s t  s t a t i s t i c  

where nl and n2 a re  both l a r g e  and under t h e  nu1 1 hypothesis,  pl = p2 =. p, 

Var (-- - 

The combined est imate o f  p  i s  0 = zX i  = '1 '2 . - 
Cni  n~ + n2 



Given nl = 4 0 0 ,  x l  = 128, n2 = 500, x2 = 115. Then 

and 

Therefore we r e j e c t  p l  = p2 based on t h i s  data. 

4.2.3 Compari ng k  Propor t ions  

~ o n s l  der ' t he prubl.ea -uf-cu~~par;. i  i igS several p r a p o l t  i ons  f o r  - . ,  

d i f fe rences .  The nu1 1  hypothesis  i s  

and t h e  a l t e r n a t i v e  hypothesis  i s  t h a t  a t  l e a s t  two o f  these propor t ions are 
unequal. We again make use o f  t h e  normal approximation when n i ,  i = 1, 2, ..., k a re  l a rge :  

where xi i s  t h e  number o f  de fec t i ves  found i n  a  sarnpl e  o f  s i z e  ni , and p i  i s  
t h e  p ropo r t i on  defect ive. Since each populat ion from which we sample 

p rov ides  an independent normal dev ia te  z i  , we can d e f i n e  d i s t r i b u t i o n  
k  

Under t he  n u l l  hypothesis, t h e  pooled est imate o f  t h e  common p ropo r t i on  p i s  

S u b s t i t u t i n g  i n t o  (4.1) f o r  each p  we have 



We may then  t e s t  Ho by comparing t h e  value obta ined 'above w i t h  t h e  c r i t i c a l  

v a l u e  ( r igh t -hand  t a i l )  o f  - x2  . We have k-1 degrees o f  freedom s i n c e  
k-1 , a  

we had t o  est imate t h e  common value p. 

Example 4.4 

It i s  des i red  t o  t e s t  whether t h e  p ropo r t i on  of-  supp l ies .b rought  back and 
exchanged by a c e r t a i n  vendor i s  sub jec t  t o  seasonal va r i a t i ons .  The 
q u a r t e r l y  da ta  i s  

F i  r s t  Second .Th i rd  Four th  
Qua r te r  Qua r te r  Qua r te r  Qua r te r  i o t a 1  

# exchanged 29 12 8 21 , 70 

# no t  exchanged 81 118 92 139 430 

TOTAL 110 130 100 160 500 

A A 
Under Ho: pl=p2=p3=p4=p, np = 70,p = 70/500 = 0.14. 

2 This  exceeds x ~ , , ~ ~  = 11.345, so we conclude t h a t  t h e r e  i s  evidence o f  

seasonal d i f ferences. '  
. . 

The Chi-Square t e s t  (4.2) can be viewed i n  a somewhat d i f f e r e n t  
manner. Looking a t  t h e  data 'as shown i n  t h e  example above, we can i d e n t i f y  8 
" c e l l  s", where each en t r y  i s  t h e  observed frequency f o r  t h a t  c e l l  Oi j, 

i = 1, 2, 3, 4; j = 1, 2. We then view t h e  problem as a goodness o f  fit t e s t  
f o r  a mu l t inomia l  d i s t r i b u t i o n  w i t h  8 c l a s s i f i c a t i o n s  o f  c e l l s .  For Example 
4.4., 0 



2 
where Ei a r e  t h e  expected f requenc ies  nip. The d i s t r i b u t i o n  i s  s t i l l  a  X 3  

because knowledge o f  any t h r e e  o f  t h e  p ropor t ions  w i l l  enable us t o  determine-. 
a l l  o f  them. The advantage t o  t h i s  approach i s  t h a t  i t  w i l l  a l l ow  
g e n e r a l i z a t i o n  t o  problems o f  r x  k  l ayou t s  where r > 2. 

4.3 I n f e rence  on a  Poisson D i  s t r i b u t  i o n  

I n  s i t u a t i o n s  i n  which i t  i s  o f  i n t e r e s t  t o  know how many events o f  a  
c e r t a i n  k i n d  occur  i n  a  g i ven  p e r i u d  o f  time,. we know t h a t  a  Poisson 
d i s t r i h u t i o n  u s u a l l y  app l ies .  Reca l l  t h a t  f o r  a  Poisson v a r i a b l e  x, 

where X i s  t h e  mean r a t e  o f  occurrence f o r  t h e  u n i t  o f  t i m e  be ing used. The 
maximum l i k e l i h o o d  es t imate  oP X I s  K (bee Appendix B.) b a & d  on n 
observat ions.  

As f o r  t he  b inor r~ ia l  parameter p, d r ~  i1 .1terva1 f o r  which we have a t  
l e a s t  95% conf idence o f  c o n t a i n i n g  X based on a  s i n g l e  .observa t ion  x  can l6e 
ob ta ined  by s o l v i n g  f o r  X 1  and X.2: 

03 - X  . . 
e  X ' l / x !  50.025 1. P r ( x 2  x 0 I X 1 )  = x=x 

0 

and 

Exampl e  4.5 . > - - 

Suppose 2 acc iden ts  occur.red i n  a 12-hour p e r i o d  along a p a r t i c u l a r  p roduc t ion  
l i n e .  The conf idence i n t e r v a l  f o r  t h e  mqan r a t e  o f  acc idents  i s  such t h a t  

From Table  11, we see t h a t  the X ,  s a t i s f y i n g  'I. i s 0.24, and the 

on xo = 2 1 s  0.24 < A <  7.2. 
s m a l l e s t X 2  s a t i s f y i n g 2 .  I s  7. for  Abased 

T h i s  i s  v e r i f i e d  i n  Tab le  X I I ,  a  t a b l e  o f  conf idenc'e l i m i t s  f o r  a  Poisson 
parameter. 

4.3.1 . k  > 1 Observat ions f rom a Poisson 

For more than  one observa t ion  f rom t h e  same Poisson 
d i s t r i b u t i o n ,  i t  can be shown t h a t  t h e  sum o f  Poisson v a r i a b l e s  I s  agair i  a 
Poi sson w i t h  a  parameter n  X i nstead o f  A .' 



The maximum 1 i k e l  ihood es t imate  o f  X i s  zx i ,  so the' maximum 1 i k e l  i hood 
es t imate  o f  X i s  

A 1 
X M L  = -:mi as found p rev ious ly .  

To f i n d  a  conf idence i n t e r v a l  f o r  X t hen  

1. P r ( X L X o 1 8 1 )  = P r ( X x i L  X o I  n , X 1 ) S  0.025,Xl = 8 i / n ,  

2. P r ( X I  x o l 8  2 )  = P r ( 1  xi 5 X o l  n, X2 )  I 0.025, A 2  = 02 /n ,  

< 8 <  8 2  

Example 4.6 

Fo r  one obse rva t i on  Xo = 2, a  95% conf idence i n t e r v a l  f o r  8 i s  

0 . 2 4 < 8 <  7.2 

Thus, f o r  n  observat ions,  t h e  95% c'onfidence i n t e r v a l  f o r  X = 8 i s  - 
n 

A 
Fo r  n  = 4, X = x X i  - 2 . - -  

n ? 
0.5 

i s  a  95% conf idence i n t e r v a l  f o r  X when n = 4  observa t ions  were taken, each 
over an i n t e r v a l  l eng th  o f  12 hours, z x i  = 2  acc idents  be ing recorded. 

. 4.3.2 Normal Approximat ion f o r  a  Poisson 

An approximate i n t e r v a l  can be obta ined f o r  l a r g e  enough n, o r  
e q u i v a l e n t l y  i f  A i s  q u i t e  large.  The ' s tandard ized  Poisson v a r i a b l e  i s  

X = E(x) f o r  a  orisibe observa t ion  on x, 
z = m ,  K 

and 
A A 

z = A -  , X = i i ,  f o r  n > 1  observat ions.  m 



using '  t h e  es t imate  o f  2 f o r  X as i t s  est imated variance, a  two-sided 95% 
conf idence i n t e r v a l  j s  

x  - 1 . 9 6 6  < X <  x +  1.96&, f o r  n  = 1,. 

E - 1 . 9 6 6  < X < R + 1 . 9 6 6 ,  f o r  n  > 1. 

Example 4.7 

I f  50 acc iden ts  were recorded over  a  120-hour per iod,  then from Table X I I ,  a  
95% conf idence i n t e r v a l  f o r  t h e  mean r a t e  8 o f  occurrences over a  120-hour 
p e r i o d  i s  (37.0, 65.9). Using a normal approximation, t h e  i n t e r v a l  i s  

The agreement between t h e  exact. and nunildl approximat i o n  w i  11, o f  course, 
improve as X gets  la rger .  

To o b t a i n  a conf idence i n t e r v a l  f o r  t h e  mean number X o f  occurrences per 
12-hour per iod,  we d i v i d e  t h e  120 hours i n t o  t e n  12-hour segments. Then 
% = 2 = 5.0 and t he  exact i n t e r v a l  i s  (3.7, 6.6) .and f o r  t h e  normal 

approximat i o n  

4.4 I n fe rence  on an, Exponenti a1 D i s t r i b u t i o n  

The l i f e t i m e  o f  many e l e c t r i c a l  and mechanical components and systems 
t . ~ n d  t o . - f o l l o w  an exponent ia l  o r  r e l a t e d  d i s t r i b u t i o n .  Le t  x  be t h e  1 i f e t i m e  
nr  t i m e - t o - f a i l u r e ,  t h e n  

i s  an exponent ia l  d i s t r i b u t i o n  w i t h  X  he mean t ime  t o  f a i  lure. The var iance h o f  an exponent ia l  can be shown t o  be X . 
I f  XI , x . . . , x ake n independent observation-s f rom f ( x ) ,  t h e  

maximum l i k e l l h o o z  es t imate  o f  X i s  X. (Appendix B). 



4.4.1 An Exact Confidence I n t e r v a l  f o r  X, n = 1 

For a s i n g l e  observat ion,  we cou ld  o b t a i n  a confidence i n t e r v a l  
f o r  X as we have done f o r  t h e  b inomia l  and Poisson d i s t r i b u t i o n s ,  by 

1. f i n d i n g  l a r g e s t  X1 such t h a t  P r ( x  > xolX1) = 0.025 and 

2. f i n d  t h e  sma l les t  X 2  such t h a t  P r ( x  < x o ( X 2 )  = 0.025. 

Th is  w i l l  y i e l d  an exact 95% confidence i n t e r v a l  X1 < H A 2  s ince  t h i s  i s  a 
cont inuous d i s t r i b u t i o n .  

4.4.2 A Normal Approximat ion f o r  the  Exponent.ia1 

An approximate 95% conf idence i n t e r v a l  can be ob ta ined  by a 
n o v a 1  approximat ion i f  n, t h e  number. o f  observat ions, i s  s u f f . i c i e n t l y  
large. L i k e  a Poisson d i s t r i b u t i o n  w i t h  small A ,  an exponent ia l  i s  a very  
asymmetric d i s t r i b  t i o n ,  and hence a large. sample s i z e  i s  requi red.  S ince t h e  
var iance  o f  x i s  A', t h e  s tandard ized exponent ia l  v a r i a b l e  i s  

A 
and f o r  n observat ions, X = z, 

Rep1 ac ing X by i t s  estimate' 2 i n  t h e  denominator o f  z, we have a 95% 
confidence i n t e r v a l  f o r  A,  t h e  mean t i m e - t o - f a i l  ure, 

4.4.3 AnExac t  I n t e r v a l ,  n >  1 

An exact two-sided conf idence i n t e r v a l  f o r .  n observat ions can be 
cons t ruc ted  by us ing  t h e  f a c t  t h a t  t w i c e  t h e  sum o f  n exponent ia l  va r i ab les  i s  

d i s t r i b u t e d  as a X2 v a r i a b l e  w i t h  2n degrees o f  freedom, sca led by A ;  i .e., 

2 . Thus 
2 n i  xzn  



where Pr( < ) = 0 . 0 2 5 a n d P r (  > ) = 0.025. 
'2n '2n.0.975 ' 2n '2n, 0.025 

T h u s ,  

i s  an exact 95% confidence interval for X based on n observations from an 
exponential distribution. 

Exampl e 4.8 

Ten n h s e r v a t i ~ n ~  were made on the 1 if6time ( i n  minutes) of bat ter ies  wS t h  the 
sum of fa i lure  times being 54 minutes. 

Then ,  

Thus ,  

317 < X < 1128 i s  a g5% confidence interval for  the mean 
1 i fetime of batteries.  

"4.5 Di stribution-Free To1 erance Interva I s 

In Chapter 3 we discussed tolerance i n t e r v a l s  assuming thc 
population being sampl ed to  .be normal ly di stri  buted. 

If the data being sampled can neither be assumed normally 
distributed nor transformed by some simple mathematical function into a normal 
dis t r ibut ion,  one- or two-sided to1 erance intervals which are completely free 
of any distributional assumptions may be made. A one-sided 95/99 
di s t r i  bution-free to1 erance interval says tha t  with 95% confidence, 99% of the 
population being sampled will 1 i e  above the minimum observed value in the 
sample (or  below the maximum value). A two-sided 95/99 distribution-free 
tolerance interval contains 99% of the population between the minimum.and 
maximum sample values w i t h  95% confidence. Intervals found by sample val.ues 
other than the minimum or maximum are a1 so permissible, but we wlll r e s t r i c t  
our discussion to  these l imits  since they are  ty ical i n  many examples. For 
fur ther  information on th i s  topic, see Natrella F 261. 



There a re  t h r e e  f a c t o r s  which d e t e n i  ne d i  s t r i  bu t  i on - f r ee  
to le rance  ' i n t e r v a l s :  conf idence l e v e l ,  p ropo r t i on  o f  populat ion,  and sample 
size. Given any two o f  these f ac to r s ,  t h e  t h i r d  may be found i n  one o f  t h e  
Tables X I I I ' ( a )  through XI11 ( f ) ,  o r  from Figures X I I I ( c )  o r  XI11 (g). 
P a r t i c u l a r l y  use fu l  i s  t h e  capabi l  i t y  o f  determin ing t h e  sample s i z e  requ i red  
t o  make a  t o l e rance  i n t e r v a l  statement o f  s p e c i f i e d  conf idence l e v e l  and 
popu la t ion  propor t ion.  The examples below il l u s t r a t e  these t h r e e  s i t ua t i ons .  

Example 4.9 

Determi n a t i o n  o f  Sample, S i  ze: P ropo r t i on  and Confidence Level  Given 

I f  we des i red t o  o b t a i n  an i n t e r v a l  which conta ins a t  l e a s t  90% o f  t he  
popu la t ion  o f  f i s s i l e  load ings  o f  f u e l  p e l l e t s  between t h e  minimum and maximum 
observed values o f  t he  sample taken w i t h  a  conf idence l e v e l  o f  0.99, we ,see 
from Table XI11 ( a )  t h a t  64 observat ions a re  required. A  one-sided 99/90 
t o l e rance  i n t e r v a l  may a l s o  be const ructed f o r  which 90% o f  t h e  popu la t ion  
w i l l  be above t h e  minimum ( o r  below t h e  maximum) value. From Table X I I I ( e )  we 
see t h a t  44 pel  l e t s  would be requi red.  

Determi n a t i o n  o f  Propor t ion :  Confidence Level and Sample S ize  Gi'ven 

The maximum f i ~ ~ i l e  l oad ing  f o r  a  sample o f  10 f u e l  p e l l e t s  wa eported t o  be 
2.630 grams U and t h e  minimum observa t ion  was 2.604 grams Uq3'. From Table 
X I I I ( b ) ,  we f i n d  t h a t  f o r  10 observat ions a  two-sided t o l e rance  i n t e r v a l  a t  a  
95% confidence l e v e l  w i l l  c o n t a i n  61% o f  t h e  ~ ~ g u l a t i o n  o f  f i s s i l e  loadings 
between t h e  values o f  2.605 and 2.630 grams U f o r  t h a t  t ype  o f  p e l l e t .  
A l t e r n a t i v e l y ,  f rom Table XI11 ( f )  we see t h a t  74% o f  t h e  l oad ing  values w i l l  
be above 2.605 ( o r  below 2.630) w i t h  95% confidence. 

Example 4.11 

D e t e n i  n a t i o n  o f  Confidence Level  (Two-Sided) : p r o p o r t  i o n  and Sample S ize  
Given 

O f  12 readings taken o f  u~~~ i m p u r i t y  concen t ra t ion  i n  z i rconium, t h e  maximum 
ohserved value was 0.0099 ppm. and t h e  minimum was 0.0088 ppm. From Table 
X I I I ( d ) ,  we see t h a t  75% o f  t h e  popu la t ion  w i l l  l i e  between 0.0088 ar~d  0.0099 
ppm. w i t h  84% confidence, and 90% of t h e  popu la t ion  w i l l  f a l l  w i t h i n  t h e  
i n t e r v a l  w i t h  o n l y  34% confidence. 

Example 4.12 

I n t e r p o l a t i o n  o f  Propo . - e  . . . Size: . - Cdnfidence Level  Given, From 
F igures  XI11 ( c )  and X 

A l t e r n a t i v e  t o  t h e  tab les ,  F igures  X I  I I ( ~ )  and X I I I ( g )  may be used t o  f i n d  t h e  
p ropo r t i on  o f  t h e  popu la t ion  i n  an i n t e r v a l  f o r  a  g iven sample s ize ,  o r  f o r  
f i n d i n g  t h e  sample s i z e  f o r  a  g iven  p r o p o r t i o n  f o r  conf idence l e v e l s  'of 0.90, 
0.95, and 0.99. The f i g u r e s  a l l o w  i n t e r p o l a t i o n  o f  r e s u l t s  which do no t  



appear i n  t h e  tables. For example, from F igure  XI11 (c)  we see t h a t  f o r  95% 
confidence, t h e  sample s i z e  requ i red  f o r  a two-sided i n t e r v a l  t o  conta in  96% 
o f  t h e  populat ion, i s  approximately 120 observations. For 100 observations, 
approximately 93% of t h e  popu la t ion  w i l l  f a l l  i n  the  i n t e r v a l  w i t h  99% 
confidence. From Figure X I I I ( g )  we see t h a t  14 'observat ions are  requi red f o r  
a 90/85 one- sided d i  s t r i b u t  i on - f ree  to1 erance i n t e r v a l  and f o r  75 observat ions 
and 95% confidence, t h e  one-sided i n t ~ r v a l  w i  11 conta in  b e t t e r  than 96% o f  t h e  
populat ion. 

*4.6 An Approximate One-sided Tolerance I n t e r v a l  f o r  an Exponential 
D i s t r i b u t i o n  

When t h e  popu la t ion  being sampled i s  not normal, we cannot, o f  
course, use t h e  r e s u l t s  of  Sect ion 3.7.2. I n  f ac t ,  exact to lerance i n t e r v a l s  
f o r  d i s t r i b u t i o n s  o ther  than t h e  normal are not avai lab le.  I n  general, t h e  
best t h a t  can be obtained are the  d i s t r i b u t  i on - f ree  o r  non-parametric 
t o le rance  i n t e r v a l  s. These to le rance i n t e r v a l  s are v a l  i d  f o r  any type o f  
d i s t r l b u t i o n  but  do no t  use any i n f o n a t i o n  which may bc ava i l ab le  dbuul the  
d i s t r i b u t i o n  o f  t h e  popu la t ion  being sampled. I n  general, because o f  t h e  
broad a p p l i c a t i o n  o f  t h i s  approach, t h e  length  o f  t h e  i n t e r v a l  f o r  g ivcn n, P, 
and y w i l l  be wider than would be the  case i f  the d i s t r i b u t i o n  were taken 
i n t o  account. 

I n  the case of an exponential  d i s t r i b u t i o n ,  however, an approximate 
one-sided to le rance i n t e r v a l  has been developed. Suppose we would 1 i ke t o  
asse r t  w i t h  a degree o f  conf idence y = 1 - a t h a t  a t  l eas t  100 P% o f  the 
components being sampled have a l i f e t i m e  greater  than x*. The fo l lowing 
a pprox irnati on ha s been dev e l  oped : 

where xi a re  the  recorded l i f e t i m e s  o f  the  sampled components and 
2 2 

P r (  x x ) =  a . 
2 n > 2n,a 

Coi n c i  dental  l y ,  

i s  t h e  expression used f o r  cons t ruc t i ng  a conf idence i n t e r v a l  f o r  t h e  mean 
l i f e t i m e  A ,  bu t  here i t  i s  mod i f ied  hy -fin P. 

Example 4.13 

Suppose 10 observations from a component l i f e t i m e  study g i ve  a t o t a l  o f  l i f e -  
t imes o f  



L e t y =  0.95,a- 0.05, and P = 0.95. Thenan P =an(0.95)  = -0.051 

and 2 = 31.41 
'20, 0.05 

Thus, 

That i s ,  w i t h  95% confidence, 95% o f  t he  components under i n v e s t i g a t i o n  can be 
expected t o  l a s t  longer than 17.6 hours before f a l l i n g .  This i s  a lower 95/95 
to le rance l i m i t .  

To ob ta in  an upper to le rance l ' i m i t ,  t h e  values P and a must be 
replaced by 1 - P and y = 1 - a . Consider t he  f o l l o w i n g  example: 

Example 4.14 

34 observat ions are obtained on wear depth on f u e l  rods on the  p o i n t  o f  spr ing  
contact. A 95/99 upper to le rance l i m i t  f o r  wear depth i s  obtained assuming an 
exponenti a1 d i  s t r i  bu t  i o n  and 

34 I: x i  = 16 mi ls ,  n = 34, 1 - P = 0.01, y = 0.95 
i=l 

That i s ,  w i t h  95% confidence, a t  l e a s t  99% o f  a l l  rods w i l l  have wear o f  l e s s  
than 2.95 m i l s  i n  depth a t  t h e  po in t  o f  sp r i ng  contact. 

(Note: using a normal approximation f o r  2 g ives 
'68,0.05 

2 = 68 - 1.645 J s  = 48.8 and x *  = 3.02 m i l s )  
*68.0.05 

4.7 The Chi-square ~ o o d n e s s - o f - ~ i  t Test 

I n  Sect ion 3.9.1 t h e  Chi-Square goodness-of- f i t  t e s t  was discussed 
and i l l u s t r a t e d  f o r  t e s t i n g  a normal d i s t r i b u t i o n  hypothesis. I n  t h i s  sec t i on  
two examples are g iven i n  which t h e  d i s t r i b u t i o n  i s  no t  hypothesized t o  be 
normal. It should be recognized t h a t  f o r  any g iven se t  o f  data, more than one 
d i s t r i b u t i o n  'may be found t o  be reasonable. Acceptance o f  an hypothesis does 
not  mean t h a t  the  data , d e f i n i t e l y  i s  tha.t.,$istribution, bu t  on ly  t h a t  t he re  i s  
no reason t o  discount t h a t  d i s t r i  bution'-,and i t  may be used. 



It i s  des i red  t o  d e t e k i n e  if the  number o f  defect ives found i n  l o t s  o f  500 
i tems can be described by a Poisson d i s t r i b u t i o n  w i t h  mean = 2. A t o t a l  o f  
50 l o t s  were checked w i t h  the  r e s u l t s  given below: 

H ~ :  x Poisson ( X = 2); n = 50. 

# de fec t i ve  
found, xi P r (x  5 xi\X ) = 2 p i  Ei = np i  Oi (Oi - E~ ) 2 / ~ i  

With 5 i n t e r v a l s  used the  observed t e s t  value x 2  = 6.05 i s  found t o  
4 

> 
be l e s s  than = 9.488. Thus, a Poisson w i t h  X = 2 i s  a reasonable 

4,0.05 
d i s t r i b u t i o n  f o r  descr ib ing the  number of defect ives per l o t .  

Example 4.16 

Consider t h e  wear depth data from Example 4.14. To t e s t  the hypothesis t h a t  
an exponential  d i s t r i b u t i o n  describes t h i s  da.ta, consider est imat ing the  mean 
value X by 1 = Y = 16/34,. U.471. 

A 
Ho:. f ( x )  - exponential  (mean X ) 

Upper bound Pr (x  <xci) 
on i n t e r v a l  A A 

x i  < x < x = I  - e- ~ i /  "xi Ei = np i  Oi ( o ~ - E ~ ) ~ / E ~  

. X 
2 =1 .63  [ = 0.103, 2 = 5.991. 
4-1 -1=2 2.0.95 2,0.05 

An exponential d i s t r i b u t i o n  i s  accepted. 



CHAPTER 5 
QUALITY CONTROL STATISTICS . . 

Whether producing o r  rece i v ing  manufactured goods, care must be taken 
t o  assure t h a t  the product meets spec i f i ed  requirements w i t h  as l i t t l e  r i s k  
and a t  the  1 owest c o s t  possib le t o  the producer and/or consumer. This  chapter 
presents some o f  the  techniques u t i l  i zed  t o  assure a1 1 invo lved o f  t he  q u a l i t y  
o f  the product . i n  quest ion. 

5.1 Sampling Inspect ion 

Consider the  s i t u a t i o n  i n  which a manufacturer o f  a pressurized water 
reac tor  i s  faced w i t h  the decis ion t o  e i t h e r  accept o r  r e j e c t  a l a r g e  supply 
or. l o t  .of  f ue l  elements. The manufacturer c e r t a i n l y  does no t  want t o  purchase 
mater ia l  from the vendor which w i l l  l ead  t o  an i n f e r i o r  o r  de fec t ive  
reac tor .  Thus, the  manufacturer w i l l  subject  the supply o f  f u e l  elements t o  a 
t e s t  o f  i t s  q u a l i t y  based on the known manufacturing s p e c i f i c a t i o n  
requirements. 

The f i r s t  quest ion t o  a r i s e  i s ,  "What k i n d  o f  a t e s t ? "  Should the  
f u e l  content  be measured prec ise ly ,  o r  simply judged t o  be w i t h i n  o r  ou ts ide  
the  spec i f i ca t ions .  The former i s  an example o f  va r i ab le  sampl i n g  and the 
l a t t e r  i s  an example o f  a t t r i b u t e  sampling Var iable sampling deals w i t h  any 
continuous measurement, such as height ,  weight, length,  weight percent, etc., 
and w i l l  be discussed i n  Sections 5.5--5.7 under the  general heading o f  
Control  Charts. A t t r i b u t e  sampl i ng deal s  w i  t h  d i  screte data: f o r  exampl e, 
counts o r '  number o f  defects, o r  more usua l ly ,  golno-go, and' a c c e p t l r e j e c t  
data. 

Having decided to perform a t t r i b u t e  sampl i n g  , the sampl i'ng inspect ion  
procedure must then specify how many i tems should be examined. I d e a l l y ,  every 
i tem should be inspected f o r  a l l  poss ib le  a t t r i b u t e s  from a l l  poss ib le  
angles. P r a c t i c a l l y  speaking however, many o f  the  t e s t s  requ i red  t o  evaluate 
a t t r i b u t e s  are  des t ruc t i ve  i n  nature, thus necess i ta t ing  a sample t o  be 
taken. Even i n  non-destruct ive t e s t i n g  the  c o s t  i n  both t ime and money may 
favor  a sampl i ng procedure a1 so 

The quest ion of how to sample, i .e., t he  choice o f  a sampling plan, 
i s  taken up i n  the  nex t  sect ion and i s  fo l lowed by a discussion of t h e  
eva lua t ion  o f  sampling plans. For  a de ta i l ed  d iscussion and compi lat ion o f  
sampl i ng plans, see MIL-STD-105-D [20] and the  Dodge-Romig Sampl i ng Tables 
C91. 

5.2 Types o f  A t t r i b u t e  Sampling Plans 

The purpose o f  a sampling p lan i s  t o  prov ide the  examiner w i t h  a 
bas is  f o r  t he  acceptance o r  r e j e c t i o n  o f  a l o t  o f  mater ia l  based on a sample 
o f  n i n d i v i d u a l  i tems from the  l o t .  The basis o f  acceptance i s  t h e  
probab i l . i t y  o f  ob ta in ing  a spec i f i ed  number o f  de fec t ives  ( i .e. ,  i tems outs ide  
the  s p e c i f i c a t i o n  1 i m i t s )  i n  the sample. I n  t he  s implest  terms, i f  the  number 
o f  defect ives,  i n  t he  sample i s  t o o  large,  t he  e n t i r e  l o t  i s  re jected.  I f  the  
number o f  defect ives i s  l ess  than o r  equal t o  the  c r i t i c a l  number o f  



de fec t i ves ,  c a l l e d  t h e  acceptance number f o r  t h e  sample, t h e  l o t  i s  
accepted. The mathematical d e t a i l s  of t h e  eva lua t i on  o f  a sampling p l an  w i l l  
be g iven  i n  t h e  next sect ion.  

5.2.1 S i n g l e  Sampling Plan 

The most bas ic  sampling p l a n  i s  t h e  s i n g l e  sampling p l a n  i n  which a 
s i n g l e  sample of n i tems i s  inspec ted  and t h e  number x o f  d e f e c t i v e  i tems i s  
recorded. I f  x i s  g.reater t han  t h e  acceptance number c, t h e  l o t  i s  
r e j ec ted .  I f  x s c ,  t h e  l o t  i s  accepted. 

Example 5.1: S i n g l e  Sampling P lan  

Sample Size ( n )  = 200 

Acceptance Number ( c )  = 3 

Accept 1 o t  if Numbcr o f  U e f  c c t  i ves ( x )  i 3 

. . . - -  . Re jec t  Otherwise - -  . . -  - 
5.2.2 Doub leSamp l i ngP lan  

I n  a double sampling p l a n  two samples a re  planned. A f t e r  t h e  f i r s t  
sample o f  s i z e  nl, t h e  sample may be r e j e c t e d  i f t h e  number o f  de fec t i ves  xl ., 
i s  g r e a t e r  than  o r  equal t o  t h e  r e j e c t i o n  number rl, o r  i t  may be accepted ~f 
x1 i s  l e s s  than  o r  equal t o  t h e  acceptance number c l .  More o f ten ,  however, 
c1 < x < rl and a second sample o f  s i z e  n2 i s  taken. If t h e  t o t a l  number o f  
d e f e c t i v e s  X = x l  + x2 i s  l e s s  than  o r  equal t o  c2, t h e  f i n a l  acceptance 
number, t h e  l o t  1s accepted. If X > c2, o r  e q u i v a l e n t l y  x2 > c2 - x l ,  t h e  l o t  
i s  r e j ec ted .  

Example 5.2: Double Sampling P lan  

Sample S ize  Acceptance No. (ci) Re jec t i on  No. ( r i )  

2. n2 = 125 c 2 ' =  4 

Accept t h e  l o t  i f  xllcl, r e j e c t  i f  xlZrl 

Take second sample i f  cl < xl < rl 

Accept t h e  l o t  i f  X = xl + x 2 C c 2 .  

 eject- otherwi  se 

5.2.3 M u l t i p l e  Sampl i.ng Plans 

M u l t i p l e  sampling plans a r e  simply an extens ion o f  t h e  double sampling 
p l an  w i t h  more than  two stages. At each stage a sample o f  s i z e  nl i s  taken 



. . 
and t h e  numberof de fec t i ves  xi found i s  compared t o  acceptance (ci) and 
r e j e c t i o n  ( r i )  numbers. - A t  each s tage,  a  l o t  i s  e i t h e r  accepted, r e j e c t e d  o r  
t h e  dec i s i on  t o  t ake  another sample i s  -made. (An excep t ion  i s  t h a t  . i n  some 
plans, no, 'acceptance dec i s i on  can be made a,t t h e  f i r s t  stage.) A f t e r  a  , . 
spec i f i ed  number o f  s t a j es ,  a  f i n ' a l  dec i s i on  i s  made. 

Example 5.3: 7-Stage Sampl i ng P lan  

Sample S ize  ~ c c e ~ t a n c e  No. (ci) R e j e c t i o n  No. ( r i )  

1. .n l  =, 50 No Dec is ion  . '.'.. ' 3  
. . 

2. n2 = 5 0  0  3  
. . 

3. n 3 =  50 1  4  

4. ,n4 = 50 2  5 

5. n 5 =  50 3  6  

To ta l  o f  N = 350, maximum number 

I n  t h e  long run a m u l t i p l e  sampl i n g  p l an  produces a  lower  average t o t a l  
sample s i z e  N  than  t'he equ i va l en t  double  sampling p l a n  (which i n  t u r n  has a  
lower  average t o t a l  sampl e  s i z e  than  t he  equ iva le r i t  s i n g l e  sampl i n g  p lan) .  
For a  g iven  l o t ,  however, t h e  maximum sample s i z e  may be requi red.  A  drawback 
t o  t he  mu l t i . p l e  sampling p lans a re  t h a t  ,they, r e q u i r e  more c a r e f u l  adherence t o  
t h e  sampling procedures, more c a r e f u l  data hand l i  ng, and may r e q u i r e  samples 
from o t h e r  l o t s  t o  be he ld  i n  l imbo  w a i t i n g  t o .  be tested.  

5.2.4 Other Sampl i ng Plans- : .  

Two o t h e r  sampl i ng p l  ans a r e  iequen t i ' a l  sampl i ng and. cont i nubus 
sampl ing. Sequenti a1 sampl i n g  i s  t h e  u l t i m a t e  extens ion o f  m u l t i p l e  sampl i n g  
w i t h  t h e  number o f  stages unspec i f i ed .  Continuous sampl i n g  i s  a  procedure i n  
which l O O X  i nspec t i on  i s  app l i ed  u n t i l  a  s p e c i f i e d  number o f  consecu t i ve  non- 
d e f e c t i v e  i tems i s  found. Then sa'mpling i s  performed a t  some g i v e n . r a t e .  - 
When a  new d e f e c t i v e  i s  found, 100% : inspect ion i s  re - i .ns ta ted .and  t h e  ,process 
i s  repeated. . . , .  

. , 
. . 

1 i 

5.3 Eva lua t i on  o f  sampling ~ l a n i  ' 

Given any s i n g l e  sampl i n g  p l a n  (n, c); where n  i s  t h e  sarnpl e  s i z e  and c  
i s  the acceptance number, i.t remal ns t o  be determined i f  t h e  p l a n  prov ides t h e  
des i red  d i s c r i m i n a t i o n  between good and bad l o t s .  The s t a t i s t i c a l  ' t o o l  f o r  
eva lua t i ng  t h e  wor th  o f  a .sampl ing p l a n  i s  t h e  ope ra t i ng  c h a r a c t e r i s t i c  (OC 
curve, which was f i r s t  d iscussed i n  connec t ion  w i t h  hyp0thes.e~ t e s t s  on ..a mkan 
i n  Sec t ion  3.6.2. 



What i s  requ i red  o f  a  sampling p lan  i s  a h igh  p r o b a b i l i t y  o f  accept ing 
a good l o t  (i.e., one w i t h  a low propor t ion  o f  de fec t i ves) ,  and a low 
p r o b a b i l i t y  o f  accept ing a bad l o t  (i.e., one w i t h  a h igh  propor t ion  o f  
de fec t i ves) .  More s p e c i f i c a l l y ,  l e t ' s  requ i re  t h e  h igh  p r o b a b i l i t y  o f  
accept ing a good l o t  t o  be 1 - a = 0.95. Further,  d e f i n e  the  p ropo r t i on  o f  
de fec t i ves  p i n  a good l o t  as t h e  Acceptable Q u a l i t y  Level (AQL). Thus, g iven 
a sampling p lan  (n, c ) ,  

P r  (Accept l o t ' !  n, c, p  SAQL) 2 0.95. 

I f  we f u r t h e r  def ine t h e  Rejectable Q u a l i t y  Level (RQL) as t h e  smal lest p  f o r  
which we want t o  have a low p r o b a b i l i t y ,  e.g., P = 0.05, o f  accept ing the  l o t  
( equ i va len t l y ,  a  h igh  p r o b a b i l i t y  o f  0.95 o f  r e j e c t i n g  t h e  l o t ) ,  then 

P r  (Accept l o t  I n, c, p 2 R Q L ) S  0.05. 

To r e l a t e  t h l s  teral.irlo1og.y w i t h  t h a t  u ~ e d  i n  Sect inn 2.6.2, note t h a t  
t h e  Type I E r r o r  o f  r e j e c t i n g  a true hypyLl~esis i s  equiva lent  t o  re jec t i r i g  a 
1st  . w i t h  p = AQL; i -e. ,  

P r  (Type I E r r o r )  = P r  (Reject  l o t  I n, c, p  = AQL) 

= 1 - Pr(Accept l o t  1 n, c, p = AQL) 
5 Q 

Type I 1  E r r o r  i s  equ iva len t  t o  accept ing a l o t  w i t h  p '= KQL; l . e . ,  

P r  (Type I 1  E r r o r )  = P r  (Accept l o t  1 n, c, p  = RQL) 
I P  

The operat ing c h a r a c t e r i s t i c  curve i s  then the  p l u t  o f  probabi 1  i t i e s  
f o r  t h e  whole range o f  poss ib le  p values. 

5.3.1 O.C. Curve f o r  a S ing le  and Double Sampliny Plan 

The p r o b a b i l i t y  o f  accept ing a l o t  can be based on t h e  binomial  
d i s t r i b u t i o n .  For  a s i n g l e  sampling plan, 

P r  (Accept l o t  I n, c, p) = (n )px( l  - p)n  - 
x=o X 

where x i s  t h e  number o t  de fec t i ves  found i n  t h a  sample, p i s  t h e  p ropo r t i on  
assumed t o  be de fec t i ve  i n  the  l o t ,  and c i s  t he  acceptance number f o r  a  
s i n g l e  sampling p lan w i t h  sample s i z c  n. (For l a rge  n ( 2  20) and small 
p  (1 0.05), a Poisson d i s t r i b u t i o n  may be used t o  approximate t h e  binomial  
p r o b a b i l i t i e s ,  i.e., 

-np h ) x  P r  (Accept l o t  ( n, c,  p) = z e 
x=o x ! 

For  a double sampling plan, t h e  ca1,culation i s  a b i t  more cu111plex. 
The p r o b a b i l i t y  o f  accept ing on t h e  f i r s t  sample i s  



Pr  (Accept 1 o t  1 nl ,-' cl , rl , p )  = il(":) ~1 ( 1  p) nl l- X1 . 
xl=O x 

However, if t h e  val  ue o f  x i s  between cl and r ( t h e  r e j e c t i o n  number), a 
second sample i s  taken. ~ t ? e  p r o b a b i l i t y  t h a t  t b e l o t  i s  accepted a f t e r  t h e  
second sample, g i ven  t h a t  a second sample was taken, i s  t h e  sum o f  
probabi  1 i t  i e s  t h a t  t h e  second sample w i  11 not  produce more than c 2  - xl 
d e f e c t i v e s  ( f o r  a t o t a l  of xl + x < c 2 )  t imes t h e  p r o b a b i l i t y . o f  g e t t i n g  
e x a c t l y  x l  de fec t i ves  i n  t h e  f i r s $  sample. 

. . .: 

P u t t i n g  i t a l l  together ,  t h e  p r o b a b i l i t y  of accept ing a l o t  w i t h  a double  
sampling p l an  i s  t h e  p r o b a b i l i t y  o f  accept ing t h e  l o t  based on t h e  f i r s t  
sample on ly ,  p l u s  t h e  p r o b a b i l i t y  o f  accept ing t h e  l o t  a f t e r  t h e  second 
sample. 

P r  (Accept l o t  I nl,n2, c1,c2,rl,r2,~) . . . . . .. 

= Pr(Accept 1 o t  I nl ,cl ,rl ,p)+Pr(Accept 1 o t  a f t e r  2nd sampl e 1 n2 ,c2, r2.p ,xl ) 

To i l l u s t r a t e ,  l e t ' s  eva lua te  t he  examples o f  .5.1 and 5.2. 

Example 5.4: S i ng le  Sampling P lan:  n = 200 ' c  = 3 .. 
3 

P r  (Accept l o t  1 n. c. p = 0.05) = 1 (2:0) px('l-p)200 - 
x= 0 

Double Sampling Plan nl = 125 .. cl,= 1, r1 = 4 
n2 = 125 C z  = 4, r2 = 5 

- 0.05) P r  (Accept l o t  1 nl, np, cl, c2, p - 



5.3.2 I n t e r p r e t a t i o n  o f  O.C. Curves 

Many sampl i n g  p lans  may e x i  s t  whose opera t ing  c h a r a c t e r i s t i c  curves 
go th rough one o f  t h e  s p e c i f i e d  p o i n t s  ( 1  - a ,  AQL) o r  ( P ,  RQL). Thus, t o  
s a t i s f y  bo th  type  o f  e r r o r  requirements, a t  l e a s t  two p o i n t s  on t he  O.C. cu rve  
a re  needed t o  eva lua te  t h e  curve. I n  f ac t ,  severa l  sampling p lans may have 
approxirnately t h e  same O.C. curves. For each s i n g l e  sampling plan, t h e r e  a re  
approx imate ly  equ i va len t  double and m u l t i p l e  sampling plans. Table 5.1 g ives  
s qet o f  O.C. va lues f o r  t h e  s i n g l e  and double sampling p lans and F igu re  5.1 
shows t h e i r  O.C. curyes. 

Table st 1 t npe ra t i ng  C h a r a c t e r i s t i c  Values 

Percent 
De fec t i ve ,  p 

(ACCEPT) 

S i  nq le  Sample Double Sample 
P lan  (Ex. 5.1) P lan (Ex. 5.2) 

- 
.O1 .02 .03 .04 .05 

p r o p o r t  i o n  De fec t i ve  

FIGURE 5.1 : Operat ing C h a r a c t e r i s t i c  Curve f o r  Near ly  
Equ iva len t  S i n g l e  and Double Sampling Plans 



The producer o f  l o t s  o f  ma te r i a l  wants t o  be sure t h a t  good m a t e r i a l  i s  
not  r e j e c t e d  t oo  f requent ly .  Thus, he i s  concerned p r i m a r i l y  about t h e  Type I 
E r r o r  o f  r e j e c t i n g  a good l o t ;  i.e., p = AQL. The p r o b a b i l i t y  o f  r e j e c t i n g  
good l o t s ,  Pr(Reject  l o t  I p = AQL) i s  o f t e n  c a l l e d  t h e  Producer 's Risk. The 
consumer on t h e  o t h e r  hand i s  more concerned about accept ing bad l o t s .  The 
p r o b a b i l i t y  o f  t h e  Type 11 E r r o r  o f  accept ing bad 1 ots,  Pr(Accept 1 o t  I p=RQL) , 
i s  o f t e n  ca l  l e d  t h e  Consumer's Risk. 

Accordingly,  sample p lans a re  sometimes cons t ruc ted  t o  assure a c e r t a i n  
consumer p ro tec t ion .  For exam,ple, a 90/95 assurance p lan  requ i res  t h a t  t h e  
opera t ing  c h a r a c t e r i s t i c  curve o f  the  sampling p l an  pass through t he  p o i n t .  
B =  0.10, p = 0.05. That i s ,  w i t h  90% conf idence no more than  5% o f  an 
a.ccepted l o t  w i l l  be de fec t i ve .  S i m i l a r l y ,  a 99/90 consumer assurance p l a n  
s ta tes  t h a t  f o r  an accepted l o t  t h e r e  i s  99% conf idence t h a t  no more than  10% 
o f  t h e  l o t  i s  de fec t i ve .  The a s t u t e  student may recognize t h e  exp lana t ion  
here t o .  be very s i m i l a r  t o  t h a t  o f  a t o l e rance  i n t e r v a l  (Sect ions 3.7, 4.5), 
where y = 1 - B  , P = 1-p. F i gu re5 .2  shows f o u r  s i n g l e  sampling p lans t h a t  
g i v e  95/99 assurance t o  t h e  consumer. 

FIGURE 5.2: Operat ing C h a r a c t e r i s t i c  Curves 
Sampling Plans t o  Meet a 95/99 
Assurance Level  

ATTRIBUTE PLAN 

PROBAB l L l TY 
0 F 

ACCEPTANCE 

0 02 0 4  06 0 8  10 12 14 
PERCENT DEFECTIVE 

*5.4 Average Outgoi ng Qua1 i ty Level 

Assume t h a t  t h e  q u a l i t y  o f  a l o t  o f  incoming ma te r i a l  i s  a c e r t a i n  
percent de fec t i ve  and, g iven a sampling p lan, .  i t  i s  advantageous t o  know t h e  
q u a l i t y  o f  m a t e r i a l  outgoing. Obviously, a sampling p l a n  which produces a 
lower  average outgo ing q u a l i t y  l e v e l ,  AOQL, than does another p l an  i s  a 
p re fe rab le  sampl i n g  plani  



L e t  p  be t h e  p r o p o r t i o n  o f  d e f e c t i v e  pieces i n  an incoming l o t ,  .and 
~ r ( A l  p). be t h e  p r o b a b i l i t y  o f  accept ing t he  l o t  according t o  a  s p e c i f i e d  
sampl ing plan; e.g., i f  x 5 c  de fec t i ves  a re  found i n  t he  sample, accept t he  
l o t .  The average outgo ing q u a l i t y  AOQ f o r  t h e  accepted l o t s  i s  t h e  p r o p o r t i o n  
p  o f  d e f e c t i v e s  i n  t h e  l o t s  which were accepted, t imes t h e  p r o b a b i l i t y '  o f  a  
1  o t  b e i  ng accepted. 

AOQ (Accepted . lo ts )  = p  Pr (A lp ) .  

I f  t h e  r e j e c t e d  1  o t s  a r e  s.ubjected t o  100%. i nspect i o n  and a1 1  de fec t i ves  are 
rep laced  w i t h  acceptable i tems, t hen  the  t o t a l .  AOQ i s ' .  

AOQ = p  Pr(A1p) + 0  ~ r ( ~ l p ) .  .. 

where P ~ ( R I  p )  i s  t he  p r o b a b i l i t y  o f  r e j e c t i n g  a  l o t  g iven  t h e  p a r t i c u l a r  
sampl ing p l an  and p r o p o r t i o n  d e f e c t i v e  p, and 0  i s  t h e  p ropo r t i on  o f  de fec ts  
t h a t  supposedly i s  l e f t  a f t e r  100% inspect ion.  

The average ou tgo ing  qual  i ty  1  i m i t  o r  1 evel  AOQL, i s  ,defined as t h e  
1  i m i t i n g  qual  i t y  o f  t h e  accepted ma te r i a l  and i s  t he  maximum AOQ over  a1 1 
values o f  incoming qual  i t y ,  p. I f  t h e  a tua l  incoming q u a l i t y  p  i s  l e s s  than 
t h e  acceptable qual i ty l e v e l ,  AQL, then  few l o t s  a re  r e j e c t e d  and t h e  AOQ i s  
good. I f  t h e  incoming q u a l i t y  i s  g rea te r  than  t h e  r e j e c t a b l e  l e v e l ,  RQL ( o r  
LTPD, l o t  t o l e rance  percent  d e f e c t i v e )  then  many l o t s  w i l l  be re jected.  Wi th  
100% i n s p e c t i o n  o f  these l o t s  and rep lac ing  de fec t i ves  by good q u a l i t y  
m a t e r i a l ,  t h e  AOQ w i l l  aga in  be good, even though t h e  incoming qual i t y  was 
poor. When the  incomi ng qua l  i ty  i s  between t h e  acceptable 1  evel  and r e j e c t a b l  e  
l e v e l ,  t h e  outgoing q u a l i t y  i s  t h e  poorest, b u t  s t i l l  acceptable. 

P r (  Accept 1  o t )  

0 AOL R O L  P ' 



Exampl e 5.5 

Suppose l o t s  o f  1,000 f u e l  elements f o r ' a  commercial: nuc lear  r e a c t o r  a re  
rece ived  from t h e  vendor and a re  t e s t e d  by sampl ing 100 elements from each 
1 o t .  The acceptance c r i t e r i o n  i s  t o  r e j e c t  t h e  l o t  i f  t h r e e  o r  more 
de fec t i ves  a re  found and accept t h e  l o t  if 2 o r  fewer a re  found. The r e j e c t e d  
1 o t s .  a r e  then subjected t o  100% i n s p e c t i o n  and a1 1. d e f e c t i v e s  . rep1 aced. The 
AOQL .can be obta ined as f o l l  ows: 

AOQ = p p r (A lp )  

us ing  a Poisson approximat ion f o r  t h e  sampling plan, 

P Pr (A (p )  AOQ 

Maximizing p P ? ( ' A ~ ~ )  w i t h  respect  t o  p we o b t a i n  a maximum value AOQL 
o f  0.0138 a t  p + 0.023. 

Example 5.6 

A m o d i f i c a t i o n  can be .made by rep1 ac ing t h e  de fec t i ves  found i n  t h e  accepted 
l o t s  also. Le t  D be t h e  number o f  de fec t i ves  i n  the.  l o t  and assume a 
hypergeometric d i s t r i b u t i o n  ( r ev i ew  Sect ion.  2..4.3)., 

where x i s  t h e  number o f  d e f e c t i v e s  found i n  t h e  sample and n-x i s  t h e  number 
o f  acceptable i tems i n  t h e  sample. I f  p i s  t h e  p r o p o r t i o n  de fec t i ve ,  then 
p =  D . The p r o b a b i l i t y  of accept ing a l o t  i s  Pr(A1p = D ), b u t  

1000 1000 



i f  one de fec t i ve  i s  found i n  the  sample, i t  i s  replaced. Then subt rac t  from 
~ r ( ~ / p )  the  p r o b a b i l i t y  1 P r ( x  = 11 D). S i m i l a r l y  f o r  f i n d i n g  two 

m;trcr 
defec t ives ,  subt rac t  from P ~ ( A I ~ )  the  value 2 

'1ooo 

Values f o r  AOQ, where p = ~/.1000, D = 1000 p, are: 

P D AOQ 
50 . 0.0060 

0.01 10 0.0085 0.06 6 0 0.0036 
0.02 20 0.0123 . 0.07 70 0.0020 
0.03 30 0.01'21 0.08 80 0.001 1 
0.04 40 0.0092 0.09 90 0.0005 

The AOQ f u n c t i o n  can be shown t o  have a maximum o f  AOQL = 0.0129 a t  p=O 023. 
Note t h a t  t h i s  t s  very s i m i l a r  t o  the  previous c a l c u l a t i o n  where we d i d  no t  
rep lace defec t ives  i n  the  acceptable l o t s  and we used the  Poisson 
approximation. 

.E,xample 5.7 

" C o ~ s i d e r  the  double sampling plan, 

l o t  s i z e  N = 400. 
sample s ize n = 30 a F i r s t  accept i f  no e fec t i ves  found, c = 0 

Sample r e j e c t  i f  2 o r  more fourfd, rl = 4 
i f  one defec t  i s  found, take second sample. 

s i z e  o f  remaining l o t  = N' = 370 
Second sample s ize n2 = - 6 0  
Sample accept i f  no addi t i o n a 1 d e f e c t i v e s  are found, c2 = 1 

r e j e c t  i f  one o r  more add i t i ona l  defect ives are found, r 2  = 2 

Suppose D, = 5 i s  an acceptable number, o f  defect ives f o r  the l o t  

8 0 -  5 ( i . ,  A Q L = - -  - ) and Dl = 10. i s  a r e j e c t a b l e  number o f .  
N 400 

de fec t i ves  fo r  the l o t .  ( i  .e., RQL = ' = 10 1. Then f o r  the f i r s t  - - 
-N 400 

sample, D =Do = 5 and D = = 10, and f o r  the second sample, given t h a t  one 
de fec t i ve  was found i n  i r s t  sample, D '  = D t l  = 4 and D '  = D l 2  = 9. Thus, 



i s  t h e  p r o b a b i l i t y  o f  accept ing a l o t  a t  t h e  AQL value.The p r o b a b i l i t y  o f  
accept ing a l o t  a t  t h e  RQL value, Dl = 10, i s  

The AOQL l e v e l  i s  obta ined by maximizing pAOQ = D P r ( ~ c c e ~ t I D ) .  
400 

For D = 5, AOQ = 0.0101, and f o r  D = 10, AOQL = 0.0133, where we assumed 
r e j e c t e d  l o t s  a re  subjected t o  100% inspec t i on  and a l l  de fec t i ves  replaced. 

5.5 Va r i ab le  Sampl i ng 

Va r i ab le  sampling deals  w i t h  cont inuous measurements, such as length,  
weight, weight percent,  r a t h e r  than  success / f a i l u re  t ype  data. Many o f  t h e  
p r i n c i p l e s  d i  scussed f o r  a t t r i b u t e  data have a1 ready been. d i  scussed f o r  
v a r i a b l e  data i n  Chapter 3. S p e c i f i c a l l y ,  t h e  concepts of t e s t s  o f  hypotheses 
f o r  t he  mean, opera t ing  c h a r a c t e r i s t i c  curves, and sampl e s izes  determi n a t i o n  
f o r  s p e c i f i e d  Type I and Type I I e r r o r  l e v e l s  were presented e a r l i e r .  The 
i n t e r e s t e d  reader should rev iew sec t ions  3.5--3.7 a t  t h i s  time. 

I n  t h e  remainder o f  t h i s  chapter,  then, a t t e n t i o n  w i l l  be focused on 
t h e  q u a l i t y  c o n t r o l  techniques o f  p roduc t ion  c o n t r o l  cha r t s  f o r  cont inuous 
var iab les.  An elementary d iscuss ion  o f  Shewhart Contro l  Charts f o r  t h e  mean 
and v a r i a t i o n  o f  a p roduc t ion  process w i l l  be presented. Many o t h e r  types nf 
c o n t r o l  cha r t s  c x i  s t ,  i n c l  ud i  rig cha r t s  f o r  a t t r i b u t e  sampl i ng. For more 
i n f o r m a t i o n  on c o n t r o l  char ts ,  see books on Qua1 i ty Contro l ,  such as by Duncan 
C111, and bas ic  s t a t i s t i c a l  t e x t s ,  such as by Johnson and Leone [19], and 
M i  1 1 e r  and Freund [25]. 

5.6 Shewhart c o n t r o l  Charts 

The ob jec t  o f  a c o n t r o l  cha r t  i s  t o  p rov ide  an automatic procedure 
f o r  warning t h e  manufacturer o f  t r o u b l e  w i t h  h.is p roduc t ion  process. There - 
a r e  several  aspects o f  h i s  product  w i t h  which he 'raay be concerned. He i s  



concerned about t h e  average q u a l i t y  o f  h i s  product, t he  v a r i a b i l i t y  o f  the  
product, and t h e  propor t ion  o f  i n d i v i d u a l  items t h a t  do n o t  meet the  
manufactur ing spec i f i ca t ions .  I n  add i t ion ,  he woul d 1 i k e  a procedure f o r  
checking these c h a r a c t e r i s t i c s  o f  h i s  product t h a t  can be performed q u i c k l y  

, 
. 

and e a s i l y  by the  personnel on the  l i n e ,  thus avoid ing a possib le serious l a g  
t ime between t h e  occurrence o f  a problem and i t s  d i  scovery by. p l a n t  
personnel. With these p o i n t s  i n  minds, three basic types o f  char ts  w i l l  be 
discussed: t h e  z -cha r t  f o r  d e t e c t i  ng departure from the process average, the  
R-chart f o r  de tec t ing  problems w i t h  process v a r i a b i l i t y ,  and an i n d i v i d u a l -  
measurement c h a r t  f o r  moni to r ing  the  r e l a t i o n s h i p  o f  i nd i v idua l  items t o  the  
product  s p e c i f i c a t i o n  1 i m i  t s .  F ina l  ly ,  an Acceptance Control Chart w i l l  be 
discussed which combines some o f  t h e  features o f  an i - c h a r t  and a c h a r t  f o r  
i n d i v i d u a l s .  - 
5.6.1 The ;;-chart 

The ob jec t i ve  o f  the  ;;-chart i s  t o ,  keep tabs or1 the average q u a l i t y  
o f  t he  product. This i s  done by tak ing  a sample o f  n bbservat iur~s d t  regu la r  
i n t e r v a l  z .  Hopeful l v ,  t he  averages obtained w i l l  stay c lose t o  the process 
average es tab l ished by a c o l l e c t i o n  o f  previoirsly ob td l r~ed ( ~ v e t - ~ ~ g t s  of n 
observations'. I f  the process d r i f t s  o r  s h i f t s ,  o r  simply goes berserk 
temporar i ly ,  t he  con t ro l  c h a r t  should detec t  t h i s  departure from usual 
behavior  ...q u i c k l y .  

The f i r s t  step i n  using an x-control  c h a r t  i s  ob ta in ing  the process 
average and con t ro l  1 i m i  t s .  Ideal  ly ,  the process average w i l l  be the  same as 
t h e  nominal o r  t a r g e t  value f o r  the  product c h a r a c t e r i s t i c  i n  question. 
Unfor tunate ly ,  t h i s  i s  almost never t h e  case i n  prac t ice ,  bu t  hopefu l ly  i t  
w i l l  be c l  ose. The process average .X i s  obtained from the 'averages o f  k 
samples each o f  s i z e  n, ' 

A t  l e a s t  20 such 'averages o f  about 5 observations each are recommended. 

The con t ro l  1 i m l t s  must be establ ished next. The choice o f  cont ro l  
1 i m i  t s  i s  a r b i t r a r y ,  bu t  a s.tandard p rac t i ce  'i 5 t o  use 3-sigma 1 i m i  t s .  That 
i s ,  t h e  con t ro l  l i m i t s  correspond t o  

where p i s  t he  t r u e  yr-ocess mern and o - a o /  i s  the  t r u e  process 
Xi 

standard dev ia t i on  from an average xi o f  n observations. The 3-sigma l i m i t  
y i e l d s  a p r o b a b i l i t y  o f  0.0027 f o r  an average t o  exceed e i t h e r  the upper o r  
lower l i m i t  by chance alone; i.e., Pr(  ( F  -pI > 3 0 -  ) = 0.0027. This 

Xi 
low chance o f  exceeding the  l i m i t s  gives a great  deal o f  p ro tec t i on  against  
t h e  c o s t l y  e r r o r  o f  unnecessari ly stoppi ng product ion. 



I n  p rac t i ce ,  o f  course, a n d u -  a r e  unknown. From t h e  same 
Xi - 

data used t o  compute t h e  process average X, t h e  es t imate  o f  30 . -  i s  
Xi 

obtained. The est imate t o  be. used f o r  t h i s  R c o n t r o l  c h a r t  i s  

where = 
k  z Ri, Ri = max (xij) - min (xi j ) ,  and A2 i s  a  t a b l e d  va lue 
i = l  

(Table XIV) such t h a t  A2R i s  an es t imate  o f  3 u  pi. The range Ri i s  known 

t o  be a  s a t i s f a c t o r y  est imate o f  c f o r  small sample sizes. It should be noted 
t h a t  i t  i s  assumed here t h a t  Xi f o l l o w s  a  normal d i s t r i b u t i o n .  The c e n t r a l  
1  i m i t  theorem, however, reduces cons iderab ly  t h e  impact o f  any depar ture from 
no rma l i t y  i n  t he  i n d i v i d u a l  observat ions x i j .  

Having es tab l i shed  t h e  process average and c o n t r o l  l i m i t s ,  one should 
f i r s t  p l o t  t h e  o r i g i n a l  k  averages as i l l u s t r a t e d  i n  F igu re  5.3 t o  be assured 
t h a t  t h e  process i s  indeed i n  con t ro l .  . I t  i s  very u n l i k e l y ,  however, t h a t  any 
average Fi w i l l  exceed t h e  c o n t r o l  l i n e s  s ince  i t was used i n  e s t a b l i s h i n g  
those l i nes .  Now succeeding averages may be p l o t t e d  and t h e  process observed 
f o r  evidence o f  be ing ou t -o f -con t ro l .  A c t u a l l y  not  one, b u t  severa l ,  
i n d i c a t o r s  may be used: 

1. 

X " 

X x 
X I I I I I  X 1, I : l y l , ,  X , 

// 

. X  X ' X 

X X 
f/ 

r/ 

RUN ORDER 

Figu.re 5.3: X-Control Chart  w i t h  3-Sigma L i m i t s  



- 
1 . xi exceeds 3-sigma 1 i m i  t. 

This imp l i es  a sudden s h i f t  i n  the process has occurred o r  
a t rend  has devel oped which may be i r r e v e r s i b l e  i f  l e f t  
alone. I f  the  v i o l a t i n g  value seems iso la ted,  perhaps a 
data hand1 i n g  e r r o r  has occurred. The o r i g i n a l  d a t a  f o r  Tli 
should be invest igated.  

- 
2. xi exceeds 2-sigma 1 i m i  t. 

This i s  o f t e n  used as a warning s ignal ,  b u t  i s  n o t  
necessar i ly  an out-of -contro l  s ignal  . (2-sigma 1 i m i  t s  are 
given by 2 ~ ~ f i / 3 . )  

3.  A - r u n  o f  considerable length  on one s ide o f  the t a r g e t  
- 

value (x) i nd i ca tes  a possib le s h i f t  o r  trend. A - run i s  a 
ser ies  o f  consecutive averages Xi t h a t  occur on the  same 
s ide o f  t he  t a r g e t  value. A run o f  8 c o n s e c ~ t i v e  averages 
w i l l  occur by chance alone approximately 4 times out  O f  a 
1,000 compared t o  the chance o f  a s ing le  average exceeding 
the 3-sigma l i m i t  ( 3  ou t  o f  1,000). Other run i n d i c a t o r s  
w i t h  s i m i l a r  probabi l  i t i e s  o f  occurr ing by chance are 

10 o u t  o f  11 on same s ide 

12 o u t  o f  14 on same s ide 

14 o u t  o f  17 on same s ide  

16 o u t  o f  20 on same side. 

If evidence i s  obt9ined t h a t  the process i s  out-of-curl trol  , 
product ion  i s  usual ly stopped, and the  process invest igated.  Upon r e s t a r t i n g  
t h e  process, new con t ro l  1 i nes  should be establ  istied. 

5.6.2 The R-Chart 

Although the process average i s  important t o  cont ro l ,  t he  successive 
averages could be we1 1 w i t h i n  t h e  1 l m l t s  and the  process slS11 be outsof- 
control,  This  may occur i f  t h e  process has become extremely e r r a t i c .  I f  the  
s tandard  dev ia t i on  o f  t he  process goes up considerably, the  average may appear 
adequate, b u t  a l a rge  p ropor t i on  o f  i nd i v idua ls  may be exceeding the 
sp-eci f i c a t i o n  1 i m i  ts.  Obviusly, then, a cor l t ro l  c h a r t  moni t o r l n y  process 
v a r i a b i l i t y  i s  i n  order. One such chart; would be the s-chart  b u t  due t o  thc  
greater  complexity and t ime requ i red  f o r  an operator t o  ca l cu la te  

s i d i  (xi - TCi 12/(n - 1 )  r a t h e r  than Ri, on ly  the  R-chart w i l l  be presented 
-1 =1 

here: Th is  i s  i n  keeping w i t h  the  p r i n c i p l e  o f  es tab l ish ing  procedures which 
can be performed qu ick l y  and e a s i l y  by personnel on the  product ion l i n e .  



For an R-Chart, the  ranges Ri a r e  observed f o r  each o f  the k samples 
o f  n observations used f o r  es tab l i sh ing  the  1 i m i t s  o f  t he  K-control  char t .  
The 3-sigma con t ro l  l i m i t s  f o r  Ri, then are  

Upper Control  L i m i t  UCLR = C14i 

Lower Control  L i m i t  LCLR = ~~i 

wher; D3 and D4 a re  found i n  Table X I V .  I f  an i n d i v i d u a l  range value Ri 
exceeds the l i m i t s ,  there i s  s t rong evidence o f  lack  o f  con t ro l .  The process 
should be stopped and an i n v e s t i g a t i o n  i n t o  the cause o f  t he  change i n  
v a r i a t i o n  begun. 

5.6.3 An Example o f  an .;;-chart a'nd R-Chart 
. , 

The x-char t  and the  R-char t  go hand-in.-hand. and should be app l ied  
together.  

Example 5.7 

The data given i n  Table 5.2 represents coded measurements o f  the  g ra in  s i ze  o f  
f ue l  pel l e t s  f o r  t he  1 ight-water  breeder reac tor .  Samples were taken f o r  25 
consequtive blends o f  pel l e t  mater ia l  . 
The process average and average range a r e  

- - 
x = 13.70, n = 5, k = 25 

The 3-sigma con t ro l  l i m i t s  f o r  ii are  

LCL = 13.70 - 0.577 (5.88) = 10.31. 

UCL = 13.70 +'0.577 (5.88) = 17.09 

The 3-sigma con t ro l  l i m i t s  f o r  R are 

LCLR = C13E = 0 

U C L ~  = D ~ R =  2.115 x 5.88 = 12.44 

The con t ro l  cha r t s  a re  shown i n  F igures 5.4 and 5.5. The process appears t o  
be under con t ro l .  



Table 5.2: Pel l e t  Gra in Size f o r  25 Consecutive Blends 

Sampl e 
Number 

1 
2 
3 
4 
5 
b 
7 
8 
9 
10 
1 .l 
12 
13 
14 
15 
16 
17 
18 
19 
2 0 
2 1 
2 2 
23 
24 
2 5 

Sample Measurements (Coded) S t a t i s t i c s  

R i  
2 S i S i  

- - 
5 3.80 1.95 
5 3.30 1.82 
5 5.30 2.30 
5 3.50 1.87 
4 2.30 1.52 

IU 15.50 3.94 
7 8.80 2.97 
7 8.80 2.97 
5 3.50 1.87 
8 10.30 3.21 
8 3.30 3.05 
6 5.50 2.35 
7 8.50 2.92 
3 1.30 1.14 
5 3.30 1.82 
7 7.50 2.74 
7 6.30 2.51 
5 4.50 2.12 
6 6.80 2.61 
7 9.50 3.08 
4 2.30 1.52 
7 0.00 2.03 
3 1.30 1.14 
9 10.50 3.24 
2 - 0.80 0.89 

XR.; - = 147 
R = 5*P,3 



UCL =12.44 -R- - - 
UCL = 17.09 

. . 

F i g u r e  5.4. x -char t  on .Gra in  S ize  F igu re  5.5. R-Chart on Gra in  S ize  
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5.6.4 Cont ro l  Charts on I n d i v i d u a l  Measurements 

N e i t h e r  t h e  ;-chart n o r  t h e  R-chart  ensure t h e  i n d i v i d u a l  
observat ions t o  be w i t h i n  t h e  s p e c i f i c a t i o n  1  im i t s .  For t h i s  reason a c h a r t  
f o r  i n d i v i d u a l s  i s  sometimes desired. Th is  c h a r t  would use t h e  process 
average 2 as a  cen te r  l i n e  and t h e  c o n t r o l  1  i m i t s  should be t h e  s p e c i f i c a t i o n  
l i m i t s ,  o r  some f u n c t i o n  o f  t h e  s p e c i f i c a t i o n  o f  l i m i t s .  An i d e a l  arrangement 
would be fo r  t h e  s p e c i f i c a t i o n  l i m i t s  t o  be i d e n t i c a l  t o  t h e  3-sigma l i m i t s ,  
s i + 3 u .  

a  - a  10 

a  
a  l a  W 

a  a  a  N 
a  - U) 

l .g=13.70 l - - z - 6 -  
' a  - 

2 
(3 

a  4: '. - ' a  
a  

a  2 - a  
LCL = 10.31 - - - - - - - --  

The process standard d e v i a t i o n  may be est imated i n  a t  l e a s t  two ways: 
(1)  d i r e c t l y ,  by t h e  usua.1 e s t i m a t e ' o f  t h e  standard d e v i a t i o n  o f  a 

- 
- a  a  

8 . - .  . . - a  a  a .  a  e 

a  a  

. - a a a a  a  a  a  
a  - a  

a  a  . . 
- a  

- - - 10' ' ' 0  

- 
normal d i s t r i b u t i o n ,  s  =Jx2(xij - X)'/(N - 1) f o r  a t  l e a s t  30 observat ions;  

" " " ' ~ ~ ' . ~ ~ l ' ~ ' t l ~ ' ~ ' l " " l  

and (2 )  I n d i r e c t l y ,  by t h e  es t imate  o f  3 u ~  f o r  t h e  i - c o n t r o l  char t ,  
& = A 2 k j i / 3  : A l t e r n a t i v e l y ,  a  moving range cou ld  be used t o  e s t a b l i s h  t h e  

1  i m i  t s  

- 

N- 1  
where = 1  2 I - x i  I , and d2 i s  g i ven  i n  Table X I V .  S ince these 

-!FI- i = l  



success ive samples o f  s i z e  2  used i n  ob ta i n i ng  a r e  no t  independent, t h e  use 
o f  c l o s e r  c o n t r o l  l i m i t s  (e.g., 2  R/d2) i s  suggested by some authors ( f o r  
example, see Johnson and Leone [19]). 

5.6.5 Acceptance Cont ro l  Charts 

An acceptance c o n t r o l  c h a r t  i s  a  con t ro l  c h a r t  f o r  t he  process 
average t h a t  takes  i n t o  account t h e  s p e c i f i c a t i o n  l i m i t s  f o r  i n d i v i d u a l  
i tems. I f  these s p e c i f i c a t i o n  l i m i t s  a re  s u f f i c i e n t l y  f a r  apar t  compared t o  
t h e  usual  Z -con t ro l  l i m i t s ,  t h i s  procedure may then  l ead  t o  a  r e l a x a t i o n  o f  
t h e  X-con t ro l  1  i m i  ts. 

The procedure i s  t o  f i r s t  determine t h e  process mean t h a t  w i l l  j u s t  
meet t h e  s p e c i f i c a t i o n  requirements t h a t  no t  more than  100P% o f  t h e  i n d i v i d u a l  
i tems w i l l  exceed the  s p e c i f i c a t i o n  l i m i t  (assuming a  normal d i s t r i b u t i o n ) .  
Th i s  process mean i s  then  t h e  r e j e c t a b l e  process l e v e l ,  p L. We next  wish t o  
e s t a b l i s h  a  t e s t  t h a t  w i l l  g i v e  a  low probab i l  i t.y O f  accep!jnq a  mean a t  t h e  
RPL l e v e l  o r  worse. That i s ,  we want t o  e s t a b l i s h  a  c r i t i c a l  va lue gcrit such 
t h a t  t h e  Type I 1  e r r o r  o f  a c c e p t i n g p l p R p L  i s  small;  i.e., 

F i n a l  ly ,  an acceptable process l e v e l  p APL can be determined by app ly ing  a  

Type I e r r o r  c a l c u l a t i o n  f o r  a  g iven  a  l e v e l ;  

Pr(Zi > Zcrit I p = p  APL) I a ,  ( a  smal l ) .  

Thus, t h e  p r o b a b i l i t y  o f  r e j e c t i n g  an average by chance (and hence 
il l u s t r a t i  ng a  l a c k  o f  c o n t r o l ) ,  when the  process mean i s  as good o r  b e t t e r  
thanpRPL i s  small. The c o n t r o l  l i m i t s  f o r  X are  then  t h e  c a l c u l a t e d  c r i t i c a l  

va l  ues Ecri t. 

I n  summary, t h e  acceptance c o n t r o l  cha r t  w i l l  p rov ide  c o n t r o l  l i n e s  
f o r  a  sample average such t h a t  ( I )  t h e r e  i s  a  smal l probabi l i t y  o f  s topping 
p roduc t i on  unnecessar i ly ,  ( 2 )  t h e r e  i s  a  ,smal l  probabi 1  i ty  o f  con t i nu ing  
p roduc t ion  when t h e  process average i s  indeed out -o f -cont ro l , ,  and (3 )  t h e  
r e q u i r e d  p r o p o r t i o n  o f  i n d i v i d u a l  i tems meet t h e  s p e c i f i c a t i o n  l i m i t s .  Th is  
mod i f i ed  c o n t r o l  char t  f o r  averages should then  be used i n  con junc t ion  w i t h  
the  R-Chart. 

Example 5.8 

Suppose t h e  nominal stack l e n g t h  o f  a  f u e l  rod  i s  84 inches w i t h  s p e c i f i c a t i o n  
l i m i t s  o f  + 0.5 in .  No more than  0.5% o f  manhf'actured rods are al'lowed t o  . 
exceed each l i m i t .  A  Type I e r r o r  p r o b a b i l i t y  o f  0.05 i s  t o  be app l ied  t o  t h e  
process a t  t h e  APL l e v e l  and a  Type I 1  e r r o r  p r o b a b i l i t y  o f  P = 0.01 i s  t o  be 
a p p l i e d  t o  t h e  process a t  t h e  .RPL 1  evel. 



Assuming a  normal d i s t r i b u t i o n  f o r  stack lengths,  a  sample s i ze  o f  n  = 4, and 
a  standard dev ia t ion '  o f  u = 0.06 in., t he  upper acceptance c o n t r o l  l i m i t  f o r  X 
i s  obtained as fo l lows .  

1. F i r s t  c a l c u l a t e  t h e  r e j e c t a b l e  process l e v e l  p . The requirement 

t h e  upper speci ? i c a t i o n  l i m i t  (USL). 
RPL i s  t h a t  a t  p = p  p ~  no more than  0.5% o f  t h e  popu a t i o n  s h a l l  exceed' 

Pr(P > 84.5 1 p =  p ~ p L ,  u =.0.06) = 0.005 

This yields 84.5~~~. = 2.576 = P r ( z  > ~0.005) .  Then 
u .  

2.  The second step i s  t o  c a l c u l a t e  t h e  c r i t i c a l  value o f  a  t e s t  on X 
t h a t  w i l l  accept p = p Rpi w i t h  a  p r o b a b i l i t y  o f  0.01. The upper 
c o n t r o l  l i m i t  f o r  Z i s  Xcrit. 

- * 

' Th is  g ives - PRPL = - 2.326 = P r ( l  < z ~ . ~ ~ )  
u / p ,  . t .  

3. F ina l  l y  , td e s t a b l i s h  t h e  -process average t h a t  wi 11 be accepted w i t h  
a h i gh  p r o b a b i l i t y ,  i.e., t h e  acceptable process l e v e l  PAPL. 

These s teps a re  i l l u s t r a t e d  i n  F igu re  5.6. The s tudent  should per form 
the c d l c u l a t i o n s  requ i red  t o  o b t a i n  t h e  l owe rpRPL ,  LCL, and ~ A P L *  
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CHAPTER 6 
COMPARISONS OF POPULATIONS 

Thus f a r  we have discussed the  analys is  o f  data coming from a s i n g l e  
population. I n  many circumstnces we want t o  compare two o r  more 
.populations. We may compare t h e  mean value o f  two product ion processes or. 
compare t h e i r  variance t o  see i f  one process i s  more, consis tent  o r  prec ise 
than another. We may compare a new'process against a standard o r  compare many 
processes t o  see i f  any d i f ferences ex is t .  I n  t h i s  chapter we s h a l l  f i r s t  
examine the. problem o f  comparing two populat ions and then present a general 
procedure ' f o r  compari ng any number o f  popul a t  i ons by an ~ n a l y s i  s o f  ~ a r i  ance 
(ANOVA) t abl e. 

6.1 Comparison o f  Two Means, Variance Known 

Suppose we are i n te res ted  i n  comparing the  means o f  two processes, 
observations from which are considered t o  have come from the- same 
population. .Let x i  - be the  i t h  observat ion from the  j t h  populat ion, F -  be 
the  mean o f  t h a t  podulat ion and r be the  random e r r o r  occuring on t i e  i t h  
observat ion on the  j t h  population. i J~hus ,  we may w r i t e  a model f o r  t h e  problem 
as 

where we usua l ly  assume t h a t  ' the e r r o r  are independently a.nd normally 
d i s t r i b u t e d  w i t h  mean 0 and variance o2 The' processes under cons idera t ion  

j ' 
may d i f f e r  i n  t h e i r  means because they represent d i f f e r e n t  treatments, such as 
two chemical addi t ives,  two a n a l y t i c a l  measuring devices, o r '  two plans o f  
operation. With' variances known we can w i t h  t h e  use o f  t h e  Central  L i m i t  
Theorem compare the  means o f  the  treatments by a standard normal var iable;  l e t  

2 where Zj i s  t he  average o f  t h e  n j  observat ions from t h e  j t h  treatment and o j 

i s  t h e  known variance. These observations are obtained i n  a random order t o  
en u re  t h e i s  independence. Thus, t he  variance o f  t he  s t a t i s t i c  Xl - X2 i s  2 

In1 +u2  i n 2  . To t e s t  the  n u l l  hypothesis t h a t  Ho: p1 -p2  = 0 (o r  any 

o ther  value) , o r  t o  compute a confidence i n t e r v a l  f o r  p - p 2, we need only t o  
r e f e r  t o  t he  t a b l e  of standard normal deviates. 

Suppose it i s  thought t h a t  by changing the  r a t e  o f  cobl ing l i q u i d  
f low ing across the  c u t t i n g  edges o f  a h igh speed d r i l l  t he  t o o l  1 i f e  



cou ld  be increased. To t e s t  t h i s  hypothesis,  seven observat ions were 
ob ta ined  us ing  t h e  standard f l o w  r a t e  (process 1 )  and s i x  
observa t ions  were ob ta ined  us ing  t he  new (process 2) f l o w  r a t e ,  a1 1 
t h i r t e e n  t r i a l s  performed i n  random order. The r e s u l t s  were - 
XI = 12.4 hours n l  = 7, 22 = 13.6 hrs., n2 = 6, where 

2 i t  i s  a l so  assumed t h a t  fl: = 1.0 (hrs.)', and 0 ;  = 2.0 (hrs.)  . 

Since  -1.74 i s  much l e s s  than -1.645 (Pr(z<-1.645) = 0.05), we r e j e c t  
t he  hypothes is  t h a t  t h e  f low r a t e s  have n o  e f f e c t  on t o o l  l i f e .  Th i s  
i n f e r e n c e  i s  based on a one-sided hypothesis t e s t  w i t h  a 5% 
s i g n i f i c a n c e  l e v e l  ( i  .e., Type I e r r o r  p r o b a b i l i t y ) .  

6.2. Comparison o f  Two Variances 

We may a lso d e s i r e  t o  t e s t  whether o r  not two var iances a re  t h e  
same. Suppose observat ions from two sources are normal ly  d i s t r i b u t e d .  I s  one 
process o r  t reatment  more v a r i a b l e  than another? More p rec ise  o r  
reproduceable? To answer t h e  quest ion, we need f i r s t  est imate t h e  var iance 
from each process as f o l l o w s :  

( n ,  . 1 )  s t  
Each s2 f o l l o w s  a X2 d i s t r i b u t i o n .  More s p e c i f i c a l l y  

A 

2 
Q .  

(n2 - 1)  s; 1 
d i s t r i b u t e d  as x nl-l and 2 

2 i s ' d i s t r i b u t e d  as x ~ ~ - ~ .  To t e s t  
u 

2 

t h e  n u l l  hypothesisH,: u: = c $  = u2 , w e n e e d  t o d e v e l o p a  t e s t  



s t a t i s t i c .  1n t e s t i n g  a  hypothes is  about a  s i n g l e  va r iance  we used t he  x 2  
d ' s t r ' b u t i o n .  To t e s t  two .var iances  f o r  e q u a l i t y  we use t h e  t e s t  s t a t i s t i c  3 $ s  11s 2, which f o l l o w s  t h e  F - d i s t r i b u t i o n .  

Def i n i ' t  i on  

Where FV 
1' .v2 

i s  a  F - d i s t r i b u t i o n  w i t h  2  parameters, vl, v 2  

which a re  t h e  degrees o f  freedom o f  t h e  two X2 d i s t r i b u t i o n s '  

i nvo lved  i n  t h e  r a t i o ,  vl assoc ia ted w i t h  t h e  numerator and v 2  w i t h  
t h e  denominator. 

It f o l  lows t h a t  

9 

That i s ,  s21/s22 fo l lows  a  F  d i  s t r i b u t i o n ,  i f  , = ,' "-1 "-1 1  2' Thus, 

under H,: u2 = u2 = c2 ( i  .e., u2 /u2 = I ) ,  t h e  t e s t  s t a t i s t i c  1 2  1 2  

f o l l o w s  a  F - d i i t r i b u t i o n  w i t h  nl - 1  and n2 - 1  degrees o f  freedom. s1 l s 2  

F i gu re  6.1. F - D i s t r i b u t i o n  



'ine t e s t  of c 2  = u 22 becomes then ( f o r  HA: ul 2 + u2 2 ) 1 

What a re  t h e  reasonable values t o  expect from the  d i s t r i b u t i o n ?  A usefu l  

r e l a t i o n s h i p  when dea l i ng  w i t h  t h e  l e f t  hand t a i l  0 f . a  F - d i s t r i b u t i o n  i s  

Example 6.2. 

Returning t o  the  t o o l  l i f e  problem i n  Example 6.1, cons t ruc t  a 90% 
curlfirlerlct! i r l ler-vdl  Tur. Lilt! rmdliu or vdr.iur~ces. Suppose the 
est imates o f  var iances are  

Hypothesi s: 

Then i n v e r t i n g  and revers ing  t h e  signs o f  the  i nequa l i t i es ,  



From t h e  t a b l e  o f  t h e  F - d i s t r i b u t i o n ,  : F5,6,0.05 = 4.39, F6,5,0.05 = 4.95. 

2  
1  Thus, we can be1 i eve w i t h  90% conf idence t h e  - 1 i es between 

0.067 and 1.45. L Therefore,  accep t .  Ho t h a t  u 
1  

and cou ld  be equal. 

A s tandard approach t o  comparing two var iances i s  t o  pu t  t h e  l a r g e r  

2  2  es t imate  i n  t h e  nuli lerator and t e s t  o n l y  aga ins t  u > u2 (where sA > s ). B  

2  2  2  2  By t h i s  approach, we would t e s t  H :  u2 1 = 1  aga ins t  HA: u2  > u 1 
2 

S2 - by comparing 7 - 2.239 
= 3.03 aga ins t  F5,6,.0.05 = 4.39. 

1  

Then we would acce t Ho.. ( T h i s  i s  a  one-sided 5% t e s t ,  o r  equ i va l en t l y ,  a 
two-sided 10% 4 

The assumption o f  no rma l i t y  o f  t h e  observa t ions  was made i n  
c o n s t r u c t i n g  t h i s  t es t .  I n  compari ng var iances, depar tures from a  normal 
d i s t r i b u t i o n  can cause s i g n i f i c a n t  e r r o r s  i n  t h e  p r o b a b i l i t y  o f  accept ing 
unequal var iances as equal, and v i c e  versa. Thus, ca re  should be taken i n  
comparing var iances, p a r t i c u l a r l y  i n  recogn iz ing  t he  d i s t r i b u t i o n s  invo lved.  

6.3 Compari ng T ~ O  Means, Var iance Unknown 

I n  comparing two processes f o r  d i f f e rences  i n  t h e i r  means when t h e  
var iances were known, i t  made no d i f f e r e n c e  whether o r  no t  these  var iances 
were equal. We s imp ly  c a l c u l a t e d  t h e  app rop r i a t e  s tandard ized normal va lue 
and compared it t o  t h e  c r i t i c a l  value. When t h e  var iances a re  unknown, we 
proceed j s t  as we d i d  when ye d e a l t  w i t h  a  s i n g l e  popu la t ion ;  i.e., we 
rep lace  uq by i t s  est imate s  and z  by t. As we s h a l l  see, however, t h e  
i nequal i t y  o f  var iances causes c e r t a i n  e x t r a  d i f f i c u l t i e s .  IJe s h a l l  being 
w i t h  t h e  assumption t h a t  t h e  var iances a re  equ iva len t .  This i s  o f t e n  a  
r.easunable assumption s ince  t h e  var iance o f  t h e  data i s  t h e  va r iance  o f  t h e  
e r r o r s  invo lved,  Var(x i . )  = Var ( p -  + ei . )  = Var ( c i - ) .  We o f t e n  use the 
same equipment dnd p r o d d u r e  t o  o b t d i n  data even thougd t h e  process may have 
changed, and these  e r r o r s  a re  sometimes l a r g e r  t han  d i f f e r e n c e s  i n  process 
v a r i a b i l  i ty .  



6.3.1 t - T e s t  , Var iance Equal 

2  2  I n  comparing means o f  two popu la t ions  where r1 = Q 2  , we use t h e  
f o l l  owi ng: 

where t n1+n"22 i s  a  t - d i s t r i b u t i o n  w i t h  nl+n2-2 degrees o f  freedom s i nce  

these a r e  t h e  degrees o f  freedom i n  t h e  pooled est l rnate o f  v d r ~ i d ~ l c e  s2 . . P ' 

I f  i t  i s  t r u e  t h a t  v: = u: , t h e n  t he  observat ions about il can be 

expected t o  va ry  about as much as t h e  observa i ons  about Z vary. Thus, two 
independent es t imates  o f  t h e  same parameter r' a re  ava i l ab  f e  and can be 
combined, Si,nce t h e r e  a re  n l  - 1  and n2 - 1 degrees o f  freedom (i.e., t h e  
meansp, a n d p *  were es t imated  by  R1 and E2) i n  t h e  i n d i v i d u a l  es t imates,  

t h e r e  a r e  n l  - 1  + ne - 1  degrees o f  freedom i n  t he  pooled' o r  combined 
- 

2 - > t  Jn e s t i m a t e  nf . If R1 - x2 nl+n2Z-2,0.025 sp then t h e  
1 n2 

hypo thes is  p1 - p2 = 0 has been r e j e c t e d  a t  t h e  5% l e v e l ( 2 - s i d e d  t e s t ) .  ,This 
s t a t i s t i c ,  however, i s  comple te ly  general  f o r  t e s t i n g -  any hypothes is  

t i o :  p1- p 2 = A. Note t h a t  if 

8. , , 2  -,2 
" 1 ' -  , the,, V a r  (,XI - E2) 

i s  m in im ized  when n l ,  = nz [ t r y  n l  + n2 = 8: n l  = n2 = 4 y i e l d s  

T h i s  a l s o  ho lds when we es t ima te  r 2  by s  P. ~ h u s ,  i f w e a s s u m e  
. . . . . . .. - . . - .. . . - . a - . . - - . . , . . . . 

r2 = = v2  (known o r  unknown), choose equal sample s i zes  1  



n l  = n2 i n  o rder  t o  min imize Var(Z1 - E2) and hence shor ten  t h e  correspondi'ng 
conf idence i n t e r v a l .  

If n l  = n2, then  t h e  t e s t  s t a t i s t i c  reduces t o  

where n l  = n2 = n, 2 
1 

2 = ,  
= 4 2  and 

Example 6.3. Consider again t h e  t o o l  l i f e  problem. 

Giv.en t h e  f o l  1 owi ng r e s u l t s ,  t e s t  p1 - p 2 = 0. 

Ho: p1 - p 2  = 0 

~1 ' p 2  j O 

A 95% conf idence i n t e r v a l  i s  

The 95% conf idence i n t e r v a l ,  then, i s  



S ince  t h e  in te rv 'a l  con ta ins  t h e  value o f  zero, we do' not  r e j e c t  t h e  
hypo thes is  Ho, t h a t  t h e  means a re  equal. 

6.3.2 t - t e s t  , Variances Unequal 

2 2 I f  c: + P :  , what happens? Replacing o: by s i  and c2  by s2 , 

t h e  t e s t  s t a t i s t i c  becomes 

b u t  t h e  exact  d i  s t r i b u t l h  1s n o t  c ledr .  The o f  comparing two means 
when t h e  var iances  are unknown bu t  unequal i s  known as t h e  Behrens-Fisher 
problem and t h e r e  have been severa l  so lu t i ons  proposed. TNO a re  suyyosled 
here. The bas ic  problem i s  t o  c o r r e c t l y  s p e c i f y  t h e  c r i t i c a l  t-va.lue. 

A weighted c r i t i c a l  va lue suggest ion i s  found i n  Cochran and Cox [5]. 

which reduces t o  tn-, &/2 i f ' n l  = nz. It can be showr~ C2GI t h a t  t he  Type I 
e r r o r  probabi  1 i ty remd i ns reasonably  constant  over t h e  who1 e range o f  poss ib le  

r a t i o s  f o r  o : / o i f  t he  sample s i z e s  a re  equal. Thus, when t he  

var iances a r e  unknown, choosing equal sarnpl e s i zes  p r o t e c t s  against  erroneous 
conc l  us'ons, 

A second s o l u t i o n  makes u e uf  the f a c t  t h a t  t h e  sum o f  t w o  independent x 2 
v a r i a b l e s  i s  a weighted X B  var iab le .  

That. i s ,  



where a  i s  a  mu t i p l y i n g  constant ,  a  > 0, and b  i s  t h e  degree o f  freedom o f  
t h e  r e s u l t i n g  Xi d i s t r i b u t i o n .  By equat ing t h e  f i r s t  two moments o f  t h e  two 
s ides  and so l v i ng  f o r  b, we can o b t a i n  t h e  appropr ia te  c r i t i c a l  values f o r  t h e  
t e s t  o f  means. 

2 2 2 
E ( a x  ) = ab, V a r ( a x b )  = 2 a  b. 

Thus, ab = 

So lv ing  g i ves  

7 2 7 



s i  S; Thus, t* f o l  lows a  tb d i s t r i b u t i o n  s i nce  + --a 
n, 

2  2  2  w h e r e b  i s  e s t i m a t e d b y  r e p l a c i n g  u: a n d u p  by sl and s2 , 

Note t h a t  m i n  (nl-1, n2-1) < b I  n l  + n2-2- 

The c a l c u l a t i o n  o f  dearees o f  freedom i n  t h i s  manner i s  known as - -. . 

~ a t t e r t h w a i t e '  s Approximat ion -and t h e  ~ i l e t  hod can be app l i  ed i rl general f u r  
combininq severa l  independent est imates o f  va r iance  i n t o  a  s i n g l e  es t imate  o f  
t o t a l  var iance. However, i n  some complex cases, ca re  must be taken t o  assure 
t h a t  one i s  adding est imates o f  var iances, no t  sub t rac t i ng  them. I n  such 
complex cases, i t  i s  recommended t h a t  you consu l t  you r  l o c a l  s t a t i s t i c i a n !  

Exampl e  6.4. Tool 1  i f e  da ta  from Example 6.2. 

2  n l  = 7, s  1 = 0.74, v 1  = 6  

- 
x1 - X2 - (p l -  p 2 )  

t =  i s  t o  be compared t o  the c r i t i c a l '  value of 
/ '5 



o r  Sa t t e r t hwa i t e '  s  Approximat ion tb, 0.025 = 2.32 

2  2  2  2  2  

1 2  ( ~ 1 / " 1  ll 
where + -) / 

n2 

6.3.3 Determining Sample S ize  f o r  comparing Two Means 

I n  Sect ion 3.6 we discussed how t o  determine t he  sample s i ze  r e q u i r e d  
t o  t e s t  a hypothesis w i t h  g iven Type I and Type I 1  e r r o r  p r o b a b i l i t i e s .  
S p e c i f i c a l l y ,  we il l u s t r a t e d  how t o  f i n d  n  t h e  requ i red  sample s i ze  t o  assure 
t h a t  we would r e j e c t  a  t r u e  n u l l  hypothes is  p = p o  about a  mean w i t h  no more 
than  100 a %  e r r o r  and would accept a  f a l s e  a l t e r n a t i v e  hypothes is  p = F A  w i t h  
no more than  100P% e r ro r .  I f  the . va r i ance  o f  t h e  d i s t r i b u t i o n  were known, 
t h e  requ i red  sample s ize  could be determined d i r e c t l y  f rom 

n 

If t h e  var iance were unknown, an i t e r a t i v e  procedure cou ld  be used u t i l i z i n g  
t he  t - d i s t r i b u t i o n ,  o r  t h e  requ i red  sample s i zes  could be looked up i n  Table 
I X. 

We can accomplish t h e  same t h i n g  i n  dea l i ng  w i t h  t h e  problems o f  
comparing two mean. Le t  

where 8 i s  a  d i f f e rence  i n  means which we would l i k e  t o  de tec t  w i t h  h i gh  
p robab i l  i t y  ( i  .e., accept Ho when HA c o r r e c t  , w i t h  small p r o b a b i l i t y ) .  The 

t e s t  s t a t i s t i c  assuming u2  = a 2  = u 1 2  i s  

where f o r  2  2 = ,  2  t he  var iance o f  (XI - Z2)  i s minimized 
1 = u~ 



when t h e  sampl e s izes  fo r  each average are equal. Now f o l l  owi ng the  same 
procedure as i n  Sect ion 3.6.3, we f i n d  

y a  - '  z l-/3) ' 2 c  2 
n = 

8 
. 

Suppose we wish t o  de tec t  a d i f f e rence  between two means o f  s i ze  2 , ~ ,  
if it ex is ts ,  where u i s  t h e  common standard dev ia t ion  o f  t he  two 
populat ions. I f  we a1 low a = 0.05 p r o b a b i l i t y  f o r  mistakenly 
r e j e c t i n g  the  n u l l  hypothesis p = p and want t o  be 95% sure o f  
de tec t i ng  8 =  Z C ,  i.e., B = 0.b5, t8;n 

= 5.41 -- 6 (rounding up t o  nearest. in teger )  

That i s ,  we need 6 observat ions for  each average i f  we are t o  t e s t  .- 
= p w i t h  95% (one-sided) confidence and detect  p = p2 = 2 v  

w , pro%abi 1 i ty 0.95. 

I f  the  variance i s  unknown and i s  t o  be estimated by the  data 
obtained, we rep1ac.e z by t and must i t e r a t e  t o  ob ta in  n. Table X 
prov ides the  requ i red  sample s ize  i n  th i ' s  case. For 8 = 2, 
a = B = 0.05, we f i n d  from the  t a b l e  n = 7 ( f o r  each average). 

re r tuna tc l y ,  t h e  cond i t i on  o f  e q w l  variarlce I s  not an ove r r i d ing  , 

considerat ion provided t h a t  t he  sample s i z e  from each populat ion i s  
t h e  same o r  near ly  t he  same. Then, t h e  p r o b a b i l i t y  t h a t  a 100'y% 
,confidence i n t e r v a l  conta ins the  t r u e  value, p 1 
approximately y =  1 - a  . For equal sample sizes, 2 t en, is the  t - t e s t  i s  
i n w n s i t i v e  t o  departures frvrrl t he  assumption of equal variances. It 
i s  robust  w i t h  respect t o  t h i s  assumption. 

6.4 The Paired- t  t e s t  

It i s  not unusual f o r  an experiment f o r  d i s t i ngu i sh ing  between means 
t o  hav.e a very la rge  variance estimate, thus making it extremely d i f f i c u l t  t o  
f i n d  d i f f e rences  even when they do ex is t .  The situation i s  not un l i ke  f i n d i n g  
a g o l f  b a l l  i n  t h e  rough! If the grass (var iance)  i s  high, we have to '  look 
hard and long ( l a r g e  sample s ize)  t o  detect  the  b a l l  ( p1 - p 2 ) .  I f  we can 
"cu t  t he  grass", we have a b e t t e r  chance o f  f i n d i n g  what we are look ing  for.  
What o f t e n  occurs i s  t h a t  there  i s  a greater  variance between experimental 
u n i t s  being tes ted  than the re  i s  between the  treatments! 



Suppose we are comparing t h e  co r ros ion  res i s tance  o f  a  sample o f  a  
p a r t i c u l a r  type o f  a l l o y ,  sub jec t  t o  a  p a r t i c u l a r  chemical t reatment,  w i t h  
t h a t  o f  an un t rea ted  sample. Apply ing t h e  t reatment  t o  one se t  o f  samples and 
no treatment t o  another se t  of samples w i l l  enable us t o  perform a  t - t e s t  f o r  
comparing co r ros ion  resistance. However, if t h e  observed res is tances  o f  t h e  
samples were q u i t e  var iab le ,  we may no t  be ab le  t o  t e l l  whether a d i f f e r e n c e  
ex is ted,  i.e., t h e  t e s t  would not  be very sens i t i ve .  What i f  t h e  samples o f  
a l l o y  were l a r g e  enough t o  t e s t  both t h e  t r e a t m m t  and no t reatment  t o  each o f  
t h e  samples? 

NO TREATMENT 1 

Then we can compare t h e  r e s u l t s  o f  co r ros ion  res i s tance  f o r  - each experimental  
u n i t  (samples of a l l o y ) .  The t e s t  f o r  comparing two' means then  becomes a  
s i n g l e  popu la t ion  problem by t a k i n g  d i f f e rences  o f  t he  observed pa i rs .  Thus, 
t he  t e s t  i s  c a l l e d  a  pa i red- t  t es t .  The' ana l ys i s  i s  as f o l l ows :  

Ho: p1 - ,A2 = ,Ld = 0 

HA: P d  f 0 

Pa i red- tes t  Test 

No Treatment di = xli - xzi 
Treatment o r  Standard Dl f ferences 



We no te  t h e  f o l l o w i n g :  

1. The degrees o f  freedom i s  n  - 1  = 2 ( n  - 1)  as i n  t he  unpaired t 
t e s t .  E v e r y t h i  ng e l  se be i  ng equal , a t e s t  w i t h  2 ( n  - 1  ) degrees 
of freedom wi l .1  be more s e n s i t i v e  than  one w i t h  n  - 1  degrees o f  
freedom. But a l l  t h i n g s  a re  no t  equal here. By comparing 
r e s u l t s  w i t h i n  ~ a c h  e x p e r i m e n m  u n i t ,  we reduce t h e  .variance o f  
t h e  observa t ions  di. That i s ,  we have removed t h e  between u n i t  
o r  b lock v a r i a t i o n  from t h e  problem, 

2. The sample s i z e  must be equal f o r  each treatment.  

3. The v a r i a b l e s  xli and x 2 i  may o r  may no t  have equal var iances 

and i n  f a c t  may be cor re la ted .  A l l  t h a t  ma t e r s  i n  t h e  pa i r ed - t  
t e s t  i s  t h e  va r iances  o f  the  d i f f e rences ,  s' I n  a  devel oprnent a 
of t h i s  f a c t ,  t h e  p a i r e d - t  i s  sometimes c a l l e d  a  c o r r e l a t e d - t  
t e s t .  

The advantage o f  us ing  a  p a i r e d - t  t e s t  f o r  comparing means i s  t h a t  
you b lock  ou t  a  l a r g e  source O f  v a r i a t i o n  i n  t h e  data due t o  t h e  d i f f e r e n c e s  
among exper imenta l  u n i t s ,  t h u s  devel  opi ng a  more s e n s i t i v e  t e s t ,  p rov ided  t h a t  
a  l a r g e  between u n i t  v a r i a t i o n  e x i s t s !  An impor tan t  cons idera t ion ,  however, 
i s  t h a t  t h e r e  he a  n a t u r a l  bas i s  f o r  comparing t reatments  w i t h i n  exper imental  
u n i t s .  Fxamples o f  n a t u r a l  p a i r i n g s  a re  measurements t han  can be  designated 
by such terms as b e f o r e l a f t e r  and w i t h  / w i thou t ,  o r  can be repeated under 
d i f f e r e n t  c o n d i t i o n s  on t h e  same exper imental  u n i t ,  such as on two ha lves o f  
an i n g o t  o r  by two d i f f e r e n t  measuring devices. If you blocked out between 
u n i t  v a r i a t i o n  where none ex is ted ,  t h e  r e s u l t i n g  es t  imate o f  va r iance  would 
no t  be app rec i ab l y  reduced, bu t  you r  t - s t a t i s t i c  would have h a l f  t h e  degrees 
of freedom ( n  - 1 )  t h a t  t h e  more c o r r e c t  unpai red t e s t  would have (2 (n -1 ) ) .  
On t h e  o t h e r  hand, i f  you f a i l  t o  b lock  ou t  between u n i l  vd rS ia t ion  t h a t  i s  
l a rge ,  t h e  r e s u l t i n g  pooled es t ima te  o f  var iance would be t o o  high. Both 
s i t u a t i o n s  w i l l  r e s u l t  i n  i n s e n s i t i v e  t e s t s ,  i.e., t e s t s  t h a t  would accept t h e  
n u l l  hypo thes is  more o f t e n  t h a t  t h e y  should. A r u l e  o f  thumb, however, i s  
t h a t  i f . y o u  suspect a  u n i t  ( b l o c k )  t o  u n i t  < a r i a t i o n ,  use a  p a i r e d - t  t e s t  w i t h  
as many degr'ees o f  freedom as poss ib le .  The r e s u l t i n g  e r r o r  i n  us ing,  r a y  
t5,0.025 = 2.571 r a t h e r  than  t10,0.05 = 2.228,will u s u a l l y  be l e s s  than t h a t  

e r r o r  made i n  - not  p a i r i n g  and assuming 0' = 0' i n c o r r e c t l y .  
1 3 



Exampl e  6.6. 

Ten~sample  specimens of an a l l o y  a r e  chosen r.andomly t o  use i n  
t e s t i n g  t h e  c o r r o s i o n  r e s i s t a n c e  of a  p a r t i c u l a r  chemical 
t reatment.  Hal f o f  each specimen i s  t r ea ted ,  t h e  o t h e r  h a l f  not .  

u n i t  o r  Block 

Corros ion Resistance 

. . 
X2 

Untreated Treated D i f f e r e n c e  
Sample 
Average 

i .e., Re jec t  tio: pd  = 0.  here i s  a  d i f f e r e n c e  between t h e  t r e a t e d  a l l o y  and 
t h e  1.1ntreatec.i a1 1  oy i n  c o r r o s i o n  K s i  stal-~ce. The t r e a t e d  a1 1 oy y i  e'l ds 
s i g n i f i c a n t l y  h i ghe r  co r ros i on  r e s i s t a n c e  values. 



6.5 The Assumptions o f  the  t - t e s t  

There a re  th ree under ly ing  assumptions involved i n  comparing means by 
a t - t e s t .  There are  

. . 
1 )  ~ o ' r m a l i t y  
2) Equa l i t y  o f  Vafiances 
3 )  ~nde~endence  

Since we are dea l ing  w i t h  means, the  cent ra l  l i m i t  theorem a1 lows us 
t o  assume t h a t  i i s  normally d i s t r i bu ted .  The assumption o f  normal i ty  o f  t he  
i n d i v i d u a l  observtions, then, a1 though required f o r  very small sample s izes 
( n  < 4);  i s  o f  no rea l  p r a c t i c a l  consequence. Departures from normal i ty  must 
be extreme before  i t  has any substant ia l  e f f e c t  on the  resu l t .  

We have already s ta ted  t h a t  the t - t e s t  I s  robust  w i th  respect t o  
i n e q u a l i t y  o f  variances. One wa.y around the  assumption o f  equal variances i s  
t o  use a pa i red - t  t es t .  Another approach P S  t o  use equal sample s izes t o  
minimize the  chance o f  an erroneous conclusion. 

t h e  t h i r d  assumption, independence o f  the observations, i s  very 
important,  however. ( I n  a pa i red - t  t es t ,  the  d i f fe rences di must be- 
independent.) To assure independence, randomization should be performed. 
That i s ,  se lec t  t he  order  o f  observat ions i n  a random fashion such as f l i p p i n g  
a coin, o r  us ing a random number generator. W e n e e d t o  choose a treatment t o  
apply t o  a p a r t i c u l a r  response randomly. I n  a pa i red- t  t es t ,  we need t o  
randomly s e l e c t  the  u n i t s  t o  be tes ted  and randomly se lec t  one treatment t o  be 
app l i ed  f i r s t  ( o r  t o  one s ide o f  the u n m .  

6.6 Comparison o f  k  Variances 

We now t u r n  t o  the  problem o f  comparing more than two populations. 
To compare more than two variances f o r  possib le d i f fe rences there  are severa3 
a v a i l  ab le  methods, each w l  t h  t h e i r  own d i  f f i c u l  t i e s .  

1. H a r t l e y ' s  Test  - Max-F ~ e s t  

2 2 For  k populat ions and sl , s2 , . . ., s: each w i t h  
deigrees o f  freedom, compute 

The c r i t i c a l  values have been tab led f o r  various and k a t  t he  5% and 1% 
leve ls .  However, these tab les  are not  r e a d i l y  avai lable.  One source i s  the 
Handbook o f  S t a t i s t i c a l  Tables by Owen, [24]. An add i t iond l  drawback t o  the 
maximum t - - tes t  i s  r e s t r i c t i o n  t o  equal degrees o f  freedom f o r  each variance 
estimate. 



2. Coch'ran' s  Tes t  

Th i s  t e s t  i s  f o r  determin ing whether one o f  k est imates o f  
va r iance  i s  o u t - o f - l i n e  w i t h  t h e  others. A l l  es t imates must have equal 
degrees o f  freedom and one es t imate  dominate t h e  others.  The . t e s t  i s :  

Again, t h i s  t e s t  r equ i r es  a  spec ia l  t a b l e  which i s  not  r e a d i l y  ava i l ab l e .  See 
Table A-17 o f  Dixon and Massey C81. 

3. Bar t1  e t t  ' s. Test  f o r  ~ G o g e n e i  t y  o f  Var iances 

Th i s  t e s t  i s  more general i.n t h a t  i t  does no t  r equ i  r e  ' t ha t  t h e  

2  degrees o f  freedom be equal f o r  a l l  s  . However, i t  s u f f e r s  froni a  
i 

s e n s i t i v i t y  t o  t h e  assumption of no rma l i t y ,  and i t  i s  curnbersane t o  
c a l c u l  ate.2 However, i t  can be programmed and r e q u i r e s  o n l y  t h e  use o f  a  
s tandard x tab le .  For k norma l l y  d i s t r i b u t e d  popu la t ions ,  then, 

2  k 2  v  Q n s  - E vi e n s i  e  P i = l  

2 2 k 
where s  = E vi si v = C V .  

P  i=l e  i= 1  1 
9 

~xarnp le  6.7 Comparison o f  Four Var ia r~ces  

k = 4  Normal Popula t ions 

s2 = 62.5, v1 = 4  2 
1 Jtn sl= 4.13513 

2  s  = 3 8 . 6 7 , ~ ~  = 6 2118 = 81-46 2 
p= 26 a n  s2= 3.65490 

= 72.0, p = 9  
s3 

J n  s2= 4.27667 
. . 3  

2  s4 = 141 .14,u4,= 7  
2  Z n  s4= 4.94975 

. 8 



No evidence o f  i n e q u a l i t y  o f  variances. 

6.. 7 ' Comparing. k  Means 

Ana1ysi.s o f  data from any number of normal populat ions can be 
summarized by means of an a n a l y s i s  of var iance t a b l e ,  o r  ANOVA t a b l e  f o r  
sho r t ,  and a  model t o  represent  t h e  s i t ua t i on .  A model i s  a1 ways present i n  
da ta  a n a l y s i s  , bu t  un fo r t una te l y  i s  o f t e n  no t  w r i - t t e n  out. Nevertheless, i t  
i s  i r n p l i c i t y  there. Before a t t a c k i n g  the  problem of comparing k  means, i t  i s  
advantageous f o r  us t o  examine t h e  ANOVA approach t o  t h e  s imp le r  problems o f  
t e s t i n g  a  s i n g l e  mean and' comparing two means. 

6.7.1 The Ana lys is  o f  Var iance f o r  Tes t i ng  p = 0  

F o r  observ ing data from a  s i n g l e  popu la t i on  t h e  model i s  

2  where i s  t h e  mean value o f  x  and eiNN(O, u ) ,  i = 1, 2, .., n. 

The sum o f  squares $ 2  
i = l  xi can be considered as a  measure o f  t h e  

t o t a l  i n f o r m a t i o n  i n  t h e  data. Th i s  can be p a r t i t i o n e d  i n t o  two par ts :  

. . 
1  2 

where n  P' ( o r  - ( x  xi) ) i s  the  amount o f  in fo rmat ion  accounted f o r  n 

by t h e  es t imate  F of t he  mean. The measure o f  in fo rmat ion  t h a t  remains, 

I ( x i  - 1)' i s  a t t r i b u t a b l e  t o  t h e  e r r o r s  ri, and when d i v i d e d  by n  - 1  

2  g ives  s  , t h e  es t imate  o f  var iance,  c2. Th i s  term (xi - 1)' i s  c a l l e d  t he  



r es i dua l  sum of squares, s i nce  xi - E  i s  what i s  l e f t  over,  t h e  r e s i d u a l ,  
a f t e r  es t ima t i ng  t h e  mean o f  t h e  popula t ion.  The r e s i d u a l s  es t imate  t h e  
random e r r o r s  t h a t  ave occurred i n  ob ta i n i ng  t h e  observat ions.  The sum o f  
squares, I (x i  - ) i s  i n  general  t h e  measure o f  t o t a l  v a r i a b i l i t y  i n  t h e  
data and incorpora tes  a1 1  sources o f  v a r i a b i l  i t y  i n  t he  observat ions.  

D e f i n i t i o n  

The Ana lys is  o f  Var iance i s  t h e  a r t i t i o n i n  o f  t h i s  t o t a l  v a r i a b i l i t y  i n t o  
%lT-= component pa r t s  accord ing t o  t h e  mo e  e i  ng examined, and then  de te rmin inq  

which, i f  any, o f  these components c o n t r i b u t e  s i g n i f i c a n t l y  t o  t he  t o t a l  
v a r i a t i o n  i n  t h e  data. 

For  model (6.7.1) t h e  ana l ys i s  can be summarized . in  t he  ANOVA Table  as 
f o l l ows :  

Table  6.1 ANOVA f o r  xi = p + r  

Source Sum o f  Squares Degrees o f  Freedom Mean Square 

To ta l  2  I Xi n  
i = l  

Mean 

Residuals n  2 ( x i -  2  

o r  E r ro r s  1 = I  

where t h e  Mean Square i s  t h e  sum o f  squares d i v i d e d  by t h e  degrees o f  freedom 
and i s  used t o  es t imate  a  f u n c t i o n  o f  t h e  var iance. To t e s t  t h e  hypothes is  
t h a t  p = 0, we need f i r s t  t o  f i n d  t h e  expected value o f  n  X ' .  We know t h a t  

E ( n  z 2 )  = n  [Var (E) + p 2 ]  

Thus, i f  Ho: p = 0  i s  t rue ,  we f i n d  t h a t  n  ii2 es t imates  cr2 .  The r e s i d u a l  
sum o f  squares d i v i d e d  by i t s  degrees o f  freedom i s  c a l l e d  t he  r e s i d u a l  o r  

e r r o r  mean square and est imates c 2 ,  and, i n  f a c t ,  i s  t h e  best ,  unbiased 

2  es t imate  o f  a . There i s  no o t h e r  source o f  v a r i a b i l i t y  i n  t h e  r e s i d u a l s  

o ther  than  random e r ro r .  Hence, n  i2 and t h e  r e s i d u a l  mean square s2 should 

be canpa t i b l e  est imates o f  c2,  i f  p=  0. Ue can t e s t  t h i s  hypo thes is  by an 



F - r a t i o  where 

Ho: p =  0, and 

Tha t  i s ,  t h e  t e s t  o f  p = 0  has been answered i n  terms o f  a  t e s t  o f  e q u a l i t y  o f  
two independent est imates o f  c2 under t h e  hypothes is  t h a t  p = 0. [Note: It 

can be shown t h a t  n  2' and Z ( x i  - P)' a r e  s t a t i s t i c a l l y  independent 

by showing Cov ( X , I ( x i  - E ) ~  ) = 0, where Cov stands f o r  t h e  covar iance 

o f  two random var iab les. ]  I f  t h e  c a l c u l a t e d  F-val ue i s  g rea te r  t h a t  t h e  

c r l t l c a l  F 1  ,n-,,0.05 value,we r e J e c ~  no: P = 0. LNule: F1 ,oeO5 - 

Example 6.8 

The me ta l l u rgy  l a b o r a t o r y  has f i v e  observat ions on a  z i r c a l  oy a1 l o y  
produced by an a r c  me1 t i n g  process. The weight percents o f  z i rconium 
i n  t h e  a1 l oys  samples a r e  90, 91, 93, 90, and 94. 

ANOVA Tab1 e  

bource  sum o f  squares Degrees of  F r e e d m  Mean square 

T o t a l  ZX; = 41966 5  

Me an 2  (1 xi) /5 = 41952.8 1  

Residuals or 13.7 
E r r o r s  

( - b  mcans 
est imates)  

The es t imate  o f  t h e  mean i s 91.6 and o f  s2 i s  3.3.  The F - tes t  
f o r  s i g n i f i c a n c e  o f  t h e  mean i s  41952.8/3.3 and i s  c e r t a i n l y  
s i g n i f i c a n t .  Th i s  i s  equ iva len t .  t o  t h e  t - t e s t  

/ 9 

When an F o r  t t e s t  i s  found t o  r e j e c t  t h e  n u l l  hypothesis,  we say t h a t  t h e  
es t imated  parameters a r e  s i g n i f i  cant1 y d i f f e r e n t  f rom the  hypothesized 
values. I n  t h i s  example, t h e  mean p i s  s i g n i f i c a n t l y  d i f f e r e n t  from zero. 



6.7.2, Analysis o f  Variance f o r  Comparing k Means 

A question o f  more i n t e r e s t  i s  ,whether o r  not  two o r  more means are 
equal. The model associated w i th  t h i s  problem i s  

That i s ,  there  are n.. observations. from the  j t h  popul t ion and a l l  
populat ions are assumed t o  hade equal variance. We may r e w r i t e  t h i s  model as 

where p i s  t h e  ove ra l l  mean o f  t he  populat ion and r j  i s  the  ex t ra  impact on 
the  'response o f  having come from the  j t h  population. r j  i s  usua l ly  c a l l e d  the  
treatment e f fec t .  From the  d e f i n i t i o n  o f  r e  = p j  - p , a l i n e a r  
constra int ,  C n j  r j  = 0, e x i s t s  on the  treatment. 

- The t e s t  o f  Ho: pl = p 2  - ... = pk i s  equivalent t o  t h e  t e s t  o f  

Ho: rl = r2 ... =, r k  = 0, since p i s  common t o  a l l  populations. 

We can proceed as before and f i n d  the  sum o f  squares due t o  the  grand 

k 1 1 k 
N P 2 =  - ( C ~ X . . ) ~  w h e r e i = -  

-1 J Z 1 xij and N  = f=l nj. This i s  ji N j i  

commonly re fe r red  t o  the  co r rec t i on  factor .  The remaining o r  Corrected 

Sum o f  Squares i s  C C (xij - X) . This  s t i l l  contains a source o f  = 2 
j 

var iab i  1 i ty from the  d i f f e r e n t  treatment eff,ects. The t o t a l  sum ' o f  squares 
may be p a r t i t i o n e d  as fo l lows:  

- 1 n 
Def'ine: x = - Z j xij , then, 

J 'j, j = l  

where t h e  f i r s t  term i s  t h e  res idual  sum o f  sauares, t he  second' i s  t h e  
treatment sum o f  squares, and t h e  l a s t  i s  t he  'correct ion f a c t o r  (due t o  t h e  
mean). The ANOVA t a b l e  becomes 



Table 6.2. ANOVA Table f o r  Comparing k  Means 

Source Sum o f  -Squares Degrees o f  Freedom Mean Square - EMS 

To ta l  

Mean 
(Co r rec t i on  N i2 
Fac to r )  

x 1 Cor rec ted  (x i j  - f ) '  
T o t a l  SX 

- 2 
Treatments $ nj  ('xj - x )  
SST .I 

Residual  s  
0 1 .  E r . r ~ r . s  N - k  - s 2 a 2 
SSE 

4 

J 1 

The t reatment  sum o f  squares represents  t h e  v a r i a b i l i t y  o f  t h e  data 
a t t r i b u t a b l e  t o  d i f f e r e n c e s  i n  popu la t ion  means f i  -, or '  s imply  due t o  t reatment  
e f f e c t s  rj. The es t imate  o f  popu la t i on  mean i s  t i e  sample average Rj; t h e  

es t ima te  o f  t h e  popu la t ion  e f f e c t  beyond t h e  grand mean i s  ?j = Xj - E. It 
can be shown (see  Appendix D)  t h a t  t h e  expected value o f  t h e  mean square f o r  

1  z '  - 
t reatments ,  n j  (P j  - i ) 2 y  i s  r 2  + 1 .  I n j  ijZy where T .  a re  t h e  

.I 

t r u e  t rea tment  e f f ec t s .  The degrees o f  f reedom'here i s  k-1 no t  k  s ince  

k n j (x j -  3) = 0 b y d e f i n i t o n  o f  I. This  l i n e a r  con t ras t  r e s t r i c t s  t h e  
~ = 1  

freedom o f  t h e  est imetes by one. O f  course, t h e  res idua l  mean square, o r  s  2 
(pooled) est imates u unbiasedly. The t reatment  mean square can be considered 
as t h e  es t imate  o f  between t rea tment  v a r i a t i o n  and t h e  res idua l  mean square i s  
t h e  w i t h i n  t r e a t m e n m a t e  o f ' va r i ance ,  which under t h e  assumption 
Ho: 7, a l l  j, should be t h e  same. The F - r a t i o  

- MS !treatment;) 
F k - l  ,N-k MS r e s i d u a l s  

i s  a  t e s t  of t h e  assumption t h a t  these est imates o f  var iance a re  compatible, 
which i n  t u r n  i s  a  t e s t  o f  t h e  hypothes is  Ho: r :  = 0 f o r  a l l  .j. I f  t h e  
r I s  = 0, we can expect t h a t  t h e  c a l c u l a t e d  F will  be l e s s  than  t h e  c r i t i c a l  
value. If i t  i s  la rger ,  we would r e j e c t  Ho t h a t  a l l  t reatments  were equal. 



I n  general, t reatment  means may be compared i n  t h e  presence o f  o t h e r  
sources o f  v a r i a b i l i t y  which have been blocked out  o f  t h e  ana lys is ,  such as i n  
t h e  pa i red - t  t es t .  Consider t he  model 

where,P. represent  block e f f e c t s  and i n  general may represent  one o r  more 
b lock  e+fects,each o f  which can be separated out  i n d i v i d u a l l y .  The ANOVA 
t a b l e  can be summarized as Tollows: 

ANOVA Tab1 e  

Source Sum o f  Squares Degrees of Freedom Mean Square - EMS 

Tota l  2 Z Z X  l j  N 

Mean (CF) N F2 1  
- 

Corrected Z I ( x i j  - X12 N  - 1 .  
To ta l  SX 

' n.(; - ;)2 Treatments j 
S ST 

Blocks 
S SB 

MS (B l  ocks) 

Residuals By sub t rac t  i o n  ( n - 1 - 1  s2 u 2 
o r  
E r ro r s  
SSE 

The t e s t  f o r  t reatment  d i f fe rences  i s  s t i l l  t h e  ~ ~ ( t r k a t m e n t s ) / s ~  i s  
above as long  as t h e  b lock  va r i ab les  have been p rope r l y  b locked out,  and w i t h  
ad justed degrees o f  freedom. More d e t a i l s  o f  t he  ANOVA t a b l e  ana l ys i s  w i l l  be 
presented a t  a  l a t e r  t ime when we deal  w i t h  designs o f  experiments, 

Example 6.9 

Suppose t h e  me ta l l u rgy  l a b o r a t o r y  wants t o  compare t h e  mean w/o 
z i rconium i n  z i r c a l o y  a l l o y  from t h e  arc  m e l t i n g  process w i t h  
z i rconium w/o from an i n d u c t i o n  process. The data f rom t h e  a rc  
process i s  g iven i n  Example 6.8. F i ve  observat ions from t h e  
i n d u c t i o n  process a r e  91, 90, 91, 89, 91 (w/o z i rconium).  The model 
f o r  comparing t h e  two means i s  



ANOVA Table 

Source Sum o f  Squares Degrees o f  Freedom Mean Square 

T o t a l  . 82830. . .  10 

Mean 82810 1 

Corrected 
Tota l  SX 

- - 
Treatments . 2 5 ( x j  - x12 = 3.6 1 

Residuals o r  
E r ro rs  . 16.4 

The F- tes t  f o r  treatment e f f e c t s  i s  
3.6 F l S 8 ' m z  1-76 . 

The c r i t i c a l  value of F1 8 -05 = 5.32. Therefore, we say t h a t  there  i s  , s 
no evidence t h a t  t h e  arc  and induct ion  processes d i f f e r .  

Another way o f  c a l c u l a t i n g  t h e  treatment sum o f  squares and block sum o f  
squares i s  by t h e  use o f  t h e  treatment and block sums. 

T; - C.F. : SST = ; j=l 

2 
SSB = Z B - C.F. 

i = l  

where T - i s  t h e  sum of a1 1 n observt ions f o r  treatment j and Bi i s  thf sum o f  
a l l  k oaservations i n  block i, and C.F. i s  t h e  co r rec t i on  fac tor ,  N X . 

Consider aga.in t h e  corros ion res is tance data o f  Example 6.6. The 
appropr iate model f o r  t h i s  data i s  

x i j  = I * +  T j  + p i  + C i j  

where rj a re  the  treatment e f fec ts ,  j = 1, 2, and fli are the  block 
e f fec ts ,  i = 1 2 ,  3, , 1 We have, 



The ANOVA t a b l e  i s  

ANOVA Tab1 e 

Source Sum af Squares Degrees o f  Freedom Mean Square 

T o t a l  3070.33 2 0 

Mean 

Cor rec ted  
T o t a l  SX 

Treatments 

B l  ocks 62.65 05 9 , 6.96 

Res idua ls  5.7105 9 s2 .= 0.635 

The F - r a t i o  f o r  t r e a t m e n t s  i s  

MS ( ~ r e a t m e n t  s)  - 8 - 0 6  . - .  12.7 
F1 ,9 = NS ( R e s i d u a l s )  

- w' - . '  

which i s  much l a r g e r  t h a n  t h e  c r i t i c a l  F-va l  ue , a t  t h e  0.05. l e v e l ,  

F1 ,9,0.-,5 -15.12. Thus, t h e r e  i s  ev idence t h a t  t h e  t r e a t m e n t s  d i f f e r .  

A l though  i t  i s  n o t  immed ia te l y  obvious,  t h i s  F - t e s t  i s  t h e  square o f  t h e  
p a i r e d - t  t e s t  performed i n  Example 6.6. That  i s  

= 12.7 = tZ9 = ( 3 . 5 7 1 ~  and 

We may a l s o  t e s t  t o  see i f  t h e  b l o c k s  had a s i g n i f i c a n t  e f f e c t  on t h e  
response, . . 

The b l o c k s  do '  have an e f f e c t .  Note  t h a t  t h e r e  i s  not, a t - t e s t  t o  
cor respond t o  t h i s  F - t e s t  f o r  b locks ,  s i n c e  t h e  degrees o f  freedom f o r  
b l o c k s  i s  g r e a t e r  t h a n  1. 



REVIEW 

Tab1 ed 
T e s t  S t a t i s t i c  ' ~ i  str ' i 'but  i o n  Use 

Test means o f  two 
unpai red groups o f  
observat ions.  

Test means o f  two 
groups 'thr..ougli 1.1 Pdirhecl 
sompari sons. 

Test an est imated 
var iance  aga ins t  a . 
hyporhesize or True 9 var iance, u 

0 

Test two 
var iances f o r  

k equivalence. 
I " (x.-;)2/(k-1) 

5. J = ~ J  J  
Fk-1 Ve Test f o r  d i f f e r e n c e  

Residual  Sum o f  Squares/ ve  between k  means 
( e r r o r )  - Ho: = p 2  - ..a =pk 

where 

and v, i s  t h e  degrees o f  freedom f o r ,  e r r o r  i n  t h e  a n a l y s i s  o f  va r iance  t ab le .  



CHAPTER 7  
LINEAR REGRESSION ANALYSIS 

7.1 I n t r o d u c t i o n  

Suppose we a re  i n t e r e s t e d  i n  some response q f o r  which i t  has been 
determined t h a t  a  set  o f  va r i ab l es  XI, X2, . . . , Xk c o n t r o l  t h e  response. 
There i s  more o f  i n t e r e s t  here than  I n  j u s t  determin ing whether t h e  average 
response a t  one set  o f  c o n d i t i o n s  d i f f e r  f rom t h e  average response a t  another  
s e t  of cond i t i ons .  It i s  advantageous t o  d e t e n i  ne 'how t h e  response changes 
as t h e  l e v e l s  o f  t h e  independent va r i ab l es  Xi change. . To answer t h i s  quest. ion 
we need t o  f i r s t  hypothes ize a  model which we t h i n k  may apply  i n  some r e g i o n  
of i n t e r e s t  and then  perform an experiment t o  o b t a i n  data t o  v e r i f y  o r  r e j e c t  
t h e  hypothesized model. Th i s  v e r i f i c a t i o n  p rocess , i s . pe r f o rmed  under a  
v a r i e t y  o f  names, such as c u r v e - f i t t i  ng, maximum l i k e l i h o o d  ana l ys i  s, l e a s t  
squares, and regression. 

There a re  t h r e e  o b j e c t i v e s  which may be approached by r eg ress i on  
analys is .  These a r e  ( 1 )  p r e d i c t i o n ,  ( 2 )  es t ima t i on  and (3 )  model bu i l d i ng .  
I n  t h e  f i r s t ,  we a re  i n t e r e s t e d  i n  f i t t i n g  a  model t o  o b t a i n  t h e  bes t  
p r e d i c t i o n  o f  t h e  response as poss ib le .  It i s  no t  of u tmost '  importance here  
t o  have t h e  bes t  model i n  terms o f  accuracy o f  t h e  parameters be ing  est imated 
as l ong  as t h e  model p r e d i c t s  we l l .  I n  t h e  second, i n t e r e s t  i s  i n  o b t a i n i n g  
t h e  best  o r  most p rec i se  est imates o f  t h e  parameters o f  t h e  model under 
cons idera t ion .  The purpose o f  t h i s  i s  u s u a l l y  t o  make prec' ise eva lua t i ons  on 
t h e  s i g n i f i c a n c e  o f  a  term i n  t h e  model. I n  t h e  t h i r d  object ive, ,  i n t e r e s t  i s  
i n  t he  process o f  o b t a i n i n g  t h e  best  exp lana to ry  model. Whether i t  deal s  w i t h  
f i n d i n g  t h e  bes t  s e t  o f  independent v a r i a b l e s  o r  f i n d i n g  t h e  best  f u n c t i o n  t o  
represent t h e  response, model b u i l d i n g  i s  an i t e r a t i v e  process and requ i r es  
numerous steps a long t he  way. O f  course many problems r e q u i r e  a  combinat ion 
o f  these t h r e e  ob jec t i ves .  

7.1.1 Models 

The .model s  suggested f o r  desc r i  b i  ng a  'response may be o f  a 
. t h e o r e t i c a l  na tu re  o r  o f  an emp i r i ca l  nature.  For  example; t h e  equa t ion  f o r  
Ohm's Law I = V / R  rep resen ts  t h e  t h e o r e t i c a l  change i n  amperage as a f u n c t i o n  o f  
vo l tage  and res is tance .  - By an emp i r i ca l  model we mean one suggested by t h e  
da ta  i t s e l f .  If we considered an experiment i n  which t h e  r e s i s t a n c e  was h e l d  
constant  and p l o t t e d  t he  change i n  amperage as a  f u n c t i o n  o f  vo l tage  we would 
o b t a i n  data which fo l lows  a  s t r a i g h t  l i n e .  Note, o f  'course, t h a t  no t  a1 1  t h e  

.observa t ions  f a l l  on t h e  l i n e  s i nce  r a n d m  e r r o r  i s  i nvo l ved  i n  a1 1  data 
t a k i  ng procedures. 

= a + P x , , + c  yyl , . I: CR FIXED) 

v 
F igu re  7.1 : I=V/R 
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More . t y p i c a l  ly, t h e  exact t heo re t i ca l  f unc t i on  represent ing some re-  
sponse i s  unknown or  t oo  complex t o  use f o r  some purposes o f  inves t iga t ion .  
I n  these cases empi r ica l  models a re  used by necessity. For example, a1 1  the 
causat ive e f f e c t s  which con t ro l  t h e  height  and weight o f  i n d i v i d u a l s  are un- 
known. We could nevertheless p r e d i c t  one va r iab le  given knowledge o f  the  o ther  
by f i t t i n g  an empi r ica l  model t o  t h e  data. That i s ,  we can p red i c t  an 

WEIGHT 

Figure  7.2: Height vs. Weight 

i n d i v i d u a l ' s  height  from t h e  f i t t e d  l i n e  BH obtained by assuming the  weights 
t o  be known quan t i t i es ,o r  p r e d i c t  one's weight f r o m d y  by assuming t h e  heightz 
t o  be known. I n  another s i t u a t i o n  a  response may he q u i t e  compl i ca ted  but,  i n  
a  g iven reg ion  o f  i n t e r e s t  t o  the  experimenter, may be approximated 
s a t i s f a c t o r i l y  by a  simple model. For example, i n  F igure 7.3 a  s t r a i g h t  l i n e  
cou ld  no t  poss ib ly  f i t  the  response a1 ong the  e n t i r e  range o f  X. D iv ided i n t o  
th ree  segments, however, a  d i f f e r e n t  s t r a i g h t  1 i n e  may he a s a t i s f a c t o r y  

X 

F igure  7.3: 'S t ra igh t  l i n e  f i t s  t o  Segments 



r ep resen ta t i on  o f  t h e  response f o r . e a c h  separate segment f o r  some purposes o f  
.i nvest igat, ion. This ill u s t r a t i o n  shows dramat i c a l  l y  t h e  dangers , i n  
e x t r a p o l a t i n g  empi r i c a l  models beyond t he  r e g i o n  i n  whi.ch data was obtained. 
Fo l lowing a n y . o f  t h e  l i n e s  i n F i g u r e  7.3 beyond t hebounda ry  l i m e w i l l  r e s u l t  ' 

i n  extremely 1  arge dev ia t i ons  froin t h e  t r u e  response curve. Pa r t  o f  c o r r e c t  
a n a l y t i c a l  procedure i s  t o  prov ide t o o l s  t o  de tec t  such departures. 

I n  t h i s  s e c t i o n  we s h a l l  d iscuss o n l y  l i n e a r  mode.1~. By l i n e a r ,  i t  
i s  meant 1  i nea r  i n  t h e  parameters. A  s t r a i g h t  l i n e  o r  plane. i s '  l i n e a r  n o t ,  
on l y  i n  t h e  parameters, @Is ,  bu t  i n  t h e  var iab les ,  X's, as wel l .  

S t ra i gh t -1  i n e  Model: 7) = Po + PIXl 

Planar  Model : 7) =Po + P I X l  + P z x 2  

Models i n v o l v i n g  l i n e a r  terms o f  var. iables we sh 'a l l  c a l l  f i r s t  o r d e r  
models. A second o rder  model conta ins quadra t i c  terms i n  t he  X's,  bu t  i s  
-1 i nea r  i n  t h e  parameters. 

2  2  Quadra t i c  o r  Second Order 7) = Po+PIX1 + b2X2 + .@llXl + P22X2 + P12X1X2 
L i  ne r  Model 

Some non- l inear  models a re  i n t r i n s i c a l l y  1  inear.  That i s ,  t h e y  can be 
converted t o  a  l i n e a r  model by a  s imple t ransformat ion;  e.g., 

I n t r i n s i c a l  l y  L i  near Model 
a  

7 = ooV 1fQ2d Q3A a4R " 5  

where X1=Jn (V ) ,  x2=& n ( f )  , X 3 = J n ( d ) ,  X4=$ n(A)  and X5=&n(R) 

F i  nal  ly, o f  course, t h e r e  a re  i n t r i n s i c a l  l y  non-1 i nea r  model s such as those 
which t y p i c a l l y  descr ibe chemical r e c t  ions. These models a re  no t  e a s i l y  d e a l t  
w i t h  and u s u a l l y  r e q u i r e  i t e r a t i v e  procedures t o  o b t a i n  t h e  bes t  est imates o f  
the  parameters. Computer programs are a v a i l  ab le  f o r  ana lys i  s  o f  such models. 

I n t r i n s i c a l l y  Nonul inear Model 
-8, t -89 t 



7.1.2 The P r i n c i p l ' e  o f  Leas t  Squares 

The a n a l y s i s  technique we w i l l  apply  t o  f i t t i n g  l i n e a r  models i s  
c a l l e d  t h e  l e a s t  squares procedure. Since a l l  observat ions a re  suk jec t  t o  
e r r o r ,  we have t h e  model 

where yu i s  t h e  u t h  observa t ion  and i s  t h e  value g iven by t h e  hypothesized 
[nodel f o r  t he  s e t t i n g s  o f  the. independent X va r i ab les  on t h e  u t h  t r i a l .  The 

c u t s  a r e  t h e  e r r o r s  involved. The l eas t  squares p r i n c i p l e  i s  t o  est imate t h e  
parameters o f  t h e  model 

by choosing t h e  P ' s  t o  min imize . t h e  sum of squares o f  t he  e r ro r s ,  i .e.. choose 
t h e  P ' s  so as , 

i s  a minimum. 

I f  we f u r t h e r  assume t h a t  these e r r o r s  c a re  independent ly nd 
i d e n t i c a l l y  d i s t r i b u t e d  as normal va r i a tes  w i t h  mean 0 and var iance o', t h e  
l e a s t  square est imates a re  a l so  t h e  maximum l i k e l i h o o d  est imates (see Appendix 
B )  o f  t h e  parameters. Furthermore, if w'e assume t h a t  t he  X's a re  g iven as 
f i x e d  q u a n t i t i e s  we may w r i t e  t h e  model as 

The expected va lue o f  y g i ven  t he  X ' s  i s  c a l l e d  t h e  regress ion  func t ion .  
Thus, assuming any d i s t r i b u t i o n  f o r  t h e  e r ro r s ,  t h e  l e a s t  squares procedure i s  
a1 so c a l  l e d  regress ion  ana l ys i s  whenever we cons ider  t h e  X ' s  known' and f i xed .  
(The misnomer " regress ion"  apparen t l y  came i n t o  be ing  when an e a r l y  
s t a t i s t i c a l  i n v e s t i g a t o r  s tudy ing  t h e  r e l a t i v e  he igh t s  o f  f a t h e r s  and sons 
d iscovered  t h a t  t a l l  fa thers  tended t o  have sho r te r  sons and sho r t  f a t h c r s  
tended t o  have t a l l e r  sons. He c a l l e d  t h i s  a  " regress ive"  tendency and hence 
t h e  t e rm  " regress ion"  came i n t o  being.) 

I n  general we s h a l l  assume t h e  e r r o r s  o f  observa t ion  a re  normal ly  
d i s t r i b u t e d  and hence t h e  c u r v e - f i t t i n g  es t ima t i on  procedures o f  maximum 
1  i k e l  1 hood, regress ion  and l e a s t  squares a re  . i den t i ca l .  We now t u r n  t o  
i l l u s t r a t i n g  t h e  procedure f o r  t h e  s imple case o f  f i t t i n g  a  s t r a i g h t  lime. 

7.2 F i t t i n g  a  S t r a i g h t  L i n e  

We suppose now t h a t  a  s t r a i g h t  l i n e  i s  an adequate rep resen ta t i on  of 
t he  response o f  i n t e r e s t  i n  t h e  r e g i o n  i n  which we are deal ing. We want t o  
( 1 )  o b t a i n  t h e  - best s t r a i g h t  l i n e  t o  f i t  our data, and ( 2 )  eva lua te  t he  
adequacy o f  t h e  s t r a i g h t  1  i n e  model. The model i s  



Yu = Po + P1 xu +; €, 

where we assume c U - N ( o , ~ ' ) ,  u  = 1, 2, ..., N. We want t o  se l ec t  Po a n d P 1  
such t h a t  

i s  a  minimum. That i s ,  t h e  d e v i a t i o n s  o f  t h e  observat ions from ' the  f i t t e d  o r  
p red i c t ed  1  i n e  a re  minimum i n  t h e  above sense. 

F i g u r e  7.4. s t r a i g h t  L i n e  Model 

7.2.1 Analys is  

We proceed t o  f i n d  t h e  est imates o f  P and P by de te rmin ing  t h e  a normal equat ions by  d i f f e r e n t i a t i  ng S  by Po an8 Pl a n  s e t t i n g  e q u a l  t o  zero: 

a 2  as - - - P(Y - P - p  x ) . -  = - 2 1  (Y - = o  '* so a ~ ,  o l u  

1 ( Po+ PIXu) = Z y U  



The two equat ions 

2. po EX u . + p1 Ex: = PXuyu 

a r e  t h e  normal equat ions o f  t h i s  system and may be solved s imul taneously  f o r  
po and 41. The r e s u l t i n g  est imates, bo and bl, a re  

XXuyu - N X j 
b, = - - , where Nx = EXU 

x - N $ 

where - 
ZXuyu - ~1 Y := Z(Xu - X )  ( y  - ) and 

1x2 u - ~ 1 2  = Z (XU - 1)2. 

The computat ion can be made eas ie r  i f  we des ign t he  experiment so 
t h a t  t h e  average o f  t h e  X ' s  i s  zero. Equ i va len t l y ,  cons ider  t h e  model 

- 
wherePl = P ,  a = P o  +Pla, and xu = XU - X. Thenzx, = 0 ( P =  0). The 
es t imates  a re  now 

These est imates are i n  f a c t  l i n e a r  unbiased es t imates ,  o f  t h e  parameters and 
have minimum var iances o f  a l l  such l i n e a r  unbiased esrlmates o f  u a r ~ d  /3 . 
The v,aridnce o f  b i s  In f a c t  

L z x ;  
2 x i  

J 
2 1  - a - - -  Var ( y  ) = a - - . 

i _ \ 7  ,. n 



where r 2  = Var ('E,,). For  

Var(  bo) = r 2 

2  If we assume cu-N (0, r ) and us ing  t h e  f ac t  t h a t  l i n e a r  combinat ions o f  - 
normal va r i ab l es  a re  d i s t r i b u t e d  normal ly, we may o b t a i n  conf idence i n t e r v a l  s  
f o r  Po and PI: 

Ilowever, we u s u a l l y  do no t  k n o w r 2  but must es t imate  i t  f rom t h e  data. The 
es t imate  o f  t h e  var iance i s  obta ined from t h e  r e s i d u a l s  

where y u  = bo + blXu .are t h e  f i t t e d  o r  p red i c t ed  value o f  t h e  model. ,   hat i s  . 

where t h e  d i v i s o r  N - 2  a r e  t h e  degrees o f  freedom f o r  t h e  es t ima te  o f  
va r iance  i n  which two parameters Po andP1 were a l ready est imated from t h e  

2  
. . 

data. Th i s  i s  t h e  usual unbiased es t imate  o f  va r iance  s  . The i n t e r v a l  
statements f o r  Po and PI are  now 

Statements about t h e  s i g n i f i c a n c e  o f  t h e  parameter can be made us i ng  these 
est imates.  If the  i n t e r v a l s  eva luated a t  some conf idence l e v e l  y i n c l ude  t h e  
va lue zero, we say t h a t  t h e  data does no t  c o n t r a d i c t  t h e  assumption t h a t  t h e  
parameter i s  neg l i g i b l e .  

Another way o f  exami n i ng  t h e  s i g n i f i c a n c e  o f  t h e  parameters being 
est imated i s  by t h e  ANOVA tab le .  The ANOVA t a b l e  i s  cons t ruc ted  as fo l l ows .  



ANOVA Table: Model yu = Po +PIXu + r u  

Source 
7 

Sum o f  Squares Degrees o f  Freedom Mean Square 

Tota l  

Regression IY: 

Mean ( 

s lope  ( PI) bl 8 (Xu - X)Y, 

Residuals Y - 9u)2  

Reg SS/2 

The s ign i f i cance o f  t h e  ove ra l l  model can be determined by t h e  F - tes t  

Reg ?S/? 
5 

F2, N - 2  Res s S ~ ( N  - 2) 

I n  o ther  words, i f  t h e  model Po + PIXU accounts f o r  a  s i g n i f i c a n t  p ropor t ion '  

o f  t he  v a r i a t i o n  i n  the  data, then t h i s  r a t i o  w i l l  be l a r g e r  than the c r i t i c a l  
va lue o f  an F2 -2 d i s t r i b u t i o n  a t  the  spec i f i ed  oonf idence leve l .  This  

9 

w i l l  usua l l y  be the  case s ince  the  experimenter expects something t o  be 
con t ro l1  i ng  t h e  response besides random e r ro r ,  o r  else he would not bother t o  
propose the  model. The regression model i n . t h i s  case can be separated i n t o  
t h e  two component par ts ,  mean and slope, and hence each o f  these parameters 
can be tes ted  separate ly  f o r  s ign i f i cance,  e i t h e r  by the  t - i n t e r v a l  approach 
o r  by the  appropr iate F1 N - 2  t e s t  suggested by t h e  ANOVA table. For 

s t r a i g h t  1  i n e  models usual l y  on l y  t he  slope term i s  o f  i n t e r e s t  s i  nce, w i t h  
t h e  except i on  o f  a  1 i n e  thought t o  pass through t h e  o r i g i n a l ,  t he  y - i n te rcep t  
i s  almost a1 ways s i g n i f i c a n t .  

Given t h a t  t h e  s t r a i g h t  1  i n e  model i s  found t o  be s i g n i f i c a n t  ,i.e., 
both t h e  slope and i n t e r c e p t  parameters con t r i bu te  s ' i g n i f i c a n t l y  t o  t he  
exp lanat ion  o f  the v a r i a t i o n  o f  t h e  data, we can next ca l cu la te  confidence 
i n t e r v a l s ,  to lerance i n t e r v a l s  and p red i c t i on  i n t e r v a l s  f o r  the  f i t t e d  1  i'ne. 
The variance o f  a  f i t t e d  value i s  . 

and i s  est imted by rep lac ing  c2 by s2. Thus, a95X confidence i n t e r v a l  f o r  
t h e  mean value o f  t h e  f i t t e d  l i n e  a t  a  po in t  Xk i s  



I TOLERANCE 
BANDS 

CONFIDENCE 

I / BANDS 

F igure  7.5. Confidence and Tolerance Bands f o r  a 
S t r a i g h t  L ine  F i t  I 

- 
Note t h a t  the confidence bands diverge, being most narrow a t  Xu = X. 

Th is  r e f l e c t s  t h a t  our knowledge o f  the model decreases as we move away from 
the center  o f  the experimental region.  The t r u e  s t r a i g h t  l i n e  r e l a t i o n s h i p  
(assuming i t  i s  appropr iate)  l i e s  between the confidence l i n e s .  Ex t rapo la t i ng  
the f i t t e d  1 i n e  much beyond the  experimental reg ion  cou ld  l ead  t o  l a r g e  
departures from the  t r u e  1 ine.  

A y/P to lerance,  i n t e r v a l  a t  X = Xk i s  constructed much as before, as 

A 
Yk f K ' S  

only K i s  obtained by a complex approximation formula 

A h  A 
where Var (yK)  i s  an est imate o f  the  variance o f  y ~ .  

The i n t e r p r e t a t i o n  i s  t h a t  a t  each p o i n t  along the l i n e  100P% o f  the 
pnp~ulat ign n f  yk  a t  Y = Xk w i l l  f a l l  w i t h i n  the  i n t e r v a l  w i t h  100 yS 
confidence. 

These i n t e r v a l s  are bands l i k e  the  confidence bands f o r  the mean value o f  t he  
l i n e ,  on ly  much.wider. 

A p r e d i c t i o n  i n t e r v a l  f o r  a s ing le  f u t u r e  observat ion o f  y a t  X = 

t o  the  pred ic ted  value p lus  a ,random e r ro r ,  
x! can be obtained by stmply recogniz ing t h a t  a f u t u r e  observat ion w i l l  be equa 



and i t s  va r iance  i s  

Thus, a  100( 1- a )% p r e d i c t  i o n  i n t e r v a l  i s  

For t h e  mean o f  q  f u t u r e  observat ions,  a  p r e d i c t i o n  i n t e r v a l  i s  
* 112 

- A + 
Yq, f u t u r e  - yk ' ' ~ - 2 , n / 2  

7.2.2 I n t e r p r e t a t  i o n  and .Diagnost ic  Checks 

We can t e s t  f o r  t h e  s i g n i f i c a n c e  o f  t he  i n t e r c e p t  o r  s lope parameter 
o f  t h e  f i t t e d  l i n e  and produce conf idence bands, t o l e rane  bands o r  p r e d i c t i o n  
bands about t h e  1  i n e  p r o v i d e d  t h e  model under cons ide ra t i on  and i t s  under ly ing  
assumpt ions  a r e  co r rec t .  The. l e a s t  'squares procedure prov ides t h e  best f i t t e d  
equa t ion  f o r  t h e  type o f  model examined, b u t  i t  does - not assure t h a t  t h e  model 
i s  c o r r e c t  . o r  appropr ia te !  The ques t ion  o f  s i g n i f i c a n c e  o f  parameters Po 
and PI i s  i r r e l e v t n t  and t h e  corresponding bands i n a p p r o p r i a t e  i f  a  1 i n e  i s  a  
wrong model t o  f i t  t o  t h e  data. There a re  severa l  methods o f  de tec t i ng  model 
inadequacies,  b u t  f i r s t  l e t  us i d e n t i f y  t h e  ways t h a t  t h e  model may f a i l .  

The complete ' r ep resen ta t i on  o f  t h e  model i s  

where q i s  t he  t r u e  response and i s  a  f u n c t i o n  o f  a  se t  o f  one o r  more i n p u t  
v a r i a b l e s ,  x, and a  s e t  o f  c o e f f i c i e n t s  o r  parameters P. The observat ions a r e  
des ignated 6y y and d i f f e r  f rom t h e  t r u e  va l  ue because o f  random er ro r .  The 
e r r o r s  a r e  usual l y  assumed t o  e  independent ly and normal l y  d i  s t r i b u t e d  w i t h  

i B mean 0  and common var ance u . I f  t h i s  holds,  then  t h e  observat ions 
themsel ves a re  N(0, u ). The f o u r  assumptions invo lved,  then, a r e  

1. Normal d i  s t r i b u t  i o n  
2. Independence 
3. Common var iance  
4. The f u n c t i o n  7 i s  o f  t h e  c o r r e c t  form 

The f u n c t i o n  7 may be i n c o r r e c t  due t o  wrong ' func t ions  o f  t h e  i n p u t  va r i ab les  
o r  due t o  t h e  absence of terms i n v o l v i n g  o the r  va r i ab les  not  p rev ious l y  
considered. 



We s h a l l  f i r s t  d i scuss  some procedures f o r  p l o t t i n g  t h e  r e s i d u a l s  
f rom t h e  ana l ys i s  which have been found t o  be very he1 p f  u l  i n  d i  agnosi ng 
depar tures f rom the  above assumptions and t he  reasons f o r  these departures.  

A. Residual P l o t s  

1. Normal i t y  assumption 

Histogram - A h is togram oC t h e  r e s u l t i n g  r e s i d u a l s  may' 
be p l o t t ed .  Th is  h is togram should appear t o  have come 
from a  normal d i s t r i b u t i o n .  Ther.e a re  two warnings t o  
be made, however. For.* observat ions,  a  h is togram 
may appear q u i t e  sca t te red  and non-normal, bu t  may i n  
f a c t  be an adequate r ep resen ta t i on  o f  a  normal 
d i s t r i b u t i o n .  Secondly, a l though  t h e r e  a re  N 
r es i dua l s ,  t h e r e  a re  o n l y  N-2  independent values 
(.i.e., degrees o f  f reedun) ,  s ince  two parameters were 
est imated from t h e  data. T h i s  c o n s t r a i n t  on t h e  
r e s i d u a l s  has t h e  e f f e c t  o f  bunching t he  data c l o s e r  
t o  t h e  o r i g i n .  The problem becomes much more acute as 
t h e  degrees o f  f reedan f o r  r e s i d u a l s  ge ts  smal l  
compared t o  N. In b o t h  cases exper ience i n , t h e  
i n t e r p r e t a t i o n  o f  these p l o t s  i s  impor tan t  t o  avo id  
e r ro rs .  

b )  Cumulat ive d i s t r i b u t i o n '  p l o t  on p robab i l  i ty  paper 

. I n  some computer programs t h e  cumula t i ve  d i s t r i b u t i o n '  
o f  t h e  r e s i d u a l s  a re  p l o t t e d  on a  sca le  ( p r o b a b i l i t y )  
so t h a t  i f  t h e  assumption o f  no rma l i t y  i s  appropr ia te ,  
a  s t r a i g h t  l i n e  may be drawn th rough  t h e  po in ts .  
Depar tures from a  s t r a i g h t  1  i n e  a re  i n d i c a t i v e  o f  
depar tures frun norma l i t y .  F i gu re  7.6 ill u s t r a t e s  
t y p i c a l  h is togram and cumulat ive probabi  1  i t y  p l o t s .  

- 
NORMAL APPEARING HISTOGRAM SKEWED HISTOGRAM 

NORMAL APPEARING CUMULATIVE PLOT NON-NORMAL CUMULATIVE PLOT 

F igu re  7.6. P l o t s  f o r  Checking Normali ty Assumption 



2. Independence 

We can check t h e  r e s i d u a l s  f o r  a  t ime  dependency by' 
p l o t t i n g  t h e  residua1.s as a  f u n c t i o n  o f  t h e  o rde r  i n  which 
t h e y  were observed. F i g u r e  7.7 il l u s t r a t e s  such a  p l o t .  
What we would l i k e  t o  see i s  t h a t  two l i n e s  h o r i z o n t a l  t o  
t h e  t ime  ' ax i s  can be drawn which i nc l ude  a l l  o r  mos t -o f  t h e  
res idua ls .  The conc lus ion  i s  then t h a t  t h e r e  i s  no 
apparent t i m e  t r e n d  present.  

.. 
' 1  2 3 4 5  6 7 ~ 9 1 0 1 1  1 2 1 3  

1 I 
X X T IME ORDER 

F i g u r e  7.7. P l o t  o f  Residuals  ru vs Time Order 

F i g u r e  7.8 shows o t h e r  types o f  bands which a r e  drawn t o  
i n c l u d e  most o f  t h e  data which are i n d i c a t i v e  o f  depar tu re  
from t h e  models. When t h e  h o r i z o n t a l  axf s. i s  considered t o  
be t ime,  then  t h e  funne l  shaped band (1 )  i s  i n d i c a t i v e  t h a t  
t h e  v a r i a t i o n  o r  spread o f  the  r e s i d u a l s  i s  i nc reas ing  w i t h  
t ime. That i s ,  t h e  var iance  o f  t h e  e r r o r s  i s  apparent ly  
i nc reas ing  as t h e  process cont inues. The para.1 l e l  bu t  
d iagonal  1  i n e s  ( 2 )  i n d i c a t e  a  1  i n e a r  t r e n d  i n  o c c u r r i n g  i n  
t ime. The curved bands ( 3 )  a re  i n d i c a t i v e  o f  a  need f o r  a  
q u a d r a t i c ' t e r m  i n v o l v i n g  t ime. 

.:= . 

3. Homogeneity o f  Var iance 

It may happen t h a t  t h e  var iance  o f  t h e  observat ions 
changes w i t h  t h e  s i z e  o f  the  response, thus v l o l a t l n g  
t h e  hoi~icrganeity 61- e q u a l i t y  o f  v a r i a n c e  assumption. 
Th is  i s  best  examined by p l o t t i n g  t h e  r e s i d u a l s  
aga ins t  t h e  f i t t e d  values y. The f i t t e d  values, Eu, 
are used i ns tead  o f  i h e  obsarvat ions because t h e  
 residual,^ ru = yu - y and y  a r e  s t a t i s t i c a l l y  
i ndependent o f  each o!her. Xgai n, h o r i z o n t a l  bands 
a re  des i red.  



VARIANCE INCREASIN( 

LINEAR TERM NEEDED 

QUADRATIC TESM NEEDED 

F igu re  7.8. Residual P l o t s  : Diagnost ic '  Bands 

F igure 7.9. Residuals vs ~ i t t e d  V,alue's 

When t k e  h o r i z o n t a l  a x i  s i n  F igu re  -7.8. i s  consi i jered 
t o  be y, ( 1  ) i n d i c a t e s -  inc ' reasi  ng var iance  and t h e  
need f o r  a weighted. l e a s t  squares procedure .or t rans-  
format i o n  on t h e  observat ions ( f o r  t rans fo rmat ions  and 
weighted 1 east squares ,, see Sect Ton 7.4). F i  gures 
7,8(2) and (3)  would i n d i c a t e  t h a t  t h e  model i s .  
inadequate. ( 2 )  may be caused by wrongly o m i t t i n g  a 
1 i n e a r  term f rom t h e  model. (3)  may be caused by 
omission o f  quadra t i c  o r  cross-product terms. 

4. Other P l o t s  

Other . res idua l  p l o t s  may, be warranted, depending on 
t h e  model. I f  more t h a n  one x v a r i a b l e  i s  i n  t h e  
model, a p l o t  of ,ru aga ins t  each o f  t he  x ' s  i s  ad- 
v i sab le  t o  determine omissions o r  depar tures from t h e  
model due t o  each var iab le .  

A1 so p l o t t i n g '  r es i dua l  s w i  t h . i n  each b lock  o r  t reatment  
,may p rov ide  c l  ues t o  departures f rom assumptions t h a t  
a r e  no t  detected by t h e  ana l ys i s  procedure. 



B. The Lack-of-Fi t  Test 

A q u a n t i t a t i v e  t e s t  may be performed t o  t e s t  f o r  model 
inadequacy also. There are  two condi t ions under which t h i s  
lack o f  f i t  t e s t  may be performed. F i r s t ,  i'f a p r i o r  

est imate o f  variance u A i s  avai lablg,  t h e  variance 
D 

est imate s2 r e s u l t i n g  f r o m t h e  present data may be 
compared t o  it. I f  the  model i s  adequate t o  represent the  

2 A 2  data, t h e  F - r a t i o  s / up should r e s u l t  i n  an non- 

s i g n i f i c a n t  value, i.e., 

F v ,  v < I : v , v , u  
1 2  1 2  

where YL a m  t h c  dcgrccs o f  f~ecdom f o r  res iduals from the  

analys is  and v 2  are the  degrees o f  freedom i n  

bpi. The drawback t o  t h i s  t e s t  i s  t h a t  a s u f f i c i e n t l y  

r e l i a b l e  p r i o r  est imate o f  u2 i s  r a r e l y  avai lable. I n  
addi t ion,  care must be taken t o  ensure t h a t  t he  data i s  
obtained under t h e  same condi t ions as was the  est imate 

9' . This i s  o f ten  extremely d i f f i c u l t  t o  assure. 
P 

The.second cond i t i on  under which a l a c k - o f - f i t  t e s t  
may be performed i s  t h a t  r e p l i c a t e  observations ,be made i n  
Lht!  current experiment. I f  observatlons -abre-5peated under 
the  same cond i t ions  and same x set t ings,  then t h e  on ly  
explanat ion f o r  d i f fe rences i n  t h e  observations i s  pure 
random error .  The sum o f  squares of these repeat po in ts  
about theirpaverage may be used t o  estimate t h e  
variance cr o f .  t h i s  pure error .  

Pe 

L c t  y- be t h e  jt o f  n observations a t  t h e  i t h  s e t t i n g  or 
condit jon. Then he es imate o f  variance from these ni 
ohservat i ons i s 

e r 

Pool ing t h e  estimates s: over a l l  sets of repeat 
points, we obta in  



k  
where ve = (ni - 1)  = I n i  - k. 

The res i dua l  sum o f  squares f rom t h e  ANOVA t a b l e ,  however, 
con ta ins  t h e  in fo rmat ion  about t h e  repeated p o i n t s  i n  
a d d i t i o n  t o  o t h e r  unexplained v a r i a t i o n .  The ' r es i dua l s  can 
be broken up, then, i n t o  two independent pa r t s :  

The f i r s t  t e rm  we have a1 ready i d e n t i  f i  ed as t h e  p u r e  e r r o r  
est imate.  The l a t t e r  ' term, then,  represen ts  ' t h e  
discrepancy between t h e  averages o f  repeated p o i n t s  and t h e  
f i t t e d  model i t s e l f .  The sum o f  squares o f  t h e  - lack  

o f  f i t  term est imates u p l u s t h e s i z e o f t h e  p.e. 

depar tu re  f rom t h e  model. The sum o f  squares f o r  l ack  o f  
f i t  and t h e  degrees of freedom a re  ob ta ined  by sub t rac t i on .  , 

v v 
l o f ,  p.e. 

t e s t s  t h e  assumption t h a t  t h e  model i s  adequate t o  f i t  t h e  
data. I f  t h e  c a l c u l a t e d  F - r a t i o  i s  l a r g e r  than 

v  v , then  we may t a k e  t h i s  t o  mean 
l o f ,  p.e., 

t h a t  t h e  da ta  i s  t e s t i f y i n g  t o  the  f a c t  t h a t  t h e  model does 
not adequately f i t  t h e  data. Since r e j e c t i n g  a - 
hypothesized model i s  u s u a l l y  a  se r ious  consequence, some 
s t a t i s t i c i a n s  suggest t h a t  t h e  model no t  be dec la red  
inadequate un less t h e  F - r a t i o  i s  t w i c e  t h e  c r i t i c a l  
value. Th i s  procedure i s  a r b i t r a r y  bu t  never the less  p o i n t s  
ou t  t h e  f e e l i n g  t h a t  we should not  be t o o  anxious t o  r e j e c t  
a  hypothesized model un less a  good a l t e r n a t i v e  i s  
ava i l ab l e .  



C. Shap i ro -N i l  k  S t a t i s t i c  f o r  Non-Normal i ty 

For n , l 5 0  observa t ions  a  t e s t  f o r  non-normali t y  o f  t h e  
d i s t r i b u t i o n  o f  t h e  r e s i d u a l s  can be made. T h i s  t e s t ,  
known as t h e  Shapiro-WilC Test 1331, compares a  
d i s t r i b u t  i o n - f r e e  es t imate  of t he  va r iance  o f  t h e  r e s i d u a l s  
aga ins t  t h e  usual  sum o f  squared dev ia t i ons  from t h e  
mean. Speci f i c a l  l y ,  l e t  

k  
2 {t,, n even b  = 1  n i + l ( + ) - ( i )  = . 

Each d i f f e r e n c e  r(,,- i+l -r( i )  i s  a range estimat.e 

o f  t h e  s tandard d e v i a t i o n  u, where r i s  t h c  , j t h  ordercd ( j  

r e s i d u a l  and t h e  a ' s  a re  cons tan ts  (see  [33]). The t e s t ,  

2  2  then, i s  t o  cal lpare b2 aga ins t  S  = x ( r i - F )  , 

( S ~ = S ~ / ( ~ - Z ) ) .  If the  r a t i o  
C)  

i s  qu i  t e  smal 1, t h e  r es i dua l  s  a r e  showing evidence o f  non- 
norma l i t y .  Only values which a re  s i g n i f i c a n t  a t  a  small 
e r r o r  l e v e l  (e.g., a = 0.01) a r e  cons idered impor tant .  

U. C o e f f i c i e n t  o f  D e t e n i n a t  i o n  

Another measuring t o o l  t o  use t o  eva lua te  t h e  usefu lness o f  
a  model i s  t h e  c o e f f i c i e n t  o f  de te rmina t ion ,  a1 so known as 
t h e  squared c o r r e l a t i o n  c o e f f i c i e n t .  The parameters o f  a  
model, t h e  y - i  n te r cep t  and s l  ope under cons ide ra t i on  here, 
inay be judged t o  be s i y r s i f i c a n t  even i f  the vdr. . idt ior~ i s  
hiqh. A quest  i o n  o f  i n t e r e s t  i s  how much o f  t h e  
v a r i a b i l i t y  i s  acco nted f o r  by t h e  model? The c o e f f i c i e n t  
o f  de te rmina t ion ,  RB ,  measures t h e  p r o p o r t i o n  o f  t o t a l  
v a r i a t i o n  about t h e  average y t h a t  i s  exp la ined  by t h e  
model. F u n c t i o n a l l y ,  



2 2 I n  general t h e  l a r g e r  R t h e  be t t e r .  However, R can be 
made a r t i f i c a l l y  l a r g e  by adding parameters t o  t h e  model 
which a re  not  r e a l l y  s i g n i f i c a n t .  I n  f c t ,  i f  we f i t  N 3 parameters t o  N d i s t i n c t  data  po in ts ,  I? w i l l  be 1, 
obv i ous l y  an a r t i f i c i a l  r e s u l t .  However, when no o r  few 
r e p l i c a t e d  observat ions appear i n  t h e  data and t h e  number 
o f  parameters j s  smal l  compared t o  t h e  number o f  d i s t i n c t  
data po in ts ,  R serves as a  u s e f u l  t o o l  f o r  eva lua t i ng  t h e  
model. It i s  espec ia l  l y  use fu l  when t r y i n g  t o  eva lua te  t h e  
wor th  o f  an e x t r a  parameter under cons ide ra t i on  f o r  
i n c l u s i o n  i n  t he  model. Th i s  w i l l  be discussed f u r t h e r  i n  
t h e  s e c t i o n  ahout model b u i l d i  ng. 

A l l  o f  these d i agnos t i c  t o o l s  should be used t oge the r  
whenever poss ib le .  The 1  a c k - o f - f i  t t e s t  i nd ica tes  an 
inadequate model but  does no t  t e l l  you why i t  i s  
inadequate. The r e s i d u a l  p l o t s  a r e  very  use fu l  f o r  t h i s  
purpose. I n  f a c t ,  t h e  r es i dua l  p l o t s  a r e  use fu l  even when 
a  l a c k - o f - f i t  t e s t  i s  no t  ava i l ab l e .  

7.2.3 Summary 

Eva lua t i on  o f  a  S t r a i g h t  L i n e  Model 

I. Ob jec t i ve  - To determine t he  s t r a i g h t  l i n e  which bes t  f i t s  t h e  da ta  
f o r  t h e  purpose o f  p r e d i c t i n g  t h e  response i n  a  s p e c i f i e d  r e g i o n  o f  
i n t e r e s t  and t o  examine t h i s  f i t t e d  model f o r  inadequacies. 

Assumptions 

Model : 

where 

y u  = t he  observed va l  ue o f  t h e  dependent v a r i a b l e .  on t h e  
u th  run, . 

Po = the  t r u e  y - i n t e r c e p t  o f  t h e  l i n e ,  

P I  = t h e  t r u e  s lope  o f  t h e  l i n e ,  

Xu = t h e  value of the  independent v a r i a b l e  on t h e  u t h  run, 

a nd c U  = t h e  r a n d m  error assoc ia ted  w i t h  observ ing  y. The 
e r r o r s  a re  assumed t o  be independent w i t h  a  common 

2 mean o f  zero and a  common v a r i a n c e u  . 
A1 t e rna t  i v e  Model : 

- 
yu = a + P (Xu  - X) + E U  



where 

B. Procedure - Least  Squares P r i n c i p l e  

n  
Min imize S = Sl ( yu  - a  - p  (xu - X I )  2 

I1 I. Cornputat i n n  

A. Est imate o f  Slope tarameter . - 

B. E s t i m a t e o f  y - i n t e r c e p t  

C. F i t t e d  o r  P red i c ted  Values - .a ,...- 

A 

yu = a  + b  (X,, - X) = b, t bl Xu 

2 D. E s t i r n a t ~  o f  Var iance u 

E. The Ana lys is  o f  Var iance Table - 

T o t a l  Sum o f  Squares: 1 yu 
2 

1,  -- 
U 

T h i s  i s  a measure o f  t h e  t o t a l  i n f o rma t i on  contained 
i n  t h e  data. 

A 2 2. Regressinn Sum o f  Squares: yyu 
U 

Th i s  i s  a  measure o f  t h e  amount o f  i n f o rma t i on  i n  t h e  
da ta  exp la ined  by t h e  model. For  a  s t r a i g h t  l i n e  - 
model, t h e  regress ion  sum of squares can be separated 
i n t o  two par ts .  



a. Sum o f  squares due t o  t he  presence o f  a  mean: 
ss (a )  

b. Sum o f  squares due t o  t h e  s lope:  SS(b) 

2  3. Residual  Sum of Squares: x ( y u  - yu )  
. U  

Th i s  i s  a  measure o f  t h e  v a r i a t i o n  i n ' t h e  data which 
i s  unexplained .by t h e  model; i . e . , i t  i s  t h e  amount o f  
v a r i a t i o n  a t t r i b u t a b l e  t o  chance- and, perhaps, a'n 
i nadeqr~a t e  model. 

I V .  Eva1 ua t i on  

A. F- tes t  f o r  t h e  Slope Parameter 

Assuming now t h a t  the  e r r o r s  E a r e  normal l y  d i s t r i b u t e d ,  
t h e  s t a t i s t i c a l  s i g n i f i c a n c e  o f  t he  s lope parameter o f  t h e  
f i t t e d  s t r a i g h t  l i n e  can be tested. I f  t h e  c a l c u l a t e d  va lue 
i s  s i g n i f i c a n t l y  la rge ,  t h i s  i s  evidence t h a t  t h e  s lope i s  
non-zero. 

F = sy , w i t h  1  and n-2 degrees o f  freedom . 
s  

B. - C o e f f i c i e n t  o f  ~ e t e r m i n a t ' i o n  (Squared C o r r e l a t i o n  
C o e f f i c i e n t )  

Th i s  vial ue measures t h e  p r o p o r t i o n  o f  t o t a l  v a r i a t i o n  about 
t h e  mean o f  y  t h a t  i s  exp la ined by t h e  model. 

C. Confidence I n t e r v a l  f o r  t h e  Slope ~c ikameter  

The 100 ( 1  - a )% conf idence i n t e r v a l  f o r P l  . i s  
obta ined from 

1  /2  
where s(  b)l = S/[Z (xu- R) *] . 

I f  t l (e conf idence i n t e r v a l  does not  i n c l u d e  t h e  p o i n t  
P1 = 0, then P1 i s  sa i d  t o  be s i g n i f i c a n t l y  d i f f e r e n t  from 
zero. 



0. Conf idence I n t e r v a l  f o r  t h e  Pred ic ted  Mean Value o f  y  

A  100 ( 1  - a ) %  con f idence  band about t h e  p red i c t ed  l i n e  can 
be ob ta ined  frm 

where 112 

E. Tolerance l n t e r v a l  f o r  t h e  Popu la t ion  o f  y ' s  a t  X = Xk 

A t o l e r a n c e  band w i t h i n  which a t  l e a s t  100 P% o f  t h e  
popu la t i on  o f  y ' s  a t  X = Xk w i l l  l i e  can be cons t ruc ted  
w i  t h  
100(1 - a  )S con f idence  f rom 

where K i s  a  cons tan t  depending P, a ,  n, and Xk. 

V. Checks on t h e  Assumptions 

A. Test f o r  Model Inadequacy 

1. I f  a p . i o r . esL i l ~~c tLe  a 2  u f  t ~ ~ e v i ~ r i a n c e u ~ l s  
P 

A 2 
a v a i l  ab le ,  compare sZ against  u . 

P 

2. I f  repea t  observa t ions  a re  ava i l ab l e ,  t h e  r e s i d u a l  sum 
o f  squares can bc d i v i d e d  i n t o  two p a r t s :  ( 1 )  t hc  pure 
er.r.01. or. r.epl-i cd tes  SUIII u f  squdres 111edsur1 riy t h e  
v a r i a t i o n  w i t h i n  rep1 i c a t e s  and ( 2 )  t h e  remaining 
p o r t i o n  o f  t h e  r e s i d u a l  sum o f  squares, c a l  l e d  t h e  
1  a c k - o f - f i  t o r  1  i n e a r i t y  sum o f  squares, measures t h e  
variability about t h e  f ltred l l n e  Only. 

Compute: 

where yi i s  t h e  average o f  ni observat ions a t  Xi, 



iii. sL - p.e. - SSp.e. I v  p. e. 

L v i .  slOf = S S l o f  " l o f  . 

Test  : 3 

w i t h  .u'l.of and u p. e. degrees o f  freedom. . . 

I f  t h e  s t r a i g h t  l i n e  model i s  inadequate, an excessive 
amount o f  v a r i a t i o n  about t h e  f i t t e d  l i n e  w i l l  r e s u l t ,  

2  i .e., slof2 w i l l  be l a r g e  compared . . t o  s  p.e. , 
. . 

r e s u l t i n g  i n  a  s i g n i f i c a n t l y  l a r g e  Flof value. 

B. Shapi ro-W i 1  k 

The shapi ro-Wi l  k  S t a t i s t i c  W f o r  n<  50 observa t ions  
i n d i c a t e s  non-nomal i  ty o f  t h e  r e s i d u a l s  (and hence t h e  
observat ions)  i f  i t  i s  s i g n i f i c a n t  a t  a  low Type I e r r o r  
l e v e l ,  e.g., a= 0.01 o r  0.05. 

C. Residual P l o t s  

The r e s i d u a l s  ru = yu - 9, can be p l o t t e d  i n  severa l  ways 
t o  check on t h e  assumptions o f  

i . ~ o r m a l  d i  s t r  i b u t  i o n  

ii. E q u a l i t y  o f  var iance f o r  a l l  r,  

i ii . Independence o f  t h e  E r r o r s  

Some t y p i c a l  p l o t s  are:  

i. Normal p rnhah i l  it.y plot .  

ii. r, versus t i m e  sequence 
A 

i i i . ru versus y,, t h e .  f i t t e d  val  ues 

i v .  ru versus Xu 



Suppose t h a t  a  new assay gage i s ,  t o  be evaluated f o r  determin ing t h e  
end-of-1 i f e  f i  s s i l e  l o a d i n g  o f  LWBR rods. Le t  

where y - j  i s  t h e  gage response. and Xi i s  t h e  f i s s i l e  l oad ing  o f  t h e  i t h  r od  
ob ta ined  by d e s t r u c t i v e  analys is .  

The hypo the t i ca l  da ta  g i ven  i n  Table 7.2 show t h a t  24 observat ions 
a re  p rov ided  f o r  13 rods. Seventeen gage responses represent  repeated 
measurements f rom 6 rods,  w h i l e  seven o the r  responses represent  s i n g l e  
observa t ions  o f  a  rod. The data were analyzed u t i l  i z i  ng t h e  computations 
p rov ided  i n  Sect i o n  7.2.3. The ana l ys i s  i s summarized by use o f  a  worksheet. 

Table  7.2 
D a t a  f o r  Assay Gage Example 

EOL F i . s s i l e  Loading by 
D e s t r u c t i v e  Ana lys i  s  

X 

Assay Gage 
Response 

Y 



Worksheet f o r '  Simp1 e L i  near Regression 

Ind. Var. X w/o T o t a l  Uranium 
' 

D ~ P -  Var. Y Assay Gage Values 

CX = 209.'850 CY = 1413.94 
- - 
X = 8.74375 No. of observa t ions  N = 24, - Y = 58.9142 

(1)  CXY = 12386.074 (17) Sy = = 1.245 - 
. 2 

(2) ( L X ) ( C Y ) / N  = 12363.13788 2 -"y - 1 , 0.5491 . 

f o r  u = N - 2, t22,0.025 = 2.074 

A 
f o r  X = X k ,  Y k  = b o +  bl xk 

Conf. i n t e r v a  l on q ( 1  i ne) f o r  
X = X k :  
A 

Yk + .,a12 + 
- 

S x X 

Pred. 
f o r  X 

Note: 

i n t e r v a l  on next  o b s e r v a t i o n  
= xk.: 



The f i t t e d  model i s  
A 
y = -12.163 + 8.129 X 

and t h e  ANOVA t a b l e  i s  

Table 7.3 
ANOVA Table 

Source 

I n t e r c e p t  83301 10 
(Mean .y) 

MS - F-Ra t i o  

- 
Residual  s 34.09. - 22 1.55' 

Lack o f  F i t  31.58 11 2.87 12.6 
. . 

Pure E r r o r  2.51 11 0.23 

Using t he  r e s i d u a l  mean square as our est imate o f  c2, a 95% 
conf idence i n t e r v a l  f o r  /3 i s  0.66 < P <0.97. Thus, i s  c c r t a i  n l y  
s i g n i f i c a n t l y  non-zero. t he F - r a t i o  o  f 120.34 t e s t i f i e s  t o  t h i s  conc lus ion  
also. A 95% conf idence band f o r  se lected X va lues i s  l i s t e d  below i n  Table 
7.4 a long w i t h  95/99 t o l e r a n c e  bands a t  these po in t s .  

Table 7.4 
Confidence and Tolerance f o r  New Assay Gage 

95% Confidence 95/99 To1 erance - 
X Y 1 ower upper 7 ower up per  

8.000 52.87 51.61 54.13 48.18 57.55 
8,362 55.82 55.03 5G.GO 51.35 60.28 
8.725 58.76 58.23 59.29 54.39 63.13 
9.087 61.71 60.96 62.45 57.26 GG. 16 
9.450 64.66 63.45 65.86 , 59.99 69.32 

The cen te r  o f  t h e  reg ion  of exper imenta t ion . i s  = 8.74375. Note t h a t  t h e  
con f idence  and t o l e r a n c e  i n t e r v a l s  become wider  as X moves away from X. Our 
i n f o r m a t i o n  about a  system i s  bes t  a t  t h e  cen te r  o f  t h e  r e g i o n  o f  
exper imenta t ion  and ge ts  p rog ress i ve l y  worse as we move away from t h e  center.  

O f  course, t h e  above i n t e r v a l s  and t e s t s  o f  s i g n i f i c a n c e  a re  o f  no , 
va lue  i f  t h e  model i s  inadequate. We have severa l  ways t o  s tudy t h i s  
quest ion. F i r s t  note t h a t  t h e  l a c k - o f - f i t  t e s t  g ives  an F - r a t i o  o f  12.60. 



The c r i t i c a l  F f o r  11 degrees o f  freedom i n  bo th  numerator and denominator i s  
2.82 f o r  a = 0.05. Th is  i s  s t rong  evidence o f  l a ck  o f  fit. Furthermore, t h e  
cumulat ive d i s t r i b u t . i o n  p l o t  o f  r q s i d u a l s  on a p r o b a b i l i t y  s ca le  shows marked 
departures from a s t r a i g h t  l i n e .  The bow i n  t h e  m idd le  o f  t h e  da ta  may be 
i n d i c a t i v e  o f '  a need f o r  a quadra t i c  term i n  t h e  model. (See F i g u r e  7.10). A 
p l o t  o f  r e s i d u a l s  aga ins t  t h e  f i t t e d  values, o r  e q u i v a l e n t l y  f o r  a s t r a i g h t  
l i n e  model against  t h e  X val,ues, r e . i n f o r ces  t h i s  conclusion. F i gu re  7.11 
shows l a r g e  nega t i ve  r e s i d u a l s  a t  each end o f  t h e  sca le  f o r  X and 
predomin n t l y  p o s i t i v e  r e s i d u a l s  i n  t h e  middle. A t e n t a t i v e  conc lus ion  i s  i! t h a t  a X term would be b e n e f i c i a l  i n  t h e  model. O f  course, o the r  i n f o r n a t i o n  
about t h e  processes under s tudy may d ' i c t a te  o t h e r  conclusions. Nevertheless,  
t h e  data has witnessed t o  t h e  apparent inadequacy o f  t h e  s t r a i g h t  l i n e  model 
and t he  res idua l  p l o t s  suggest a remedy i n  terms o f  a quad ra t i c  model. 

F i gu re  7.10. Cumulat ive D i s t r i b u t i o n  o f  Residuals 
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F i g u r e  7.11. Residuals versus X 

7.4 Transformat ion on t h e  Dependent ~ a r i  ab le  

I n  some instances a  t r ans fo rma t i on  o f  t h e  response v a r i a b l e  i s  
r e q u i r e d  t o  meet t he  assumptions o f  no rma l i t y  and e q u a l i t y  o f  variance. That 
i s ,  i f  i t  i s  known t h a t  t h e  d i s t r i b u t i o n  o f  observat ions i s  skewed o r  i f  t h e  
v a r i  ance increases w i t h  i n c r e a s i  ng response ,then a  p rope r l y  chosen f u n c t i o n  o f  
y w i l l  r e s u l t  i n  the d i s t r i b u t i o n  o f  t he  transformed v a r i a b l e  befng more 
n e a r l y  normal and t h e  var iance  more n e a r l y  constant  over t h e  range o f  
exper imentat lon.  

B r i e f l y ,  t h e  most comlnon t rans fo rmat ions  are:  

1) l o g  y . . I f  Var (y j )  i s  p ropo r t i ona l  t o  t h e  square o f  t h e  mean, 
o r  a n  y: 

2 , a common l o g  t rans fo rmat ion ,  dog,  o r  a  
j 

na tu ra l  log,$n, i s  app l i cab le ;  i.e., 

i .e., Var (y j )  a 
2 

q j  
, use y '  =.Bog y or y '  =.en y. 

2 )  Square I f  t h e  var iance o f  yj i s  p ropo r t i ona l  t o  t h e  mean 
Root, q j ,  the  square r o o t  o f  y should be used; i .e., 
'Jj7 

V a r ( y j ) a  q j ,  use y '  = fi. 
. .  . . .  

3 )  Inverse  I f  t h e  var iance o f  y .  increases f a s t e r  than 
p r o p o r t i o n a l  l y  w i t h  $he mean q j ,  t h e  r e c i p r o c a l  o r  
i nverse f u n c t i o n  i s  appl i c a b l  e; 

i.. , a > q j ,  use Y '  = I/Y- 



4 )  Arcs in :  I f  y i s  t h e  numbero f  observed s k c e s s e s  out o f  n 
events ( i  .e., y / n  i s  t h e  p ropo r t  i o n  o f  successes) and' 
y / n  i s  near 0 o r  1, t h e n  an app rop r i a t e  t r a n s f o r m a t i o n  
t o  reduce non-normal i ty  i s  z' = a r c s i n (  Jy/n)'. 

I n  general ,  i f  t h e  p l o t  o f  y versus x i s  curved, some s o r t  o f  
t rans fo rmat ion  i s  requ i red  t o  s t r a i g h t e n  t h e  1 ine. However, i f  t h e  l i n e  t u r n s  
over,  u s u a l l y  a quad ra t i c  f u n c t i o n  i s  r e q u i r e d  t o  f i t  t h e  data r a t h e r  than a 
l og  o r  o r  inverse  func t ion .  

Another procedure t o  handle he te rogene i t y  of,variances i s  t h e  
weighted l e a s t  squares approach. Suppose Va r ( y . )  f v L  but i s  a f u n c t i o n  o f  y 
o r  x. L e t  w j  = l / V a r ( y j ) .  Then t h e  l e a s t  s q u i r e s  e ~ t i ~ a t i o n  o f  the  

parameters o f  t h e  model, 9 j, i s  t o  m in im i  ze 

7.5 . M u l t i p l e  L i n e a r  Regression 

Consider t h e  l i n e a r  model 

2 where rU  -N(O,o ) f o r  a l l  u. The va r i ab l es  X j u ,  j = 1, 2, ..., k may 

represen t  d i f f e r e n t  f a c t o r s  under i n v e s t i g a t i o n  o r  f unc t i ons  o f  one o r  more o f  
t he  f a c t o r s  i n  t h e  experiment. The bas i c  t o o l s  f o r  f i t t i n g  t h i s  general  
l i n e a r  model have a1 ready been discussed. The general approach i s  t o  account 
f o r  as much o f  t h e  t o t a l  v a r i a t i o n  i n  t h e  data which 'can be accounted f o r  by  
t h e  es t ima t i on  o f  t h e  c o e f f i c i e n t s  o f  t he  v a r i a b l e s  inA$he model and the  
constant  term, Po. The reg ress i on  sum o f  squares 1 yu, i s  t h e  measure o f  

t h e  v a r i a b i l i t y  assoc ia ted  w i t h  t h e  model, and t h e  res i dua l  sum o f  squares 
represen ts  what i s  unexplained. 

ANOVA Tab1 e 

Source - SS d f - MS - 
Tota l  N 

Regression 

Residual s 

MS Reg. 

MS Res. 



The F - r a t i o ,  MS Reg/MS.. Res, can be compared t o  an' Fk + ' value t o  
9 

determine t h e  s i gn i f i cance  of the.mode1. The r e s i d u a l s  may s t i l l  be 
p a r t i t i o n e d  i n t o  p u r e ' e r r o r  and l a c k  o f  f i t  components, - i f  r e p l i c a t e  p o i n t s  
a re  a v a i l  able. 

, I n  general t h e  es t ima te  o f  t he  parameters and t h e  corresponding sum 
o f  s q u i r e s  a r e  n o t  e a s i l y  a t t a i n e d  by t h e  usual procedures g iven  i n  Sect ion 
7.2. A t e r s e  m a t r i x  approach t o  t he  l e a s t  squares ana l ys i s  w i l l  be g iven  
l a t e r .  F j . r s t ,  however, i t  i s  u s e f u l  t o  no te  t h a t  t h e  ana lys is  o f  a  m u l t i -  
va r ia ,b l  e  model can be performed qui  t e  easi  1  y under t he  appropr ia te  cond i t ions .  

We r e s t r i c t  o u r  d i scuss ion  here t o  k d i f f e r e n t  f a c t o r s  X j ,  and do not 
a l l o w  h i g h e r  o r d e r  terms. The model i s  t h e  same as g i ven  above. I f  t h e  
design, t h a t  i s  t h e  s e t t i n g s  Of t h e  X fac tors ,  i s  or thogonal ,  t h e  a n a l y s i s  i s  
a  s imp le  ex tens ion  o f  t h e  s t r a i g h t  1  i n e  problem. By o r t h m  we mean t h a t  

EX. X = 0 f o r  a l l  i f j. u  i u  j u  

Under t h i s  c o n d i t i o n  a1 1  t he  est imates i n  the  model a re  independent and 

The reg ress ion  sum'of  squares can be best  c a l c u l a t e d  by 

R e g S S = ~ 9 f  = b o Z y  t z 1 b . X .  y  . 
U 

U J U  J J U - U  

The r e s i d u a l  sum of squares i s  t h e  d i f fe rence  between t h e  t o t a l  sum o f  squares 
and t h e  reg ress ion  sum o f  squares. The es t imate  o f c 2  i s  then  

Because o f  t h e  independence o f  t h e  est imates, however, each term bj can be 
exami ned f o r  s i g n i f i c a n c e  independent ly  by 



2 - I n  f a c t  these a re  equ iva len t  s i nce  tN-k-l - F1,N-k-I. Th i s  may be seen 

by no t i ng  t h a t  b .  = Z(Xj,, - X)(y,, - j ) /  5 (Xju J 
- x) '  . Thus, separate 

conf idence i n t e r v a l s  may be computed f o r  each parameter. Th i s  cannot be done 
i f  t he  design i s  no t  orthogonal  s ince  t h e  est imates a re  no t  then  independent 
o f  each other.  

There i s  one f u r t h e r  p r i n c i p l e  which we w i l l  p resent  next ,  t h a t  
enables us t o  break ou t  t h e  e f f e c t  of each f a c t o r  f rom t h e  o thers ,  even if i t  
i s  a  f u n c t i o n  o f  o t he r  X terms. Th is  p r i n c i p l e  i s  known as t h e  e x t r a  sum o f  
squares p r i n c i p l e .  

7.5.1 The Extra-Sum-of-Squares P r i n c i p l e  

Suppose we have two f a c t o r s  i n  a  l i n e a r  model o f  some response, 

I f  t h e  s e t t i n g s  o f  X1 and X 2  were not  chosen t o  be orthogonal  , we cannot 

es t imate  and eval uate P1 and P2 i ndependently. Suppose, however, we f i  r s t  
f i t  t h e  model 

The r e s u l t i n g  sum o f  squares f o r  Po and P1 i s  

We now f i t  t he  data t o  t h e  l a r g e r  model. We should f i n d  t h a t  we o b t a i n  a  new 

value f o r  bo and bl as w e l l  as a  va lue f o r  b2. I f  we denote the  new es t imates  
I 

hy bhJ 3 we can compute t h e  reg ress i on  s u m o f  squares f o r  t h e  model, 

Now, t h e  e x t r a s u m  ' o f  squares due t o  i n c l u d i n g  t h e  t e n  Pax2 i n  t h e  model i s  
I I I 

SS(hZ I ho, b l  = S2 = Si 

That i s ,  i f  Po and P1 a r e  a1 ready i n  t h e  model, t h e  a d d i t i o n a l  i n f o r m a t i o n  
obta ined by i n c l u d i n g  P2X2 i n  t h e  model i s  measured by S  - S1. I f  we added a 
t h i r d  term, P3X3 t o  t h e  model, t h e  e x t r a  sum-of-squares sue t o B 3 X 3  would be 



We should note one important th ing ,  here. The extra-sum of-squares f o r  a 
given term i s  dependent on what has gone before i t  i n t o  the  model. Thus, t h e  
e x t r a  sum of squares f o r  P3X3 w i l l  be d i f f e r e n t  i f  we go from 

Po + PIXl t o  Po + Pixl + P3X3 than i f  we went from Po + PIXl + P2X2 

t o  Bo + PIXl + P2X2 + P3X3. The on ly  circumstance i n  which i t  w i l l  

not be d i f f e r e n t  i s  i f  X 3  i s  orthogonal t o  X1 and X2. The procedure i s  a lso  

general w i t h  respect t o  a d d i t i o n  terms which are funct ions o f  previous 
terms. Thus, 

where bll i s  t he  c o e f f i c i e n t  o f  X: . 
The p r i n c i p l e  o f  computing the extra-sum-of-squares i s  very important 

i n  t h e  development o f  models, as we sha l l  see i n  d i  scussi r ~ y  111orle1 b u i l d i n g  i n  
Sect ion  7.6. The s i g n i f i c a n c e  o f  t h e  extra-sum-of-squares can be tested,  
then, by comparing i t  t o  t h e  res idua l  var iance est imate o f  t he  f u l l e r  model, 

*7.5.2 Ma t r i x  Approach t o  t h e  Least Squares Analysis o f  the M u l t i p l e  
Regression Model 

We present here a b r i e f  d e s c r i p t i o n  u f  the  dr lalysis o f  a m u l t i p l e  
regress ion  model' us ing  ma t r i x  notat ion.  

L e t y  be the column vec tor  o f  N observations, X be the  N by p ma t r i x  
n f  X set. t ings and @ be t h e  column vector o f  p parameters t o  be es t  i~nated i n  
t h e  model. That i s ,  



where p = k + 1. The model may be w r i t t e n  

where 4 i s  a column v'ector o f  N e r ro r s .  The l e a s t  squares p r i n c i p l e  says t o  
m i n i m i l e  t h e  sum o f  squares 

where ' means t h e  transpose o f  t h e  vec to r  o r  mat r i x .  The l e a s t  squares 
est imates a r e  g iven  by 

A 

- - -  

where - X ' X  - i s  a non-s ingular  m a t r i x  and hence i n v e r t i b l e .  The var iance  o f  t h e  
parameter est imates i s  

~ a r  ( b )  - = ( x ' x ) "  - - c2 

ard i s  est imated by r e p l a c i n g  c2 by  s2. Note t h a t  i f  t h e  X ' s  a re  or thogonal ,  

X "  X i s  a diagonal  m a t r i x  and hence so i s ,  (X ' x)-'. Then a1 1 t h e  es t imates  - 
are-independent o f  each o the r  and separate  TonfTdence i n t e r v a l s  may be 
const ructed.  I n  general t h i s  i s  - not  t he  case. Cons t ruc t ing  separate  
conf idence i n t e r v a l  s may lead  t o  erroneous r e s u l t s .  As an example, a j o i n t  
conf idence i n t e r v a l  may be e l  li p t i c a l  . The c,orresponding separate  
t - c o n f  idence i n t e r v a l s  form a rec tang le .  

F i gu re  7.12. J o i n t  Conf idence Region vs. Separate Conf idence I n t e r v a l  s 

The var iance o f  f i t t e d  val  ues may be obta ined f rom 

For one po in t ,  no t  necessa r i l y  one o f  t h e  design po in ts ,  

2 v a r  ($(xo)  = xol  (X  XI-l . - - - 



2 Again, \re es t ima te  the  va r i ance  by rep lac ing  o2 by s  . We can then compute 
con f idence  bands about t h e  f i t t e d  model, 

The reg ress ion  sum o f  squares can be compiled from 

A A 
SS Reg = 1' 1 = - b '  - x '  - -  x b  

bu t  i s  sub jec t  t o  less  roundo f f  e r r o r  i f  computed as 

The r e s i d u a l  sum o f  squares i s ,  as always, obta ined by sub t rac t ion .  

ANOVA Table: M u l t i  p l e  Regression 

Source 

To ta l  Y'X N 

A h  . 
Regression Y'Y = ,  -- b X'y k + l  MS Reg 

Residual  s  s2 = MS Res 

*7.6 f+odel B u i l d i n g  

I n  t h i s  s e c t i o n  we w i l l  summarize an i t e r a t i v e  ,procedure f o r  f i  nd i  ng 
t h e  bes t  e m p i r i c a l  model t o  f i t  t h e  data. The process o f  f i n d i n g  t h e  best -  
f i t t i n  model., whether emp i r i ca l  o r  t h e o r e t i c a l ,  i s  c a l l e d  model bu i l *  
To e  general procedure i s  t o  s t a r t ,  w i t h  a  g iven  model and t o  add o r  s u b t r a c t  T- 
terms f r o m . t h e  model u n t i l  t h e  best  se t  o f  va r i ab les  i s  inc luded  i n  t he  
model. I n  general ,  t h e r e  a re  f o u r p r o c e d u r e 3  and we evaluate t h e  r e s u l t s  by 
exainin'ing he c o e f f i c i e n t  o f  de te rmina t ion  R and t he  r e s i  ua l  est imate o f  5 1 var iance  s  . We seek t h a t  model which g ives  t h e  h i ghes t  R and t h e  lowest  s2, 
w h i l  e  keeping t h e  number of parameters t o  be f i t t e d  as small as poss ib le .  

The f o u r  bas ic  procedures a r e  ( ' I )  a l  I poss ib le  regress ions,  
( 2 )  backwards e l  im ina t ion ,  ( 3 )  forward sel ec t ion ,  and ( 4 )  stepwi se regression. 

7.6,l A11 Psss i  b l e  Regressions 

I f  t h e r e  are k  candidates f o r  e n t r y  i n t o  a  model, we can perform a l l  
poss ib l e  regress ions  and compare t h e  resu l t s .  There w i l l  be k  models us ing 
one va r i ab le ,  k ( k  - 1 ) / 2 !  us i ng  two terms, k ( k  - 1) (k - 2) /3 !  us ing  f o u r  

5.4 + 504.3 + 5.4.3.2 5 1  = 31 
terms, etc.  For k  = 5, t h e r e  a re  5  + 7 ,- 4 ! t T 

poss ib l e  regressions. As an e x t r a  v a r i a b l e  i s  added t o  t h e  model, R *  w i l l  
2 i ncrease. However, s  may a1 so increase. The exper imenter must make a  cho ice  

f rom t h e  a v a i l  ab le  i n fo rma t i on  about t h e  bes t  model. 



An ana l ys i s  o f  t h o r i a  p e l l e t  g r a i n  s i z e  w i t h  respect  t o  5  t h o r i a  
powder cha rac te r i  s t  i c s  i s  prov ided below t o  i l l u s t r a t e  model b u i l d i  ng 
procedures. The powder c h a r a c t e r i s t i c s  a re  

X1 = Maximum p a r t i c l e  s i z e  

X 2  = Average p a r t i c l e  s i z e  

X3 = P o r o s i t y  

X 4  = Su r f ace  area 

X 5  = Bulk  dens i t y .  

Only 1 i n e a r  ( f i r s t  o rde r )  terms $1  1  be considered i n  t h i s  example. The 
r e s u l t s  o f  a l l  reg ress ions  on p e l l e t  g r a i n  s i z e  are:  

Number Terms i n  Model R~ - S 2  - 



The bes t  f j r s t  o rder  model; i -e . ,  t h e  model which produces t h e  h ighes t  R', and 
sma l l es t  s  f o r  t h e  fewest number of parameters poss ib le ,  i s  

f o r  which R' = 96.0 and s2 = 0.47. Th i s  f o u r  v a r i a b l e  model i s  p r e f e r a b l e  t o  
t h e  complete f i v e  v a r i a b l e  model s i  nce i t  requ i res  f i t t i n g '  one 1  es parameter 5 (and hence r e q u i r e s  .one fewer observa t ion)  a t  the  cos t  o f  0.2 i n  R and 
a c t u a l l y  has a  smal ler  es t imated  r e s i d u a l  variance. S i m i l a r l y ,  a  good 
argument can be made i n  f a v o r  o f  t h e  t h r e  v a r i a b l e  model i n v o l v i n g  X , X4 and 2 X 5  s i n c e  i t  s t i l l  has a  l a r g e  va lue  o f  R ( 9 4 . 0 ~ s .  96.0) and a  smal i  
va r iance  (s2 = 0.65 vs.s2 = 0.47). The f i n a l  choice between these two models 
may be based on examinat ion o f  r e s i d u a l s  through l ack  o f  fit t e s t s  and 
res id~ . l a l  p l o t s .  

7.6.2 Backwards E l i m i n a t i o n  

When k i s  l a rge ,  a1 1 regress ions  become cumbersome and expensive t o  do. A 
b e t t e r  approach which chooses which new va r i ab les  t o  add o r  d e l e t e  i s  
requi red.  One such procedure begins w i t h  a1 1 .  terms i n  t h e  model and .. e l  im ina tes  them one a t  a  t ime u n t i l  a  dec i s i on  i s  reached. I f  t h e  ana l ys i s  i s  
performed i n  t h e  proper.way, t h e  e x t r a  sum .o f  squares (see Sec t i on  7.5.1) f o r  
each term i s  a v a i l a b l e  f o r  comparison; i.e., compare SS (b41 bo, bl. b2, b3) 

2  w i t h  s  f o r  bo, bl, bf ,  b?, b4. We then s imply  th row ou t  t h e  va r i ab les  which 
have t h e  i n s i g n i  f i c a n  ex ra-sum-of-squares when t h e  o t h e r  t e n s  a re  inc luded  
i n  t h e  model. 

Using t h e  backwards e l  i m i n a t i o n  procedure, we woul d  f i  r s t  throw out  X2 f rom 
t h e  complete model s i nce  t h e  F-val  ue fo r  i t s  extra-sum-of-squares i s  
d e f i n i t e l y  i n s i g n i f i c a n t  (see Appendix E, pag,es 215,216). The next  candidate 
f o r  e l i m i n a t i o n  i s  X3. The F - t e s t  f o r  t h e  extra-sum-of-squares f o r  X3, g i ven  

XI, X4, and X 5  a r e  i n  t h e  model i s  6.86 which i s  s i g n i f i c a n t  a t  t h e  1% leve l ,  
. . 

Thus, t h e  bes t  model obta ined b y  backwards e l i m i n a t i o n  i s  t h e  .same as found by 
a l l  regress ions.  

I .  b.3 Forward Se lec t  i n n  

I n  t h e  fo rward  s e l e c t i o n  procedure, we beg in  w i t h  t h e  smal l e s t  model. The 
f i r s t  s tep i s  t o  f i n d  t h e  v 'a r iab le  w i t h  t h e  g rea tes t  absolute c o r r e l a t i o n  w i t h  
t h e  response y, i . e . ,  

. ~ ( x . ~ ~ - . x ~ ) ( y ~ . - . y )  
r - - 
xi,y 



The X v a r i a b l e  w i t h  t h e  h ighes t  r x Y y  i s  t h e  f i r s t  term t o  en te r  t h e  model, 

X1 i n  t he  example. The values f o r  r ~ , ~  and t h e  c o r r e l a t i o n m a t r i x  between 

X ' s  a re  g iven  below. 

rXi ,Y I X1 x2 x3 .x4 x5 

Va r i ab le  X i s  t h e  f i r s t  t o  en te r  t h e  model s i nce  i t  has t h e  h i ghes t  
abso lu te  c o r r e l a  1 i o n  w i t h  y. The second and each subsequent v a r i a b l e  t o  e n t e r  
t h e  model i s  t h a t  v a r i a b l e  which has t h e  g rea tes t  abso lu te  c o r r e l a t i o n  t o  t h e  
r e s i d u a l s  from t h e  prev ious fit. Thus, X4 en te r s  t h e  model second because it 
has t h e  h ighest  absolu te  c o r r e l a t i o n  of t h e  rema in i  ng v a r i a b l e s  t o  t h e  
r es i dua l s ,  y -b  -blX1. S i m i l a r l y ,  X5 en te rs  t h e  model next s i nce  i t  has t h e  
h ighes t  absol u f e  c o r r e l a t i o n  t o  t h e  r e s i d u a l  s, y-bo-blXl-b4Xa. Next comes 
X3. The v a r i a b l e  X2 does no t  add s i g n i f i c a n t  i n f o r m a t i o n  an so i s  no t  
accepted i n t o  t h e  model. 

Combinations and m o d i f i c a t i o n s  o f  these  fo rward '  and backward procedures 
can be proposed. One such m o d i f i c a t i o n  i s  t h e  stepwise procedure. 

7.6.4 Stepwise Regression 

The stepwise reg ress i on  procedure i s  a  mod i f i ed  forward s e l e c t i o n  
procedure i n  which a t  each step, t h e  p rev i ous l y  se lec ted  v a r i a b l e  i s  re -  
examined f o r  d e l e t i o n  from t h e  model. The procedure begins j u s t  as above i n  
t h e  forward s e l e c t i o n  procedure, f i r s t  s e l e c t i n g  X1 and then  X4. The nex t  
s tep,  however, was t o  re -eva lua te  X1 g i ven  X4 was i n  t h e  model. The v a r i a b l e  
X1 cou ld  be dropped i f  t h e  e x t r a  sum o f  squares f o r  X1 g iven X 4  was found t o  
be n e g l i g i b l e .  However, X1 was mainta ined i n  t h e  model and X 5  was added 
next. Both XI and X 4  were kept. F i n a l l y  X3 was .added t o  complete t h e  
model. Thi s, o f  course, i s  t h e  same model .as was obta ined by t h e  o the r  
procedures. As a  f i n a l  s tep f o r  a l l  procedures, t h e  r e s i d u a l s  shou ld  be 
p l o t t e d  t o  examine f o r  depar tures from assumptions undetected by a  l ack  o f  f i t  
tes t .  
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APPENDIX A. UNCERTAINTY ANALYSIS 

1. I n t r o d u c t i o n -  

Whenever a  response y can be r e l a t e d  t o  .a group o f  c o n t r i b u t i n g  f ac to r s  o r  
va r i ab l es ,  (xi) , which are sub jec t  t o '  e r r o r ,  t h e  t r u e  response va lue f o r  a  
gi.ven s e t t i n g  o f  t h e  x ' s  i s  a l so  sub jec t  t o  e r ro r .  The d e s c r i p t i o n  and 
ana l ys i s  o f  t he  induced v a r i a b i l i t y  i n  y i s  sometimes ca l . led unce r t a i n t  

---I- ana l ys i s .  I n  o the r  words, t h e  u n c e r t a i n t y  o f  t h e  value o f  t h e  x  s  eads t o  an 
u n c e r t a i n t y  i n  t h e  r e s u l t i n g  va lue  of y. If c e r t a i n  i n f o r m a t i o n  about t h e  
u n c e r t a i n t i e s  i n  t h e  x ' s  i s  a v a i l  able, t h e  u n c e r t a i n t y  o f  y  can be determi ned 
o r  a t  l e a s t  c l o s e l y  approximated. The bes t  t ype  o f  i n f o r m a t i o n  on t h e  x ' s  i s  
t h e  p r o b a b i l i t y  d i s t r i b u t i o n  f u n c t i o n ,  o r  a t  l e a s t  knowledge o f  t h e  mean and 
var iance  o f  t h e  unknown d i s t r i b u t i o n  i s  essen t i a l .  (Note: I f  a  p r o b a b i l i t y  
d i s t r i b u t i o n  can be descr ibed by a  mathematical f unc t i on ,  f ( x )  , t h e  mean p o f  
t h e  d i s t r i b u t i o n  o f  x  i s  t h e  cen te r  o f  g r a v i t y ,  p = j x f ( x ) d x ,  and t h e  

var iance i s  t h e  moment o f  i n e r t i a ,  0' = l ( x -  p )' f ( x ) d x .  The mean 

1  ocates t h e  d i  s t r i b u t i o n  and t h e  s tandard d e v i a t i o n  (square- root  o f  t h e  
var iance)  measures t h e  spread o f  t h e  d i  s t r i b u t i o n .  ) 

To determine t h e  unce r t a i n t y  o f  a  response y, then  t h r e e  cha rac te r . i s t i c s  
must be known o r  assumed: 

( a )  The Model - The mathematical d e s c r i p t i o n  y = f(xl,x2, ..., xk)  o f  

t h e  f unc t i ona l  r e l a t i o n s h i p  between y and.the x ' s .  The 
model may represent  an approx imat ion t o  t h e  t r u e  
r e l a t i o n s h i p ,  

( b )  The D i s t r i b u t i o n  o f  each x - i.e., knowledge o f  t h e  p r o b a b i l i t y  
f u n c t i o n  o f  t h e  u n c e r t a i n t i e s  i n  t h e  x ' s  o r  a t  l e a s t  t h e  
means and var iances, 

( c )  The Interdependencies ahong t h e  x ' s  - i.e., knowledge as t o  
whether u n c e r t a i n t i e s  i n  t h e  x ' s  ac t  t oge the r  
( c o r r e l a t e d )  o r  separa te ly  ( i  ndependent) . 

Independent P o s i t i v e  C o r r e l a t i o n  



These f ea tu res  w i l l  be d i  scussed repea ted ly  i n  t h e  remainder o f  t h i s '  Appendix. 
The mathematical  bas is  f o r  ana l ys i s  o f  u n c e r t a i n t i e s  i n  x ' s  as they propagate 
th rough a  model t o  y w i l l  be discussed, Keep i n  mind t h a t  t he  o b ~ e c t i v e  i s  t o  
determine t h e  s i z e  of an u n c e r t a i n t y  ( e r r o r )  and t h e  frequency (p robab i l  i t y )  
o f  t h e i r  occurrence. Th is  i s  il l h s t r a t e d  i n  t h e  f i g u r e  below. 

D i s t r i b u t i o n  o f  Unce r ta i n t y  i n  

2. Simple Propagat ion o f  E r r o r  

Suppose y = a  + bx, a, b  a re  constants  and' x has a  mean value p about 
which t h e  t r u e  value o f  x  v a r i e s  i n  a  random (unp red i c tab le )  fashion. Assume 
t h e  v a r i a b i l i t y  o f  .x about p i s  g iven  by i t s  va r iance  u L .  Then, denot ing the  
mean by E (  ), ( read as "expected value o f " )  and var iance by Var, 

Mean o f  y = E ( y )  = a  + b p  (A1 

Variance o f  y = Var (y )  = b2 u ) 

Th i s  i s  found t o  be t h e  case as f o l l ows :  

Mean o f  y = E(y)  = E(a+bx) 



where f ( x )  i s  t he  p r o b a b i l i t y  d i s t r i b u t i o n  f u n c t i o n  f o r  x. 

The v a r i ~ n c e  o f  2 constant  if zero, afd by d e f i n i t i o n  o f  var iance 
Var(bx)  = b  I ( x - p )  f ( x ) d x  = b  ( x - p  ) f ( x )  dx. The var iance  o f  y  
becomes 

Variance o f  y = Var (y )  = Vak(a + bx)  

S ince the  model conta ins o n l y  one random va r i ab le ,  x, t h e  d i s t r i b u t i o n  
f u n c t i o n  f o r  y i s  t h e  same ps $he d i s t r i b u t i o n  f u n c t i o n  f o r  x  except t h e  mean 
i s  a+bp and t h e  var iance b o . Hence, a l l  quest ions about. t h e  probable 
va lue o f  y  can be answered by knowing t h e  d i s t r i b u t i o n  0 f . x .  For example, i f  
x  i s  a  normal d i s t r i b u t i o n  w i t h  mean 0 and var iance 1, and a=5, b=2, then  y i s  
a  normal d i s t r i b u t i o n  w i t h  mean 5 and var iance 4. Thus, a  prox imate ly  95% o f  
t h e  values f o r  y  can be expec ted . to  be between 5+2o ( l <y<9  and 99;7% o f  t h e  
values o f  y can be expected t o  l i e  between 5+3o ( - l < y < l l ) .  

P 
3. L inear  Combination o f  Several x's. 

Suppose t he  model , f o r  y can be w r i t t e n  as a l i n e a r  combinat ion o f  a  s e t  o f  . 

x 's ,  

I n  p a r t i c u l a r ,  i f  ao=O, ai=l, i=1,2,... ,k, then y  i s . s i m p l y  t h e  sum o f  k  
values o f  x. 

L e t  pi be t he  mean o f  xi and o2  be t h e  variance. Then t h e  mean o f  y i  i s  
g iven by i 

Furthermore, i f  t he  x ' s  a re  independent o f  each o the r  ( i  .e., a  change i n  one x  
does no t  f o r c e  a change i n  any o the r  x ) ,  then t h e  var iance  o f  y  i s  

k  k 
Var(y)  = Var( a. + izl aiyi) = i = l  . a  i c r 2  i , x ' s  independent (A5 

For a  -0, ai=l, t h i s  says t h a t  t h e  mean o f  a  sum i s  t h e  sum o f  t h e  means, 
regar  8 l ess  o f  c o r r e l a t i o n ,  and t he  var iance o f  a  sum i s  t h e  sum o f  var iances 
f o r  independent var iab les.  

To i l l u s t r a t e  t h e  c o r r e l a t e d  case, cons,ider f i r s t  ' on l y  2  va r i ab les  x l  and 
x  f o r  which t h e  c o r r e l a t i o n  c o e f f i c i e n t  p must l i e  between -1 and +1. 
(?he covar iance i s  g iven  by polc2). Then 



Expanding t o  a general l i n e a r  combination, 

F o r  compl e t e  general i ty  , 

o r  f o r  = , ai = 1, i = l ,  2, ..., k, 

Note t h a t  p may be p o s i t i v e  o r  negat ive.  Thus, t h e  var iance o f  y may be 
inc reased  o r  decreased by t h e  presence o f  c o r r e l a t i o n ,  depending a lso  on t h e  
s i g n s  of t h e  ails. Another i n t e r e s t i n g  no te  can be seen from (A6c). Since 

t h e  var iance  of y can never be negat ive (by  d e f i n i t i o n ) ,  t h i s  imp l i es  t h a t  t h e  
most nega t i ve  value o f  p i s  no t  -1  , but  i n  (A6c) p > - l / ( k - 1 ) .  O f  course, p 
may be +1, which y i e l d s  t h e  r e s u l t  t h a t  t h e  standard d e v i a t i o n  o f  y i s  t h e  sum 
o f  t h e  standard dev ia t ions :  

4. Var iance o f  Simple Product  

Consider now the  model 

The best  way t o  i l l u s t r a t e  t h e  var iance o f  y here i s  t o  w r i t e  y as  a Tay lo r  
Se r i es  expansion about t h e  means o f  xl and x2 ,  i .e., 



Thus, an exact r ep resen ta t i on  of t h e  mean o f  y f o r  x l  and x2 independent 
( i - e . ,  EC(xl - pl) ( x2  - p 2 ) 1  = O), i s  p 2  . 
Then, s i nce  Var(y)  = E ( y  - p l P 2 ) " .  , 

(xl, x2 independent) 

S ince nuc lear  engineers and' s c i e n t i s t s  o f t e n  deal w i t h  re1 a t i v e  e r r o r s ,  t h e  
r e l a t i v e  var iance o f  y can be ob ta ined  as fo l lows:  

and s ince  t h e  l a s t  term i s  o f t e n  q u i t e  smal l ,  i t  i s  u s u a l l y  dropped, and 

2  
v a r ( y ) %  = ( o x ) ;  + ( C Z ) ~  (AlOa) 

which i s  t h e  we1 1-known r e s u l t  t h a t  r e l a t i v e  e r r o r s  o f  a  product add. 

If x1  and x2 a re  co r re l a ted ,  t h e  c ross  product  term i n  (A8) i s  .usual l y  
dropped and t h e  r e s u l t  i s  

and 

(A1 l a )  

5. Var iance o f  Complex Models Using Tay lo r  Se r i es  Expansions 

Exact var iances f o r  a  1  i n e a r  combinat ion o f  i n p u t  v a r i  ahles and f o r  
products  have been ob ta ined  above. For  most o t h e r  cases, o f  a  more complex 
model, o n l y  approximate var iances can u s u a l l y  be obtained. The Tay lo r  Se r i es  
expansion as used i n  t h e  p rev ious  s e c t i o n  i s  t h e  t o o l  used t o  o b t a i n  t h e  
approximat ion.  The technique w i l l  be ill u s t r a t e d  f o r  a  s imple q u o t i e n t  
y = x1/x2 and f o r  a more complex model. 



a. ,Simple Q u o t i e n t  

L e t  

Then 

= p1/p2 + (x1-p1) /2  + ( - p , / p 2 )  ( x 2 - ~ 2 )  

+ ( 0 )  ( ~ ~ - p 1 ) ~ / 2  + 2 ( p I / p h )  (x2-p212/2 + ( - 1 1 ~ ~ ~ )  ( x ~ - ~ ~ ) ( x ~ - ~ ~ )  
+;.. 

It can, be se$n t h a t  an i n f i n i t e  number o f  d e r i v a t i v e s  w i t h  respec t  t o  x2 
e x i s t .  Thus, t h e  Tay lo r '  Se r i es  i s  u s u a l l y  t runca ted  a f t e r  t h e  l i n e a r  terms. 
The mean o f  y i s  then  an approx imat ion,  

and 

v a r ( y )  = var[* - p 1 - - ~2  ) 
p2  I 

1  2 '  r2 P2 

' ~ ~ 1  T 2 (xl, x2 independent*) 
p 2  p2 

. . 
I P ;  * 2 p 1  P 

7-T u : + 7 u 2 - - 7  ~~1 2. (A1 5 a) 
p2 2 2  (xl, x2 c o r r e l a t e d )  

4 2  2  * I n  some, cases, i t  i s  adv i sab le  t o  i nc l ude  c ross  product t e n  ( I /  p 2 )  
Pi = 2  



The r e l a t i v e  var iance o f  y i s  g iven  as 

2 2 
( U  + ( U  %)2 , (xl, x2, independent)  (A161 

Var(y)% = 2 
+ (,%), - 2 p ( o % ) l  ( u % ) ~ ,  (xl, x2 c o r r e l a t e d )  

as expected. 

b. Complex Model 
X, e-aX2 

Suppose 
1 y .  = 

1- bx3 

( t r unca ted  a f t e r  l i n e a r  terms).  Then, 

i f  xl, x2, x3 a re  Independent. 



I f  XI, x and x3 a r e  co r re l a ted ,  t h e  f o l l o w i n g  covar iance terms need t o  be 
added t o  ( ~ 1 6 1 ,  

6. The D i s t r i b u t i o n  o f  y 

Thus f a r ,  t h e  d i scuss ion  has concentrated on t h e  var iance o f  y f o r  a  g iven  
model f o r  independent and c o r r e l a t e d  x ' s .  I n  o r d e r  t o  make statements about 
t h e  frequency o f  g iven  va l  ues o f  y, i t  i s  necessary t o  know t h e  d i s t r i b u t i o n  
o f  y. I n  some cases, t h e  d i s t r i b u t i o n  o f  y can be i n f e r r e d  d i r e c t l y  from t h e  
model and t he  d i s t r i b u t i o n  o f  t h e  x ' s .  More o f ten ,  however, t h e  d i s t r i b u t i o n  
o f  y can o n l y  be approximated. 

For  a  1  i n e a r  model o f  t h e  type  g iven  i n  Equat ion (A3), t h e  exact 
d i s t r i b u t i o n  o f  y can be .determined i f  t h e  d . i s t r i b u t i o n s  o f  t h e  x ' s  a re  o f  t h e  
proper  form. I n  p a r t i c u l a r ,  i f  a1 1  t h e  x ' s  a r e  normal ly  d i s t r i b u t e d  w i t h  

means p i  and var iances u2  , then  y = 3 aixi i s  a1 so norma l l y  d i s t r i b u t e d  
i 1= 1 

k  2 2  
w i t h m e a n  a i p i  and var iance  igl a i a  i 

(+ covar iance term i f  x ' s  a r e  corre la te 'd) .  Symbol ica l ly ,  

2 i f  a l l  x i  a r e  d i s t r i b u t e d  as N( pi,  u i ) ,  then  

k k  k 
y = aixi i s  d i s t r i b u t e d  as ~ ( ~ 5 ~  aipi ,  ifl a:U: ). 

I n  general ,  however, i f  t h e  x ' s  a re  no t  a l l  normal ly  d i s t r i b u t e d ,  t h e  
d i s t r i b u t i o n  o f  a  l i n e a r  combinat ion cannot be i n f e r r e d  exact ly .  (The o n l y  
o t h e r  d t s t r i b u t i o n  t h a t  sums t o  t h e  same d i s t r i b u t i o n  i s  t h e  gamma, and then  
o n l y  Pore a s imp le  sum). 

Theo re t i ca l  ly ,  g i ven  t he  d i s t r i b u t i o n s  o f  t he  x ' s  and a  model, t h e  
s t a t i s t i c i a n  can, through h i s  knowledge o f  mathematics and d i s t r i b u t i o n  
theory ,  d e r i v e  t h e  exact d i s t r i b u t i o n  o f  y. In p rac t i ce ,  however, t h i s  i s  
u s u a l l y  imposs ib le  except f o r  t h e  s imp les t  cases. 



For tuna te ly ,  however, t h e r e  i s  :a ve r y  powerful  theorem t h a t  enables a  
use fu l  approximat ion t o  be made i n  many p r a c t i c a l  s i t u a t i o n s .  The theorem i s  
known as t h e  Cent ra l  L i m i t  Theorem and says s imply  t h a t  a l i n e a r  combinat ion 
o f  several independent va r i ab l es  w i t h  t h e  same d i s t r i b u t i o n  tends t o  have a 
normal d i s t r i b u t i o n  w i t h  t h e  mean equal t o  t h e  sum o f  means and a va r iance  
equal t o  t h e  sum o f  variances. How c l o s e l y  t h e  normal d i s t r i b u t i o n  appro- 
x imates t h e  t r u e  d i s t r i b u t i o n  depends on the  number o f  v a r i a b l e s  i nvo l ved  and 
t.he i n d i v i d u a l  d i s t r i b u t i o n s  , bu t  the.  theory ,  never the less,  a l lows  a reason- 
a b l e  approx imat ion t o  be made i n  most circumsfances. More genera l l y ,  i f  t h e  
d i s t r i b u t i o n s  o f  t h e  independent v a r i a b l e s  a re  no t  i d e n t i c a l  , b u t  no one 
v a r i a b l e  dominates t h e  others ,  t h e  theorem s t i l l  holds. Furthermore, s i n c e  
any func t iona l  form o f  a  model can be approximated by  a ' T a y l o r  Ser ies  
expansion t runca ted  a f t e r  t he  l i n e a r  terms, t h e  theorem can be seen . t o  be 
appl i c a b l e  t o  any model, prov ided no one term dominates. 

8. Conclusion 

I t  has been s ta ted  t h a t  t o  be a b l e  t o  say anyth ing.  about t h e  u n c e r t a i n t y  
of a  response y, which i s  a  f u n c t i o n  o f  one o r  more i n p u t  va r i ab l es ,  x ,  i t  i s  
necessary t o  know o r  assume t h r e e  impor tan t  f a c t s :  ( 1 )  t h e  form o f  t h e  model, 
( 2 )  t h e  d i s t r i b u t i o n ,  o r  a t  l e a s t  t h e  mean and var iance  o f  t h e  d i s t r i b u t i o n ,  
of t h e  x1  s, and ( 3 )  t h e  c o r r e l a t i o n  s t r u c t u r e  o f  t h e  x ' s .  By use o f  t h e  
T a y l o r  Ser ies  expansion, exact  o r  approximate expressions f o r  t h e  va r iance  o f  
t h e  response y can be obtained. F i n a l l y ,  under c e r t a i n  cond i t i ons ,  t h e  
d i s t r i b u t i o n  o f  y can be i n f e r red ,  o r  by t h e  use o f  t h e  Cent ra l  L i m i t  Theorem, 
an approximate normal d i  s t r i b u t i o n  can be app l ied  t o  make p r o b a b i l i t y  
statements about y. 

The key t o  t h i s  u n c e r t a i n t y  a n a l y s i s  i s  t h e  assumptions. L i k e  "Garbage In -  
Garbage Out ," i f  t h e  assu~r~p t ions  o f  an u n c e r t a i n t y  ana l ys i s  a re  g ross ly  
i n c o r r e c t ,  any conc lus ions based on these assumptions must be viewed w i t h  
caut ion.  



APPENDIX B. ESTIMATION THEORY 

1. Maximum L i k e l i h o o d  P r i n c i p l e  

Having determined which d i s t r i b u t i o n  f unc t i ons  descr ibe  va r i ab les  of 
i n t e r e s t ,  i t  u s u a l l y  remains t o  determine t h e  values of t h e  parameters o f  
these d i s t r i b u t i o n s .  We may no t  know, f o r  example, where t he  d i s t r i b u t i o n  o f  
da ta  i s  centered,  o r  e x a c t l y  how spread ou t  i t  i s .  tlence, we must es t imate  
these values by c o l l e c t i n g  data. Jus t  what t h e  best guess o r  es t imate  o f  a  
p a r t i c u l a r  parameter i s ,  and how prec ise  we t h i n k  i t  i s ,  i s  t h e  sub jec t  ma t te r  
of es t ima t i o r i  theory.  We must ga ther  our in fo rmat ion ,  i.e., t h e  data, i n  such 
f ash ion  t h a t  w i l l  g i ve  use t h e  - best  va lue accord ing t o  some c r i t e r i o n .  There 
a r e  m a n y c r i t e r i a  which may he used, bu t  t he  most comnion approach i s  known as 
t h e  maximum '1  i k e , i h ~ o A  procedure. The maximum 1  i k e l  i hood procedure, as i t s  
name imp1 ies; s imp ly  f i n d s  t h a t  value o f  t h e  parameter t h a t  makes t h e  event o f  
o b t a i n i n g  a  g iven  set o f  data most probable. To i l l u s t r a t e ,  cons ider  an u rn  
f u l l  o f  red.  and b lue  b a l l s .  L e t  x  be recorded as 1  i f  a  red b a l l  i s  drawn ou t  
o f  t he  urn,  and 0 i f  a  b l ue  b a l l  i s  drawn. The d i s t r i b u t i o n  o f  o b t a i n i n g  a 
red  b a l l  i n  a  s i n g l e  draw from t h e  u r n  i s  a  binomial  w i t h  n  = 1  and p  being 
t h e  p r o b a b i l i t y  o f  drawing a  r e d  b a l l ,  

Suppose t h a t  one person c la ims  t h a t  t h ree - fou r t hs  o f  t h e  b a l l s  a re  red, w h i l e  
another c la ims  t h a t  t h e  red  and b l u e  b a l l s  a re  e q u a l l y  d i s t r i b u t e d .  The 
o b j e c t  i s  t o  determine which person i s  more probably co r rec t .  To answer the  
ques t ion  i nvo l ves  t a k i n g  data. Suppose one b a l l  i s  drawn from t h e  urn, t h e  
c o l o r  recorded and the  b a l l  rep1 aced u n t i l  four  ba l  l s  have been drawn. Each 
draw has e x a c t l y  t h e  same d i s t r i b u t i o n  as every o the r  and each r e s u l t  i s  
independent o f  t h e  others.  Thus, i f  t he  r e s u l t s  were red, red, b lue,  red, t h e  
p r o b a b i l i t y  o f  o b t a i n i n g  t h i s  r e s u l t  t o r  a  g iven  p wou'td be 

Now which va lue o f  p, 112 o r  314, w i l l  r e s u l t  i n  t h e  l a r g e r  p r o b a b i l i t y ?  

For p  = 112, pJ ( l - p )  = 1/16 

f o r  p  = 314, p3 (1-p) = 271256 = (27/16) x  1/16 



Obviously,  f o u r  draws from t h e  u r n  r e s u l t i n g  i n  3 reds and one b l u e  i s  more 
probable i f  t h e  p r o p o r t i o n  o f  reds were p  =.  314 t h a n  i f  p  = 112. 

What i s  t h e  - most. probable va l  ue o f  p, g i ven  t he  r e s u l t s  obta ined? It. i s  
t h a t  va lue o f  .p t h a t  maximizes t h e  j o i n t  p r o b a b i l i t y  f u n c t i o n  

p(xl, x2, x3, x4) = ~ ( x ~ ) ~ ( x ~ ) ~ ( x ~ ) ~ ( x ~ )  

= p3(1-p). 

When t h i s  f u n c t i o n  i s  w r i t t e n  as a  f u n c t i o n  o f  t h e  unknown parameter p, g i v e n  
t h e  observed x  values, i t  i s  c a l l e d  t h e  l i k e l i h o o d  f unc t i on ,  L(p) .  S ince  t h e  
range (i.e., p o s s i b l e  outcomes) of x i  does no t  depend on p, we may maximize 
L ( p )  by t a k i n g  i t s  d e r i v a t i v e  w i t h  respec t  t o  p, equat ing t o  zero and s o l v i n g  
f o r  p. Thus, 

So lv ing  f o r  p, we o b t a i n  

It i s  q u i c k l y  obvious t h a t  p  = 0  does no t  maximize L ( p ) ,  t h u s  we have t h e  
unique maximum l i k e l i h o o d  es t imate  o f  p, g i ven  t h e  r e s u l t s  ( red ,  red,  b lue ,  
red) ,  t o  be 314. O f  course, g iven  a. d i  f f e r e n t  s e t  o f  data,  e..g., red, red, 
b lue,  b lue,  we would have found a  d i f f e r e n t  maximum l i k e l  i hood es.timate. 

The maximum 1  i k e l i  hood p r i n c i p l e  then  i s  t o  maximize t h e  l i k e l i h o o d  
f u n c t i o n  i n  t h e  l i g h t  o f  t h e  data on hand. To d i s t i n g u i s h  between t he  j o i n t  
p r o b a b i l i t y  dens i t y  f u n c t i o n  f(xl, x2 ... , xn 1 p), o f  n  independent random 

va r i ab l es ,  g i ven  t he  parameter value, and t he  l i k e l i h o o d  f u n c t i o n  o f  t h e  
parameter g iven  t h e  observed values o f  t h e  random var iab les ,  we w r i t e  t h e  
1  i ke l  i hood f u n c t i o n  more. formal l y  as L (p  1 XI,. x2,. . . , xn). 

I f  t h e  range o f  t h e  x -  do no t  depend on t h e  parameter, t h e  maximizat ion 
procedure i s  t o  take {he d e r i v a t i v e  o f  t h e  l i k e l  ihood f unc t i on ,  o r  
e q u i v a l e n t l y  t h e  d e r i v a t i v e  o f  t h e  n a t u r a l  l o g  o f  t h e  l i k e l i h o o d  f unc t i on ,  s e t  
t o  zero and solve. 

We have a l ready  seen how t o  o b t a i n  t h e  maximum l i k e l i h o o d  es t imate  o f  p  
f o r  a  b inomia l  d i s t r i b u t i o n  f o r  n  = 1. For n  > 1  t h e  r e s u l t  genera l i zes  i n  a  
s t r a i gh t - f o rwa rd  manner and we f i n d  t h a t  t h e  maximum 1  i k e l  i hood es t imate  o f  .p 
f o r  a  b i n m i a l  i s  i .  The maximum 1  i k e l i  hood est imates o f  t h e  parameters i n  
Poisson, exponent ia l ' ,  and normal d i s t r i b u t i o n s  a r e  g iven .  below. . ' 



a. po i  sson D i ' s t r i b u t i o n  

p ( x 1 ~ )  = e-X X X /  x! , x =  0, 1, 2, ...... 
L e t  x l ,  xz,.. . , xn be n  independent observat ions from t h i s  Poisson 

d i s t r i b u t i o n .  Then 

where t means t h e  product O f  x l  x2.. .xn. Then 
II 

.bn L ( X )  = - n  tf x l  P,nb ' -  Z .Ln x,! 1 - 1 

So lv ing  f o r  X g ives  t h e  maximum l i k e l i h o o d  estimate. 

b. Exponent ial  ' ~ i  s t r i b u t  i o n  ' e x  , x > 0, A >  O. f ( x l A )  = T  

L e t  XI, x2, . . . , xn be n  independent observat ions from f ( x l  A ). Then 

A - 
which g ives AML = X 

c. Normal D i s t r i b u t i o n  



L e t  xl, x2, .. . , xn be n  independent observat ions from f ( x  1 @, a'). Then 

S e t t i n g  both equat ions t o  zero and so l v i ng  f o r  p andu2,  we ob ta in ,  

A 2  - - -  - 2  
Z (xi-x) i s  a  b i  ased . Note: The est imate a ML 

es t imate  o f  t h e  var iance b o f  a  normal d i s t r i b u t i o n .  That i s ,  t h e  

expected va l  (re o r  mean o f  t h e  d i s t r i b u t i o n  o f  9,: i s  no t  r2' bu t  (n-1)u2/n. 

As a  r e s u l t ,  t he  unbiased es t imate  o f  a2,  s2 = - 2 ' P (xi-;) , n- 1  

i s  p r e f e r r e d  i n  most cases and w i  11 be used where r e q u i r e d  i n  t h e  nex t  

sect ions.  

2. Uther  Es t ima t i on  C r i t e r i a  

a. Unbiased Est imator :  
A A A 

L e t  8 be an es t imate  o f  8 .  I f  E (  8 )  = 8 , then  8 i s  an unbiased 
es t imate  o f  8. For example, E(R) = p , hence Z i s  unbiased f o r  p . 

b. M i  nimum Variance Es t imato r :  
A 

L e t  el be one o f  a  c l ass  o f  es t im t o r s  {ei}. If v a r ( i 1 )  i s  l e s s  thar  
o r  equal t o  v a r ( l i ) ,  i + 1, then Q1 i s  he minimuq varrance est imator  

example, 
b o f  t h a t  c l a s s  o f  es t imato rs ,  i.e., Var( 1) I Var(Bi), a l l  i. For 



i s  a  1  i nea r ,  unbiased es t imate  of p = E (xi ). The Gauss-Markov 
Theorem o f  l e a s t  squares t e l l s  us t h a t  X i s  a1 so t h e  minimum var iance 
l i n e a r  unbiased es t ima to r  o f  p . 

c. Minimum Mean Square E r r o r  Est imator :  
A A 

L e t e l  be an e s t i m t o r  o f 8 .  If g ives  t h e  minimum value o f  

E(gi - 8  )' among a  c l ass  i f  es t imato rs  {gi}, i t  i s  t h e  minimum mean 
A ' A 

square e r r o r  est imator .  Note, I f  E(el) = 8, i .e., if 8 1  i s  unbiased, 
A 

t h e n  t h e  mean square e r r o r  i s  t h e  same as t h e  variance. However, 

need not be unbiased. I f  E ( $ )  # 9, then  

A 

= Var ( 8  = (B ias )  2  



APPENDIX C. THE CENTRAL LIMIT THEOREM 

Theorem: 

L e t  xl, x2, ... , xn be i dependent ly and i d e n t i c a l l y  d i s t r i b u t e d  as f ( x )  
w i t h  mean P and var iance  o-" Then x  has i n  t h e  l i m i t a  nbrmal d i s t r i b u t i o n  

2' w i t h  mean p and v,ariance u / n  f o r  n  s u f f i c i e n t l y  large.  
' . 1  

Proof:  

Every p r o b a b i l i t y  d i s t r i b u t i o n  f u n c t i o n  w i t h  a t  l e a s t  a  f i n i t e  mean and 
var iance has an assoc ia ted moment generat ing func t ion .  

3  = ~ ( 1  t t x  + ( ~ x ) ~ / z !  + ( t x )  /3!  +....) 

where a re  t h e  raw moments and can be ob ta ined  by 

The c e n t r a l  moments f o r  t h e  d i s t r i b u t i o n  o f  x  can be ob ta ined  as f o l l o w s :  

M ( t )  = E[e ~ ( X - U ) ]  
X- U 

Expanding e-ut and M x ( t )  , m u l t i p l y i n g  t h e  two s e r i e s  tpge ther  and c o l l e c t i n g  

terms, and making use o f  t h e  r e l a t i o n s h i p  between c e n t r a l  and raw moments 
g iven i n  Sec t ion  2.3.2, we have 

M ( t )  = 1  + P 2  
3  

X- U 
t 2 / 2 !  t p3t  131 

d r ~  x- u ( t )  
where1.1. = r d  tr ' 

Now cons ider  w = ' ( x i - p )  t h e  mean o f  which i s  0. Then s i nce  X i  a r e  
1 

independent, 



where R 2 ( t )  i s  a  remainder term t h a t  converges. 

Recal l  t h a t  t h e  var iance  o f  n  independent va r i ab les  w i t h  coirnon var iance o 2  

i s  n u 2 .  Then we can s tandard ize  w by d i v i d i n g  by i t s  standard d e v i a t i o n  
f i .  Thus, 

M,(t) = Mu ( t )  = E [e  t w l  ,/nu1 
- 

which can a l s o  be w r i t t e n  as 
p 

Since R Z ( t )  converges, so does ~ * ( t / f i ) ,  so t h a t  

2  s i n c e  p 2  =U . But t h i s  i s  t h e  c e n t r a l  moment generat ing f u n c t i o n  o f  a  
normal d l  s t r i b u t i o n  w i t h  mean 0  and var iance 1. Th i s  can be seen as 
f o l l o w s :  For a  N(0, 1)  v a r i a b l e  z, 

2  
MZ(t) = ~ [ e ~ ' ]  = e  e - I  12dz 

2  2 2  
1  - (Z - 2 t ~  ' t -t )/Zdz 

-1/2 
= e d z  

J G  
= e  t 2/2 

S ince  t h e  f unc t i on  i n s i d e  t h e  i n t e g r a l  i s  a 'normal d i s t r i b u t i o n  w i t h  mean t 
and va r i ance  1  and t h u s  i n t e g r a t e s  t o  1. 

Now s ince  z  i s  a  N(0, 1 )  va r i ab le ,  i t  f o l l o w s  t h a t  w  =&UZ fo l l ows  a  

2  N(0, n u  ') d i s t r i b u t i o n  and; = p + ( o l h )  z f o l l o w s  a  N ( p , o  I n )  
d i s t r i b u t i o n  as n  becomes large.  



APPENDIX D. :. CALCULATION OF EXPECTED MEAN SQUARES. .: ,. 

Consider t h e  case of comparing k d i f f e r e n t  t reatments  on a  se t  o f  N 

homogeneous exper imental  un i t s .  The jth t rea tment  ( j  = 1, 2, ..., k )  i s  
. - . . . _. . 

assigned t o  n  randomly chosen u n i t s ,  and N = nk. ~ e t  t h e  ith observa t ion  

( i  = 1,2, ..., n)  on t he  jth t rea tment  be represented by xij. The 

mathematical model i s  x i j  = p +  r j  + c i j ,  where p and r j  a re  unknown t r u e  

constants  o r  parameters ( s u b j e c t  t o  t he  c o n t r a i n t  t h a t  .2 j r j  = 0 )  and t h e  

c i j  a re  random va r i ab l es  independent o f  each o ther  and t h e  r ' s ,  and have a  

mean o f  zero and common var iance c 2  f o r  a1 1  i, j. The c a l c u l a t i o n a l  

procedures f o r  t h e  ANOVA f o r  t h i s  f i x e d - e f f e c t s  model a r e  g iven  i n  Sec t i on  

S u b s t i t u t i n g  i n t o  the model t h e  l e a s t  squares est imates,  we have 
- - - - - 

x i j  = x t (TXj - X )  + (x i j  - x j ) .  Note t h a t  t h i s  i s  an i d e n t i t y  f o r  a l l  values 
- - - - - 

o f  x i j .  Transposing, we may w r i t e  ( x i j  - x )  = (Xj - x )  + (x i j  - x j ) .  

Thus, t h e  d e v i a t i o n  of t h e  response of t h e  ith observa t ion  on t h e  jth 

treatment  f rom the  grand.mean i s  equal t o  the  d e v i a t i o n  o f  t h e  jth t rea tment  

rnean from t h e  grand mean p l us  t h e  d e v i a t i o n  o f  x i j  from t h e  j t h  t rea tment  

mean. Now, squar ing both s ides o f  t h e  i d e n t i t y  and summing over  a1 1 N 

observat ions,  we have 

- - 
out 2 .  2 .  (n - ? ) ( x i j  - z . )  = 2 .  (n - n)  f: (x i j  - x . )  = o 

J I  j J J j J 

Thus, - ' 2  If ( x ~ ~  - a )  = C 5 ( 3  - 'x12 t Z Z(xi j  - Xj) 
J I  j J 1 

2 

L e t  T j  = i=l Z 'ij and C.F. - (f $ x ~ ~ ) ~ / N .  



Then t h e  sum o f  squares f o r  t reatments SST can b p  w r i t t e n  ... - 
SST = n X -  - 2  i - - -  I'J C.F. 

j n 

S u b s t i t u t i n g  t h e  model x i j  = p + rj + a i j  i n t o  T? \ve ob ta in  
J 

Squaring and tak ing  expectat ions, r e c a l l i n g  t h a t  p and rj are constants, 

Y = 0, E (  r . . )  = 0, and E (  ei,  
j j 1 J  i j -  

, i = i ! ,  we have 
0, ifi' 

Then 

S u b s t i t u t i n g  t h e  model i n t o  C.F. gives 
I 

i L 

CF = - ( n k p  + nk 
n F t z z c i j  ). 

J J  j i  
Squaring and tak ing  expectat ions term by term, 

1 2 0 2  2 + n k o 2 ]  = n k p 2  t o  2 . E(C.F.) = a  [ n k p 
Thus, 

E(SST) = E (ZT;/n) - E(C.F.) 



SST' De f ine  t h e  mean square by -  t reatments  by MST = . 
. .  . 

2 n 2  Then, E(MST) = u + -1r 
k- 1 j 

The e r r o r  sum o f  squares (SSE) o r ,  a l t e r n a t i v e l y ,  t h e  sun1 o f  squares w i t h i n  
t reatments  (SSW), can be w r i t t e n  as 

k 2 2  2  ' j '  ) 
SSW = SSE = (x l j  t x ... + x - - 

2 j n j n s  j =  1 
where 

Then 

Thus, 

2 SSE The mean square f o r  w i t h i n  t rea tments  i s  MSW = se = . 
2 2 

Thus, E(MSE) = E(se ) = u  . Hence, t h e  w i t h i n  t rea tment  o r  r e s i d u a l  o r  
e r r o r  

mean square ca l cu l a ted  i n  t h e  ANOVA i s an unbiased es t imate  o f  u2, t h e  

var iance o f  c i j .  The between t rea tment  mean square has an 

2 
z T .  expec ta t ion  o f  cr + T1 j 
j 



Appendix E - Model B u i l d i n g  (see Sec t ion  7.6) 

L i s t i n g  o f  , Input  Data 

Fuel Powder C h a r a c t e r i s t i c s  
X I  = Maximum P a r t i c l e  S ize 
X2 ,=  Average P a r t i c l e  S ize 
X3 = P o r o s i t y  
X4 = Sur face  Area 
X5 = Bulk  Dens i ty  

Y = Center Gra in  S ize  (ASTM No.) 

Gra in  S i t e  o f  Fuel Pel l e t s  

A  s e l e c t i o n  of  t h e  31 poss ib l e  f i r s t  o rde r  r eg ress ion  models f o r  t h e  5  
independent v a r i a b i e s  l i s t e d  ab0v.e a re  g iven i n  t h s  next  pages. The r e s u l t s  
needed t o  f o l l ov i  throuqh t h e  s teps of backwards e l i m i n a t i o n  and fnrward 
s e l e c t i o n  a r e  included. The f i n a l  model and t he  res idua l s  a re  provided. The 
r e s u l t s  presented can he ob ta ined  from most standard l e a s t  squares ana l ys i s  
computer programs o r  can be ob ta ined  by hand c a l c u l a t i o n s  by ' f o l l ow ing  the  
procedures d i  scussed i n  Chapter 7. 

NBI Log NO. 79-778BIOO27L 



GRAIN SIZE OF FUEL PELLETS 

RESPONSE VARIABLE Y ( l )  (MEAN = 6.10526) 

CASE 1 REGRESSION COEFFICIENTS 

NO. I B(1) . . STD. DEV. OF B T-VALUE MEAN OF X 

(*, ** DENOTE SIGNIFICANT AT ALPHA = o.'o5, 0.01, RESPECTIVELY) 

ANALYSIS OF VARIANCE TABLE 

SOURCE DEGREES OF FREEDOM SUM OF SQUARES MEAN SQUARE F=RATIO 

REGRESSION 1 101 .7536 101.7536 27.88 
RESIDUAL 17 62.03584 3.649167 (S.D. = 1.91) 

LACK OF FIT 4 32.34239 8.085598 3.54 
REPLICATES 13 29.69345 2.2841 12 

TOTAL (CORRECTED) 18 163.7895 ' 

SUM OF SQUARES ACCOUNTED FOR BY REGRESSION = 62.1 PERCENT 

CASE 2 REGRESSION COEF.FIC IENTS 

NO. ' I ~ ( 1  STD. DEV. OF B T-VALUE MEAN OF x 

(0)  0 -13.8779 
(2 )  2 12.0648 3.12495 3.86** . . 1.65632 

(*, ** DENOTE SIGNIFICANCE AT ALPHA = 0.05, 0.01, RESPECTIVELY) 

ANALYSIS OF VARIANCE TABLE 

SOURCE DEGREES OF FREEDOM SUM OF SQUARES MEAN SQUARE F=RATIO 

REGRESSION 1 76.51939 76.51939 - 14.91 
RESIDUAL 17 87.27009 5.133535 (S.D. = 2.27) 

LACK OF FIT 8 
RCPLICATCS 9 

TOTAL (CORRECTED) 18 163.7895 

SUM OF SQUARES ACCOUNTED FOR BY REGRESSION = 46.7 PERCENT 



CASE 3 
REGRESSION COEFFICIENTS 

NO. I 'N IL  , STD. DEV. OF B T-VALUE MEAN OF X 

, ANALYSIS OF VARIANCE TABLE 

SOURCE DEGREES OF FREEDOM SUM OF SQUARES MEAN SQUARC r-RATIO 

REGRESSION 1 61.01912 61,01942 JOi03 
RESIDUAL 17 102.7700 6.045297 (S.D. = 2.46) 

LACK OF F I T  ,\ , 6 34.05338 15'. G755G 19.78 
RE PL ICATES 11 8.716667 0.7924242 

. . 

TOTAL (CORRECTED) : '  18 . 163.7895 - 

SUM OF SQUARES ACCOUNTED F O R ~ B Y  REGRESSION = 37.3 PERCENT 

CASE 4 
REGRESSION COEFFICIENTS 

NO. I B ( I  STD. DEV. OF B T-VALUE MEAN OF X 

SOURCE DEGREES OFFREEDOM SUMOF.SQUARES MEANSQUARE F=KATIO 

REGRESSION 1 73.56276 79.56276 16.06 
RESIDUAL 17 04.226 72 4.954513 (S.D. = 2.23) 

LACK OF F I T  7 - 80.31005 11.47286 29.29 
REPLICATES . 10 -3.916667 0.391 6667 

TOTAL (CORRECTED) 18 163.7895 

SUM OF SQUARES ACCOUNTED FOR BY REGRESSION = 48.6 PERCENT 



REGRESSION COEFFICIENTS 

NO. I B ( I  STD. DEV. OF B T-VALUE MEAN OF X 

(*, ** DENOTE SIGNIFICANCE AT ALPHA = 0.05, 0.01, RESPECTIVELY)) 

ANALYSIS OF VARIANCE TABLE 

SOURCE DEGREES OF FREEDOM SUM OF SQUARES MEAN SQUARE F=RATIO 

REGRESSION 1 
RESIDUAL 17 

LACK OF FIT 5 
RE PL ICATES 12 

38.58146 38.58146 5.24 
125.2080 7.365177 (S.D. =.2.71) 

TOTAL (CORRECTED) 18 163.7895 

SUM OF SQUARES ACCOUNTED FOR BY REGRESSION = 23.6 PERCENT 

CASE 6 
REGRESSION COEFFICIENTS 

NO. I B ( I  ) STD. DEV. OF B . T-VALUE , MEAN OF X 

ANALYS IS OF VARIANCE TABLE '. 

SOURCE DEGREES OF FREEDOM SUM OF SQUARES MEAN SQUARE F=RATIO 

REGRESSION 2 
RESIDUAL 16 

LACK OF F IT  6 
REPLICATES 10 

139.9256 69.96279 46.91 
23.86389 1.491493 (S.D. = 1.22) 

TOTAL (CORRECTED) 18 163.7895 

SUM OF SQUARES ACCOUNTED FOR BY REGRESSION = 85.4 PERCENT 



CASE 7 
REGRESSION COEFFICIENTS 

NO. I B ( I )  STD. DEV. OF B T-VALUE MEAN OF X 

(*, ** DENOTE SIGNIFICANCE AT ALPHA = 0.05, 0.01, RESPECTIVELY)) 

ANALYSIS OF VARIANCE TABLE 

SOURCE DEGREES OF FREEDOM SUM OF SQUARES MEAN SQUARE F=RATIO 

RFGRFSSTON 3 154.0249 51,34163 78.87 
RESIDUAL 15 9.764582 0.6509721 (S.9. = 0.81) 

LACK OF F I T  5 5.847915 I .I69583 2.99 
REPLICATES 10 3.916667 0.39 16667 

TOTAL (CORRECTED) 18 163.7895 

SUM OF SQUARES ACCOUNTED FOR BY REGRESSION = 94.0 PERCENT 

CASE 8 
REGRESSION COEFFICIENTS 

NO. I B ( I  STD. DEV. OF D T-VALUE MEAN OF X 

(*, ** DENOTE SIGNIFICANCE AT ALPHA = 0.05, 0.01, RESPECTIVELY)) 

SOURCE DEGREES OF FREEDOM . SUM OF SQUARES MEAN SQUARE F=RATIO 

REGRESSION 5 157.51 17 31.50234 65.23 
RESIDUAL 13 6.277795 0.4829073 (S.D. =0.69) 

LACK OF F IT  4 2.361128 0.590282 1 1.36 
REPL ICATES 9 3.916667 0.4351852 

TOTAL (CORRECTED) 18 163.7895 

SUM OF SQUARES ACCOUNTED FOR BY REGRESSION = 96.2,PERCENT 



FINAL MODEL: y = 126.63.1 - 0.904X1 - I I I . 7 X 3  + 9.74X4 - 39.77X5 

CASE 9 
REGRESSION COEFFICIENTS 

NO. I B ( I )  STD. DEV. OF, B T-VALUE . MEAN OF X 

(*, ** DENOTE SIGNIFICANCE AT ALPHA = 0.05, 0.01, RESPECTIVELY)) 

ANALYSIS OF VARIANCE TABLE 

SOURCE DEGREES OF FREEDOM SUM OF SQ:JARES MEAN SQUARE F=RATIO 

REGRESSION 4 .15 7.2370 39.30925 83.99 
RESIDUAL 14 6.552484 0.4680346 (S. D. = 0.68) 

LACK OF F I T  4 .  2.635818 0.6589545 . 1.68 
REPLICATES 10 3.916667 0.3916667 

TOTAL (CORRECTED) 18 163.7895 

SUM OF SQUARES ACCOUNTED FOR BY REGRESSION = 96.2 PERCENT 

Correlation of' Parameter Estimates 

I = J =  1 3 4 5 



DISTRIBUTION OF DEVIATIONS FROM REGRESSION 

CLASS UPPER L I M I T  FREQUENCY 

SKEWNESS q GI = -0.86, T-TEST OF G I  = -1.64 

KURTOSIS = G2=  2.13, T-TEST OF G2 = 2.10 

SHAPIRO-MILK W S T A T I S T I C  = 0.926. 

WHICH I S  SIGNIFICANT AT THE ALPHA = 0.50 LEVEL 

NORMAL PROBABILITY PLOT 

. - 1.45 + 
t I I I I I I 
I I I 1 I I I 

5 10 50 25 CDF 
7 5 90 9 5 '  

216 



OBSERVED 

4.500 
5.500 
3.500 
8.500 

i i . 50  
10.000 
5.500 
3.500 
5.500 
3.500 
7.000 
9.500 
3.500 
5.500 
3.500 
3.500 

11.00 
9.500 
1.500 

PREDICTION AND DEVIATIONS 

PREDICTED 

4.128 
5.296 
3.867 
7.371 

11.23 
9.907 
4.896 
4.128 
5.296 
2.991 
7.371 
9.907 
3.157 
5.296 
3.867 
2.991 

11.23 
9.907 
3.157 

DEVIATION 





- LIST OF STATIST'I'CAL 'TABLES- 

No. -- A .. Table - .  Pages 

I Bi nomi nal D i s t r i b u t i o n  220-224 

Poisson D i s t r i b u t i o n  

Normal D i s t r i b u t i o n  

Chi-Square D i  s t r i bu t i ' on  

Normal To1 erance I n t e r v a . 1 ~  
Two-Si ded 
One-Si ded 

Normal Predi-ct i o n  I n t e r v a l  s 
Two-Si ded 
One-Si ded 

V I I I  

Observations Required f o r  t -Test  o f  Mean 

0bservati.ons Required f o r  t-Test o f  ~ i f f e r e n c e  
Between' Two Means 

Confidence B e l t s  f o r  Proport ions 

Confidence L i m i t  f o r  Poi sson 

D i  s t r ibu t ion-Free Tolerance I n t e r v a l s  
Two-S i ded 

Sampl es Size Requi red 
Proport i on 
Confidence 

One-Si decl 
Sample Size Required 
Proport I on 

Factors f o r  Computing Control  L i m i t s  X I V  

xv 

xv I 

C r i t i c a l  ~ a . 1  ues fo r  Test ing 0ut ' l i  e rs  

c r i t i c a l  Values f o r  T When Standard 
Deviat ion i s  Calculated from t h e  Same Sample 

C r i t i c a l  Values f o r  T When Standard Dev ia t ion  i s  
Independent o f  Present Sample 

X V I  I 



Table 1 
Bi nomi.al Distribution Function* 

*~eprinted by permission from Irwin Miller and John E.  Freund Probability and 
Statistics for Engineers, Prentice-Hall , Inc., Englewood Cliffs, New Jersey, -.- - .  - 
Copyright J965;-' 



Table I 

BINOMTAT* DISTRIBUTION FUNCTION (Continued) 
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Table I 

BINOMIAL DISTRIBUTION FUNLTION (Continued) 



Table I 

DRJOMlAL BlBTiUbWIOI~ FWIQGTION (CurilirbluJ) 



Table I 1  
Poisson D i s t r i  buti'on Function* 

*Reproduced with permission from E.C. Mol i na, Poisson's Exponenti a1 Binomial 
Limit, 0. Van Nostrand Company, Inc. ,  Princeton, New Jersey, 1947. - 



Table II 

POISSON DISTRIBUTION FUNCTION (Continued) 

Table I 1  

POISSON DISTIiInUTION FUNCTION (Continued) 



Table II 

w~ssox DISTRIBUTION F U N ~ I O N  (Continued) 

Table II 

POISSON DISTRIBUTION F U N ~ I O N  (Continued) 



Table I 1 1  
,Normal Distribution* 

-3 -2  -1 0 1 2 3  

Area under the Normal dlstrlbtitibn to the right of z 

EXAMPLE: Prob(z z 0.84 ) = 0.2005 

- - - .  - - 
o 1 .00 .O1 .02 .03 .04 . .05 .06 .07 .08 .09 

"Reproduced .wi'th pen i  ss'i.on of the Biometrika trustees from E.S. Pearson 'and 
H.O. Hart1 ey, Biornetrika Tables fo r  Stat is t ic ians,  Volume 1 ,  Cambridge 
University Press, New YoFk-3956. 



0.000157 
0.020: 
0.115 
0.297 
0.554 
0.872 
1.239 
1.646 
2.088 
2.558 
3.053 
3.571 
4.107 
4.660 
5.229 
5.812 
6.408 
7.015 
7.633 
8.260 
8.897 
9.542 
lo. 196 
10.856 
11.524 
12.19 
12.879 
13.565 
14.520 
14.95 

40 20.71 22.16 24.43 26.51 55.76 59.34 63.69 bb.77 40 
60 35.53 37.48 40.48 43.19 79.08 83.33 88.9 91.95 60 

+Ada~ted  with of t h s  Biometrika t r u s t e e s  from E. S. Pearson and H. A. Hart ley ,  Biornetrika Tables f o r  
S t a t i s t i c i a n s ,  Volune 1 ,  Cambridge Univ. Press ,  New York, 1956. 



Table V 
t - D i  s t r i  but i on* 

Percentage Points of the tdistribution 
Q = 1 - P ( t i ~ )  

Q> I - P(tIY) is  upper-tail area of the distribution tor v degrees of tredom. ap- 
propriate lnr use In a singlefailed test. For a nv*tailed test. 2 0  must be u d .  

*Adapted w i t h  permiss ion o f  B iomet r i ka  t r i r s t ees  f rom E.S. Pearson and H.O. 
Har ley,  B iomet r i ka  Tables f o r  S t a t i s t i c i a n s  - Volume 1, Cambridge Univ. Press, 
New Y ork; 1956. 



Table V I  
The F -Dis t r i  bution* . . 

u1 i s  degrees o f  freedom for numerator 

Y2 i s  degrees o f  freedom for denominator o f  r a t i o  of  
two variance est  imates 

(a )  Q = 0.05 

*Adapted wi th  penf  ssion o f  Biometrika t rustees from E.S. Pearson, and H.O. 
'Hartley, Biometrika Tables f o r  S t a t i s t i c i a n s ,  Volume I, Cambridge Univ. Press, 
New York, 1956. 



Table V I  

(b.) a = 0.01 



4 

Table V I I (a )  Factors f o r  Two-Sided Tolerance L i m i t s  f o r  Normal D i s t r i b u t i o n s *  

Factors K such t h a t  t he  p r o b a b i l i t y  i s  y t h a t  a_t l e a s t  a prop_ortion 
P o f  t he  d i s t r i b u t i o n  w i l l  be included between X f Ks, where X and s 

are estimates o f  t h e  mean and the  standard dev ia t ion  computed from . 

a sampl e s ize o f  n. 

Example F o r y =  0.90, P = 0.95, n = 20, then K = 2.564 

*Adapted from ~echn iques o f   tati is tical Analysis by C. Eisenhart, M.W. Hastay, 
and W.A. Wall is, Copyright 1947. Used wi th  permission o f  McGraw-Hill Book 
Company. 



Table VI I (a) Continued 



Table V I  I (a)  Continued 

FACTORS FOR TWO-SIDED TOLERANCE LIMITS FOR 
N O R M A L  DISTRIBUTIONS 



Table V I  I (a )  Conti  nued 

FACTORS FOR TWO-SIDED TOLERANCE LIMITS FOR 
NORMAL DISTRIBUTIONS 



Table V I I  (b)  Factors  f o r  One-Sided-Tolerance L. imits f o r  ' 

Normal D i s t r i b u t i o n s *  

Fac to rs  K  such t h a t  t h e  p r o b a b i l i t y  i s  y t h a t  a t  l e a s t  a  propor t ion 'P-of  t h e  
d i s t r i b u t i o n  wi 11 be l ess  than  X + Ks ( o r  g rea te r  than X - Ks) where X and s  
a re  est imates o f  t h e  mean and t h e  standard d e v i a t i o n  computed from a  sample 
s i z e  o f  n. 

EXAMPL.E: For y = 0.90, P  = 0.95, n  = 20, then K = 2.208 

*Adapted w i t h  permission from G.J. Lieberman, "Table f o r  One-S'i.ded S t a t i s t i c a l  
Tolerance L i m i t s " ,  I n d u s t r i a l  Qua1 i t y  Contro l ,  Volume X I V ,  10, 1958. 



Table VII (b) 

FACTORS F.OR ONE-SIDED TOLERANCE LIMITS FOR 
N O R M A L  DISTRIBUTIONS 



TABLE V I I I  . . 

Two-Sided Predict ion I n t e r v z l s  f o r  k Additional 0bservat.ions 
from a Normal Dis t r ibut ion* 

x 2 r ( k ,  n ,  y ) s  

x is average of n observat ions ,  s i s  estimated 
standard deviat ion 

(a) y = .90 Predict.ioo 1 n t e A a l  

n = ~ i z e  of I . k = Number of Additionhi ~ b s e r v ~ t i o n s  

+Adapted by permissior~ from C .  J. Hahn, "F:~::!.nrs f o r  Calcul:~i.i.r,g 'T>lo- 
Sided Predict ion I n t e r v a l s  f o r  Samples frori :L T>l.lnrmal itis1-r il!ution," 

Previous 
Sample 

- -~ -. .- 
Journal of t h e  American S t a t i s t i c a l  Associa.l;ion, Vol. ~ I I ,  lu'o. 2. !, 
1969, and "Calculating PreLiction I n t e r v a l s  fol .  Samples fro:!; :I 

Normal i ) i s t r ibu t ion , "  Jourr,al of the American Sta t , i s?- ical  ASSOC- 
i a t i o n  Vol. c5 ,  No. 332, 1?70. 
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TABLE V I  I I (cont 'd)  
(b) y = .0.95 Pred ic t i on  In te rva l *  

A 

n = s i z e  k = Number o f  Addi t ional  Observations 
o f  previous.  
sampl e 1 2 3 4 5 .  6 7 8 9 10 11 12 15 20 

4 3.56 4.41 4.92 5.29 5.56 5.79 5.98 6.14 6.28 6.41 6.52 6.62 6.88 7.21 
5 3.04 3.70 4.09 4.36 4.58 4.75 4.90 5.02 5.13 5.23 5.32 5.39 5.60 5.85 
6 2.78 3.34 3.66 3.90 4.09 4.23 4.35 4.45 4.55 4.63 4.70 4.47 4.93 5.15 
7 2.62 3.11 3.41 3.61 3.78 3.91 4.01 4.10 4.20 4.26 4.33 4.40 4.54 4.73 
8 2.51 2.97 3.24 3.43 3.58 3.70 3.80 3.88 3.96 4.02 4.09 4.14 4.28 4.46 
9 2.43 2.86 3.12 3.29 3.43 3.55 3.64 3.72 3.79 3.86 3.91 3.96 4.09 4.25 

10 2.37 2.78 3.03 3.20 3.33 3.44 3.52 3.59 3.67 3.72 3.77 3.83 3.94 4.10 
11 2.33 2.73 2.96 3.12 3.24 3.34 3.43 3.50 3.56 3.62 3.67 3.72 3.83 3.99 
12 2.29 2.68 2.90 3.05 3.17 3.28 3-35 3.43 3.49 3.54 3.59 3.63 3.75 3.89 
13 2.06 2.64 2.85 3.01 3.12 3.22 3.29 3.36 3.42 3.47 3.52 3,56 3.68 3.82 
14 2.24 2.61 2.81 2.37 3.08 3.16 3.24 3,31 3.37 3.42 3.47 3.61 3.61 3.75 
15 2.22 2.58 2.78 2.93 3.04 3,12 3.2Q 3-36 3.32 3.37 3.41 3.46 3.56 3.70 
20 2.15 2.49 2.68 2.81 2.91 2.99 3.06 3.12 3.17 3.22 3.26 3.30 3.39 3.51 
25 2.10 2.43 2.62 2.74 2.84 2.91 2.98 3.04 3.09 3.13 3.17 3.21 3.30 3.41 
3 1 2.07 2.39 2.57 2.69 2.79 2.86 2.92 2.98 3.03 3.06 3.10 3.14 3.22 3.34 
41 2.05 2.35 2.52 2.64 2.73 2.80 2.86 2.91 2.96 3.01 3.03 3.07 3.15 3.26 
6 1 2.02 2.32 2.48 2.60 2.68 2.75 2.81 2.85 2.90 2.94 2.97 3.01 3.08 3.18 

121 1.99 2.28 2.44 2.54 2.63 2.69 2.75 2.79 2.84 2.88 2.91 2.94 3.01 3.10 
1.96 2.24 2.39 2.50 2.58 2.64 2.69 2.74 2.78 2.82 2.84 2.88 2.95 3.04 

(c )  y = 0.99 Pred ic t ion  I n t e r v a l *  



TABLE V I  I 1  (d) 

S i ze  of  . 
previous 

1 

One-Sided Predict ion In te rva ls  f o r  k. Additional 
Observations from a Normal .Distr ibution* 

j Z +  r l ( k ,  n , y ) . o r  2 -  r l (k.n,  y ) 

Number of  additiondl observations. ( k )  . . 

2 3 4 5 6 8 '  10 12 
y = 0.90 pnediction in te rva l  

y = 0.95 Predict ion in te rva l  

y = 0.99 Predict ion in te rva l  



: .  S 2  
e m  
c u  
cn 1 
d.0 

SINGLE-.SIDED TEST a = 0.005 
DOUBLPSIMD TEST a .= 0.01 

3 = 0.01 0-05 0.1 0.2 0.5 

i m NUMBEE OF OBSERVATIONE FOR 1-TEST OF MEAN 
5. The entries in this tableshow the "umbers of ob,jerva:ions needed in a t-tzst of t h e ~ i ~ n i f i ~ i r f c e  df a mean i l  order to control the prob.bilities : ,-+ 

:1 J of errors of :he first and second kinds at a ant  p respectively. 

0.05 
. 0.10 

0.15 
0.20 
0.25 

0.3Q 
0.35 
0.40 
0.45 
0.50 

S 
D = - 

0 
0:SS 
0.60 
0.65 
0.70 
0.75 

0.80 
0.85 
0.90 
0.95 
1.00 

cn -4. 
u V) 

. lo 
0 4. 
- 0  
a- s 

. < 
ID -h 
1 1  

. O  
cu 3 
3 

g r  xo 
" DJ 

m 5. 
e m  
a- V) 
3" 

a = 0.01 
a = 0.02 

OD1 0.05 0.1 0.2 0.5 

, 139 
90 

115 63 
109 85 47 

101 85 66 37 
110 -81 68 53 30 
PO 66 55 43 25 

?5 55 46 3E 21 
33 47 39 31 18 
55 41' 34 25 16 
.47 35 30 24. 14 
42 31 27 21 13 

37 28 24 14 12 
33 25' 21 1;' 11 
29 23 19 16 10 
27 21 18 1~ 9 
25 , 19 16 12 9 

110 

134 7 8 .  
125 99 58 

115 97 77 45 
. 92 77 62 37 

100 75 63 5 1 .  30 

83 63 53 42 26 
71 53 45 36 '22 
61 46 39 31 :LO 
53 40 34 28 17 
47 ..36 30 25 86 

41 32 27 22 14 
37 29 24 20 13 

' 3 4  26 22 .18 12 
31 24 20 17 11 
28 22 19 16 10 

LEVEL OF I-TEST 

01 = 0.025 
a = 0.05 

0.01 0.05 0.1 0-2 0.5 

99 
128 64 

119 9C 45 
109 88 67 34 

117 84 68 51 06 
93 67 54 411 21 
76 54 44 34 18 

63 45 37 2E. I5 
53 38: 32 24 13 
46 33 2'7 21 12 
40 29 24 '19 10 
35 26 21 16 9 

31 22 19 IS 
28 21. 17 1; 8 
25- 19 16 12 7 
23 17 14 11 7 
21 18 13 10 6 

a = 0.05 
a = 0.1 

0.01 0.05 0.1. 0.2 0.5 

122 
70 

139 101 45 

122 97 71 
90 72 52 24 

101 70 55 4 0 .  
80 55 44 33 15 
65 45 36 27 13 

54 38 30 22 11 
46 32 26 19 
39 28 22 17 8 
34 24 19 15 
30 21 17 13 

9 2 7  19 15 12 
24 17 14 11 
21 15 13 10 5 
19 14 11 9 

0.05 
0.10 
Oil5 
0.20 
0.25 

320.30 
0.35 

190.40 
0.45 
0.50 

0.55 
9 0 . 6 0  

0.65 
80.70 
70.75 

60 .80  
60 .85  

0.90 

18 13 11 8 ~ 1 ~ : ~ ~  



NUMBER OF OBSERVATIONS FOR 1-TEST OF MEAN 
The entries in this table show the numbers of observations needed in a I-test of the significance of a mean in order to control the probabilities 
of errors of the k s t  and second kinds at a and @ respectively. 

LEVEL OF 1-TEST 

a = 0.025 
a = 0.05 

0.01 0.05 0.1 0.2 0.5 

18 13 11 9 6 
15 12 10 8 5 
14 10 9 7 
12 9 8 7 

6 1 1  8 7 6 

5 1 0  8 7 6 
9 7 6 ' 5  
8 7 6  
8 6 6  
7 6 5  

7 6 
7 6 
6 5 
6 
6 

5 

a = 0.05 
a = 0.1 

0.01 .0.05 0.1 0.2 0.5 

a = 0.01 
a = 0.02 

0.01 0.05 0.1 0.2 0.5 

21 16 14 12 8 
18 14 12 10 7 
16 13 11 9 6 
14 11 10 9 6 
13 10 9 8 

6 1 2  10 9 7 
6 1 1  9 8 7 

10 8 7 7 
6 1 0  8 7 6 

8 7 6 6  
8 7 6 5  
8 6 6  
7 6 6 '  
7 6 6  

6 5 5  
5 

15 11 9 7 
13 10 8 6 
1 1 8 7 6  
1 0 8 7 5  
9 7 6  

8 6 6  
8 6 5  
7 6 
7 5 
6 

6 
6 
5 

SINGLE-SIDED ITST a = 0.035 
DOUBLE-SIDED TEST a = 0.01 

fl  = 0.01 0.05 0.1 0.2 0.5 

1.1 
1.2 
1.3 
1.4 
l .S 

1.6 
1.7 
1.8 
1.9 
2.0 

2.1 
2.2 
2.3 
2.4 
2.5 

3.0 
3.5 
4.0 

.1.1 
1.2 
'1.3 
1.4 
1.5 

1.6 
8.7 
1.8 

VALUEOF 1.9 

D = -  
2.1 
2.2 
2.3 
2.4 
2.5 

3.0 
3.5 
4.0 

24 19 16 14 9 
2 1 .  16 14 12 8 
18 15 13 11 8 
16 13 -12 10 7 
15 12 1 1  9 7 

1 3 . 1 1  1 0 ' 8  
12 10 9 8 
12 10 9 8 6 
11 9 8 7 

6 2 . 0 1 0 8 8 7 5 9 7 7 6  

10 8 7' 7 
9 8 7 6 
9 7 7 6 
.8 7 7 6 
8 7 6 6 

7 6 6 5 '  
6 5 5 
6 



1% 2 
l P  ' I d .  

!w  0 
I -  ID 

P  I m 
'x r 

'NUMBER OF OBSERVATI~NS FOR I-TEST OF DIFFERENCE BETWEBN TWO MEANS 
1% 2 
1 The entries in this table show the.number of observations needed in a t-test of the significance of the difference between Iwo means in I &. 

order to control the probabilities of the errors of the first and second' kinds at a and respectively. 

I-TEST 

V) 
0 -I. 
- 0  
a , < 

rD +l 
11 

0 

2 
m r  
0 

'<no - w 
< m -.. 

2 .. 
a 

3-' a. 

.a = OD25 
a = O B  

0.01 0.05 0.1 0.2 0.5 

124 

87 
64 

100 50 
105 79 39 

105 86 64 32 

87 71 53 27 
104 74 60 45 23 
88 63 51 39 20 
76 55 44 34 17 
67 48 39 29 I5 

59 42 34 26 14 
52 39 31 23 12 
47 34 27 21 11 
42 30 25 1.3 10 
38 27 23 17 9 

LEVEL OF 

a = 0.01 
a = 0.02 

0.0! 0.05 0.1 0.2 0.5 

123 
90 
70 

101 55 
106 82 45 

106 88 68 38 
90 74 58 32 

104 77 64 49 27 
90 66 55 43 24 
79 58 48 38 21 

70 51 43 33 19 
62 46 38 30 17 
55 41 34 27 15 
50 37 31 24 14 
45 33 28 22 13 

SINGLE-SIDED TEST a = 0.005 
DOUBLE-SQED TEST a = 0.01 

19 = O.D1 C1.05 0.1 0.2 0.5 

0.05 
0.10 
0.15 
0.20 
0.25 

0.30 
0.35 
0.40 
0.45 

VALUE OF 0.50 
6 

D = -  0.55 
0.6Cl 
0.65 
0.70 
0.75 

0.80 
0.85 
0.90 
0.95 
1.00 

110 
85 

118 68 
96 55 

101 79 16 
101 85 67 39 
87 73 57 34 

10) 75 63 50 29 
88 56 55 44 26 

7 7 .  58 49 39 13 
69 51 43 35 1 1  
61 46 39 31 19 
55 42 35 28 17 
50 38 32 26 15 

a = 0.05 
a = 0.1 

0.01 0.05 0.1 0.2 0.5 

137 
88 

61 
102 45 

108 78 35 
108 86 62 28 
88 70 51 

112 73 58 42 19 
89 61 49 36 
76 52 42 30 
66 45 36 26 12 
57 40 32 23 11 

50 35 28 21 
45 31 25 18 9 
40 28 22 16 8 
36 25 20 15 7 
33 23 18 14 

0.05 
0.10 
0.15 
0.20 
0.25 

0.30 
0.35 
0.40 
0.45 

230.50 

0.55 
160.60 
140.65 

0.70 
0.75 

100.80 
0.85 
0.90 
0.95 

71.00 



The entries in this table show rhe n_c.mber of obsen*ations needed in a t-test of the significance of the difference between two means in 
order to control the probabilities of the errors of the first and second kinds at a and ~'respectively. 

LEVEL OF I-TEST 

a = 0.025 
Or = 0.05 

0.01 0.05 0.1 0.2 0.5 

32 23 19 14 8 
27 20 16 12 7 
23 17 14 11 6 
20 I5 12 10 6 
18 13 11 9 5. 

16 I2 10 8 5 
6 1 4  11  9 7 

13 10 8 6 4 
5 ' 1 2  9 7 6 
5 1 1  8 7 6 

9 . 7  6 5 

4 8  6 5 4 

5 4 4 3  
4 4 3  

a = 0.05 
a = 0.1 

0.01 0.05 0.1 0.2 0.5 

(I  = 0.01 
Or =: 0.02 

0.01 0.05 0.1 0.2 0.5 

38 28 23 19 11 
32 24 20 16 9 
2.8 21 17 14 8 
24 18 15 12 8 
21 16 14 11 7 

19 14 12 10 6 
7 1 7  13 11 9 

I5 12 10 8 5 
6 1 4  11 9 8 
6 1 3 1 0  9 7 

1 3 1 0 9 8 5 1 2 9 8 7 5 1 0 8 6 5 3 8 6 5 4  
5 1 1  9 7 6 4 

9 8 7 5 1 0 8 7 6 4 9 7 6 5  
5 1 0  8 7 6 

2 . 5 1 0 8 7 6 4 9 7 6 5 4 8 6 5 4  

8 6 6 5 4 7 6 5 4 3 6 5 4 4  
3 6  5 . 4  4 
' - 5  4 4 3  

27 19 I5 12 
23 16 13 10 5 
20 14 11 9 
17 12 10 8 
15 11 9 7 

14 10 8 6 
4 1 2  9 7 6 

11 8 7 5 
4 1 0  7 6 5 
4 9  7 6 4 

8 6 5 4 
7 5 5 4  
7 5 4 4  
6 5 4 3  

5 4 3 
4 3  

4 

SmGLE-SIDED TEST a = 0.005 
DOUBLE-GIDED TEST a = 0.01 

p = 0.01 0.05 0.1 0.2 0.5 

6 1 . 1  
1.2 

5 1 . 3  
4 1 . 4  
4 1 . 5  

4 1 . 6  
3 1 . 7  

1.8 
1.9 
2.0 

2.1 
2.2 
2.3 
2.4 
2.5 

3.0 
3.5 
4.0 

1.1 
1.2 
1.3 
1.4 
I .  

1.6 
1.7 
1.8 

VALUEOF 1.9 
d 2.0 

D = -  
O 2.1 

2.2 
2.3 
2 . 4 . 1 1  

3.0 
3.5 
4.0 

42 32 27 22 13 
36 27 23 18 11 
31 23 20 16 10 
27 20 17 14 9 
24 18 IS 13 8 

21 16 14 11 7 
19 I5 13 10 
17 13 11 10 6 
16 12 11 9 
1 4 1 1 1 0  8 

1 2 1 0  8 7 
11 

9 8 6 

6 5 5 4 
6 5 4 4 



Table X I  ( a )  

CONFIDENCE BELTS FOR PROPORTIONS 
(Confidence coefficient 0.95) 

*Reproduced wi th  permission o f  Biometrika t rustees from C. J. C l  opper and E.S. 
Pearson, "The Use of Confidence . o r  F iduc ia l  L imi ts  I 1  lus t ra ted  i n  t h e  Case 'of 
t h e  Binomial ," Biometrika; 26, 1934. 





CONF~DENCE LIMITS FOR THE EXPECTED VALUE OF A POISSON DISTRIBUTION* 

NOTE, There is at least 1 - z confidence that n0 will be belwrrrl tile limits wlwn 
S x ,  is the total number of  occurrences of an event in II independent observations nn a 
Poisson variable with expected valuc 8.  

*Reproduced w i t h  permission from W. E. Ricker, ltThe Concept of Confidence 
on Fiducial Limits Applied to the Poisson Frequency Distribution,tt 
The Journal of the American S-taL;is.tical Association, 32, 1937. 

TOTAL 
OBSERVED 

COUh'T 

x, = C ?, 

0 

1 
2 
3 
4 
5 
6 

. '7 
8 
9 
10 

11 
12 
13 
14 . 
I5 
16 
17 
18 
19 
20 

2 1 
22 
23 
24 
25 

TOTAL 
OBSERVED 

COUNT 
2, = X zi 

26 
27 ' 

38 
30 
f0  
31 
32 
3 3 
34 
35 
36 
37 
38 
39 
40 

4 1 
42 
43 
44 
45 ' 

46 
47 
48 
49 
50 

SIGNIFICANCE LEVEL 

'a = 0.01 a = 0.05 

. Lower Upper Lower Upper 
Limit Limit Limit Lifnir 
0.0 5.3 0.0 3.7 

0.0 7.4 0.1 5.6 
0.1 9.3 0.2 . 7.2 
0.3 11.U 0.6 8;8 
0.6 12.G 1.0 10:J 
1;O 14,l I 11.7 

1.5 15.6 2.2 13.1. 
a n I 7.1 2.8 14.4 
2.3 10.5 3.4 15.0 
3.1 20.0 4.0 17.1 
3.7 21.3 4.7 18.4 

4.3 22.6 5.4 19.7 
4.9 24.0 6.2 21.0 
5.5 25.4 6.9 22.3 
6.2 26.7 7.7 23.5 
6.8 28.1 8.4 24.8 

7.5 29.4 9.4 26.0 
8.2 30.7 9.9 27.2 
8.9 32.0 10.7 28.4 
9.6 33.3 11.5 29.6 
10.3 34.6 12.2 30.8 

11.0 35.9 13.0 32.0 
11.8 37.2 13.8 33.2 
I .  38.4 14.6 34.4 
13.2 39.7 15.4 35.6 
14.0, 41.0 16.2 36.8 

SIGNIFICANCE LEVEL 

u = 0.01 a = 0.05 

Loner Upper Lower Upper 
i t  i t  Limit 1i111it 

14.7 42.2 17.0 38.0 
15.4 43.5 17.8 39.2 
16.1 41.8 18.6 40.4 
17.0 16.0 1P.I 11.6 
177 477, 70.7. 47.8 

18.5 . 48.4 21.0 44:O 
19.3 49.6 21.8 45.1 
20,O SO.8 11.7 16.3 
20.8 52.1 23.5 47.5 
21.6 53.3 24.3 48.7 

22.4 54.5 25.1 49.8 
23.2 55.7 26.0 51.0 
24.0 56.9 26.8 52.2 
'24.8 58.1 27.7 53.3 
25.6 59.3 28.6 , 545' 

26.4 60.5 29.4 53.6 
27.2 61.7 30.3 56.8 
28.0 62.9 31.1 57.9 
28.8 64.1 32.0 59.0 
29.6 65.3 32.8 60.2 
30.4 66.5 33.6 61.3 
31.2 67.7 34.5 62.5 
32.0 60.3 35.3 63.6 
32.8 70.1 36.1 64.8 
33.6 71.3 37.0 65.9 



Table XI11 (a )  

Sample Sizes f o r  Two-Sided D i s t r i  but ion-Free Tolerance L i m i t s *  

n i s  sample s i ze  requ i red  t o  assure w i t h  100 y %  conf idence t h a t  a t  l e a s t  
100 P % o f  t h e  populat ion, w i l l  l i e  between t h e  smal l e s t  and l a r g e s t  obser- 
v a t i  ons. 

EXAMPLE y = 0.95, P = 0.90, then  n = 46 

*Reproduced w i t h  permission f rom D.B. Owen, Handbook o f  S t a t i s t i c a l  Tables, 
Addi son-Wesl ey Pub1 i s h i  ng Company, Inc., 196.2. 
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Table XI11 (b) 

Proport ion o f  Popul a t  i on Contai ned i n A Two-Sided 
D i  s t r i b u t  ion-Free To1 erance In terva l *  

P i s  proport ion o f  population which l i e s  between the smallest and largest  o f  n 
observations w i t h  100 y % confidence. 

E ~ P L E  For y = 0.90, n = 15, then P = 0.7644 

Sample . . s i ze  
n 

2 
3 
4 .  
5 
6 
7 
8 
9 

10 
15 
20 
25 
30 
35 
40 
45 
50 
6 0 
70 
80 
90 

100 
1 50 
200 
250 
300 
3 50 
400 
450 
500 
600 
700 
800 

"dapteij. wi.th. .permI.ssion from R.0. Murphy, Non-Parametric Tolerance Limits" ,  
Annals o f  Mathematical Stat . is t ics,  19, 1948. 



7 = 0.90, 0.95, 0.99 

TWO-SIDED ,DISTRIBUTION - FREE TOLERANCE INTERVALS 

- - 
- 
- - - 
- - - - 

- 
- - 
- - 
- - 
- - 
- - 
- - 
- - 
- - 
- - 

- 
*CONDENSED WITH PERMISSION FROM R. B. MURPHY, 
I' NON-PARAMETRIC TOLERANCE LIMITS," ANNALS OF . - 

MATHEMATICAL STATISTICS, 19, 1958. 

I - 2 4 6 8. 10 2 0  4 0  60 80 100 2 0 0  400 600 1000 
SAMPLE SIZE, n 

FIGURE Xlll (c) 



Table XIII. ( a )  

Confidence Associated with a Two-Sided ~i stri  but ion-~ree 
To1 erance  In t e rva l  * 

Confidence y with which we mqy a s s e r t  t h a t  lOOP percent of t h e  population 
1 ies between t h e  l a r g e s t  and smal l e s t  of a random sample of n from t h a t  
populat ion '  (continuous d i s t r i b u t i o n  assumed) 

EXAMPLE For P = 0.95, n = 11,  then y = 0.10 

*Adapted with permission from P.N. Somervill e ,  "Tables f o r  Obtaining Non- 
Parametr ic  Tolerance Limits ,"  Annals of Mathematical S t a t i s t i c s ,  29, 1958. 



Table X I  I 1  (e)  

Sample Sizes f o r  One-Sided D i s t r i  bution-Free Tolerance L im i t s *  

n i s  sample s ize requi red t o  assure t h a t  the  l O O y  % confidence t h a t  a t  l e a s t  
100 P % . o f  t he  populat ion sampled w i l l  l i ' e  above t h e  smal lest observat ion ( o r  
below the  la rges t ) .  I *  .. . .  

EXAMPLE For y = 0.90, P = 0.95, then n = 45. 

*Reproduced w i th  permission from D.B. Owen, Handbook o f  S t a t i s t i c a l  Tables, 
Addi son-Wesl ey Pub1 i shi  ng Company, Inc., 1962. 



Table XI11  ( f )  

Proport  i o n  o f  Populat ion Contained i n a One-Sided 
D i s t r i b u t i o n - F r e e  Tolerance I n t e r v a l *  

P i s  p ropo r t i on  o f  popu la t ion  t h a t  l i e s  below the  maximum observat ion ( o r  
above t h e  minimum observat ion) f o r  sample s i ze  n and conf idence l eve l  y. 

EXAMPL~  y = U.90, n = 15, then P = 0.8577 

Sample . . . .  s i z e  
n y  = 0.80 y =  0.90 y = 0.95 y = 0.99 y = 0.999 

*Adapted w i t h  permission from R.B. Murphy, "Non-Parametric Tolerance L imi ts , "  
Annals o f  Mathematical S t a t i s t i c s ,  19, 1948. 



GRAPHS OF P SUCH THAT AT LEAST A PROPORTION P OF THE POPULATION IS ABOVE THE 
MINIMUM (OR BELOW THE MAXIMUM) OBSERVATION WITH CONFIDENCE LEVELS* 

Y=0.90, 0195, 0.99 

ONE-SIDED DISTRIBUTION- FREE TOLERANCE INTERVALS 

*CONDENSED WITH PERMISSJON FROM R. B. MURPHY, 
"NON-PARAMETRIC TOLERANCE LIMITS", ANNALS OF 
MATHEMATICAL STATISTICS, 19, 1958. 

I 2 4 6 8 1 0  2 0  4 0  60 80 100 2 0 0  4 0 0  600 1000 
SAMPLE SIZE, n 

FIGURE ~ l l l . ( g )  



Table XIV 

Factors  f o r  'Computi ng Control Limits* 

*Adapted. with permission from ASTM Manual. on Qua1 i t y  Control of Materials  , 
Copyright 1951 by t h e  American Society. f o r  Testing and Materials.  

R OliAnT 

Factor for 
Ikntrnl ,Fnrtnr.tJnr Cnntrnl 

Line Limits 

4 0 s  . Dl 

1.128 0 . 3.267 
1.693 0 2.575 
2.059 0 2.282 

- 2.326 0 2.11! 

2.534 0 2.004 
2.704 0.076 1.924 
2.847 0.136 1.864 
2.970 0.184 1.816 
3.078 , 0.223 1.777 

3.173 0.256 1.744. 
3.258 0.284 . 1.716 
3.336 0.308 1.692 
3.407 0.329 1.671 
3.477. 0 . m  1.652 

3.532 0.364 1.636 
' 3.588 0.379 1.621 

3.640' 0.392 1.608 
3.689 0.404 1.596 
3.735 0.414 - ' .1.586 

3.778 0.425 1.575 
5.8iY 0.434 1.566 
3.858 0.443 1.557 
9.1195 0.452 ,1.?4R 
3.931 0.459 1.541 

jdt!,whqr nf 
Observations 
in Sample, n 

2 
3 
4 
5 

6 
7 
8 
9 

10 

I1 
12 
13 ' 

14 . 
I s 

16 
17 
18 
19 
20 

21 
22 
23 
2J 
25 

. R OIlAnT 

Fnrmcr fnr Cnntrnl 
Limits 

A AP 

2.121 1.880 
1.732 1.023 

. 1.500 0.729 
.1.342 0.577 

1.225 0.483 
1.134 0.419 
1.061 0.373 
1.OOO 0.337 
0.949 0.308 . 

0.905 0.285 
0.866 0.266 
0.832 0.249 
0.802 0.235 
0.775 0.7.23 , 

0.750 0.212 
0.728 0.203 
0.707 0.194 
0.688 &I87 

. 0.671 0.180 

0.655 . 0.173 
0.640 0.161 
0.626 0.162 
n.612 0.157 
0.600 0.153 



CRITICAL VALUES FOR TESTING OUTLIERS* 
(2, is the extreme value) 

NUMBER OF. CRITICAL VALUES? 

STATISTIC MEANS, n a = 0.05 a = 0.01 

3 0.941 0.988 
4 0.765 0.889 

22 - 21 r10 = - 5 0.642 0.i80 
271 - 21 6 0.560 0.698 

7 0.507 0.637 

*Reproduced with permission frim W. J. Dixon and F. J. Massey, 
kitroduction to Statistical Analysis, McGraw-Hill Book 
Company, 1951. 



Table X V I  

Table of Critital Valuca jor T (One-sided Test) ILVhen Sbndard D w i d i o n  
is  Calculaled from the Saine Sample* 

-- - 
Number of ;ir' 1 0  2.5% 1% 

Obseyvatione Significance Significance . Significanca 
n Level Level Level 

NOTE : For n > 25, the 
values of '1' are approximated. All V ~ U L ~  I~uve bean adj~teted for dlvlelon by n - 1 i o s t ~ d  of JI 

in calculatina a. 

+Reproduced wi th  permission from F .E. Grubbs, "Procedures f o r  Detect ing 
Outlying Obser~at ions  i n  Samples", Technometrics, Volume 2, 1969. 

. . 



Critical Values for T When Standard Deviation s, 
is Independent of Present Sample 

T, zf" - f f - rl 
or - 

8.  , 8.  

. . 
3 .  4 5 6 - n t 8 9 10 12 

v .- df a = 1% points 
. -  

10 : 2:78 3 . 1 0 .  3.32 3.48 3.62. 3.73 3.82 3.90 4.04 
11 2.72 3.02 3.24 3.39 3.52 3.63 '3.72 3.79 3.93 
12 2 . 6 7 '  2.90 3.17 3.32 3 .45  , 3 . 5 5  3.64 3.71 3.84 
13 2.63 2.92 3.12 3.27 3.88. 3.48 3.57 3.64 3.76 
14 . 2.60 2.88 3.07 3:22 3.33 3.43 3.51 3.58 3.70 
15 2.57 2.84 3.03 . 3 . 1 7  3.29 3.38 3.46 3.53 3.65 
.16, 2.54 2.81 3.00 3.14 3 . 2 5 '  3.34 3.42 3.49 3-60 
17 2.52 2.79 2.97 3.11 3.22 3.31 3.38 3.45 3.56 
18 2.50 2.77 2.95 3.08 3.19 3.28 3.35 3.42 3.53 
19 2.49 2.75 2.93 3.06 3.16 3.25 3.33 3.39 3 . 5 0 .  
20 2.47 2.73 2.91 3.04 3.14 3.23 3.30 3.37 3.47 
24 2.42 2.68 2.84 2.97 3.07 3.16 3.23 3.29 3.38 
30 2.38 2.62 2 . 7 9 .  2.91 3.01 3.08 3.15 3.21 3.30 
40 2.34 2.57 2.73 2.85 2.94 3.02 3.08 3.13 3.22 
60 2.29 2.52 2.68 2.79 .2.RS 2.95 3.01 3 . 0 6 .  3.15 

120 2.25 2.48 2.62 2.73 2.82 2.89 2.95 3.00 3.05 
OD 2.22 2 . 4 3 .  2.57 2.65-  2.76 2 . m  2 . S  2.93 3.01 

a = 5% pointe 

10 2.01 2.27 2.46 2 . 6 0 '  2.72 2.81 2.89 2.96 . 3.08 
11 1.98 2.24 2.42 2.56 :2.67-2.76 2.84 2.91 3.03 
12 1 . 9 6 .  2.21 2.3% 2.52. 2.63 2.72 2.80 2.87 2 .9s  
13 1.94 2.19 ; 2 . 3 6  2.50 2.60 2.69 2.78 2 2.94 
l4 1.93 2.17 2:34 2.47 2.57 2.66 2.74 2.80 2.91 
15 1.91 2.15 2.32 2 . 4 5 ,  2.55 2.64 2 . 7 1  2.77 2 . m  
16 1.90 2.14 2.31 2.43 2.53 . 2 . 6 2  2.69 2.75 2 . M  
17 1.89 2.13 2.29 ,2.42 2.52 2;60 2 . 6 7 .  2.73 2.84. 
18' 1..88 2.11 2.28 2.40 2.50 2.58 2.65 2.71. 2.82 
19 1.87 2.11 2.27 2.39 2.49 2,67 2.64 2.70 2.80 
?O 1.87' 2.10 2.26' 2.38 2.47 2.58 2.63 2.68 2.78 
24 1.84 2.07 2.23 2.34 2.44 2.52 3.m 2.61 2.74 
30 1.82 2.04 2.20 2.31 2.40 2.48 2.54 2.60 2.69 
10 T.BO 2.02 2.17 2.28 2.37 2.44 2.50 2.56 2.85 
60 1.78 1.99 2.14 2.25 2.33 2.41 2.47, 2.52 2.61 

120 1.76 1.96 2.11 2.22 2.30 2.37 2.43 2.48 2.57 
o 1.74 1.94 2.08 2.18 2.27 2.33 2.39 2.44 2.52 

*Reproduoed from H. A. David, "Revised Upper Percentage Points of the 
Extreme Studentized Deviate from the Sample Meant1, Biometrika, 
43, 1956, by permission of the Biometrika trustees. . 
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