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PREFACE

When one draws conclusions from data, he is knowingly or unknowingly using
statistics. How good these conclusions are will depend upon how good were the
statistical techniques used in working up the data. Similarly, a person who
plans an experiment or any collection of data is also using statistics in an
area known as the design of experiments. Here again, how good the experiment
is will depend upon the statistical design techniques used. The purpose of
this text is to provide the nuclear engineer or scientist with a basic course
in statistical design and analysis. Sufficient extra advanced material is
included to enable a student who has completed the basic course to deal with
problems in selected subject areas. Specifically, this text has served as a
basis for several training courses at the Bettis Atomic Power Laboratory.

The text is divided into two parts. Part 1, entitled Basic Statistical
Inference, deals with the basic language and concepts of statistical
analysis. It covers in seven chapters descriptive statistics, probability,
simple inference for normally distributed populations, and for non-normal
populations as well, comparison of two populations, the analysis of variance,
quality control procedures, and linear regression analysis. Chapters 1, 2, 3,
and 6 have been used for a short (20 hours) course in basic inference at
Bettis Atomic Power Laboratory. Chapters 4 and 5 can be used to present a
short course on quality control, and sampling plans. Chapter 7 has been used
to present a short course on regression analysis and model building. A
semester length course (32 hours) is presented which includes material from
all 7 chapters of Part 1, with emphasis on Chapters 3, 6, and 7, and with
selected additional material on experimental designs from Part 2.

Part 2, Design of Experiments, will contain material on the philosophy of
experimental designs, completely randomized designs, balanced block designs,
incomplete block designs, nested or hierarchical designs, factorial designs,
and response surface methodology. Two or more short courses or a semester
course could be presented from this material.

In both parts of the text, sections which are either more complex or
theoretical than that usually covered in a first course are indicated with an
asterisk so that the reader may skip over them on first reading. Five
appendices are also presented to provide additional theoretical information to
the interested student. Furthermore, a particularly useful feature of this
text is the collection of 17 tables of various types included with the text
material. These tables should satwsfy the majority of applications that an
engineer or scientist faces.
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ABSTRACT

This report is intended for the use of engineer; and scientists working in the
nuclear industry, especially at the Bettis Atomic Power Laboratory. It serves
as the basis for several Bettis in-house statistics courses. The objectives
of the report are to introduce the reader to the language and concepts of
"statistics and to provide a basic set of techniques to apply to problems of
the §o11ection and analysis of data. Part 1 covers subjects of basic

inference.
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Part 1:

BASIC STATISTICAL ANALYSIS




CHAPTER 1. INTRODUCTION: STATISTICS AND DATA

1.0 INTRODUCTION

What is statistics? To some engineers and scientists it is an esoteric
or suspicious subject. This attitude results from a lack of understanding of
the purpose and usefulness of statistical analyses and is due, no doubt in
part, to the misleading claims made by some advertisers and salesmen in their
attempt to impress their clientele with graphical displays and scientific
terminology. It is hoped that this text will help reduce or eliminate
suspicion as to the usefulness of statistics and, at the same time, develop in
the reader a healthy skepticism as to the real meaning of all reported values.

In particular, it will be shown that statistics is not simply a tedious
chore of number manipulation; but that, in deed, the smaller the data base,
the more important and valuable is the proper application of statistics. To
accomplish this will require the achievement of three basic objectives:

1. To introduce the reader to the language of statistics.

2. To introduce and have the reader understand the basic underlying
concepts of statistical analysis.

3. To provide the reader with a basic set of techniques to use on his
own problems of planned collection and analysis of data.

Of course, one cannot become a statistician simply by mastering the
material in this book. Many sophisticated techniques have been developed that
are beyond the scope of this text. However, it is hoped that this text lays
the statistical foundation from which an interested reader can build his
knowledge in the direction in which his work leads him. :

1.1 Statistics Defined

To return to the question, statistics is many things to many people.
The renowned statistician, Dr. George E.P. Box, has been heard to say
"Statistics is what statisticians do", and he was only half joking. The idea
behind such a circular definition is that statisticians do get involved in
many areas and cross many scientific, economic, and social disciplines .in
performing their tasks. To some of the above, the statistician may be a
mathematician; to the mathematician, he may appear to be a follower of recipes
(an "engineer of numbers"). To the small daughter of a statistician, her
daddy was "a doctor of sick numbers". In fact, he is none and all.

More formally statistics can be defined as "A SCIENCE WHICH GAINS
KNOWLEDGE OF PHENOMENA BY INFERENCE IN THE PRESENCE OF UNCERTAINTY." The
three key words in this definition are underlined. Science implies a specific
body of logical laws or theorems and a specific body of methodology.
Statistics has such laws and iethodology. Although it may be argued that the
laws are those of mathematics, it is the application of the Taws to real-life
situations that separates statistics from mathematics. This application is
inference. Statistics infers a state of nature based on observations and
conjectures in order to aid in a decision-making process. This is opposed to
probability, a branch of mathematics, which deduces certain events given an
assumed state of nature. The third key word in the definition of statistics
is uncertainty. It is the position of this text that nature is not ‘



deterministic. Although it is possible and even very likely that some true
physical relationships exist, man is either not allowed to observe them or is
unable to observe them, or both. As the history of science has shown over and
over again, we can never be sure we have absolute knowledge. There is always
a chance of arriving at a wrong conclusion regardless of how strong the
evidence appears. Statistics deals with this chance of erroneous
conclusions. One skeptic has sarcastically defined statistics as "a science
in which you are wrong 5 percent of the time." Actually there is some wisdom
in that definition, although not in the context in which it was meant. The
point is that there is uncertainty in all human observations, and statistics
attempts to deal with this uncertainty in a quantified manner and with a
specialized body of knowledge.

faving established that statistics is a science, let it be now known
that statistics is also an art, or rather, that the application of statistics
is an art. In dealing with any problem there is difficulty in defining the
real issue and of determining what techniques to apply in the solution to the
probhlem. Thus, the statistician in consultation with his client or the
engineer or scientist himself must develop the art of asking the right
questions and of providing the proper tools to solve the problem.

1.2 The Scope of Statistics

Statistics, like mathematics, is unique in that it is applied only in
reference to some other discipline or field of endeavor. Physical and
,biological scientists, engineers of all types, sociologists, psychologists,
economists, agronomists, and pollsters all need to deal with statistical
information at one time or another. Statistics is even used to decide the
authorship of historical papers and the age and origin of bone fossils.
Actual cases from these and other disciplines can be found in an excellent
book for the layman entitled "Statistics: A Guide to the Unknown" [31].*

In fact, whenever one deals with data of any kind, he is dealing with
statistics. It is not a question of whether or not to use statistics; it is a
question of whether one uses good and proper statistical techniques. To most
people, statistics is synonymous with data analysis. Tt is certainly true
that data analysis is a major part of what statisticians do. We will in Part
1 of this text discuss analytical techniques to describe a collection of data,
to test hypotheses about the source of that data, to compare two or more
functions, and to establish limits for the control of production processes.
These techniques are useful to scientists from the hasic researcher to the
production manager.

In additicn to data analysis and the inferences drawn from the data, a
second equally -important aspect of statistics exists which is not readily
recognized as being in the domain of statistics. This area is that of data
collection, or more accurately, the planning of the collection of data. This
area is generally known as the Design of Experiments, where “experiments" is
taken in a general sense to mean any collection of data. As with computers,
the cliche "garbage in-garbage out" applies to scientific studies as well.

*Number in brackets refer to reference.



Design of Experiments deals with the efficient utilization of experiments to
‘'obtain the maximum information. It is in the efficient use of experiments,
and therefore in-the efficient use of time and money, in which many scientists
fail to apply good statistics. Basic techniques of good "experimental" design
will be discussed as necessary in Part 1 of this text, since there is often a
direct connection between proper design and proper analysis. Part 2 will be
devoted to more detailed discussion of the concepts, techniques, and
applications of the area of design of experiment.

In summary, then, statistics can be described as the proper planning and
analysis of a collection of data or experiment from any source. It
incorporates mathematics, scientific theory, and empiricism. It fits well
with the spiraling path of knowledge gained known as the Scientific Method
(see Figure 1.1). First a conjecture or hypothesis about the state of nature
is made based on theory or past observations or both. Then a plan of
investigation, i.e., an experiment, is developed and carried out. The data
obtained are analyzed in a proper manner and inferences made. This leads to a
new conjecture, which hopefully is a more accurate description of the true
state of nature under examination. Statistical analysis, though not a

Conjecture or New -Conjecture

Hypothesis
Design Analysis
Experiment

Direction of increasing

Experiment
. knowledge

. -
Figure 1.1., The Scientific Method

decision-making process by itself, is then an extremely useful tool for making
decisions in a quantitative manner. .

1.3 Statistics in the Nuclear Industry

. In this section some simple but typical examples of the application of
statistics in the nuclear industry will be discussed. It should be noted that
the techniques used are not unique to the nuclear industry, but are, in
general, equally applicable in any other industry. Many of the examples that
appear throughout this text are based on the commercial applications of
nuclear energy; i.e., pressurized water reactors (PWR).

1. Comparison of Coolant Chemistries on Material Corrosion

In the area of basic research, a typical task is the study of the
effect of different primary or secondary coolant chemistries on material
corrosion. Several different chemical compositions of coolants may be tested
in a test facility for a given period of time such that equal information
about all chemistry compositions is obtained. The data for each coolant
tested may be characterized in a statistical sense by computing the arithmetic
average and a measure of spread, called the standard deviation. A confidence
interval based on the available data may be constructed which is said to




contain the true coolant corrosion value with some level of probability or -
confidence. . Comparisons among the averages of the coolants may be made using
a technique known as the analysis of variance and using an:F-test. Finally,
the experiment may. be repeated over Tonger time periods and the relationship
of corrosion as a function of time is estimated. :

2. Combining of Uncertainties to Obtain a Design Limit

In the area of developing design Timits for plant assembly the
uncertainty -involved in several components and assembly operations may be
combined to produce a limit which can be expected to be exceeded with a
satisfactorily small probability. The individual factors may be manufacturing
tolerances on diameters of particular components, the eccentricity of the
centers of components meant to be concentric, and the m1sa11gnment possible or
Tikely to occur during plant assembly.

Physicists are concerned about setting desiqn limits on a variety of
variables that could affect core performance. An entire chapter in nuclear
design manuals may be used to discuss the handling of uncertainties of
manufacturing and inspection data, operational uncertainties, and design model
uncertainties.

3. Qualification of Tools, Materials, and Vendors

In developmental work it is often necessary to determine the right
tools or materials to use or to establish the capability of a technician or
vendor to perform an assigned task. Tests can be planned to evaluate such
things that eliminate undesired sources of variability and allow clear
analysis of the ohject of interest.

An example of a program to evaluate materials and processing
variables is the analysis of the strength of zircaloy ingots. One or more
vendors may need to be evaluated and distinction between their respective
capabilities to produce acceptable material may be required. The composition
of the ingots may be varied to try to obtain the best .pnssihle ingot
characteristics. Process variables may include the number of ralls performed
and the torce exerted on each roll, the temperatures at which various
operaticns are ‘performed, and the time for which the 1ngot is kept at each
temperature. All of these variables could be analyzed in one carefully
planned nultifactor experiment and could 1nc1ude other response var1ab1es,
besides strength, as well.

4, Evaluation of Product Lot

In production activities it is essential to produce and continue
producing acceptable material. One way to achieve.this is through a sampling
plan. Fach 1ol of product, such as fuel elemenls, is sampled, and each sample
element is tested for accopta.i11ty If too many rejectable elements are
found, the entirc lot of elements is rejected, and appropriate action must be
taken to adjust the production process. Another procedure for assuring
centinuing acceptah]e product is a control chart. Once a production process
is determined to be in control, i.e., producing acceptable product, control
Timits are developed such that if any future observation falls outside these
Timits, the process is declared out-of-control and corrective action is




taken. The control 1imits may be based on the variability of the average of
several elements or on the availability of individual elements. Process
variables of interest may include such things as element dimensions, loading
and cracks.

5. Use of Operating Plant Data

During the actual operation of a plant, data can and should be taken
and analyzed to monitor the behavior of all operating systems. This data can
be used to detect potential difficulties before they become serious, to
identify the source of abnormalities, to cvaluate the effectiveness of
specific programs or techniques, and to make adjustments in operation
procedures as required. Inferences from operating plant data are particularly
difficult to make bhecause the data does not, in general, come from carefully
planned and executed experiments. Thus, unidentified sources of variability
may exist in the data which confound the effects of the variable under study.

1.4 Descriptive Statistics

In all cases of statistical analysis, regardless of how well the
experiment was planned, a sensible first step is to summarize the data in some
way so that the main characteristics of the data are apparent. The natural
step to most engineers or scientists is to plot the data in some way. In
addition to an informative plot of the data it is useful to quantify some of
- the characteristics of the data, such as the center, midpoint or most
frequently observed point of the data, the spread of the data, and perhaps the
degree of asymmetry and peakedness of the data. A1l of these data
characteristics are in the domain of statistical analysis known as descriptive
statistics.

In the remaining sections of this chapter some procedures for plotting
the data and for obtaining descriptive statistics will be discussed. It is
advantageous at this point however, to distinquish between a population and a
sample. A population is a co]lect1on of all possible units having a certain
attribute, such as Tiving in the United States, or having been produced by a
certain vendor under a certain contract. Some populations are finite in
number, whereas some are infinite in size. The possible outcomes from the
measurements of the length of a fuel element is an example of an infinite
population, since there are an infinite number of positions between any two
points on a continuous scale. (In practice, however, since all observations
arc read to the nearest unit, the collection of observations is discrete.) A
samETe is a subset of a popu]at1on, is necessarily finite, and consists of
specific values for each individual in the sample. It is significant to
remember, however, that before a sample is actually taken, its value is
unknown.

1.5 Obhservations Vary

Flip a coin. Ignoring the possibility that it lands on edge, what do
you observe? Either a head or a tail. Suppose the result of the first flip
was a head. Flip again. Head or tail? Repeat several times. Almost surely
you will observe some heads and some tails. That is, the result of flipping a
coin varies from one trial to another (unless you are using a two-headed or.
two-tailed coin!). Moreover, the outcome, head or tail, varies in a random



fashion, i.e., in an unpred1ctab1e way. Thus, the outcome of a coin flip is
called a random variable, since the realization of the act of flipping varies
in a random fashion. Once observed, the result is a fixed quantity, a data
point. : :

How do we characterize the random variable resulting from flipping a
coin? We would intuitively expect that for a fair coin, half of an even
number of trials will result in a head and half in a tail. Suppose we flipped
a coin 100 times and observed 43 heads and 57 tails. Is the coin not fair?
In fact, obtaining 43 heads in 100 flips of a fair coin is a reasonable '
result. A second experiment of 100 trials may result in 54 heads.
Observations vary from one trial to another; so the results of 100 trials can
also be expected to vary from one time to another. One of the important
questions to be answered is how do these observations vary? In what manner
are %he results of random variables distributed along the line of possible
results?

One attempt to answer this question is to take many observatrions and let
your data tell you how they are distributed. This empirical approach is
simply to plot the observations. '

1.5.1 A Dot Design

Let us consider the following example of observations from a delayed
neutron gage on 100 pellets of uranium fuel for a commerical power reactor.

Table 1.1. Delayed Neutron Counts* of Fuel Pellets (counts/gm)

96 88 93 112 102 116 119 93 116 119
89 98 92 97 121 117 108 104 113 94
103 98 106 118 120 105 100 102 106 105
109 97 95 102 104 122 94 109 113 11
100 96 114 98 121 109 110 97 92 106
109 m 121 99 94 13 107 114 96 92
101 103 101 95 98 101 98 106 102 96
95 104 102 116 96 100 107 99 95 110
113 100 97 102 112 97 106 91 100 97
91 100 92 97 80 101 29 99 104 101

*Coded to make computation easier by subtracting 24,000 from the actua] count
ot each pellet.

One way to examine the variability of the data is to plot each
ohservation in a dot diagram (see Figure 1.2). For a sufficiently large
number of observations a dot diagram may leave the viewer with a good
understanding of the nature of the response being plotted. However, more

~often a distortion of the true state of nature may be caused by the
discreteness of the data and the dot diagram procedure when in fact the true
response is a continuous variable. That is, theoretically, the response may
take on any value in a specified range of values, but the dot diagram only
represents a part of the total possible outcomes. In particular, two things
may happen. First, the dot diagram may be scattered over a wide range with
only one or two observations at any one value. This may lead to the false
impression that any one value is as likely to occur as any other, an



assumption which in most situations is far from the truth. The second
possibility of deception in a dot diagram is the tendency for people to record
the same value repeatedly. What this phenomenon means is that many
observations are in the vicinity of these values but are really spread about -
these values. Thus, a more realistic picture of the true distribution of a
set of data would be given by smoothing out of the dot diagram. This step is
accomplished by a histogram.

T
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Figure 1.2. Dot Diagram: Delayed Neutron Counts of Fuel Pellets

‘1.5.2 Plotting a Histogram

A histogram is simply a bar chart of frequencies of occurrence of values
in specified intervals. '

The first step in constructirig a histogram is to decide on the number
and width of intervals. Miller and Freund [25] recommend 5< k< 15 intervals,
where k is the number of intervals. Other authors may suggest slightly
different numbers of intervals. The decision on the number of intervals is
usually based on the range and number of data, i.e., the maximum observation
minus the minimum observation. In the delayed neutron count data, the range
is 122 - 80 = 42. Using the above rule of thumb, we could use 11 intervals
with a width of 4 counts, or 9 intervals with a width of 5 counts. The choice
of interval limits or boundaries may also be made in several ways. To ensure
nonoverlapping intervals we could for the delayed neutron example choose
intervals such as 89.5-94.5, or 89.9-94.9 or 90-94. Table 1.1 gives the
frequencies for the latter choice of interval limits, reflecting the
discreteness of the recorded data.

The class mark x; is the -midpoint of the interval and can be used to
represent the entire interval, as we.shall see shortly. Figure 1.3 shows the
histogram for the frequency data given in Table 1.2. The straight lines
connecting the midpoints of the intervals are called the frequency polygon.
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‘Table 1.2. Frequency Table of Delayed Neutron Counts

Cumulative

Class_ . Relative Relative

Interval Mark X Frequency Frequency Frequency
80-84 82 1 . .0.01 0.01
85-89 87 : 2 0.02 0.03
90-94 92 11 0.11 0.14
95-99 97 25 0.25 0.39
100-104 102 24 0.24 0.63
105-109 107 14 0.14 0.77
110-114 112 11 0.1 0.88
115-119 117 7 0.07 0.95
120-124 122 5 0.05 1.00

If we record the relative frequency of each interval as n;/N, where n;

is the frequency in the ith interval and N = X ny is the sum to%a] of po1nts,
i=]

we may plot the cumulative re]at1ve frequency diagram. A series of straight

lines connect1ng ‘the interval Timits of the cumulative relative frequency

d1agram is called an ogive. The cumulative relative frequency diagram and

ogive is shown in Figure T1.4.

. 1.6 The Characterization of Data

What is of more interest than a frequency polygon or an ogive, however,
is the kind of smooth, continuous curve which may be drawn through the
histogram. The histogram gives us an idea as to the distribution of values
being measured. Its main job, however, is simply to point out the central
tendencies in the data and to indicate the degree of variation inherent in the
data. If we believe that Mother Nature has a game plan for delayed neutron
counts/gram (and everything else for that matter), then there exists a true
distribution for these counts/gram. The 100 observations we recorded are a
sample from all conceivable observations of delayed neutron counts/gram of
fuel pellets which we may make if we continued to observe a large number of
pellets from the population of such pellets.

Thus, we have sampled from a population and constructed a histogram or
picture of the distribution of events recorded. This histogram is an estimate
of the real distribution of events. How do we characterize the distribution
of this population?

1.6.1 Location Parameters

The term parameter refers to characertistics of the true underlying
population whose distribution we are trying to describe. Information about
these parameters is available through functions, called statistics, of the

sample data. A statistic summarizes the information about a parameter of a
distribution that is available in a collection of sample data.

Since we are after the central tendencies, the first step in

10



characterizing the distribution is to report its location or center value.
Actually, there are several possible choices for determining this Tlocation
parameter. In -every -histogram there is one value which divides the
observations "in-half. The median of the sample is that value for which half
of the observations is above and half below. If there are an odd number of
observations, say 2n+ 1, this median value is unique, having exactly n
observations on either side. If there is an even number, the median may be
the common value of the two middle observations, or the midpoint between the
two middle values.

A second location parameter is the mode. This is the value having
the greatest frequency of occurrences. The sample.mode is the highpoint in the
histogram. For the delayed neutron gage data, a quick glance at Figure 1.3
and 1.4 tells us that the sample median is in the interval 100-104 and the
mode is in the interval 95-99. . For the sample . mode, it is usually sufficient
to use the midpoint or class-mark of the interval, 97, as the representative
value. The sample median can be determined more precisely by counting the
observations and averaging the 50th and 51st largest values. Or, we can
approximate it by interpolation. From the frequency table, we see that 39
observations lie below 100 and 24 lie in the interval 100-104. .Eleven of
these 1ie below the sample median and 13 above. Thus the median could be
represented conceptually by the average of the 11th and 12th observation in
this interval, assuming all 24 observations were equally spaced within the
interval. Since the interval is 5 units in width, the sample median can be
determined as follows: 4

112y 220

100 + 2.4 ='102.4

[Note from the dot diagram, that both the 50th and 51st observation are equal
to 102, so that the median of the data is exact]y 102.]

The median and mode are interesting and useful location parameters,
but the most valuable location parameter is the mean, or center of gravity of
the distribution. The mean is the first moment of the distribution-and is
estimated by the arithmetic average of the observations. Using the frequency
table constructed for the histogram, however, we can provide an alternative
estimate of the mean. Let i1 be the classmark of ‘the ith interval and n; the
number of observations lying in that interval, then ,

k .
=1 z n1x1 (1.1)
Eni izl )

where x is the average of all observations. It sometimes occurs that the end
interval in a frequency table or histogram is open ended; e.g., instead of an
observation being between 80 and 84, inclusive, we group several intervals
having none or very few observations together and simply record it as
representing values less than 80. These open-ended intervals have arbitrary
classmarks. : :

11



1.6.2 Measuring the Spread

. Knowing the location of the central value (mean, mode, or median) of
the histogram is not sufficient information for making 1nferences about the
true distribution. We also need to know how varied or spreadlout the
. observations are. A measure of variation is called the variance and is
" usually estimated by

where the x, are the actual observations, X is the average, arnd n is the
number of observations. For large n the calculation is obviously
cumbersome. A quicker calculation which makes use of the data a]ready
tabulated in Table 1.2 is to calculate

- 2 .
2 . Zn; (x- - X
5°g iV ) (1.2)

n=1

snyx,2 - [Eni%3)/n]
' n-1

where ii is the class mark of the ith interval and the summation is over the
number of intervals.

A measure of the spread of a distribution is the standard dev1a51on,
which is simply the square root of the variance and is estimated by s =/5

1.6.3 Other Characteristics of Intérest

There are two other characteristics of a distribution which are of
general interest in describing a set of data: skewness and kurtosis.

Skewness is a measure of the asymmetry of the disfribution, TeCuy

the tendency of a population toward high or low values. The usual measure of
skewness can be written in terms of data from a histogram as

.Wl_ Eini (;('I - ;()3/53
For a symmetric distribution, this measuré should be zero.

Kurtosis is often described as the measure of peakedness of the
distribution and can be calculated by

< . =4
! (Xs - /s
—T 21 n; (x5 x)

The flatter the distribution, the smaller the value becomes. ‘However, the
concept of kurtosis is not frequently applied when dealing with most sets of
data.

12



A1l of the characteristics discussed in this section will be
described more formally in the section on probability distribution functions.

1.7 Estimating the Mean and Variance: The Delayed Neutron Gage Examp]eA
The mean and variance of the delayed neutron gage data could be estimated

by using all data points and ca]cu]at1ng x and 52 directly. The results of
such a calculation are

x = 102.99
s = 75.53
Using the grouping of Téb]e 1.2, we may estimate fhe grouped mean, X g°
and variance, sgz, as follows:
82 — ———g7 5773
- 87 2 174 15138
92 11 1012 ‘ 93104
97 25 2425 - 235225
102 24 2448 ' 249696
107 14 1498 160286
112 1 1232 . 137984
117 7 819 95823
122 5 610 74420
100 10300 1068400.
From (1.1) ig = 103.00 o |
From (1.2) C '592 = [1068400° - [(10300)2/100]

99

75.76

An easier approach for calculating the estimate of variance is ‘to code

the data. That is, let u; be the coded value obta1ned by

ue = 3= %o o X" 102
i v
- . C 5
where a convenient center va]ue xO is xg = 102, and ¢ is a convenient-scale
value. . . - .
Thus, Xy =5 uj + -102.

13



Then

Ui ni Uil S AL
BAR. S 5 ” 16
-3 2 -6 18
-2 11 -22 44
a1 25 - 225 25
0 24 0 0
1 ' 4 14 14
2 1 22 44
3 7 21 63
4 5 20 80
100 20 0 304
and u = 20/100 = 0.2
' 2 ' 2
s 2 = 304 - (20)°/100 _
u B 1) s 3.03
Then ‘ X = cu + Xq »€=5
=5 x 0.2 + 102
= 103.0
2 2.2
and Sy~ =73,
= (5)2(3.03)
= 75.75

(The interested reader will want to read Section 2.3.3 on the basic properties

of means_and varéances in order to understand the relationships between X and
U and 5,2 and s,%.) A A

1.8 Corre]apion apd Independence

Before turning to the more formal mathematical development of statistics
in Chapter 2, let us first consider some intuitive explanation of some
important concepts: correlation and independence. Correlation is a measure
of how much one random variable moves as another random variable moves.

Figure 1.5a shows a distinct pattern of observations for two highly correlated
variables, say the length and weight of fuel elements. It is obvious that as
the length increases, the weight also increases. The correlation .
coefficient, p, between two random variables must be between -1 and +1. If
the random variables are independent, i.e., there is no dependency of one -
variable upon another, then the correlation coefficient is zero. The plot of
observations from independent random variables will resemble a shotgun
pattern. For example, the uranium content in a fuel element is independent of
the amount of an impurity present in the nonfuel portion of the element.

14
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In Section 2.1 a more formal probabilistic definition of.independence
will be presented. It is sufficient .here just to recognize that some random
variables are independent and some are correlated, and how we deal with data
will depend on the relationship between variables.

WEIGHT
Figure 1.5a. Correlated Variables
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CHAPTER 2. PROBABILITY AND PROBABILITY FUNCTIONS
2.0 INTRODUCTION

How often will a certain value occur for a given process? In the delayed
neutron gage data, how often can we expect to find a value of 98 or, more
reasonably, how often should a value between 95 and 102 occur? The relative
frequency is a measure of the proportion of the total possible outcomes of a
process which have a certain common attribute. The relative frequency of the
interval (95 < x < 102) is 0.33. In the limit, as the number of observations
tend toward infinity, the relative frequency of an event coverges to the
actual probability of the event. Although we seldom actually know the
probabilities of real events, we must still be able to calculate probabilities
of certain events as if we did know the true probabilities of other events.
Hence, we need to study the basic rules of probability theory.

2.1 Definitions and Basic Laws

Let us begin by distinguishing between probability and statistics.
Probability is that branch of mathematics which deals with the assignment of
relative frequencies of occurrence of the possihle outcomes of a process or
experiment according to some mathematical function. Statistics is the theory
and practice of drawing inferences about a response or process based on
assumptions, data, and the laws of probability. Statistics properly includes
the problems of the collection as well as the analysis of data. Although both
fields operate in the face of uncertainty due to random error, statistics is
inductive in nature, while probability is deductive. One thing we would like
to do, then, is to deduce the probability of a complex event based on the
probabilities of certain simple events, such as the probabilities of component
parts operating successfully at some time T. To do this we need to know the
basic Taws of probability and the combination of events.

We shall define an event E as some particular occurrence from a set of
many possible occurrences (the set of all possible occurrences is called a
sample space). An event may occur in several ways, $o that we can consider it
as a collection of elements all of which have a common attribute. For
example, the occurrence of an odd face on a throw of a die is an event which
has three elements 1, 3, and 5. The probability of an event is the relative
frequency of occurrences of that event with respect to all occurrences. The
assignment of a probability value to an event is determined by assumption, by
prior knowledge of the event, or by observation of a large number of trials or
experiments. We say, for example, that the probability of obtaining an odd-
face on a die is 1/2, assuming that the die is a fair ane. This assignment of
probability Pr(E) to that event is verified by experimentation.

Let Ey and £, be two events. The folldéwing are definitions of events
based on £y and Ey:

E means not £ (i.e., E has not occurred)

Ey + Ep  means either Ey or Ep or both occur

E1E2 means both £y and E» occur

E1]/E2 means + Ey occurs given that E, has occurred.

16



Given the above definition of events, the basic laws or axioms of probability

are:

1.

Basic Laws of Probahi]ity

. be

a. 0 < Pr(E) €1
b. Pr(E + E) =1
c.1 PF(E1~+ E2) = PP(EI)‘+ Pr(E2) - PF(ElEz)
C.2 If-El and E, are mutually exclusive,
: PF(E] + E2) = PY(EI) + Pr(Ez)
d.1 Pr(Ey E5) = Pr(Ej|Ep) Pr(Ep)
d.2 If £y and £, are statisticaT]y independent, then
F(ElEz) = PP(El) Pr(Ez)
Proofs
a. 'Let S be the event that something occurs, i.e., any event which can
occur is a part of S, and let @ be an event that néver occurs. By
the definition of probability we define Pr(d) = 0 and Pr(S) = 1.
Thus, if an event cannot occur, we say it occurs with probability
zero. On the other hand, something always occurs with certainty.
Thus, for any event E, it has the %ounds of 0 and 1 in probability.
If E is "not E", then E and E make up all events which could
| possibly occur. That is, E + E = S. Hence, Pr(E + E) = Pr(S) =1
(see Figure 2.1).
E
Figure 2.1. Pr(E + E) = Pr(S) =1
c.1 Suppose there are nj, ways fhat events £y and E, may occur together,

njg ways for Ey to occur alone, and nog ways for Ep to occur alone

(sce Figure 2.2).
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If the total number of possible outcomes is N, then
Nyn * Noyn + N
_ 10 20 12
Pr(E1+E2) = N

However, Ey occurs in a total of njg + nyp ways, and E5 in nyq + nyp ways.
Thus :

Mot M2

P —

_ Moot M2

2) - N
Summing Pr(E;) and Pr(E,), we see that the term Pr(EjEo) = nyp/N occurs twice.

Subtracting this term from Pr(El) + Pr(E;), we see the result is Pr(Ej+Ep),
.., : '

Pr(Ey + Ep) = Pr(Ey) + Pr(Ep) - Pr(E4Ep)

=M etMz Moy M2 M
N N N

Mo + 20 + M2
N

Figure 2.2. Pr(Ey + Ep) = M0 + "20 + M2

N

Figure 2.3. Pr(ElEé) =0




If El'and E, are mutually exclusive events, then E; and E, cannot occur

together (see Figure 2.3). Thus, Pr(E;E;) = 0 and c.2 follows. The obvious
extension holds for the probability of k mutually exclusive events,

= Pr(Ey) + Pr(Ey) + .ot Pr(E).

The extension of the general case c.l to k events is left as an exercise for
the reader.

d.1 As above, let N be the total number of possible occurrences, E, and
E2 together occur in ny, ways, El alone in Nig ways, and E2 alone in

Nog Ways.
Thus, Pr(E,) = M20 + "12 and Pr(EiE,) = M2
L N

How many ways can Ey occur, given that E, has occurred?

Figure 2.4. Pr(E;|E,) = _ M2
’ n20 * M2

By may occur in only ny, ways if E, has already occurred
(see Figure 2.4). E, may have occurred in nyg ways, so that

Pr(Eq]Ep) = M2 .
Nop + M2

That is, of the total number of ways in which E, occurs, N2 of them contain

the occurrence of E, also, Now multiplying Pr(EI[EZ) by Pr(E,) we obtain

n n n
Pr(E|E,) Pr(E,) = 12 20+ 12
1% & Mty TN
- M2 _ Pr(EE,y).

N

If E4 and E, are pairwise or statistically independent then the occurrence of
E, does not affect the probability of the occurrence of Ey, i.e., Pr(E; E»)

= Pr(Ey). Thus, d.2 follows. The extension of d.2 is not as obvious as the
extension for ¢.2. The result is. that if El, E2,..., Ek are mutually, or
statistically, independent, then _

Pr(ElEz.,.Ek) = Pr(El)Pr(Ez)...Pr(Ek).
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However, note that mutual independence requires not only pairwise
independence, Pr(E1EJ) Pr(E;) Pr(Ej) but also independence at every other
stage, i.e., :

Pr(E4E5E) = Pr(Ei)Pr(Ej)Pr(E])
PF(ElEquEm) = Pr(Ei)Pr(Ej)Pr(E])Pr(Em)
2.1.1 An Illustration of the Basic Laws of Probability

To illustrate these basic laws of probability consider the event E
that a control rod is successfully driven into the core when properly

triggered. Suppose independent testing of the control rod mechanism has shown
that the probability of successful operation of the rod is 0.99, i.e.,

Pr(E) = 0.99
The probability of failure, E, is, therefore
Pr(E) = 0.01

since E (success) and E (failure = not success) are mutually exclusive events
and cover all possible outcomes of events which could occur, and

PY‘(E + E) '= 1.
If there are 2 such rods in a core and they act independently when
triggered by tho same signal, the probability that both rods operate
successfully ("scram") is

.Pr(ElEz) = Pr(El)Pr(EZ)

(0.99)2
0.9801

If one rod successfully scramming can shut down the reactor, the probability
of shutdown is the probability that either one or both rods scram,

Pr(El + E2)

PP(El) + Pr(Ez) - Pr(ElEz)
0.99 + 0.99 - 0.0907

0.9999

Suppose further that there is a probability that thc triggering signal
for the control rods will not operate properly. The rods themselves will not
scram unless the signal is triggered. Thus, the successful operation of the
control rods is conditional upon the successful operation of the tr1gger1ng
device. Suppose the probability of successful operation is Pr(Eg) = C.95.
Thus,. the successful shutdown of the reactor requires both the successful
operation of the triggering device and the successful scram of at least one of
the two control rods, E conditional on the first cvent taking
place. This probab111ty is %ound by
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Pr(EsEq) = Pr(E5)Pr(E4|Es)
(0.95)(0.9999)

0.949905

u

- 2.1.2 ~ An Application to System Evaluation

It often occurs that the components of a system have been tested
separately and the component reliabilities, i.e., probability of successful
operation, are known. The system itself, however, may not be subjected to
tests, either due to time, expense, or the destructive nature of such a
test. Suppose we are dealing with a two-stage system for which the first
stage has a backup system (see Figure 2.5). Let the probability of components
Al, A>, and B operating successfully be PAl = 0.90, PA2 = 0.80 and Pg = 0.95,

respectively, where these probabilities were determined by extensive and
separate tests. We want to know the probability of the system operating
successfully.

Let S mean the system operates successfully, and S; and S11 mean
that stages I and II, respectively, operate successfully. Then

Pr(s) = Pr(syr|Sp) Pr(sy)

Now, stage 1 operates successfully if Aj or A, operates
successfully.

Pr(S;) = Pr(A; + Ay)

Since Ay and Ay were tested separately, Pr(AjAs) = Pr{(A;)Pr(As). Hence,

Pr(S;) = 0.90 + 0.80-(0.90 x 0.80)
= 1070 - 0-72
= 0098 ’

Finally, the system will operate if S;j operates successfully, given SI has.
Pr(s) = Pr(Syy|Sp) Pr(sy)
= Pr(B) Pr(SI)

0.95 x 0.98
0.9310

1

The probability that the system will operate succeséfu11y, given the
reliability of the three component engines as 0.90, 0.80, and 0.95, is 0.9310.
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STAGE 1 STAGE IT
B

A, _
Figure 2.5. Two-Stage System
*2.1.3 Bayes' Theorem. An Application of Conditional Probabilities

A very basic and important application of probability law d.1 was
discovered by the Reverend Thomas Bayes in the late nineteenth century. It is
simply a double application of law d.1 which allows us to make probability
statements about one event E,, given Ey, when we have knowledge of the
probabilities of E; given E,.

Let [y and E, be two simple events nnt independent of each other.
Then

Pr(EEp) = Pr(Ey|Es)Pr(Ep).

We ¢anh also erLé it

Pr(E1E5) = Pr(Ep|Eq) Pr(E;).

* Thus, equating the two, we have |
Pr(Ey| E5) Pr(Eyp)

Pr(E,|E1) = PRED)

Expanding on this, consider E to occur in k mutually exclusive and
exhaustive (i.e., there are no other) ways, Eqs 1=1,2, «.., k. Similarly,
H may occur in £ mutually exclusive and exhaustive ways Hi, j = 1, 2,
eees £+ Then E; may occur with any of the mutually e%c]usive and
exhaustive events Hj. That is,

E-i =:E]‘Hl"'Ein"' see +E1H2 .

Now
| Pr(E;|Hy) Prty) Pr(E;) > O.
PT(HJIEi) = Pr(Ei) -

Bul .
Pr(Ei) = PY‘(E1H‘| + oaee T E-lH_Q,)

= Pr(EsHy) + Pr(EsHy) + oo + Pr(bsily )

Pr(E;H;
J=1 nd

*Sections marked by * are advanced topics and may be skipped by first-time
readers .
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In turn, however, Pr(EiHj) = Pr(Ei|Hj) Pr(Hj). Thus,

Pr(Ei)==Z]Pr(E1|Hj) Pr(H;)
, J=

and finally,

Pr(Ei,HJ) PF(HJ)
Pr(H;|E;) =

That is, we can deduce the probability of Hj, given E;, from knowledge of the

probabilities of Hj and E; Hj.

Example 2.0

Suppose three furnaces are used to sinter fuel pellets. It is observed that
the furnaces handle 40,40, and 20 percent of the pellet blends, respectively.
The probabjlities for a furnace producing unacceptable grain sizes for pellet
blends are thought to be 0.05, 0.05, 0.10, respectively, based on previous
studies. If the information that a blend was sintered in a particular furnace
is not kept, it may be of interest to know the probability that an ‘
unacceptable blend came from furnace #3. Let

B = unacceptable grain size for blend

Hl = blend sintered in furnace #]

Ho = blend sintered in furnace #2

H3 = blend sintered in furnace #3
and

Pr(Eq[H;) = 0.05, Pr(Eq|Hy) = 0.05, Pr(E1|H3) = 0.10
Pr(Hl) = 0.40 Pr(H2) = 0.40 Pr(H3) = 0.20

Then, PP(El) = Pr(ElHl) + PP(Ele) +_PF(E1H3)

= Pr(Eq|H)Pr(Hy) + Pr(Ey|Ha)Pr(Hy) + Pr(Eq|H3)Pr(Hs).

The probability that furnace #3 sintered a particular blend, given that it was
defective, is '

Pr(EgHz) = Pr(Ey|H3)Pr(H3)

] N
Prifs/E) = —pren) Pr(ET)
- ‘ (0.10) (0.20)
" L . + . L4 + L .
. 0.02 _
9-92 - 0.33
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Thus, the probability that a given defective blend was sintered in furnace #3
is 0.33, which is considerably higher than the 0.20 probability that any blend
was sintered in furnace #3.

The corresponding probabilities for the other furnaces are also 0.33. Thus,
although furance #3 produced only one-fifth of the pellet blends, it is
equally likely that a defective blend came from any one of the furnaces.

This example was straightforward and the result reasonably intuitive. The
power of the Rayes' theorem technique becomes more appreciable in more complex
applications.

2.2 Probability Functions

Suppose we repeatedly run trials of an experiment. Again we interpret
experiment rather loosely here as an occurrence or activity which can be
observed. The length of time it takes to dial a certain telephone number is
an experiment as well as a large-scale investigation of the properties of a
certain chemical. The common element is some characteristic of the outcome
which can be quantified. For example, the result of a coin flip can be
assigned a value 1 for a head or 0 for a tail. Furthermore, the outcome may
vary from one trial to another in a random, i.e., unpred1ctab1e manner. We
can define an event E as the result that the characteristic value x of the
outcome is less than or equal to some fixed value X. If the frequency of
occurrence of the event E tends to a limit, we call x a random variable. In
practical situations, the assumption of a limiting frequency is reasonable.

Definition 2.1

The real-valued quantity x assigned to the outcome of an experiment which
varies in an unpredictable manner is called a random variable.

2.2.1 Cumulative Distribution Function

The 1imiting frequency of an event E, defined by x £X, is the
probability of the event, Pr(x<X). The set of probabilities for an
experiment can be formalized by a mathematical model which defines the
possible values for Pr(x <X) for all possible X. By convention, we say that
probability accumulates as we move from left to right on the real axis x.
Thus, Pr(x<X) is called the cumulative distribution function.

Definition 2.2

The cumulative distribution function (cdf) of a random variable x is

F(X) = Pr(xsX).

To illustrate what we mean by cumulates, consider the following:
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Example 2.1 )

Assign x = 0 if a tail results from the tossing of a coin, and x = 1, if a
head results. . The statement x<1, (X=1), means that either a tail (0) or a
head (1) occurs. This is certainty, i.e., Pr(Head or Tail) = 1; i.e.,
Prix<1) = 1. .

1.0

PROB Pr(x

0.5
x £ X ] Pr(x
0

0] X I

0) =1/2

1)

IA 1A
n

Figure 2.6. Cumulative Distribution of A Coin Toss.

Example 2.2
The length of a beam is measured. The beam is one of a large number of beams
of various lengths. Theoretically, a beam could be of zero or infinite
length. Thus, F(0) = Pr(x<0) = 0, Pr(x<®) =1, That is, the probability
that the beam has no length is zero, and the probability that the beam has
some length is 1 (certainty). The probability that the beam is no more than X
units in length is F(X) = Pr(x<X)..

1.0

F{X).

| ]
0 5 le 15
Figure 2.7.~*Cumulative Distribution Fungtion of the
Length of a Beam

0.0

2.2.2 A Discrete Random Variable

The above examples illustrate that as we move to the right along X
we include more and more of the sample space and hence the probability of the
event x<X increases or accumulates as x increases. Examples 2.1 and 2.2 also
demonstrate the two types of random variables: discrete and continuous.

Definition 2.3

A discrete random variable takes on only a countable number of possible
outcomes. :

There may be an infinite number of outcomes, but the outcomes can be
_ordered in a one-to-one correspondence to the real integers. An example of
this type of discrete random variable is the number of gamma emissions from a
radioactive source over a specified period of time. In fact, all count data




are discrete random variables. Other examples are the number of aces in.a
hand of bridge, the number of multiple birthdays in a roomful of people, and
the number of rejects from a lot of items subject to a quality test.

The probability of obtaining any one of the possible outcomes can be
computed and described for all values of the random variable.

" Definition 2.4 -

The probability function of a discrete random variable is

p(x) = Pr(x = X), x =0, 1, 2,...,k.

. Figure 2.8 shows the probability function for a toss of one die. Figure
2.9 shows the probability function for a typical emission count variable.

8 910

( )_e-XXx 0,1, 2
p(x)=1/6,x=1,2,3,4,5,6 Pix) = oz
p(x)i1/8 ] ] o0 I
' : | ' I T AR ® o
I 2 3 4 5 6 01 2 345 6 7
x .

X

- Figure.2.8. Probability Function for Figure 2.9. Probability Function
a Die For Emissions Count

We should note that the probability function accumulates, i.e.,

X
Z Pr(x = X) = Pr(x £X)
x=0
X _
or Z p(x) = F(X)
x=0

and if the sum is over the entire range of x, £ p(x) = 1.
X
2.2.3 A Continuous Random Variable

A variable such as a length measurement may take on an infinite
number of possible values. Such a variable is a continuous random variable.

Nefinition 2.5

A random variable which may take on any value in a continuum is called a
continuous random variable.
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The range of possible values for the random variable x may be from 0 to 1
or from 0 to @, or most generally, from - to@ . In any case, there are
an infinite number of values for x. Of course, since x is continuous, the
cumulative distribution function F(X) is continuous (see Figure 2.7). .
However, because of the infinity of possible values for x, the Pr(x = X), X
being one specified value, is zero. Hence, the probability function as
defined for a discrete random variable is inapplicable. We may, however, talk
about the probability of x being in a small interval about X and define the
density of probability in that interval. As the interval width is made small,
we in fact define the derivative of the cdf F(X) at the point X.

Definition 2.6

The probability density function (pdf) for a continuous random variable x
is

f(x) = dF(x)
dx

(NOTE: F(x) and f(x) represent the function describing the properiies of
the random variable x. The symbol F(X) represents the value of F(x) at
x = X. :

The probability of the event X; < x <X, is then

F(X1<X<X2) = Pl"(Xi < X <X2)
= X9
le f(x)dx .

In words, the probability of the event is the area under the pdf of x bounded
by X1 and X,.

Pri{x, <x < Xj)

| Figure 2.10. Probability Density Function for Continuous X
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A very typical continuous distribution is called the uniform
distribution which assigns equal probability density to all values in a
specified range.

0, x<0

f(x) =< 1/6 , 0 < x<8@
0, x >8

and

0, x<0
X

F(x) = j}(x')dx', 0<x<8
0
1 ,x >8

f(x)

|-

o x 8

Figure 2.11. pdf and cdf for Uniform Distribution

Physical measurements such as length, height, weight, etc., are continuous
random variables. Other continuous random variables are time elapsed between
successive events, or the elapsed time until a certain event. Examples of
several commonly occurring distributions both discrete and continuous will be
discussed in Sections 2.4 and 2.5. ' :

2.3 Characteristics of Probability Functions

Thus. far we have discussed probability functions, probability.
distribution functions, and cumulative distribution functions, mathematical
expressions of the ways outcomes of a variable are distributed according to -
frequency of occurrence. Every random variable has a distribution :
function. Every distribution function can be characterized in several
ways. Kknowledge of the form of the mathematical expression and of the
constants called parameters involved in these expressions completely describes
the distribution function of a random variable. However, kndwledge of the
characteristics called moments of the distribution also provides a great deal
ot usetul information.

Moments help describe such attributes of the distribution as the central
location, spread, -asymmetry, and peakedness of a distribution. Generally, a
moment is the expected value of a function of the random variable, and there
are several kinds of moments. The most important and typicall moments are
called central moments.
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2.3.1 Moments

First, let us consider the most basic moment, the first moment- about
the origin. Th1s we call the mean and is the mean va]ue or expected value of
the distribution. That is, it is the point of balance of the distribution or
its center of gravity. (For simplicity, we will only discuss continuous
random variables here. For discrete random variables, we need only replace
‘the fsign by the summation sign X and drop the d1fferent1a1 )

Def1n1t1on 2.7

The First Moment or Mean

where the integral is over the range: of x.

~ For sake of generality, we will use - @ to @ . -The symbol E(x) means the
expected value of x. The mean is called the location parameter of the

d1str1but1on of x, since it locates the center of gravity of the d1str1but1on.

We can def1ne other moments, called raw moments, or simply the moments about
the origin, in a similar way: .

©
pl = fxz f(x)dx = E(x2)
-Q —' .
ply = jpx3 f(x)dx = E(x3)
—m .

etc.

Definition 2.8

The moments about the origin;;%b or E(x") are obtained by

phe = fxr f(x)dx .-

fG)

Although these moments are useful, more informative type of moments are the
moments about the mean, called central moments.



Definftion 2.9

tral Moments
Centre ©

e = B )T = [ Gep)T fx)d
-

We should recognize that;;l, the first moment about the mean, is always O.
Following the rules oiointegration we see

py= [(x-p) f(x)dx

©

© |
[xf(x)dx = p [f(x)dx
-0

-0 -
| =py-p = -p =0
: (00
since , ff(x)dx = F(o®) = Pr(x<® ) =1,
:DCD
C fxfdx =, oy = g
_w .

The next mgst useful moment is the second moment abogt the mean, called the
variance ¢¢. The second central moment o, = E(x is the moment of inertia

about the mean. That is, it measures the degree to wh1ch the frequency of a
variable spreads out as it moves away from its mean or central value.-

Definition 2.10

Variance of a Distribution

This is always non-negative and on]y for degenerate distributions is it
zero. The square root of the variance is called the standard dev1at1on o,

Other important central moments are:
1. ~ Third central moment: ©
B3 E(x-ﬂ-)3 = f(X- p )3 H(x)dx |
p 3 measures the asymmetry-%} the distribution. A perfectly
symmetric distribution has pq = 0. [If a distribution has a long

tail to the right, m, >0, an if the long tail is to the left,
gy « 0. This is called skiwness.

#3>0
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2. Fourth central moment: do
pe = E(em)t = fix - m )t £(x)dx
-0
measures the degree of peakedness, i.e., the degree to which a
distribution bunches up to form a peak. Flat distributions are

called platykurtic and peaked distributions are called
leptokurtic. The property of peakedness is known as kurtosis.

#4=1 F4=1.8 #4-‘-3 #4=6
(Normal Distribution)

These moments of skewness and kurtosis are often measured in other terms:

a3 = Hzand yg4 = pg -3 (xg2-2).
o3 ol ‘

Higher order moments do exist, but their physical interpretation is difficult
and are not of great practical importance. - However, knowledge of all the
moments is equivalent to knowledge of the form of the distribution itself.
That is, the moments completely specify a distribution.

The relationship between the central moments and the raw moments is obvious
especially since the central moment is defined in terms of py oru. In fact,
the moments of one type can be obtained from knowledge of the moments of the
other.

*2.3.2 - Relationship between Moments

Consider moments about any two arbitrary points, a and b. The
moments will be denoted u,. (a) and . (b). By use of the binomial expansion
theorem, :

Theorem 2.1 .

(00) (00)
For up(a) f (x-a) r f(x)dx, and g (b) = f (x-b)¥ f(x)dx
CD (00}
)

Proof

Consider (q + w)". Expand by Taylor's series about g = 0. Then

(q+w)r - wr¥rqwr'1

+ r(r-1 q 2 \r=2peeey r{r-1 qr'2w2+rqr']w+

| =jéO (5)a v (2.1)
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Now substitute for q and w, q = x-b and w = b-a

Then (2.1) becomes

(x-b + b-a) " = (x-a)" _JZO (Jr)(x-b)j (b-2)"d

Multiply both sides by f(x) and taking the intégra] on both sides over x,
we get :

o J(x-a)" F(x)dx =f2(.r)(x-b)j (b-a)"™J £(x)dx
. X j J

Since (b-a)™™J is a constant with respect to x and the 1ntegra1 is
1ndependent of the summation, we obtain

E(x-a)" = 3 ( )(b-a)" I (x-b)J f(x)dx
j=0
‘ - \(n_A\T-J . oo,
rp(a) ﬁo- (J.)(b a)™J u5(b)

We may now substitute for a and b as follows: a=0and b=por a=u,
b = 0. Then, since # » we can write the first three moments of one
type as a function of he other type:

pho=p py=10
ph = pyt p? po=ph - p?
ly= a3 + pl =ply - 3! 2p 3
K3 = K3 Iy I K3 M3 Kow + cp
The relationship between moments for r > 3 is left as an exercise for the
reader. :
2.3.3 Basic Properties of Expected Values

Let y be a random variable and let a be a constant. Denote the
variance of y by Var(y). The following are basic properties or rules for
manipulating means and variances.

1) E(ay) = a E(y)

2) E (y+ a) = E(y) +.a

3)  Var(ay) = E(ay - E(ay) )% = a®Var(y)
4) Var(a + y) = Var(y)

The proofs for these results consist of simply looking at the integral (or
summation) expressions and applying the basic rules of integration.

In general, we may writé down the expected value of any function of a random
variable, say g(y) as
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where f(y) is.the probability denéity function of y.

Of particular interest in statistics is the mean and variance of a linear
combination of independent random variables.  Let ’
Yy = apxp +t @ X Xp + ...+ oapx

n-n

be a linear statistic, then

6) E(y) = E(%aixi) =Z1,a1-E(x1-)
If E(x;) is the same for all i, then
E(y) =Za; E(x)
7)  Var(y) = T Var(ajx;) =Z1_a21~ Var(x;)

_ i
- = Var(x) Zazi , if Var(x;) = Var(x), all i.
: A

Example 2.3
Consider y = ajxjy + apxp, E(xy) = E(xp) =g and Var (xi) = Var(xs) '='Q’2, then
for ay1=ap = 1,

= (aﬁaz)‘E(X) =2n

m
—
<
~—

|

Var(y) = (al2 + aéz) Var(x)

=202
 For xq and x, not independent, but correlated*,

E L(xg-p) (xp-p)] = po?

Then E(y) = 2 as before, but

Var(y) = Var(ayx + a9Xy)

a2 Var(x)y) + a2 Var(xp) + 2333, E [(x) =p) (xp -w)]

202 + 2po 2

I}

202 (1+p)

*If two random variables are correlated, then a change in one variable is
associated with a change in the other; e.g., for a positive correlation
coefficient p , an increase in xy will result in an increase in xp. For
negative p, an increase in x; will result in a decrease in xp.
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Example 2.4

FOY‘y= X-l - X2, 1.é-, a1 = ], 62 = -],

E(y) =0
2

Vaf(y) = (a % + a 2+‘2a]a2p)<r2

202 (1-p )
=202 , if xq and xy are independent.

Linear statistics will be very important in making inferences about a
distribution. Appendix A, Uncertainty Analysis deals with the evaluation of
linear and more general functions of random variables.

7.4 Niscrete Distributions

A discrete distribution function p(x) is the mathematical description of
the distribution of probability of the outcomes for some discrete random
variable; i.e., the response x may take on any of a set of distinct values,
often finite in number but possibly an infinite number of countable values
which can be placed in a one-to-one relationship with the positive real
integers.,

There are many discrete distributions. We will discuss some of the more
important ones. Discrete distributions usually deal with count data or
attributes of a variable. Some typical variables described by discrete
distributions are (1) the success or failure of an outcome to meet or attain
some specific attribute, (2) the number of successes in a series of trials,
(3) the number of defects in a product, (4) the number of defective pieces in
a lot, and (5) the number of counts or emissions from a source.

2.4.1 Point Binomial
The simplest example of a discrete distribution is the success or
failure of some event or trial. The best example of this is the toss of a

coin: a head is a success and a tail is a failure (or vice versa). Let p be
the probability of success. Then

p , X = 1 (success)
p(x) =< 1-p , x = 0 (failure)
0 , otherwise.

A trial of this kind resulting in success or failure is called a "Bernoulli
trial." The expected value of X is

E(x) = Iz xp(x) = 0(1-p) + 1ep =-p .
Xz0
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2.4.2 Binomial Distribution

Let x be the number of items in .a sample of n from a population of
such items that have a common attribute and let p be the proportion of items
in the population which have that attribute, then

p(x) =<:)px(1l-p)"”‘ , g, 1,2, veey 1y
whére n!
(x)= 7J_TﬁfYT!.

Obtaining an item from the sample which has the desired attribute is
often called a success. Thus, x is the number of successes in n trials. Note
that the binomial is a two-parameter d1str1but1on w1th parameters n and p.

The mean of a binomial distribution is

E(x) = np,

and the variance can be shown to be

Var(x) = np(1-p)
10/32 |
p(x) ‘
5/32 |—
1/32 }—
0 [ 2 3 4 5 X

Figure 2.12. Binomial Distribution for n=5, p=0.50
Data which can be classified as success or failure according to

whether or not they have a certain attribute can usually be described by a
binomial distribution.
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Example 2.5

Consider sampling n fuel rods. These rods e1ther meet length spec1f1cat1on or
not. .The variable x is the number of fuel rods found in the n rods examined
that meet specifications. Suppose n =5 and p, the probability of obtaining a
"good" fuel rod, is 0.6. Then, the probability of finding at least 4 rods
that meet specifications is

.
Pr(x24) = S (i)(o.s)x (0.4)5-X

x=4

=<Z)(0.6)4(0;4)] +(§)(916’5 (0.4)0

= 0.3370

Extension: Multinomial Distribution

The binomial can be extended to cover c1assificafion of outcomes into k
categories rather than 2. This distribution is known as the multinomial
d1str1but1on.

Let x1 be- the number of trials resu1t1ng in category i, and p; be the
probability orn"any one trial of obtaining that result. Then %he distribution-
of the number of results of n trials into k categories is given by

X X X
i} n 1 %2 k ~
p(Xl,Xz,...,Xk) - (Xl,XZ ,.--,Xk) pl p2 ooopk 'Y Xi - 0,],-0.,“

k

where ¥ x; = n (hence x; = n-xy-Xpe..-Xp_7), and 2 p; = 1,
i=1 iz

E(Xi) = ﬂ
Var(xq) = npy (1-pg)

u.h!

and( _n i
X]. x2voéexko .

no.
X], X2,...Xk)

Example 2.6

Suppose the probability that a certain kind of va]ve will wear out in fewer
than 500 hours is 0.50, the probab111ty that it will wear out in fewer than
800 but more than 500 hours is 0.30, and the probability that it will last
more than 800 hours is 0.20. To f1nd the probability that among 10 such
valves 4 will wear out in fewer than 500 hours, 4 will wear out in fewer than
800 but more than 500 hours, while 2 will last more than 800 hours, we have.
only to substitute x; =n 4, X, = 4, X3 = ¢, n= 10, pl = U.50, pp = 0. 30,

p3 = 0.20, and we ge%

p (4, 4, 2) =4T¢1g$ (0.50)4(0.30)4(0.20)2

- 0.064
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2.4.3  Hypergeometric Distribution

The binomial distribution is an example of sampling with
replacement. On each trial the probability of a success is the same. In some
cases sampling is performed without replacement. The distribution for this
case is known as the hypergeometric distribution.

Let N be the population size, D the number of items having the
attribute of interest, n the sample size, and x the number of items in the
sample having the attribute of interest.

Then, (D) N-D)_
p(x) =\x/\n-x . x=0,1,2, «e., min (D,n)
N (i.e., x cannot be greater than the
n number of items in the sample or the

number having the desired attribute)

” p(X)'=(2)(g:Q)

Furthermore,

=]
= =lo

-n .
N-

Var(x) = np(1-p)

i

We note that as N, the population size, becomes large, sampling
without replacement becomes more and more like sampling with replacement.
Thus, the hypergeometric approaches the binomial distribution as N-m .

Example 2.7

If we are sampling from a lot of N = 10 pieces which contains 2 defective
pieces, what is the probability of obtaining zero defectives in a sample of
size n=4? [D=2,N=10, n= 4]

2\ (8
Pr (x = 0) = (o) (4) - 81 6141 = 65
T T 100 1079
1
- 0.333

2.4.4 Poisson Distribution
Let x be the number of occurrences of some event in a given interval
of time or space, and let the parameter X be the mean number of such events
in the interval. Then,
p(X) = e)\ )\X b >\>0, X = 0’ ]’ 2.’.'...
x! .
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The Poisson distribution has the interesting property that its one parameter
is both the mean and variance of the distribution, i.e.,

E(x) = a
Var(x) = x
pix)
3.—
2_
l—l .
o‘ | 1 X
0] | 2 3 4 5 6 7

Tigure 2.13. 1'o1sson Distribution (A= 2)

The Poisson distribution can usually be applied to count-type data such as the
number of white cells in a drop of blood or the number ot partic¢les emitted
from a radioactive source, or to approximate the binomial distribution (see
Section 2.4.2) when n is large and p small but np is constant.

Example 2.8

Consider the number of alpha particles being emitted from a radioactive source
during a period of 10 seconds. If the average rate of emissions is 5 per 10-
second interval, the probability of getting 7 emissions is

Pr(x = 7) = e-°5/ = 0.104 .
7T

*2.4.5 A Comparison

Since the binomial, hypergeometric, and Poisson distributions are
all used in quality control type problems, a comparison of the three is
useful.

Table 2.1. Comparison of Binomial, Hypergeometric, and
Poisson Distributions

Probability sample Stze Population Size

Parameters of Success p n N
Binomial
(with replacement) psh fixed specified infinite
Hypergeometric
(w/o replacement) D,n,N Pp+1-D-X specified finite

N-n
Poisson A= np Very small Unknown but unknown but
' large larger than n
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A The f011dwing table and figure illustrate the relationship between
the binomial and Poisson distribution:

Table 2.2. Binomial Versus Poisson

Binomial Poisson
X p-= 0.2, n=5 p = 0.1, n=10 p=.05 n=20 - A=1
0 0.3277 0.3487 0.3585 0.3679
1 0.4096 0.3874 | 0.3774 0.3679
2 0.2048 0.1937 0.1887 0.1839
3 0.0512 0.0574 0.0596 0.0613
4 0.0064 0.0112 0.0133 0.0153
5 0.0003 0.0015 | 0.0022 0.0031
6 0.0001 0.0003 0.0005
7 0.0000 0.0000 0.0001
8 ‘ 0.0000

'Q 0.3 POISSON
i BINOMIAL — — —
~<
02}
a
(@]
&
0.1
| . |
0 | 2 3 4 5 6

Figure 2,14, Binomial (p = 0.05, n=20) versus Poisson ( A= 1)

Applications of the binomial, hypergeometric, and Poisson distributions are
discussed in more detail .in Chapters 4 and 5. '
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2.4.6 Negative Binomial Distribution

Another very useful discrete distribution is the negative
binomial. This distribution is used to determine, for example, how many
trials will be required before the rth success is obtained. The derivation is
as follows:

The probability of getting the rth success in exactly the xth trial is

Pr(rth success on)

Pr/r-1 success in Pr(success)
xth trial

x-1 trials
(x-]) r-1 X-r
r-1] p (1-p) p

(x-]) rox-r
r-1/p(1-p) ,x2r20
= ow ]

n

, 2”..'
If we now let k = x-r, x = k+r, we have

(k+r-1

P(k) = Pr (rth success on k+rth trial) = r-1 )pr(]-p)k, k= 0, 1, 2,000

To see that this is a legitimate probability function, we need to
recognize the fact that

® (k+r-])

S \r1f0-pk=pT
k=0 .

50 that the probabilities p(y) add to 1.

The mean and variance of the negative binomial distribution for the
random variable k = x-r can be shown to be

py = r(1-p)/p
w 2= r(-p)p?t
Thus, the mean and variance of x, the total number of frials required to

obtain the rth success, are obtained using the basic properties of expected
values {Section ?2.3.3),

2.5 Continuous Distributions
Most measurement data of physical properties, such as length, width,

weight, etc., are continuous. A briet description of some of the more
important continuous distributions which do describe real variables follows.
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2.5.1 Rectangular Distribution

The rectangular or uniform distribution is

f(x) = 1 ,0<x<8,
9 .
E(x) = 8 , Var(x) = g2 o X
7 7

The primary uses of the uniform distribution is in situations where
any value in a range is equally likely to occur. It is also used to
approximate a relatively small range of values for another continuous
distribution, i.e., in drawing histograms. ‘

More generally, x could range from a to b, where a and b could be
any values such that b >a. Then the distribution function becomes

f(x) =1 , a<x<b
—

1
o

and E(x) = b+ a and Var(x) = b-a)z.
-7 :

In the notation above, b =8, a = 0.

The next two d1str1but1ons are used extens1ve1y in re11ab111ty and
life-testing problems.

2.5.2 Gamma Distribution

Let x be the time to failure of some component that follows a gamma
distribution,

f(x) = 1 xB -1 eX/X /x50,
TgrP x>0, B> 1,

where B is a shape parameter, Ais a scale parameter and [3is a gamma
function. For integer B8,Tg = ( B-1)!. The mean and variance of x are

*Bz
The gamma distribution has found wide usage in reliability work for describing

the mean time to failure, the mean time between failures, and for other 1life-
testing types of prob1ems.

Var(

X
X

2.5.3 Exponential Distribution
The exponential distribution, a single parameter special case of the

gamma distribution, has found wide usage also. The exponential distribution
is
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f(x) = 1 e XN x50, \>0,

A
where E(x) =X,
' Var(x) ='x2

. Some uses of the exponential distribution are in describing failure
times of electron tubes, resistors, and capacitors.

Example 2.9

Suppose the mean time to failure of a particular type of capacitor is known to
be 5 years. If the lifetime follows an exponential distribution, the
probability that a given capacitor lasts less than 10 years is

Pr(x10) - 101 et/ gt =1 e?
0’7

= 0.865
B<i

B=| (EXPONENTIAL)
| .

Figure 2.15. Gamma Distributions
2.5.4 Weibull Distribution

A three-parameter distribution which is a further generalizalion of
the gamma distribution is the Weibull,

= () (50 enol-(552)°) 2

where the additional parameter is a location parameter. The mean and
variance are ' .

E(x) = 7 + A (1/ B )
var(x) =2 [T(2/8) -T(1/8)] .

Since the torm of the probability density function is so complicated, the
cumulative distribution function

is often used.

42



l

The Weibull distribution has been used successfully to describe the
behavior of the lifetime of certain mechanical parts, ba]] bearings,
electronic components, and subassemblies.

Figure 2.16. Weibull Distribution
2.5.5 Normal Distribution '

Let x be a response being measured, such that,

f(x) = 1 exp [ -1 (x-p)2]  ,- 0¢x<00,
42702 242 -?(#(w,
Lo >0
where p is the mean, andcr2 is the variance of the distribution,
E(x) = p ,
Var(x) = o2

The normal distribution is perhaps the one that occurs most often in
practice. Most physical measurements such as length, height, and weight tend
to be normally distributed. Beside this fact, however, the normal
distribution is extremely valuable because of a result known as a central
1imit theorem. The central limit theorem states that theiaverage x of n
independent obsegvations which follows some distribution with finite mean u
and variance2 o will tend to have a normal distribution|with mean u and
variance o “/n for sufficiently large n. By "tend", it is meant that as n
becomes larger, the approximation of the exact distribution by the normal
becomes better and better. Fortunately, "sufficiently large n" is relatively
small for most cases,even as low as 3 or 4 for nicely behaved, symmetric
distributions. The central 1imit theorem will be discussed in more detail in
connection with inferences on the mean of a distribution in Chapter 3.

A third reason for the prominence of the normal distribution in
statistics is that many other distributions converge to a normal distribution
under appropriate conditions. For example, the binomial ahd Poisson
distributions both tend toward a normal distribution as their means np and X,
respectively, get large. -
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There are an infinite number of_normal distributions that can be
represented by the two parameterspand o <. Since it is difficult to
integrate the normal distribution, it was necessary to compute tables of a
normal variable. To avoid a multitude of different normal distribution
tables, a standard normal variable was defined and tabled.

2

Let x be a normal distribution with mean p and variance o< and

denoted by N( u,o?). Then

is a standard normal variable and has a mean of 0 and a variance of 1, i.e., z
is distributed as N(0,1). A1l probability statements about a normal
distribution can be answered, then, by referring to the standardized normal.

Cxample 2.10

Suppose we wish to determine the probability that the length of a rod is less
than 40.2 inches when it is known that the distribution of the length of such
manugactured rods is normal with mean of 40 inches and a variance of O. 04
1nch Thus, o= 0.2 inch and

zZ = X—&' = 40.2-40 =1,
[0} Ve
Then,
Pr(x<40.2) = Pr(z<1)
= 1-Pr(2>1)

1-0.1587 = 0.8413

where Pr(z>1) is from.Table III, Normal Distribution.

40 40.2

Figure 2.17. Normal Distribution
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CHAPTER 3 -
INFERENCE ABOUT A SINGLE POPULATION: NORMAL DISTRIBUTION

3.0 INTRODUCTION

The object of statistics is to infer the properties of some measurement
or response for use in describing or predicting that measurement or response.

_ We know that no matter what we are measuring or controlling, and even
‘under the best of conditions, observations

1. vary from one trial to another,
2. follow some distribution function, _
3. have moments, particularly a mean and variance.

These facts we summarize in. the notation of a model,

Xj =ptey.

where x; is the-ith observation of some phenoménén whose true value is up ,
and €. 1s a random error for the ith observation which we assumg to-have some
distribution function with a mean and variance, usually 0 ando®,
respectively, and, very importantly, each error is independent of every other.

For the moment consider px fixed and known. Then x; is a random variable
consisting of a constant p and a random error termm € . Thus,

E(xj) = E('p + €3)

=kt E(eq)

If E( Ei) =0, pis fhe expected value or meaﬁ of the distributionof x's, and
Var(x;) = Var( €;) . |

That is, since pu is a constant, the variance of the observation x is the same
as the variance of the error. It is in these properties of the distribution,
the mean and variance, that we are most interested. Estimation theory is the
body of procedures that lends itself to answering questions about parameters
of a distribution. It provides us ways of determining best guesses which are
optimum in some sense (see Appendix B). The idea is to infer the value of
important parameters based on the information that is available in a set of
data. Inference may take the form of

1. a test of hypothesis of a particular value of a parameter,

2. a confidence interval of feasible values of a parameter,

3. other types of intervals concerning a single future observation or
concerning the population as a whole, or

4. a test for a distribution which properly describes a set of data.

In this chapter we shall begin with a simple test of hypothesis'of the

mean of a normal distribution and then proceed to estimation of the mean and
variance and their associated tests of hypotheses and'intervals. We conclude
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the chapter with an examination of the adequacy-of the assumption of a normal
population for describing a set of data, and a section on the detection and
treatment of outliers.

3.1 A Simp]e'Test of Hypothesis

Suppose we are sampling from a normal d1§tr1bution whose mean is unknown
but whose variance is known and denoted by o Suppose the response being
measured is the number of hours peE week put 19 by a member of first-line
management and further suppose (hr.) If you believe the mean
number ot hours worked per week to be 50 hours, what can we say if we obtain a
sample value of 44 hours for one individual for one week? Thus, we would like
to test the hypothesis that the mean p of the distribution of hours per week
worked by first-line management personng] is 50 hours, given that the
distribution is normal with variance o< = 16.

The test is carried out by converting the distribution to a standard
normal z (sometimes called a normal deviate) and determining the probabilily
of obtaining the given data point under the assumption that the hypothesis
(usually referred to as the null hypothesis) is correct. If this probability
is not too small, we would tentatively accept the null hypothesis as a likely
value of p. If it is too small, we would reject the hypothesized value as
reasonable, for if it were correct, the event recorded would be a "rare"
event.

_ A rare event is by definition something which occurs rarely, i.e., with
small probability. How small? In many practical situations, a rare event is

defined as something having less than 0.05 probability of occurring. On other
occasions a value of 0.025, 0.071, or even 0.10 1is used. This probability :
value for a rare event is called the significance level a of a test of
hypothesis. Although a = 0.05 has become a standard value, it is by no means
magical. In fact, the size of a is arbitrary and should be determined by the
experimenter for the situation at hand. Since we reject a hypothesized value
if the probability of its occurrence is less than a, we see that a is in fact
the probability of erroneously rejecting a true hypothesis. What should
determiine your choice of significance Tevel is your willingness, or
unwillingness, to make such an error.

Besides determining the size of the significance level of a test of
hypothesis, we must also indicate in what direction or directions we may
vbserve an error. In other words we need to specify an alternative hypothesis
to accept if we reject the original ar null hypothesis. . Let us denote the :
null hypothesis by Hy:pu= p,. Then the following alternatives are possible:

1. HA JTARS /.LA
A speéific alternative value is considered. This would in general

require a lot of previous information and a well defined problem.
Practical situations would not usually be so clear cut.
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2. Hpi < py (or g >pg) _
This is a one-sided test of hypothesis. We suspect that if H, is
false, then the true value is less than (or greater than) pu, but
not greater (less). More data is necessary to determine a specific

. value. Problems concerning product improvement usually involve a
one-sided alternative hypothesis.

3. Hp:t p#pg,
This is a two-sided test of hypothesis. If Ho is. false we do not
have any indication before the test which direction the true value
is likely to be from the hypothesized value. Comparisons of
products usually involve two-sided alternatives.

Returning to the hours worked per week problem, we may formalize the
decision process as follows: A

Example 3.1 Assume x follows a N( u, o2 = 16) distribution
Ho: = 50 , a= 0.05
HAZ,.L¢5O

= = X = -
Xg = 44, so z, = "o - K, = 44-50 = -1.5

Pr(x < 44) = Pr(z < -1.5) = Pr(z >1.5)
= 0.0668

Since Hy is a two-sided alternative, we divide a into two equal parts,
allocating 2-1/2% of the total distribution to each tail. Since 0.0668 >
0.025, we do not reject H.:u= 50.based on the single observation x = 44. We
tentatively accept u = 58 until evidence to the contrary appears.

0.0668

[
T
-2 -t

NOt+
N

Figure 3.1.a. Pr(z <-1.5)
Example 3.2 Normal Distribution
Ho:p = 400 , 02 =36 , a=0.05
Hpt e > 400
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Observed: x, = 415 z, = Xo ~ Ho _ 415 - 400 _ 2.5
_ Cf 6

Pr(x > 415) =Pr (z > 2.5) = 0.00621

Since 0.00621 < 0.05, reject H : @ = 400, The mean is evidently greater than
400.

Figure 3.1.b. Pr(z > 2.5)

3.2 Confidence Interval for the Mean

Suppose X1, Xp, «es, X, are independent measurements of some physical
characteristic, such as length or weight. If E(xi) = u, for all i, then

E(x) E[+ (x1+x2+...+xn)] =

Thus, the mean of the average is the same as the mean of the individual
variables. Hence, X is called an unbiased estimate of w. Any single
observation can be used as a point estimate of Eut we great]y prefer X.
Why? Consider the variance of X. If Var(x for all i, and since all x
are- independent of each other as well as a11 d1str1buted in the same manner,
then (

Var(x) = Var(2Xi\, 1 ZVar(x.) = nel= 1 a2 .,
\n n
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That is, X has a variance which is 1/n as large as the variance of a single
observation. Thus, the variability of X is much smaller than the variability
of a single oObservation. We are more sure or confident of the location of the
mean u . .

However, if only the average X is reported, we still know nothing about
the variance of the estimate and do not know whether to place much faith in X
as a good estimate of w or not. To describe whether or not X is a good
estimate we need to know its gariahce, or an estimate of the variance. For
the moment we shall assume o< is known and proceed to define an interval
estimate for u .

3.2.1 Interval Estimate for Mean u

To decide how good x is as an estimate for u , we need to know how
likely or probable X is as a value for a compared to other values. This
type of information is provided in an,interval statement for u . If X is the
average of the n observations, and o? is the known variance of x;, then an
interval estimate for u is

Xt o/ vn

That is, x is reported along with its standard deviation, sometimes called the
standard error. Of course, another interval is X #- 2 o/n, and yet another
ijs X ¢t 30/+/n. In fact, there are any number of possible interval

estimates. Which one should we use?

Let us first recognize that the larger n is, i.e., the more observations
_taken, the smaller will be the interval. The smaller the interval estimate
is, the more confident we are in the estimated value of u . But what is the
probability that the interval even contains the true value of x ? That
depends on the multiple of o in the interval -expression. It also depends on
~ the probability distribution of X. The distribution of X may be of the same
geneEal form as the distribution of the individual x's but with a variance

o%/n. This distribution could be normal, binomial, Poisson, exponential,
etc. But some of these distributions are or can be asymmetric, and we have
presented a symmetric interval.

Of course, we are not restricted to a symmetric interval. If we know the
exact distribution of X, we can find valuesu| and uy, a lower and upper
1imit of u, which would encompass x with a high probagility called the _
confidence level, y . That is, we could calculate two values based on x
and o/+n such that 95% of the time when we take observations. and construct
the interval, the interval will contain the true mean . In other words, 95%
(or 0.95 probability) is the measure of our confidence in the location of u.
We call such an interval a 95% confidence interval. We can, of course, use
any probability value instead of 0.95, e.g., 0.90, 0.99, or even 0.67. The
interval measures our degree of belief for p . Our belief is greatest at
p= X, our best estimate of u. As we move away from X, our degree of belief in

49



0
Iy p

T

Hy

" —4—
x|

Figure 3.2. Degree of Belief

p decreases, but we are willing to accept these values.of u as possible only |
up to a point. Those points beyond which we will no longer believe as
possible values of p are the interval boundaries x| and u; . The degree of
our belief in the value of u becomes so small (i.e., the probability is so
small) at 4, or uy that we say wec cannot believe it. Bul 95% uf the
distribution lies between the boundaries.

The above has been a general discussion of confidence intervals for u.
In the next section we will see that one distribution usually suffices for all
confidence intervals. for means.

3.2.2  The Central Limit Theorem

In the above section it seems that we are faced with the problem of
determining the distribution of the individual measurements, and then, solving
that, must find in some cases .asymmetric limits around X. In practice, for
the problem of providing confidence intervals for a mean, we do not have all
these problems because of a simple but powerful theorem known as the central
1imit theorem. . -

" Theorem 3,1

If X152 Xos eeey Xp are_identically and independently distributed with
mean p and variance o, then X is distrébuted approximately as a normal
distribution with mean p and variance o“/n for sufficiently large n (see
Appendix C).

In practice n does not have to be very large for the approximation of the
normal distribution to the true distribution to be good. For symmetric
distributions, n = 3 or 4 is usually sufficient. For asymmetric
distributions, n depends on the degree of asymmetry but, again, moderate size
such as n =6 to 8 is usually large enough.

Now, given thatzi is; for practical purpdSes,'distributed normally with
meanu and variance o“/n, we can write down a symmetric 95% confidence interval
for u, which is in fact the shortest possible 95% confidence interval,

x +1.96 o//n .
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For 90% confidence the value is + 1.645 o/+/n, or in general
-)21'20/2 U/ﬁ,

where y = 1- @ = 0.90 is the confidence level. Note that for repeated
samples, X will vary, but the width of the interval is always the same,
since o is assumed known. An interpfetation of a 95% confidence interval,
then, is that for repeated samples of size n, 95 out of 100 (or 19 of 20)
intervals proper]y constructed will contain the correct value u.

Figure 3.3. 95% Confidence Intervals: X + 1.96 o/+/n

Another interpretation is that our belief in the value of p is a random
varéable with a normal probability density function with mean X and variance

/n. That is, X is the most believable value of w , but other values are
also probable. We stretch our degree of belief so that 95% of the values in
the distribution are considered possible, but anything beyond + 1.96 a//n,
we will declare unbelievable.

2.5% 95%

 (be1ieve)

2.5%

Not believed X
Figure 3.4. Degree of Belief in u

As a result of the central Timit theorem, then, we have an unified
approach to the problem of estimating the mean, the location parameter of a
distribution, and a procedure for evaluating the usefulness, or precision, or
reproducab1]1ty ‘of that estimate. This approach is the conf1dence interval
for the mean, )

)_(i‘ 2.0/2 .O’/ «/_n—.
Example 3.3

Twelve readings of fuel concentration are-taken on a measuring device
which 15 kngwn through a long history of observations to have a variance o
of 81 (ppm) The average of the n = 12 readings was X = 93 ppm. The two-
sided 90% conf1dence interval for mean fuel concentration is

2

T(-Z0.0SU'/N/H—, << X+ 20.050'/'\/? .
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Interpolating from Table III,
standard deviation is o= 9. Tgus

93 + [1.645 (9/4/12)]
93 + 4.3 ppm

5 = 1.645; from above, X = 93 and the

Thus, with 90% confidence (1-0.05-0.05) and -variance known, the true mean fuel
concentration as measured by a particular instrument is between 88.7 and 97.3

ppm.
Example 3.4

_Eight observations are taken on the green density of fuel pellets after
compaction. The results are 0.54, 0.48, 0.59, 0.52, 0.46, 0.53, 0.45, and
0.43. Assume they follow a normal distribution

X = 0,50, n=§8
Then, ifo? = 0.0025

, o X=p o 0.50 - p
o/ /T 0.05/78

The 95% conf1dence 1nterva1 for the mean va]ue of the distribution of green
densities of fuel pellets is

p: [0.50 + 1.96 x 0.05/~8]

0.465 < p < 0.535
*3.2.3 A Second Central Limit Theorem

There is a second, more general, central limit theorem (CLT-II)
which we will state without pronf. If we consider that most observations x
are a representative of some deterministic function # perturbed by somc random
error €, we have the model

x=#+ € .

In many situations this error term € is assumed to be normally distrihuted.
The second central limit theorem gives a justification for this assumption.

In reality most errors € are not single errors but an accumulation or net
result of many errors from known sources and unknown sources, identifiable and
unidentifiable. For example, in recording the percent concentration of a
certain molecule during reaction, the reading may be subJect to errors
regard1ng

. exact_time of reading

. initial concentrations

. temperature

. pressure

atmospheric cond1t1ons

recording devices

operator's attitude and condition

NOYO B W —
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The point is that many factors contribute to the final error; but, according
to CLT-II as long as all errors follow certain basic conditions (i.e., all
distributions have mean, variance, and third absolute moment) and no one error
dominates all the others, then the distribution of the total error quite
likely has a normal distribution regardless of the distributions of the
individual errors.

Formally, the theorem states:
Theorem 3.2

Let x; be independently distributed random variab]eszwith
distribution functions f;(x;), means u;, variances o“;, and finite

3
i’

fl ""'1 3 filxg) dxg,
. =] 2 3, ..', n.

third absolute moments w

1/3.
Let p=2Zpu, o2 =202.i, and a = (2(»31-) '

If 1im_ a =0, theanq is distributed as a normal distribution
n—-o o 2
with mean u and variance o“.

3.3 Hypothesis Test for Mean, Variance Known

_ In Section 3.1 we discussed the basic logic behind a test of
hypothesis. In Section 3.2 we found that because of the central limit >
theorem, the average X is normally distributed with mean;LQnd variance c“/n.
We say then that the sampling distribution of X is N( p o or that the
normal is the reference distribution for X. Thus, using

z=X-p
o/ /1

we may obtain a much more precise test of hypothes1s by using n observations
rather than 1. : '

Example 3.5

'Suppo§e a samp]s of -36. observations were taken-from a popu]afion with a
known variance of ¢ = 9., The average was X = 6. If we hypothesize that the
mean is Hy:p = 5 against the alternative Hj: p 25, what is the probability of
obta1n1ng X = 6 or higher?

Hotp= 5,02 =9, n =36

x =6
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Then the random variable X is N (u=5 The standard

3
N

normal deviate statistic is z= X-M = , and

-5
o/n 172
Pr(x> 6lp=5,02 =9, n= 36)

1}
O
-3

—
N
v
(o)}

1
(8]

i}
N

~

]

4

Figure 3.5. Pr(x > 6) = Pr (2> 2)

Since 0.0228 is less than the significance level of a = 0.05,'we may declare
Mo = 5 to be an unreasonable quess of u, since it leads to a "rare event"

for X.
Cxample 3.6

Ho:p= 10,02 =16, n=16

Hp: w710, (A two-sided alternative hypothesis)
x =8
Pr(X > 8lp o = 10, o = 16, n - 16)
8 -p, =8-10=-2) =0.9772

. a//n 1

or Pr(z < -2) = 0.0228 - A rare event, Reject Hyipe = 100

= Pr(z >

Another way to view hypothesis testing is by examining the confidence
interval. For a particular confidence level 1 -a all values of u which are
between the limiting values are not contradicted by the data. Thus, a
confidence interval serves as a multiple test of hypothesis.

Example 3.7

For Example 3.5, we had
confidence interval for p is

j.e., 6 + 1.9 ° (3/6)

6, ol = 9, n = 36. A 95% two-sided

X
X t 29 025 7/ VN,

I+ N

or 5,0 < p< 7.0 .
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Thus, all values for . .between 5.0 and 7.0 are not contradicted by the
data. There.is no evidence to reject any of these values, based on the 95%
confidence interval. :

3.4 An Estimate of the Variance

In the previous sections we have assumed the variance o2 of the
distribution of observations to be known. In most cases, this is an
unrealistic situation. We require an estimate of the variance frog the same
data from which we estimate the mean. Of course, an estimate of % from
another set of data may be - used, if available, as long as there is some
assurance that.the variance is the same for both sets.

"~ Assuming that the observatwns X1s X25 sees Xp come from a normal

2 2

d1st51but1on with-mean p and variance o, we will use the est1mate s< for

where
2= _1 3(x; - %2
1

or equiva]ent]y, :
' 2 _ 2 _ RY: :
s ?IT[in (2 x3) /n] .
2

Note that 52 is not the maximum 1ikelihood eétimajée for o given-in
Appendix B.l.c, -but is an unbiased estimate of &

3.4.1 The Chi-Square (x2) Distribution for s?
To show that sZ is unbiased for.crz, we need to give its

d1str1but1o§ Let x; be a normally distributed variable with mean n and
variance o“; then :

z; = M- ~ N(O, 1).*

(o2
The distributional form is
' 1 X TH2
f(x;) = exp [- = ( ——)°]
'\/ mwmo 2 Ao.
,2 " X: mp
V2w

- oK< X <<ﬁ, -® <z <o
- Let u; = z%, uj > 0. -Then, applying the proper transformation, we have
f(u;) =_1__u']/2 e - Ui/ |
v2r

*The symbol, ~ means "is distributed as".
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i
which is known as a chi-square distribution with one degree of freedom,x% .
That is, a squared normal deviate has a X f distribution. Now,
consider n independent variables Xj» 1 =1, 2, «s.,n, identically distributed

as N (p, o2). Then, each uj, where

2 (5 -+
Ul- = Zi -<’ o '

has a x% distribution, and
n
U= 2us
j=11
has a Xr‘: distribution, where
o . n. -1 - -
- r =1 u
f(U)=T1—ﬁ— U?— e-? , u> 0.
713

Thus, the sum of n independent squared normal deviates has a xﬁ

distribution, where the parameter n, or degrees of freedom, is the number of

2

independent normal deviates involved in u. The mean of Xn distribution fis

n, and its variance is 2n, an important fact.

Now, returning to 52,

52 RIE IO 2 = 1zt cp) - 5 -p)] B

-3 B ]

: _ 2
But, | ——>— . is distributed as x; with mean n, and

e . 2
n(z < p)f (%= 5_)_
V4
o o-/n .
is distributed as Xf with mean 1. Thus, Z(x; -,.;)2 follows a-azxi

distribution, and n(x -/.:.»)2 fd]]ows a 02 Xf distribution and, by

Cochran's theorem,



2. 2x2

follows a <72X2n_] distribution with mean (n-])<72. Hence, (n-1)s¢~ a*

E (s2) = 1 Ele? x2_ 4] = (n-1)o? = o2 .
n-1 [ n ]]‘ n-

2

n-1

Thus, we have shown that s© follows a x2 distribution and is an unbiased

estimated of 2. In general we denote this fact by v52/02~X2,, , where v is

the degreee of freedom for s2. The x 2 distribution is called the reference

2

distribution for s¢ and is used in making inferences about a single

variance. Note that although the n observations are n independent normal

2 here in the situation of

variables, we have n-1 degrees of freedom for s
sampling from a single population, since we subtract nx? fromIszi.' We lose

one degree of freedom due to estimating p by X.

MO I
' e !
0 2 0 4 0 16

Figure 3.6. Chi-Square Distributions

@

In other words, a linear constraint has been placed on the n individual

observations; that is, by definition of X, the term Z(xi-i) must sum to
zero. This fact reduces the freedom of the n observations by 1 dimension.
Consider that prior to observation, Xy, Xp, ..., X, may be free to define any
point in n-dimensional space. If a restriction is applied, such as

2 (x;-X) = 0, an anchor has been placed on the observations, limiting their
freedom to n-1 dimensions. In general, for every parameter that is estimated,
such as the mean, u, a new restriction is placed on the data. As a result,
the degrees of freedom left to estimate the variance from the observations are
reduced from n independent observations, if all parameters are known to

‘v = n-p, where p parameters (i.e., linear restrictions) are estimated.

3.4.2 Inference on the Variance

‘Nowéthat we have an estimate 52 for the variance, we gay ask if the
estimate of < is any good, or if some hypothesized value for o
reasonable. Let us do two examples.

Example 3.8

The thickness of nine flat metal components are measured to determine the
variance of the manufacturing process. That is, it is desired to determine
how precisely the process can reproduce a component of average thickness. The
variance includes component to componcent differences as well as measurement
uncertainty. Assuming a normal distribution for these measurements, an
%nb1as§d estimate of the variance based on the data below is found to be 8.75

mils
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Component Thickness (mils)

X; X;-X (x]-Y)2
156 6 36
150 0 0
152 2 4 g = 70 = 8.75, v= n-1=8
148 -2 4 i=] 8
151 1 1 .
151 1 1 s = 2.96 mils
146 -4 16
148 -2 4 Alternate methods of calculation:
148 -2 4

Z(xi—i)i %sz-niz
-z f (2x5)%/n
$x;=1350 S(x;-X)=N I (x-%)%=70
X = 150, n=9
1. Test of Hypothesis | _
A one-sided test of hypothesis that the true variance is (2.5 mi]s)2
is based on a chi-square distribution with »=n-1=8 degrees of freedom. For
a ‘5% significance level, the test is as follows:
Hot 2 = (2.5)2 , n=9, @=0.05
HA:0'2 > (2.f;>)2

Gidoai. L2 2, 2
Test Statistic = Xg= wvs /o

95%

7 3%

19.8
2
Xg

Figure 3.7. A xg Distribution

The value of a X3 distribution that allows 5% of the distribution in the
right hand tail is approximately 15.5 (Table IV), Thus, if the calculated
value of Xg based on o? = (2.5)2 exceeds 15.5, the observation of s2=8.75
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can be considered a rare event and the null hypothesis ol = (2.5)2 can be
rejected at the 5% significance level.

2 _ vs? _8(8.75) . 70 _ 1.,
Xg =572 6.25 5.75 e

Since 11.2 < 15.5, there is no reason to reject Ho'

2. Confidence Interval '
A two-sided 95% confidence interval for o2
considering the probability statement

is obtained by

2 2 2 2
Pr'(x < x™ - _vS ) -
8,0.975 8 —a2 < Xg,0.005" 0%
where
2 2
Pr( -
Xg >Xg o 0950 = 0025
Pr(x? 5 x2 ) = 0.975(i.e.; Pr(x2 <x2 ) =0.025)
8 8,0.975 8  8,0.975
Solving the inequality for o results in
2 2
Vs 2 vs
o X
8,0.025 8,0.975

From the above, ys® = 70, and from Table IV,

2 _ 2 _
Xg 0.025 - V-5 and  Xg g g75 = 2.18, we get

0 (0?10
]:.5 .

4.0 < % ¢ 32,1 .

Note that o2 = (2.5)% is within the interval, so that a 95% two-sided test
would not reject this hypothesés. Also, note that the interval is not
symmftric about the estimate s® = 8.75. This is because the distribution of
a x“° with 8 degrees of freedom is itself highly asymmetric.

s2:8.75
L [, X L N 1 . 1 1.
Ll T T T Ll 1 J ]
| 10 20 30" 35
Figure 3.8. A 95% Confidence Interval foro? based on X5
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Example 3.9

Consider obtaining 120 observations on beginning of 1ife loading of a
type of fuel rod. Suppose the estimate of variance of these observations was

determined to be 52 = 205.8 (‘IO'4 gm)2 with n-1 = 119 degrees of freedom.

Thus, v 2 = 11952 is a X2 variable. 1Is 205.8 an unusual value to
ol a2 119

2 distribution? Using the reference distribution X2 , We
119 ' - 119
need to calculate -

. 2
2 vs 2
Prixyyg > Byle?
e or(y2 5 119 205.812 _ 2
= Pr‘(Xng >——c-r—2———|°- -UO)

obtain from X

2

where o~ is the hypothesized value being examined and the symbol lo2

)

means "given the value of o “." Suppose we test H,: o2 = 225, Then,

119 x 205.8 = 108.8
- 22h )

From a table of X2 distributions we find that for v = 120 (our case has

v= 119), Pr ( x2 > 108.8) is about 0.75. However, most tables do not go
120
as high as » = 120. 1In fact, many tables stop at v = 30. The reason is that

2 distribution approaches a normal distribution. Thus,

as-v gets large, the x
standardizing x2‘ by subtracting the mean v and dividing by the standard

deviation +v2v ,

“is an N(0O, 1) variable .

2y

(Other approximations of a chi-square to a standardized normal distribution
exist which are slightly more accurate than the above approximation for
moderate v . The approximation used here is the most straightforward.)

L2 - 2 -
In our case, x = wvst _ .
e o3 108.8
0 .
. 108.8 - 119 _-10.2 . _
% 7738 Toaz - 066
Pr (z>-0.66) =Pr(xZ  >108.8) =0.7454 =~ 0.75

119
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This implies that we accept Hy: ol = 225,

A 95% confidence interval for o2 may also be calculated using a normal
approximation. For a two-sided, 95% interval, we need to determine z a/? from

Pr (-z aj2 <2< 2qp) =0.95
]]9 X 205.8 _]]9

' 2
This implies -1.96 < z = : o < 1.96,
15.43

which in turn implies

119 - 1.96 x 15.43 < llg_ﬁ_%9§;§.< 119 + 15.43 x 1.96

: 24490.2 :
119 - 30.24 < L2255E <119 + 30.24
o " .

88.76 < 24490.2 ¢ 149,24 (See Fidhre 3.9.)
: T g2 |
24490.2 .2 ¢ 24490.2
149.24 88.76

164.1 < o2 < 275.9
Thus, as Figure 3.10’shows, a 95% confidence'interVal fbr <72 on»the']oading

data is [164,276]. (Note that 225 is well within the interval-and should be
accepted.) . _ N

T
89 9 149.

Figure 3.9. A x2  Distribution
119
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2 (Normal Approximation)

Figure 3.10. 95% Confidence Interval for o
3.5 Inference on the Mean, Variance Unknown

It is most common that we do not know the variance of thE population from
which wé sample. Hence we need to estimate the variance by s“. Then, to test
hypotheses on the mean of a distribution, we cannot use the normal deviate
statisti¢ z. Instead, we,use an gpproximation to the N(0, 1) variable which
depends on the estimate s° of o as well as n and u,. This distribution is
called the t, or more precisely, the Student-t distriBution.

3.5.1 The t-Distribution

Like the standard normal distribution, the t-distribution is also a
bell-shaped curve with mean 0, but it is a more spread out disEribution. It
has one parameter, v, the degrees of freedom of the estimate s“. Thus, the t-
distribution is an approximation to the standard normal distribution which
depends on hoy good the estimate of variance is. If n were large, the
estimate of o would be quite good and the t-distribution would be very close
tu the normal. For small n, the fact that the variance estimate is not as
accurate results in the t-distribution being flatter and more spread than the
standard normal.

-NORMAL

t{v=4)

o+

Figure 3.11. t4 vs N(O, 1)
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5 By definition, a t-variable is a function of a norma deviateaz and
a Xy distribution which is independent of z and estimates o*.
Specifically, :
t= z
XLy
For inference about the mean ux of a normal distribution, we know that

2 =

i

and v52 - X

2

wn

, where y=n -1,

Thus, LAy S

c /02 s

[

Q| >

BN

Thus, the t is like the normal deviate z that is used in tests of hypotheses
for the mean when the variance is known. It is approximated for the case when
the variance is unkown by substituting the estimate s for the standard
deviation ¢ . The functional form of the t-distribution is

FH v+
I t 2) 2

‘ 2
i) s — ——=— (n
l_v_ v
vmw > 4

and has a mean of 0 and variance v
V'Z °

- < t< ®

The value for which 5% of the distribution is in one tail of the
distribution is not 1.645 as for the normal distribution, but is something
larger, depending on. v; e.qg., :

t = 2.015
0500005 - 1-812
to0'0.05 = 1.725
t60’0.05 = ]'.67]
tm:o'os = ].645 .
3.5.2 Confidence Interval for the Mean

A conidence interval for the mean when the variance is unknown and
estimated by s“ is constructed in exactly the same way as in the variance
known case, where we now replace o by s and z a/? by t, a/2 i.e., a 95%
confidence interval is >

x -t v,.025 S/\/n—< p < X+t v,0.025 s/ ‘\/n— .
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Example 3.10

The observations on the volume percent of a solid lubricant added to fuel
compositions before compaction into green pellets are 1.20, 1.27, 1.33, 1.19,
1.09, and 1.24. Assume they follow a normal distribution:

n=6,x=1.22, s2=66.4 x 1074

t5 = X - K s Pr (-t5’0.025 <t« t5’0.025) = 0.95

~s7/m

From the table, t5,0.025 = 2.571

and
CX-po 122 -p L 122 - )
s/vn /%6;1 £10-3 3.33 x 10°
Thus,

-t5,0.025 < t < 50,025
is o -2.571 ¢ 1.22 - p 67
| CFarxo-2t

which gives 1.22 - 2.571 x 3.33 x 1072 < u<

1.22 + 2.571 x 3.33 x 10~2
1,22 - 0.086 <u< 1.22 + 0.

086

Thus, with 95% confidence u lies within

[1.134, 1.306]

A 99% confidence interval would use t5,0.005 = 4,032 and would include
[1.086, 1.354]

That is, with 99% confidence, uis captured by the interval.

A test of hypothesis would be performed just as before, also with s
and t, replacing o and z. In the above example, any value of x which may be
hypothesized between 1.134 and 1.306 would not be rejected by the data for a
5% two-sided test, since they lie within the 95% confidence fnterval.

3.6 Determining Sample Size n

. We recognize that decisions based on observed data which are subject to
errors of a random nature are, in turn, subject to error. MWe define these
errors in the decision process of a test of hypothesis. Controlling the size
of the error in the decision making process, however, is the object of
statistical theory, particularly the area we will later call the design of
experiments. In the present context of dealing with a single population, the
se;ection of a sample size is the controlling factor in the size of the errors
of inference.
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3.6.1- Determination of n for Given Confidence Interval Width

The 'single most important aspect in determing the size of inference.
errors is the sample size n. In some instances in which the experimenter is
seeking to gain information rather than test any particular hypothesis, the -
sagp]e size may be chosen to assure a confidence-interval of a.specified
width. '

Suppose that we wish to determine the mean value of a process with a
high degree -of precision. More precisely, suppose we desire that the
estimated value X be within + q units of the true mean, i.c.,

|X-pl< a

with a high degree ot confidence. Equiva]ent]y, we desire the confidence .
interval for u to be no longer than 2q. If we standardize the statistic X, we
find A

. T%af2
q J“-

where o is the known standard deviation of x; and 2,72 is the appropriate

normal deviate value. Thus, to assure with 100(1- a )% confidence that X is
within q units of w, when o is known, we need only to solve for n,

) oza/Z )2
f _( q

'Exémp]e 3.11

Suppose that you want to determine how many observations would be
required to estimate the mean center grain size of fuel pellets to within
q = 0.50 ASTM numbers with 95% confidence. For o = 0.66 ASTM No.:

n= (.66 x 1.96/0.50)2 = (2.59)2.
= 7 observations,

where the value of n s rounded up to the nearest integer to ensure that the
confidence level is at least the value stated.

The above is a well-defined problem, since q is specified, o is known, and
Z 42 €asily obtained given the confidence level desired. Ifois unknown,
4rep“ac1’ng o by s and z a/? by t, s q /20 We need to solve

(g

where for estimating the mean of a population,» =.» - 1. This is an iterative
~ process, however, sincewvand n must be in close agreement. Alternatively,
instead of specifying an absolute value of q, we can define q in terms of the
number of standard deviations X is to be from . That is, since s is an
estimate of o, let q = Ds. '
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st 2 2
Then, n= —"—6?'—/—.'
C < tv!GZZ)Z
, D
As a first approximation, we can use z instead of t to solve for n.
3.6.2°  Errors of é Test of Hypothesis
We have seen that we can perform statistical tests for the purpose’
of accepting or rejecting as reasonable a hypothesized value of a parameter..
We assign a level of significance a to the test, indicating that we are not

positive in our judgment. We can, in fact, make two errors in judgment:

1. Reject a true hypothesis (Type I error)
2. Accept a false hypothesis (Type Il error)

We would like to make these errors as infrequently as possible. We
determine the frequency of these errors by their probability of occurrence.

-Pr (Reject a true hypothesis) =a
Pr (Accept a false hypothesis) =

We should see that Type I error is, in fact, the definition of a significance
test,i.e., for a one-sided test of Hj:u=p, against Hpa: > pp, '

Pr (Reject a true hypothesis)
= Pr (reject H, | Hy true)
= Pr (X >zcrit|”o:/"'=f‘o) =a .
Thus, in testing for a mean, 'rejecting Ho”‘”"o infers finding a value of X
which is greater than (or less than) some critical value 'ic it.defined to be-
the boundary of reasonableness for X coming from a‘distribu{':wn with a mean

of pgy. In other words, X is in the rejection region, X >'—cr’t’ and we
reject p, as a reasonable value of w at the significance level

a used.
However, it is possible that X comes from the distribution with p= pu,. If
so, we would be making an error of Type I. .The probability of rejecting a
true hypothesis is denoted by a. ' '

—e=REJECT Ho

100 @ %
b“ /PR(i>icm7 I ,u.o) = a

1
Fo XcRIT

ACCEPT p., —=—]

o100(-a)%-

Figure 3.12; Type I Error -
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On the other hand we could accept H tp=p, falsely. If we found
X < Xopijts and accepted o» We could also be in error. . Suppose p # u
but p=puy + 2 0or u= etc. Then we commit Type II error. What are the
chances of doing th1s? The probab1hty of committing Type II error depends
on u, the correct value, or, as we shall see, some alternative value for u
which we would like to uncover. We would like to keep the probability of this
type of error as low as possible. In fact, it is a measure of a good
hypothesis test that the probability of Type IT error is small. For a one-
sided test, then, ‘

Pr (Type II error) = Pr (Accept Hy |H, false)
= Pr (;( < ’-‘critl/“= ,LLA) = B
where, for testing means, X..j¢ is the critical value dividing the acceptance
and rejection regions for u=pn However, the probab1hty of Type II error
depends not onpu, but on some otger ‘
For tests of means, the general procedure is often as follows:
a) Choose a sample size n.

‘ b) Choose a significance level a (the size of Type I
error you will allow) and hypothesize Hj:p = g .

'c) Calculate X.,.jt: for a one-sided test,

Xerit Mo * Za. g OF Xepit ¥ Ko - Za _g
Jn Vi

or, for a two-sided test,
Xerit, U =#o * Zq29/ /M
 Xerit,lL T Ko %aq/2 o/vn _
d) DetermineB=Pr (Type II error) for various other»values ofp. '

e) Take samp1e and calculate x from data, either accepting or
' reJectmg HKo-

For a given u , ifB is large, the test is not as good as it should be.

In section 3.6.3 we will see that the Type II error size can be specified for
a given u of concern, and used along with the Type I error size to determine
the sample size n requ1red to achieve the reqmred hypothesis test. This
illustrates the interdependency of a, 8 , and n in the construction of proper
tests of hypotheses on means. Given any two, the third value can be
determined.
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A plot of the probability of Type II error is called the Operating
Characteristic Curve (0C Curve) of the test. From it we can see how good a
test is-for given alternative values of x, and compare it to OC curves for
other tests (different n-ora). .The other side of the OC coin is called the
power of the test. That is, the power is the probability of rejecting H, when
H., 1s false, a correct judgment, Eut for a specified alternative hypothesis.
Tﬁus, the power measures the capability of a test to reject Hy:p=p in favor

of correctly accepting an alternative Hp:p=ppe. The OC and power curves for
a one-sided test are shown in Figure 3.‘!‘3. )

1.0 | S o
I-a B
oc - _ POWER

B . I ¢ ~

e
K, Fy , By Hq
= I
Pr{ACCEPT TR TIA | ;LL:,uA} = B Pr{REJECT Ho! M= Mo | W= [.LA} =1-f

Figure 3.13. 0OC Curve and Power Curve for One-Sided Test of Hypothesis
Note that when ,u-=,uo,B =]1-aand a=1 -8 . That is, when = f"o"
Pr (reject Ho:#=p.°| p=po ) =a, the Typé I error. For a two-sided test

of hypothesis, the OC and power curves are as shown in Figure 3.14.

oc (B) ‘ A POWER (1-8)
—_1. ) 1.0

~ N
Ho Ha o Ha

Figure 3.14. 0OC Curve and Power Curve for Two-Sided Test of Hypothesis

68



Example 3.12

Consider observ1ng the center'gra1n size of 25 fuel pellets. The target
value for center gra1n size is ASTM No. 5.5 and it is desirable to detect a
mean center grain size of ASTM 6.0 or higher. Suppose past analysis has
indicated a standard deviation for center grain size of 0.66 (ASTM No.).

Thus, for a 5% one-sided significance test for the mean, we have

Significance level: a = 0.05

HO:/.L = 505

, o=0.66,n=25, o/v/n=0.132

_HA:# = 6.0

1. Determine Xcr1t

Type I error: Pr(x > icritI;L= 5.5)

= Ppr (Z)icrit- lu'o - )=0
ey v L
s0: 2 = 1.645 = Xcpit = 55
005 0.132

Xepit = 545 + 0.132 x 1.645 = 5.5 + 0.2171

I}

5,72
ive., Pr (X > 5.72}u= 5.5) = 0.05
=Pr (Reject H,|H, true)
2. Type Il Error:

For u = 6.0, what is probability of falsely accepting Ho: p= 5.57

- _ (Accept H,)
Pr(X <5.72| o= 6)=7?

z = X -6 ’Zcr‘1t 5.72 - 6 _ -0.28_:_2.]2
0.132 0.132 0.132

Pr (z < -2.12) = 0.017

5.5 when u rea]]y equals
5.72.

j.e., probability of falsely acceptwng Q=
6.0, is only 0.017, when n = 25 and X.p;t =
Or power of test to determine that px = 6 and not equal to 5.5 is
0.983, a powerful test for distinguishing between 5.5 and 6.0!

Other values of u may be postulated and an OC curve or power curve
drawn.
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0C and Power for Test on Mean Grain Size

[ Pr_(Accept)=8 Power=Pr (Reject H )=1 -8
5.5 0.95 0.05
5'6 : 0.82 0.]8
5.7 0.56 ) - 0.44
5.8 0.27 _ 0.73
5.9 0.09 0.91
6.0 0.017 N.983
0C CURVE POWER
1.0 1.0 0.98
0.75 0.75 +
@ 0.50 mr 0.50
0.25 0.25
: v 1 1 1 I
55 56 57 58 59 6.0 55 66 57 5.8 59 6.0
Pr {ACCEPT Ho GIVEN = /,:.A} :B Pr {REJECT Ho GIVEN u :/“'A} :1-

Fiqure 3.15. O0OC and Power Curves for Test on Mean Grain Size

Thus, with a pnwer of N.983 the test nn ¥ with n = 25 and
: icrit = 5,72 will detect p= 6.0 and reject u= 5.5; or, in other words, the

error we make in rejecting p= 5.5 falsely is at most 0.05, and the error of
accepting Hy: pu= 5.5 falsely when p= 6.0 is at most 0.017.
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3.6.3 Determination of Sample Size Using Type I and Type II Error,
Variance Known

The most useful aspect of Type II error is not in determining the
size of the error of falsely accepting H, after the test has been determined,
but in determining the test itself; tha% is, in determining the sample size n
required and the critical value required in order to produce a test which will
give both a low Type I error probability and a low Type Il error probability
for some particular alternative hypothesis which you have in mind.

Suppose you are in charge of accepting or rejecting a lot of steel
rods. The manufacturer of the rods claims the bolts to have a diameter of 20
mils. (i.e., Hy:p= 20). You know that if the average bolt diameter is as
large as 24 mils (H,: p = 24), you will have to throw out the lot. So, you
are in a position o? wanting to reject the lot,if it is good, with only a
small probability, but if it is bad (i.e.,.224) you want a high probability
of detecting it. Thus, fix a, the significace level for your test of u = 20,
at a pre-determined level, such as 0.05 or 0.01, and select a second
probability level, 8, for making the second type error of accepting a bad lot,
i.e., accepting a lot whose real mean diameter is 24 mils. ’

Example 3.13

Consider again the center grain size problem in Example 3.12. You would
like to construct a test to accept the hypothesis that px = 5.5 (ASTM No.) with
a 0.05 significance level. On the other hand, you want to be relatively sure
that if the true mean center grain size for this batch of pellets is as high
as 6.0 (ASTM No.), you do not accept the null hypothesis that x = 5.5.
Suppose you assign a probability level of B= 0.10 for making this Type II
error. Furthermore, since time spent means money spent, you want to perform
this test as cheaply as possible in order to achieve your goals.  In Example
3.12, a test using n = 25 samples gave B = 0.017 for Hy: p = 6.0. To
determine how many fewer observations are required to give 8= 0.10, we
proceed as follows: :

a. Pr (reject Hy|p= 5.5) = 0.05.

This implies = X - [Suppose o is known to be 0.66]
Then - :
: - - X crit - 5.5
20.05 = 1.645 = 0.66/'\/ﬁ

’fcrit = 5.5+ Y

5.5 + 1.086 //n
0.10

b. Pr{accept Hy|su= 6.0)
This implies  Pr(X < X.pig | # = 6.0).
T _ % - 6.0 Xerit =60
ne 2= 0587 vn< 1-8 Ooee/ v 20.90 = - 1-282
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6.0 - 1282 x 0.66 -

Roie =
crit
vn

= 6.0 - 0.846
n

From a. and b. we have two equations in the two unknowns n and ;crit'
Solving for n, we have

. .846 1.086
6.0 - 22 5.5 + L1220

or
(6.0 - 5.5)+/n = 1.086 + 0.846
n ={1.932% _ 2 .
< 5E 3.864 14.9
n =15,
That is, in order to have at most 0.05 probability of rejecting u= 5.5

falsely and 0.10 probability of accepting p = 5.5 when u really equals 6.0, we
need n = 15 observations. Substituting back into a. we obtain

= 5.5 + 1/0_986 = 5.5 + 10086
n

Xerit /s
= 5.78.
Thus, the test is to take 15 observations with a decision line at 5.78, i.e.,
if X > 5.78, reject Ho:pm = 5.5, accept p= 6.0
if x < 5.78, accept Hy: p = 5.5
For the test,ea<0.05, B8 < 0.10.

The procedure is general. In general terms, for Hp: wu>p,

- Roiy -
a. Jerit “Ho =255 b, Zerit THA 1. B3

o/ Vn o /v/n
Solving for n,
n = (za— 21_8)2 0'2 2 5
(IJ’A-F'o)

where z4 -and zy_gare normal deviate values having 100a% and 100 (1- B)% of
the distribution to the right of the critical value, u, is the original
hypothesis, up is the alternative hypothesis under consideration, and o2 is
the known variance of the measurement.
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Note:

(10%) 100 8% 100 a% (5%) -

Fo Xemit | Ha
(5.5) (5.78) (6.0)

Figure 3.16. Type I and Type II Error: One Sided Alternative-

1. if B= 0.50, zg O." This is effectively what happens
when Type II error con51 erat1ons are ignored:
n = z% o2 ’

(\FLA -#o)

2. For a two-sided test for p,, just reduce a to a/2 in each tail
of the distribution; but since the null h_ypothes1s can only be
in error on one side of ug, there is no need to partition B
into two parts.

3. It is required that &2 be known.

I a/2 Ho a/2 |
o ~Op po+Dp

Figure 3.17. Type I and Type II Error: Two Sided Alternative
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3.6.4 Sample Size Determination: Variance Unknown

Previously we assumed that o? was known in order to determine the
sample size required to assure a test witha= 0.05 (probability of Type I
error) and 8= 0.10 Qbability of Type II error). We may still determine n
using an estimate of o but we can expect n to be large due to the uncertainty
involved in estimating the variance.

We could begin by making a rough guess of o, hopefully based on some .
prior information. Even so, we do not know n and hence do not know which
t-distribution to use. We could proceed as follows:

1. Either guess n and look up tn-],a , Or use a ballpark value of
t such éS 2 for t0.025, 1.3 for tO.]O an_dA 1.7 for to'os.

2.  Using these approximate t values and our guess o of o
solvye for (1)
& 2

n = (¥‘- - T B )2
(1) a 1-B (—ﬂm’)

‘where ?a and'zl_B are the approximate t-values for Type I and
Type II errors respectively, u, is the hypothesized value
for p and p, is the alternative value we are guarding against.

3. If n is not what was guessed previously, repeat the process
by ug Ag ]’a and t, (1)_ , 1-8°

i i 2 A2
ne2) (tn(l)—l,a tn(1)~], 'I—B) (.“—/\-70)2

4, Continue until two successive n's agree. Check to see that the
’ corresponding critical values X.,.j; obtained from the two
equations

Type I a. ;(‘.Y‘it = pgt tn_],acAT/ vn

- A »/—
Type IT be  Xepit = mp - th-1, 1-8 o/ +/n
are in reasonable agreement.

Remember that these va]ues, n and xcr1t for @ and B cons1derat1on depended on
a guess of o .

An alternative approach is to consider an alternative hypothesis
for u in terms of the standard deviation, o. That is, instead of guessing o,
choose up to be py + Do, where D is some constant. The previous procedure
then only changes in that in place of

g . We have o _ 1 .
HFp = Ko P'O+DU-FO D
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‘ 2
then ni) = (ti,a 'ti,l-B)
DZ

Example 3.14

Consider again the center grain size data. Suppose we want to test

Hy: 4 = 5.5 and want to detect a mean of 5.5 + 2o , if it exists. Thus,
Hy:pe = 5.5 +20. Usinge = 0.025 and B = 0.10, and roughly Ty g5 = 2 and
= -1.3, we get on the first iteration

%o.90

1. (2 t1 3)2 . (3.3)2 .10.9 - 5 7.3
22 3 |

2. for n = 3, tz 0.025 = 4,303, tz 0.90 -1.886

) =

") = (:303 + 1. .886)2 _ (6.129)2 = 9.57—=10

3. for n=10, t9’0.025=2}262, tg’o'go -1.383

n3) = (2.262% 1.383)% _ (3d645) = 3.3 —4

4, for n = 4,t3 0.025 = 3.182, t3’0.90 = -1.638

N(g) = Qaé 5.8—=6

5. n=6, t5,0.025 = 2.571, t5,0.90 = -1.476

"5y =183 =41 —5

-1.533

6. ns= 5, t4’0.025 = 2.776, t4’0_90
N(6) =18.7 = 4.7 —5

: 3

7. Stop

To test u = 5.5 with a probability of falsely rejecting H, of @ = 0.025,

if 1 >5.5 and to detect a true mean of 2 o from 5.5 with probability of 1-8B =
0.90, we need 5 observations. The test is,

accept Hy:p = 5.5 if

t=X-53 <2.77

and accept Hp:p= 5.5 + 20 and reject Hy: if

t=%-5.5
T > 2.766.
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This is a lot of work if your initial quess for the t value is far
off. Fortunately, there is a table, Table IX, which gives sample sizes
required for various a, 8, and D. We see for D = 2, @ = 0.025, and
B = 0.10, that n = 5,

Table 3.2
Summary of Computation

Vi ty,, i-1 BB, voy M
]- X 200 "103 3 a = 00025
2. 2 4.303 -1.886 0 B=0.10
3.9 2.262 -1.383 4 ta (0)=2.0,
4. 3 3.182 -1.638 6 tL—b (0) = -1.3
50 5 2057] -10476 5 ?
6. 4 2.776 -1.533 5

Note that if we are only concerned with the width of the confidence
interval for p , set 8= 0.50 and ti.g= 0. -

3.7 Tolerance Intervals for a Normal Population

We are all familiar by now with a 100y % = 100% (1-a ) confidence
interval. The confidence interval is a statement about the location of a
parameter. It gives the confidence that we place in our estimate of the
parameter by placing bounds on the spread of values which may be plausible as
values for that parameter, based on the data at hand. In terms of estimating
the mean, we are sure, at least 95% of the time that when we calculate a
confidence interval X £ t,_y g.g25S/ vn, the interval will actually contain
the true mean u . ?

There are other kinds of intervals, however, which are of great
importance. One interval places bounds on the proportion of the sampled
population contained within it at a certain degree of confidence. This is
known as a tolerance interval, or to distinguish it from other type of
intervals which also ‘go by the name of tolerance, we may refer to these
intervals as statistical tolerance content 1nterva|s.. We shall discuss first

normal tolerance intervals and later proceed to distribution-free tolerance
intervals in Chapter 4.

3.7.1 Construction of Two-Sided Tolerance Intervals

For a two-sided tolerance interval, a proport1on P of the population
is said to be within two limits, the lower limit determined by XL = X - Ks,
and the upper limit determined by Xy = X + Ks, where X is the average
of the n observation in the sample, s is the estimated standard deviation, and
K is a.tabulated value dependent on the sample size, the proportion of the
population in the interval, and the confidence level. Table VII(a) gives
values of K for various sample sizes, proportions and confidence levels. Note
four things about this interval:

1. It deals only with a normal population,

2. KX depends on 3 values, n, y, and P,
3. It is a two-sided interval,
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4. It determines the bounds of a proportion of the population, not
Jjust the sampled data. A population consists of all values,
past, present, and future.

For a sample size of 10 observations, a proportion of P = 0.99 of the
population and a confidence level of y = 0.95, we find K = 4.433, Thus, at
Teast 99% of the population should fall between X - 4.433 s and X + 4.433 s
with 95% confidence. This interval is commonly denoted as 95/99 tolerance
interval.

In the above discussion and for the values in Table VII(a), it has been
assumed that the standard deviation s is based on the data on hand. Weissberg
and Beatty [32] have developed tables for the construction of two-sided
tolerance intervals based on a normal distribution that allow for the estimate
of variance to be based on an independently obtained set of data from that
used to estimate the mean.

Examp]e 3.15

Consider‘again the grain size data of Example 3.12. Assuming grain sizes
follow a normal population, suppose the estimate of the mean is X = 5.92 and
s =.0.66, with n = 25.

A 95/99 Tolerance Interval is

X + K(n =25, y=0.95, P = 0.99)s

5.92 + 3 457 (0.66)
5.92 + 2.28

That is, with 95% confidence, at least 99% of the population of grain sizes
can be expected to lie within (3.64, 8.20). [Note: The usual notation is y/P
Tolerance Interval, where y, the confidence level is the first number to
appear, and P, the proportion, the second number.] Other 1nterva1§ are given
below: :

A Limits :
Yy=1-a P K(n =25, y, P) Lower - Upper
95 95 2.631 4,20 7.64
95 99 3.457 3.64 8.20
99 95 2.972 3.96 7.88
99 99 3.904 3.34 8.50

Let us consider another. example.

Example 3.16

A large shipment of 0 gauge wire is received.

It is desired that these wires

meet upper and lower specification limits (i.e., fall between limits) on the
d1ameter. A sample of 15 observations were taken, the results be1ng

= 0.338, s = 0.012.
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A 99/99 To]efance Interval is calculated.
0.338 + K(n = 15,y = 0.99, P = 0.99)s
0.338 + 4.605 (0.012)
0.338 + 0.05526
0.282, 0.394
[Note: Round lower limit down, ubper limit up]
Thus, Qith 99% confidence, we cah expect that at least 99% of the wires will
have a diameter between 0.282 and 0.394 inches. The important question, then,
is how do chese values compare with the specification 1imits? If the

calculated statistical tolerance or content interval is within the
specification Timits,

spec. limits ~ spec. o SpeC.
Tolerance i Tolerance ) Tolerance )
Limits Limit ‘ - . Limit

then all is well. If one or both of the calculated tolerance limits are
outside the spec1f1cat1on limits, then the quality of the lot is suspect.
Perhaps the lot is of insufficient quality for use, or perhaps, a smaller
tolerance interval, e.g., 95/90, would fall within the specs which would be
acceptable to you. Fina]]y, it is possible that the specifications are too
tight. It is up to the subject experts to clarify this problem.

3.7.2 Construction of a One-sided Tolerance Limit

For a one-sided statistical-tolerance content limit, a proportion of
the population will lie below a certain upper limit, xy = x + Ks, or above a
certain Tower limit, x; = X - Ks, where K is the tabulated va]ues for one-
sided 1imits found in Table VII(b). These values of K differ from those of
Table VII(a) for a two-sided interval. For example, for 10 observations, a
proportion of 0.99 and a confidence level of 0.95, we find K = 3.981.

Example 3.17

Onefsided Tolerance'Interva], NormaT.Distribution

The n = 25 rotor shaft diameters hgd an average of X = 0.249 in. and an
-estimated variance of 0.000009 in. - A one-sided 90/95 tolerance limit for
rotor shaft diameters is
X + Ks
0.249 + 2.132 (0.003)

0.249 + 0.006.
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Thus, with 90% confidence, at least 95% of all rotor shafts in this population
will have diameters under 0.255. (K obtained from Table VII(b).)

3.8 Prediction Interval

Suppose a statistical tolerance interval has been calculated. Now,how
many items in a future lot of items may we expect to fall within these
limits? (We may generalize a tolerance interval to consist of not just a
symmetric interval about the average, but any interval containing a desired
proportion of the population, such as the upper quarter of values.) One way
to answer the question is to say that if a 95/95 interval were presented and

= 100 new items were in question, we could expect (with 95% confidence) that
100 P% of the N items would fall within the calculated 1imits, i.e.,
0.95 x 100 = 95 of the 100 new observations will be within the previously
calculated interval. Although this is a reasonable approach, there is yet
another type of interval assigned specifically to answer this question.

A prediction interval tells us within what limits we may expect to find
one or more future observations from a normal distribution. The general
theory can be seen from examining the problem of predicting an interval for
one future observation.

Let x be the est1ma§e of the mean p of a N(,L,o-z) population. Since

= p ot &, € we see that for a future observation
;(1- = x+e , where x~N( pu, 02) and e&N(»O,crz).
n
Thus, X follows a normal distribution with mean p and variance (o2 + o2).
Thus, n
A - A -
o X = X _ X - X
T AWar(® S+ =) $°
where s? is the estimate of @2. Then
a. A 95% prediction interval for a single future observation is
X - tn_]’0.025 sv1 + 1/n< ),2 <X+ tn_]’ 0,025 s+/1+ 1/n.
b. For an average of q future observations, we would have
- 1 1 11
X = to1, 0,025 §)q* n < Xqg C X+ tho1,0.0255q * n°
2

. [Note degHees of freedom for t is still the degrees of freedom of s<,
'i-e-, n-] -

c. For a prediction interval conta1n1ng all of k future observat1ons,
we rea]]y need to integrate a multivariate t- d1str1but1on over the appropriate
range, i.e., find or solve

79




Pr{-L <ty <L3 =L <ty Lseees =L <t U} =1 - @

where _

X = X
t, = — ., i=1,2, «ou, k, and + L are the limits.

i s x/ﬁ + _%

These values were developed by J. Hahn and givén in Table VIII. An
approximation which always over-estimates the width of the interval is

i (L ym Y2s vy g ok
i.e., instead of using t__, /2’ reduce a by a factor of k
. . ‘a/fe

and, use u/2k.

Th1s is the result of assuming each t; is independent of each other (wh1ch
they are not since each X depends on X) and

;
Pri{-Lcty <Ly ensLet <L} = Pri{-Let,a} priiee,dd ooprfoicr,a)
> (1-ka),
if ‘each individual interval is at the (1-a ) level.
[Proof: if Pr(S,)=1-a ,Pr(S,) =1-a,
Pr(s¢S,) = Pr(Sl) + Pr(SZ) - Pr(s; + 52)
=1 -a;+1-ap- Pr(S; +S,)
but max Pr(Sl + 52) = 1. Therefore,
p(SISZ) ]-a1+1~-a2—1
_>_1-a1-<12
=1-¢'.’u'ifal=a

Thus. if we make each test at the a/k level (use t,. asok for two-
sided test), the total probability will be21-a .] P

The problem is that for some k, the t value is difficult to find in
tables and needs to be interpolated. Exact prediction intervals are available
from Hahn's tab]es, where the prediction intervalis of the form X + rs, and r
is provided in Table VIII. Approximate prediction intervals for Targe enough
n and k are always available for other distributions v1a a normal
approximation.
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Example 3.18

Suppose the average radius of n = 15 fuel pellets was determined to be

x = 0.338 in. with an estimated standard deviation of s = 0.012 in. With 95%
confidence, the prediction intervals for k = 1, 5, and 10 future pellets being
in the interval are : :

n=15, x = 0.338, s = 0.012, y= 0.95

k r rs x+r(k, n,y)s
1 2.22 0.02664 0.311, 0.365
5 3.04 0.03648 0.301, 0.375

0 3.37

0.04044 0.297, 0.379
The approximate prediction interval is
Xtr's

where r' = (] + ]/n)l/z tn_'l’ a/2k*

For the above data, the approximate intervals are

Kk ta/2k r' X+r's

1 2.145 2.215 0.311, 0.365
5 2.977 3.075 0.301, 0.375
10 3.326 3.435 0.296, 0.380

Approximate Prediction Intervals

_ The prediction interval for the average of the k future observations is
X t r"s, where :

e (ke UmYe e g

For the above data, the intervals are:

k (1/k + /mt/2 o Xir's

] 1.033 2.215  0.311, 0.365
5 0.516 1.108  0.326, 0.350
10 0.408 0.876  0.327, 0.349

3.9 Inference About the Distribution

We now .turn to a very fundamental question. How do we know whether the
distribution we have assumed is appropriate? Implicitly, in all other
statistical inferences we make we assume we know the distribution, usually a
normal distribution. . It would be reassuring to know that the distributional
assumption is correct. For a sufficiently large sample size, it may well be
that a histogram adequately describes a particular distribution, whose-
parameters may then be estimated. For a small sample size, however, a
histogram would not yield sufficient information about the distribution. What
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is needed is an analytical approach. Such an approach is the goodness of fit -
test for a distribution.  The object is to hypothesize a distribution and then
test the data for the adequacy of the fit or agreement between data and the
hypothesized probability distribution.

In fact, a histogram or some other kind of plot is an essential first step in
determining the distribution to be hypothesized. In addition, one's knowledge
of the physical situation should be utilized in arriving at a null

hypothesis. The test compares the observed data at each data point if
discrete, or in each histogram cell if continuous, with the expected number of
observations predicted by the hypothesized distribution.

3.9.1 The Chi-Square Goodness of Fit Test

The objective here is to test the null hypothesis that a collection
of data follows a certain distribution function, f(x). Thus,

HUE X = f(x)

Hp: x; not distributed as f(x).
The data can be considered to be outcomes from a multinomial distributioh:
exactly, if the data is discrete; approximately by use of discrete intervals
as in the construction of a histogram, if the data is continuous. The form on
the multinomial distribution is

N

p(nl, Noseee, nk) =(n1, n2,..., nk>p1 n1p2 ”2...pk"k

where n; are the number of observations found in the ith interval, x;_1<x<x;
p;: is the true probability of an observation x from the hypothesized ’ v
distribution f(x) falling into the ith interval, i.e.,

o J'Pr(x = xj)s if f(x) discrete

P1
L_Pr(xi_] < x < x4), if f(x) continuvus

and also

E(n;) = npy
Var (nj) = npy (I - pj)

It makes sense, then, that if f(x) is the correct hypothesized
distribution for the data obtained, the observed number of observations nj in
each interval should agree with the expected number of observations,E; = np;s
in each interval. Of course, the agreement is not expected to be per%ect due
to random variation. Thus, the hypothesis test must answer the question, :
"Does the data confirm or contradict the assumption that f(x) is the
underlying distributjon?" . '
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The Chi-Square goodness-of-fit test hds been devised to answer this

question. It is based on a approximate distribution for the likelihood ratio
test, a discussion of which is beyond the scope of this text. However, the
application of the test is as follows: The test is to compute the following
statistic:

i=] Ei

where 01 are the observed frequencies in each interval, i =1, 2, ..., k,
E; = np; are the expected frequencies based on an assumption of f(x).

The test statistic is approximately a ‘xz, where the degrees of freedom v is
the number of outcomes k minus the number of linear relationships satisfied by
0; - E; (e.qg., 2(01 - Ei) =n-n=0). In general, if the distribution is
completely hypothesized, then v =k - 1, but if parameters of the distribution
need to be estimated, a degree of freedom is lost for each such parameter
estimated from the data. How good the approximation is depends on the
expected frequency in the interval or cell with smallest probability of
occurring. A good rule of thumb to follow is to require g5 25 for all i.

Thus, since we never know the exact distribution from which we are
sampling with 100% assurance, we may test our assumption of a particular
distribution by constructing a histogram, postulating a distribution,

calculating x§ and comparing to a critical value. If it is larger than the
critical value at the 95% level, we say that the data contradicts the
assumption of the distribution postulated.

3.9.2 Examples of the Goodness-of-Fit Test

We present here two examples, both dealing with the normal
distribution, the first assuming a specific value for the mean and variance,
the second using estimates of these parameters. To obtain Ei’ the expected
frequencies, we need to find the probability of an event X;.1 < x < x50 To
facilitate the computation we standardize the hypothesized normal

distribution, f(x)-N(;¢,<r2), and evaluate the cumulative distribution as
follows:

Flzy) = F(’H‘ -p Y,
| . .
Flzg) = 2if_ 1 e"Z7/2 4z
-®

V2

To get the frequencies in the intervals Z;.1 € z <z;, we take the difference

p.l = F(Z'I) - F'(Z.i_l)o

If the mean and variance are estimated, we replace u by X and o by s.

Example 3.19

Consider the delayed neturon count data on 100 fuel pellets given in
Table 1.1. It has been hypothesized that the data follows a normal
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distribution with a mean of 100 and a standard_deviation of 9.0 counts per
gram. (The interval bounds have been redefined slightly for convenience).
The data is summarized in Table 3.3.

Table 3.3
Delayed Neutron Counts Per Gram: u = 100,0= 9.0, n = 100

Interval Upper z; = Xj ~H Expected Observed (Oi'Ei)z
Bounq (xi_] < x<x) o Priz;_y <z < z3) P; E; = np; 04 ——7;;——
<85 — -1.67 0.0475 0.0475 ~ &4.75 1 2.96

90 . -1.11 0.1335 0.0860 8.60 2 ~ 5,07

95 . . -0.56 0.2877 0.1542 15.42 1N 1.27

100 ' 0 0.5000 0.2123 21.23 25 0.67

105 0.56 0.7123 0.2123 21.23 24 0.36

- 110 1.11 0.8665 0.1542 15.42 14 0.13
115 - 1.67 0.9525% 0.0860 8.60 11 0.67

>115 >1.67 1.0 0.0475 4.75 12 11.07

.x2 ] % (01_:m Ei) Z.H , 06 > x2 A ] ;20278 100 22.20

ST =1 E. S 7, 0,006 ~ °7°

1 .
The result of this test is to reject the assumption that the distribution
of delayed neutron counts per gram is N(100, 92) since the Xz-test exceeds its
. critical value. However, note that there are three assumptions implicit in
- that null hypothesis; i.e., normality,x= 100, and o= 9. In the next
example, a test will be made on normality, but the estimates of the mean and
variance will be used.

Example 3.20

Test -the hypothesis that the underlying distribution can be considered to be
normal, but use. the estimated mean and variance from Section 1.7; X = 103.0,

s = 8.7. .The calculations are summdriced in Table 3.4, Note that the
intervals <85 and 85 <x. < 90 hdve been combined to conform with the rule-nf-
thumb that the expected value for an interval should be about 5 or more.

: Table 3.4
Delayed Neutron Counts: x = 103.0, s = 8.7, n = 100
Interval lipper z; = X X - Expected Observed (01-E1)2
Bound (X.i_]SX<X.i) - ) PY‘(Zi_] <z X Z]) Pi E., = np1 01 o E i
i

<90 -1.49 0.0681 0.0681 — 6.81 3 2.13

95 -0.92 0.1788 0.1107  11.07 11 0.00

100 -0.34 0.366Y 0.1881 18.81 25 2.04

105 0.23 ©0.5910 0.2241 22.41 24 0.1

110 0.80 0.7881 0.1971 19.7 14 1.65

115 1.38 0.9162 0.1281 12.81 1 0.26

120 1.95 0.9744 0.0582 5.82 _ 7 0.24

>120 >1.95 1.0 0.0256 2.56 5 2.33

100 100 . 8.76
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Since the mean and variance were both estimated, 2 degrees of freedom
2 distribution. Thus, X%g_1_p = X° = 8.76.

. ) 5

The 5% value for a Chi-Square with 5 degrees of freedom is 11.07. Thus, we
would accept the hypothesis that the delayed neutron data is normally
distributed with an estimated mean 103.0 and an estimated standard deviation
of 8.7 counts.

must be subtracted for the X

" In Chapter 4 examples- will be given for testing the hypothesis that
an underlying distribution for a population is non-normal.

3.9.3 Cumulative Probability Plots

Another technique for testing the distribution of a collection of
data is to plot the data on specially constructed probability paper. Such
paper is commercially available for many distributions, particularly the
normal and the Weibull distributions, and can be readily constructed for any
distribution. For a small number of data points (<20), the individual
observations themselves can be plotted on a cumulative probability scale. For
large data sets, the upper bound of an interval can be plotted on a cumulative
probability scale. If the data follows the distribution hypothesized, a -
straight line can be reasonably drawn through the plotted points. If severe '
departures from the line exists, this is considered evidence that the
hypothesized distribution is 1nadequate. This procedure is approximate in
that no quantitative measure of "goodness" is available to determine if the
distribution fits the data. Hence, whenever possible, an analytical test,
such as the Chi-Square test discussed above, should be applied. However, the
cumulative probability plot on special paper is an excellent visual aid, and
with some practice, good judgment can quickly be developed.

To illustrate this technique, consider again the delayed neutron data
in Table 1.1. In Figure 3.18 the upper bounds of the intervals (taken here as
in Examples 3.19 and 3.20 to be 85, 90, etc.) are plotted on the horizontal
axis, and the observed cumulative frequencies are plotted on the vertical axis
on a special probability scale. A hand-drawn line has been passed through the
plotted points. With experience you will find that these points are well
situated about the line so that the judgment here is that the .distribution
does appear to be .normal. This, of course, agrees with the results from
Example 3.20.

An additional feature is that because we know much about the normal
distribution, once we have accepted it as the distribution, we can also obtain
estimates of the mean and standard deviation from this plot. The 50% value,
X0.5 (i.e., the value of counts per gram that corresponds to the point on the
drawn line that intersects the 0.50 probability value) is an estimate of the
mean. Here is it found to be 104 counts per gram, compared to 103 used in
Example 3.20. The standard deviation can be estimated by finding the value
which is 1 o from the mean. From Table III, we find (Pr(z<1) = 0.8413. Thus,
from Figure 3.18, XO.84 = 113 and o is estimated by X0.84—X0.50=]13-104 = 9,
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Thus, a cumulative probability plot can be used to test the
hypothesis of normality of a collection of data; and if judged acceptable
rough estimates can be obtained for u and o of this distribution.

This compares well with the usual estimate of s = 8.7.
*3.10  Outliers

An outlier is an observation that is significantly different
from the rest of the sample. An observation that comes from a sufficiently
different distribution than the rest of the observations should appear as an
outlier, but all observed outliers are not necessarily maverick
observations. A true outlier may come from a distribution with a different
mean or a different variance, or both, than the rest of the data, or even have
a different functional form for the probability density function.

Usually true outliers result from mistakes rather than random
errors; mistakes such as the transposition of digits, a misplaced decimal, or
use of the wrong standard or measuring device or procedure. These types of
true outliers are often easily detected and their omission from the data leads
to more precise and accurate analyses. On the other hand, some observed
outliers may be the most important information in the sample if it truly
indicates the potential variability of the process from which the data comes.

For example, consider a corrosion test of an element in which
the depth of corrosion is recorded for each of 200 sites. The occurrence of
one observed outlier may be indicative of the difficulty of producing
corrosion resistant elements, rather than indicating a bad observation caused
by mistakes in data taking or transmission.

In the next section, three tests for detecting an outlier will
be presented. Once having flagged an observation as an outlier, there is
still the question of what to do with it. Section 3.10.2 briefly discusses
some possibilities, but it should be noted here that the recommended procedure
for handling outliers is to keep it, unless a reason can be established that
Jjustifies its dismissal or modification. ‘

3.10.1 Tests for Qutliers

Many tests for the detection of outliers exist, but generally
require the assumption of normality for the distribution of the underlying
population. The procedures given below assume a normal distribution and test
for the existence of a single outlier. Hence, the tests are one sided
hypothesis tests for the null hypothesis that the extreme observation x

belongs to this population. €
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A. The r'—tesL

Order the n <7 observations such that x% < X Cewe £ Xpe

Then to test for the extreme value ST et
Xo = X
ot e—s
n 1

If rig is greater than the critical value for rip, a »found.

in Table XV, at the desired significance level a, then X1
is declared to be an outlier.

To test for an extreme value that is the largest
observation, use

X, = X
rg= -l ngy .
An - A1

Equivalent formulae for 8 £ n <10, 11 < -n-< 13, and
14 < n < 30 are given in Table XV.

B. The T-Test: Standard Deviation Obtained from Same Sample
A test known as the T-test can be used in which the -

standard deviation of the underlying distribution is
estimated from the available sample; i.e.,

- [ % 2142

This test calculates the extreme studentized deviate as

=|xe - XI

[ 4
3

If T exceeds the critical value, T, given in Table XVI, at
the desired significance level, the' éxtreme observation is
considered to be an outlier. .

C. The T-Test: Standard Deviation Obtained From an Independent
Sample i

This test is the same as the T-test above except that here
the standard deviation of the underlying distribution is
estimated from an independent sample, such as might be
obtained in a study to establish the precision of the
process. The degrees of freedom of this estimate, &, are
not dependent on the number of observations used to estimate
the mean. Now if
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X X
T = ——975-—.>Tn, ,,q (from Table XVII)

the observation is declared an outlier.

Example 3.21

Three observations on the counts per gram for a single fuel pellet are
obtained by a delayed neutron gage:

X; = 24610.4, 24623.0, 24933.°2
X = 24722.2, s = 182.84, n=3
Test A:

Xq =X
_ X3 "Xp _ 24933.2 - 24623.0 _-
10 7 X3 x, 24933.2 - 24610.4 0.961

This is less than the a = 0.01 value for n = 3 of 0.988 obtained from
Table XV. Thus, the r-test does not declare the observation 24933.2 to be an
outlier at the 1% level of significance.

Test B:

T = Re "X _ 24933.2 - 24722.2 _ 211.0 . 115
s 182,88 T8Z88

We see from Table XVI that this value is right at the critical value at the
a =0.05, 0.025 and 0.01 levels. This indicates that this test using s is not
sufficiently sensitive to detect an outlier from this small group of data.

Test C:

It is known from 3 observations on each of 20 other pellets that
the standard deviation can be estimated as ‘

& = 79.03 with 40-degfees of freedom.
Then

Xe = X 24933.2 - 24722.2

T == = 2.67
o -79.03

The critical value from Table XVII for g = 0,01 is 2.34. Thus, with more
information supplied on o from an independent sample, we declare the
observation 24933.2 in this sample of 3 to be an outlier.

The fact that each of the three tests yields different results-at the
1% significance level illustrates the difference in the sensitivity of the
tests for detecting outliers due to the amount of information contained in the
data. The r-test, which simply uses relative distances between specified '
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values, contains the least information of the three tests and fails to detect
an outlier. The T-test using the estimate of the standard deviation from the
same sample incorporates more information with the result that the extreme
value is now found to be on the border line between being called an outlier
and not being.called an outlier. The T-test using an independent sample to
estimate the standard deviation utilizes information in addition to the sample
being examined. Because of this additional information it becomes a more
sensitive test and is thus able to detect an outlier. Which test should be
applied in a given situation depends upon the amount of information available.

The above tests are for the detection of a single outlier. To detect
more than one outlier, the above tests can be performed sequentially by
throwing out the first detected outlier and testing the remaining sample as
the original sample was tested. Unless the sample is quite large, however, it
is unlikely that more than one true outlier can be detected.

2.10,2 The Treatment of an Qutlier

Having detected an outlier, what do we do with it? We don't want to
ignore it completely if it carries important informalion abuoul the process.
On the other hand, we are penalizing ourselves with an erroneous mean and an
inflated standard deviation if we keep a completely spurious observation.

Three suggestions are considered below:

A.  The Anscombe Rule:

Delete a detected outlier. This is a severe step to take. To
reduce the risk of erroneously throwing out valuable
information, it is suggested that the significance level to use
in the test for outliers should be 0.01 or less.

B. The Winsorization (W) Rule:

Replace the detected outlier by its nearest neighbor.

C. The Semi-Winsorization (S) Rule:

Replace the detected outlier by the critical test value,

_ = A
new X, = x 1t Tg o

where X is the original average,

Tpis the o -level value for either T-test, and

& is the estimated standard deviation for the test used.

Rules W and S are‘attempts to protect against falsely declaring
an extreme value an outlier. Thus, an o value of 0.05 or 0.01 may be

satisfactory. Many alternatives are possible and the best procedure for a
specific case may change from case to case.
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CHAPTER 4
INFERENCES ON NON-NORMAL POPULATIONS

Thus far we have assumed that the distribution of the sampled
observations is a normmal distribution, or at least that the distribution of an
average of n observations is nomal. In this chapter we will briefly examine
the problem of estimation and inference for parameters of some commonly
occurring non-normal distribution. After a review of the maximum 1ikelihood
principle of estimation we will deal specifically with the binomial, Poisson,
and exponential distributions.

4.1 Review of Maximum Likelihood Criteria

To obtain the most 1ikely value of a parameter given a set of data,
we maximize the joint distribution function f(xy, X2, ..., xnle). For n given
observations randomly taken, we write the same function as a likelihood
function A

f(x;18),

3

L( 8 | X1s X25 sees Xp) =
i

M

1

where 8 represents a set of one or more parameters. If the range of x; does
not depend on 8 , then we make maximize L{8|x) by solving the derivative of

the 1ikelihood function for Bj,

d =
d?T&L(Q| x) =0

where x represents the set of n x's. If there are more than one 6 ;, we must
solve the resulting differential equations simultaneously. The reaﬂer is
referred again to Appendix B. for more details.

4.2 Inference on a Binomial Distribution

The distribution known as a binomial has the following form

p (X) =(nx)px (]'p)n_x » X = O’ ],.Za "'9‘n

where p may be (1) the probability of success; i.e., a selection-of an item
which meets some specifications, or (2) the proportion of defectives in a lot,
or (3) the percentage of certain components that meet some specification.

Suppose we sample from a binomial population with parameters p and n
a total of k times. Thus, X{, Xp, +.., X, are a random sample from a binomial
(n, p). The maximum likelihood eéstimate Qf p is obtained as follows:
k(n ) X n=-X:
L(p| x1s X205 weey Xy) = ”<Xi p ' (-p) T, x3=0,1,2, ..., n,
i=1

k [N ZX; nk- Zx;
= {”1<XJ}P ' (1-p) X
i
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Xj dn p + (nk - Zx;) &n (1-p) + E,@n<" )
1 ‘ ' i=1 X

i
d InL (p) . 2 X5 . (nk - Zx5) (-1) = 0

. PuL = ) ,
Thus the estimate of p is the average X = 3 x;/k 'divided by n, the sample
i=1 :
size. Since E(x;) = np, the expected value and the variance of 6 are

.
Ay oL 1 5 - knp _
E(P),‘E‘rﬂz = Xi"—nER‘p.

Av e 1 Syanfv ) = K - p(1-
Var(p) ‘-agzﬁfzvar(xi) = L [np(1-p)] = "

We can quickly see, however, that sampling k times from a binomial population
(n, p) is equivalent to sampling from a single binomial population with
parameters (N, p), where N = nk. Then,

N

X A A
A=3=1 ', E (p) = p, Var (p) = Np(0 - p) = p(1 -
p =1 | " BK_N_El

To obtain a confidence interval for p, we proceed as follows:
Find py and py such that

1. py is the largest value ot p for which’

S(T) Pt (-pnxs

Pr(x 2 x,) =
X=Xo

2. pp is the smallest value of p for which
el x < - Lo -
Prixsxg) 2 (MpX (1 - p)" = *< as2,

Then, py < p < pp is a 100(1 -a )% confidence interval for p, where x, is an
observed value. This choice of py and pp gives the shortest possible
interval.
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<0025. .
p(x) , A P(x)
<0.025
N
n Xo .
> (n) pPX(-pp" X <0.025 (") X (1=p)"X <
xSxo\X/ P1{P) . x§o x) P2 (1-p5) """ <0.025

Figure 4.1  Tails of a Binomial Distribution p; < p < p,

Note the inequality signs. This i§ due to the discréete nature of the binomial
variable. For a given probability level, there may not be a discrete x value
to correspond to it. Conventionally, we f1nd the value of" X wh1ch g1ves<<a/2
in probability in the tail regions.

Example 4.1

Suppose .n =20 and .x, = 2 defective:pieces were found. Construct a 95% .
confidence interval “for p. We need to solve . ’

| 20
1. 5 (20) (1-p1)20-X < as2 = 0.025
x=2 gl .

and 2. 2o () 0 (1-pp) X< azz - .0.025
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Fortunately, tables and charts are available for constructing intervals for
proportions. Table XI gives curves for y = 1-a= 0.95 and 0.99 Reading
these curves indicate that with 95% confidence p; = 0.01, pp = 0.32. Using a

. table of binomial probability values (Table I) and interpolating we can verify
these values. Thus, we can say with 95% confidence or betterAthat p is
contained within 0.01 < p < 0 32, where n = 20, x, = 2, and p = 0.1.

4.2.1 A Normal Approxima;ion for the Binomial

If n is sufficiently large and p is not extremely small or
extremely large, an approximating confidence interval for a porportion may be
obtained from a normal approximation. The procedure is to standardize the
binomial variable

2 = X = 0p
vnp(1-p¥

Dividing through both sides by n, we have

= x/n,
x/n - '

o>

Z.-

The two-sided interval would be

P 1 A 1
P-2a/2/ p(1-p) <p<p+az, — pl1- p)
n n
However, this contains p. Replace p by its estimate 3 = x/n and we obtain

S|—

n T fa/2

%— (1- 5~)< p <-— tz, /

For 3 very small or very large, this approximate interval could resu]t in
vaiues less than 0 or larger than 1.

Exgmgle 4.2

For n = 20, X = 2, 3 = 0.1 as before, a 95% confidence interval forvp using a
normal approximation is obtained as follows:

then | 0.1+ 1.96 (0.067)

and the interval is (-0.03, 0.23)‘(éompared to (0.01, 0.32) found previously).
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Although -0.03 is impossible, using O for a lower bound is not a bad
approximation. However, 0.23 is far from 0.32. The normal approximation can
be improved somewhat by adding a correction factor of + 1 to x:

2

xt 1 '
2 T 1.
Tt 2,025,/ P(1-p)

0.1 + .025 + 0.13

(-0.055 < p < 0.255)

This is better in that it gives a wider interval, although here the negative
value is inappropriate. The problem with the intervals suggested here is the
sample size. For a confidence interval based on a normal distribution to be
adequate, the distribution of x/n must approach a normal distribution. For
this, n must be sufficiently large. Miller and Freund [25] suggest n > 100.
Also note that x/n - p is not a t-distribution since 1 p(1-p) is not

A _A ) n
/—:‘-p(l p) |
2 .

an estimate of Var(ﬁ) that is statistically independent of 6, as X and s are
statistically independent.

4.2.2 Comparing Two Proportions
Consider comparing the proportion of defectives from two lots of

material. Sample n; observations from one population and np, from the other.
To test : :

Ho:' P] = Pp Or p; - pp = 0
against Ha: py 7 Py,

we consider the test statistic

1Y%

+n

m+n

N
il
o\>
P
A
[
o>
o
Py
| —4
+
> |4
o
-
o>

where n; and n, are both large and under the null hypothesis, P1 = P2 = P»s

Var (ﬂ_ _x_z_) - p(1-p) + p(1-p) . p(l-p)(-]- +l> .
nomn m n2 npong
The combined estimate of p is § = ZXi _ X1+ X |

=n; n + np
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Example 4.3
Given ny = 400, xq = 128, n, = 500, x2 = 115. Then

6 = 128 + 115 = 0.27
128 115
and : R _
z = 400 500 =3.02>z = 1.9.

v/(i).27) (0.73) ( 1,1 ) | 0.025 .
. 400 500

Therefore we reject p; = pp based on this data.
4,2.3 Comparing k Proportions

consider the prublen -uf comparing several pr oportions fOI‘
differences. The null hypothesis is

HO: pl = p2 = o'no = pk

and the alternative hypothesis is that at least two of these proportions are
unequal. We again make use of the normal approximation when nj, =1, 2,
.oy k are large:

where x; is the number of defectives found in a samp1e of size n;, and p; is
the proportion defective. Since each population from which we sample

provides an independent normal deviate z;, we can define X2 distribution
- 2
k  (x;-n.p.)
2 i itil
Xy §;1 np,(1-p3) ;o (4-1)

A X3
pe2ii
2N
Substituting into (4.1) for each p we have
2 K (xi' n; 3)2
X = 2, e . (4.2)
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We may then test Ho by comparing the value obtained above with the critical
2

value (right hand tail) of % . We have k-1 degrees of freedom since
k-1,a

we had to estimate the common va1ue p.

Example 4.4

It is desired to test whether the proportion of- supplies -brought back and
exchanged by a certain vendor is subJect to seasonal variations. The
quarterly data is

First Second Third Fourth »
Quarter Quarter Quarter Quarter Total

# exchanged ' 29 12 8 21 - 70
# not exchanged 81 118 92 - 139 430
TOTAL : 110 130 100 160 500

. A . .
Under H,: py=pp=p3=pg4=p, np = 70,p = 70/500 = 0.14. ‘
) A2 .
x2 _% (MNP (29 - 1i00.14))2 (12 - 130(0.14))2
37T WROER T10(0.14)(0.86 j_("—§'(_')'§_—130 0.14)(0.86
. {8 - 100(0.14))% (21 - 160(0.14))%
. ‘_(_ﬁ—)lywo 0.14) (0.86 [160(0.14)(0.86)

_ 184.96 . 38.44 36 1.96
" 73.244 " T5.652" 12,04 T 19.264

-1397+246+299+01o
C 2952 .

This exceeds xg 0 = 11.345, S0 wé conclude that there is evidence of

seasonal differences.

The Chi-Square test (4.2) can be viewed in a somewhat different
manner. Looking at the data as shown in the example above, we can identify 8
“cells", where each entry is the observed frequency for that cell 013,

i=1,2,3,4; j=1, 2. We then view the problem as a goodness of fit test
for a multinomial distribution with 8 classifications of cells. For Example

4.4., ) © E 2 ~ . :
x> .8 §—"_L = 195 (4.3)
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where E; are the expected frequencies njp. The distribution is still a Xg

because knowledge of any three of the proportions will enable us to determmine-
all of them. The advantage to this approach is that it will allow
generalization to problems of r x k layouts where r > 2.

4.3 Inference on a Poisson Distribution

In situations in which it is of interest to know how many events of a
certain kind occur in a given period of time, we know that a Poisson
distribution usually applies. Recall that for a Poisson variable x,

p(x) = e™a X, x=0,1,2,...
- x!

where X 1is the mean rate of occurrence for the unit of time being used. The
maximum Tikelihood estimaté of A 1s x (see Appendix B.) based on n
observations.

As for the binomial parameter p, an interval for which we have at
least 95% confidence of containing X based on a single observation x can be
obtained by solving for Ay and Xp:

. % e XUux €0.025
and Xo
A )
2. Pr(xs xx,) = 2 e A\¥2/x! £0.025

_Examg]e_l{.S

Suppose 2 accidents occurred in a 12-hour period along a particular production
line. The confidence interval for the mean rate of accidents s such that

1. Pr(x22{x;)

A

.025
2. Pr(xs2|n,) €.025 .

From Table II, we see that the largest X, satisfying 1. is 0.24, and the
smallest Ao satistying 2. 1s 7.2. Thus a 95% confidence interval far X based
on X4 = 2 1s 0.24 <A< 7.2. :

This is verified in Table XII, a table of confidence limits for a Poisson
parameter.

4.3.1  k > 1 Observations from a Poisson
For more than one observation from the same Poisson

distribution, it can be shown that the sum of Poisson variables 15 again a
Poisson with a parameter nX instead of X .
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n
p( 2 Xi) - oM (nx ) Exi / (in)! or e'e GX/X'!

i=1 : ‘
where 8= n) ,X=§x

The maximum likelihood estimate of X is in, so the maximum 1ikelihood
estimate of M is

/;‘ML_ = %in as found previously.
To find a confidence interval for A then
1. PY‘(XZ Xo|91) = PY‘(Z X3 2 Xol n, )\1) < 0.025, X1'= Bl/n,
2. Pr(X< Xo|9 2) = Pr(2 xj € XOI n, Ap) £ 0.025, A, = 8,/n,
8, <6< 8, |
Example 4.6
For one observation X0 = 2, a 95% confidence interval for 8 is
. 0.28<8¢ 7.2

'Th_US, for n obserVations, the 95% confidence interval for A= @ is
' . n

0.24 ¢\ ¢ L2

For n = 4, = X

(0—%4— , 143) - (0.06, 1.8)

is a 95% confidence interval for A when n = 4 observations were taken, each
over an interval length of 12 hours, $x; = 2 accidents being recorded.

4,3.2 Normal Approximation for a Poisson

An approximate interval can be obtained for large enough n, or
equivalently if X is quite large. The standardized Poisson variable is

= x - E{x) - x -2\ . ;
z = = for a single observation on x,
~/Var(x)_ VAN '
and
iz = A=A s A= X, for n> 1 observations.
JA/n
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Us1ng the estimate of X for A as its estimated var1ance, a two-sided 95%
confidence interval is

x - 1.96 /X <A< x+ 1.9+, forn=1,
% - 1.96v/%/n <A< %+ 1.96v%/n, forn> l.

Example 4.7

If 50 accidents were recorded over a 120-hour period, then from Table XII, a
95% confidence interval for the mean rate 8 of occurrences over a 120-hour
period is (37.0, 65.9). Using a normal approximation, the interval is

[ 50 + 1.9650 ] = 50

-+

1.96 (7.07)

50 + 13.9
(36.1, 63.9) .

The agreement bétween the exact and nurmal approximatioh.will, of course,
improve as \ gets larger.

To obtain a confidence interval for the mean number X\ of occurrences per
12-hour period, we divide the 120 hours into ten 12-hour segments. Then

= X = 5.0 and the exact interval is (3.7, 6.6) .and for the normal
approximation

+ 1.96 /5.0/10
5.0 £ 1.96 (0.707)
5.0 ¢+ 1.39
(3.6, 6.1)
4,4 ‘Inference on an:Exponential Distribution
The lifetime of many electrical and mechanical components and systems
tend to-follow an exponential or related distribution. Let x be the lifetime
ar time-to-failure, then . 4
f(x) = _1_e X/ x>0
is an expnnpnf1a1 distribution with x Ehe mean t1me to fa1|ure. - The variance

of an exponential can be shown to be A

If x; vees x are n'independenf observations from f(x), the
max imum 11ke11hoo est1ma of Xis X. (Appendix B).
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4.4,1 An Exact Confidence Interval for A\, n = 1

For a single bbservation, we could obtain a confidence interval
for X\ as we have done for the binomial and Poisson distributions, by

1. finding largest Ay such that Pr(x > x4|A;) = 0.025 and
2. find the smallest A, such that Pr(x < x,|Xp) = 0.025.

This will yield an exact 95% confidence interval A\; <A<A, since this is a
continuous distribution.

'4.4.2 A Normal Approximation for the Exponential

An approximate 95% confidence interval can be obtained by a
normal approximation if n, the number-of observations, is sufficiently
large. Like a Poisson distribution with small A, an exponential is a very
asymmetric distribgtion, and hence a large sample size is required. Since the
variance of x is \¢, the standardized exponential variable is

A -
and for n observations, X = X,

Replacing X by its estimate X in the denominator of z, we have a 95%
confidence interval for A\, the mean time-to-failure,

X-1.96_X < X< %+1.9 X
n A - Jn

_ . 1.96 - 1.96

“‘ﬁ ) <A< x(1+'~/h_ ).

4.4.3 An Exact Interval, n > 1

, An exact two-sided confidence interval for n observations can be
constructed by using the fact that twice the sum of n exponential variables is

distributed as a X2 variable with 2n degrees of freedom, scaled by \; i.e.,
2. Th |
22*1 ~ ‘in ' us
2 .2%Xx 2 -
2 < - 1 ( )— 0.95
Pr(xzn,o.ws Xon X X2n,0.025)
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where Pr( 2 <, 2 ) = 0.025 and Pr(y2 >,2 ) = 0.025.

2n *2n,0.975 2n 2n, 0.025
Thus,
< <
2 2
X2n,0.025 - X2n,0.975

is an exact 95% confidence interval for A based on n observations from an
. exponential distribution.

Example 4.8

Ten observations were made on the lifetime (in minutes) of batteries with the
sum of failure times being 54 minutes.

Txi = 54.0, 2 = 9.501, 2 = 34.17
20,0.975 20,0.025
Then,
2(54.0) . ) < 2(54.0)
3807 9.59T
Thus,

C 317 < X < 1128 is a 95% confidence interval for the mean
lifetime of batteries. '

*4.8 Distribution-Free Tolerance Intervals

In Chapfer 3 we discussed tolerance intervals assuming the
population being sampled to be normally distributed.

If the data being sampled can neither be assumed normally
distributed nor transformed by some simple mathematical function into a normal
distribution, one- or two-sided tolerance intervals which are completely free
of any distributional assumptions may be made. A one-sided 95/99
distribution-free tolerance interval says that with 95% confidence, 99% of the
population being sampled will lie above the minimum observed value in the
sample (or below the maximum value). A two-sided 95/99 distribution-free
tolerance interval contains 99% of the population between the minimum and
maximum sample values with 95% confidence. Intervals found by sample values
other than the minimum or maximum are also permissible, but we will restrict
our discussion to these 1imits since they are typical in many examples. For
further information on this topic, see Natrella [26].
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There are three factors which determine distribution-free
tolerance intervals: confidence level, proportion of population, and sample
size. Given any two of these factors, the third may be found in one of the
Tables XIII(a) through XIII(f), or from Figures XIII(c) or XIII(g)
Particularly useful is the capability of determining the sample size required
to make a tolerance interval statement of specified confidence level and
population proportion. The examples below illustrate these three situations.

Example 4.9

Determination of Sample Size: Proportion and Confidence Level Given

If we desired to obtain an interval which contains at least 90% of the
population of fissile loadings of fuel pellets between the minimum and maximum
observed values of the sample taken with a confidence level of 0.99, we see
from Table XIII(a) that 64 observations are required. A one-sided 99/90
tolerance interval may also be constructed for which 90% of the population
will be above the minimum (or below the maximum) value. From Table XIII(e) we
see that 44 pellets would be required.

Example 4.10

Determination of Proportion: Confidence Level and Sample Size Given

The maximum f£§§11e loading for a sample of 10 fuel pellets wa§3§eported to be
2.630 grams U and the minimum observation was 2.604 grams U rom Table
XIII(b), we find that for 10 observations a two-sided tolerance 1nterva1 at a
95% confidence level will contain 61% of the Eggu]ation of fissile loadings
between the values of 2.605 and 2.630 grams U for that type of pellet.
Alternatively, from Table XIII(f) we see that 74% of the loading values will
be above 2.605 (or below 2.630) with 95% confidence.

Example 4.11

Determination of Confidence Level (Two-Sided): Proport1on and Samp]e S1ze
Given

0f 12 readings taken of u23s impurity concentration in zirconium, the maximum
ohserved value was 0.0099 ppm. and the minimum was 0.0088 ppm. From Table
XI1I(d), we see that 75% of the population will lie between 0.0088 and 0.0099
ppm. with 84% confidence, and 90% of the popu]at1on will fall within the
interval with only 34% confidence.

Examp]e 4.]2

Interpolation of Proportion or Sample Size: Confidence Level Given, From
Figures XIII (c) and XIII(g)

Alternative to the tables, Figures XII1I(c) and XIII(g) may be used to find the
proportion of the population in an interval for a given sample size, or for
finding the sample size for a given proportion for confidence levels of 0.90,
0.95, and 0.99. The figures allow interpolation of results which do not .
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appear in the tables. For example, from Figure XIII(c) we see that for 95%
confidence, the sample size required for a two-sided interval to contain 96%
of the population, is approximately 120 observations. For 100 observations,
approximately 93% of the population will fall in the interval with 99%
confidence. From Figure XIII(g) we see that 14 observations are required for
a 90/85 one-sided distribution-free tolerance interval and for 75 observations
and 95% confidence, the one-sided interval will contain better than 96% of the
population.

*4.6 An Approximate One-Sided Tolerance Interval for an Exponential
Distribution ‘

When the population being sampled is not normal, we cannot, of
course, use the results of Section 3.7.2. In fact, exact tolerance intervals
for distributions other than the normal are not available. In general, the
best that can be obtained are the distribution-free or non-parametric
tolerance intervals. These tolerance intervals are valid for any type of
distribution but do not use any infarmation which may bc available aboul the
distribution of the population being sampled. - In general, because of the
broad application of this approach, the length of the interval for given n, P,
and y will be wider than would be the case if the distribution were taken
into account. '

In the case of an exponential distribution, however, an approximate
one-sided tolerance interval has been developed. Suppose we would like to
assert with a degree of confidence y = 1 - a that at least 100 P% of the
components being sampled have a lifetime greater than x*. The following
approximation has been developed:

where x; are the recorded lifetimes of the sampled components and

2 2 :
Pr( X 5 X y= & .
2n 2n,a :
Coincidentally,
' 2
22 x1/x2n,a

is the expression used for constructing a confidence interval for the mean
lifetime A, but here it is modified hy _#n P.

Example 4,13

Suppose 10 observations from a component lifetime study give a total of life-
times of

in =5410 , n=10 .
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Let y= 0.95,a= 0.05, and P = 0.95. Then £n P = £n(0.95) = -0.051

and 'XZ = 31.41
20, 0.05
Thus,
* _ _ 2(5410) (-0.051) _ 551.82 _ .
X 3140 77 - V-6

That is, with 95% confidence, 95% of the components under 1nvest1gat1on can be
expected to last longer than 17.6 hours before falling. This is a lower 95/95
tolerance limit.

To obtain an upper tolerance Timit, the values P and a must be
replaced by 1 - P and y = 1 -a . Consider the following example:

Example 4.14

34 observations are obtained on wear depth on fuel rods on the point of spring
contact. A 95/99 upper tolerance limit for wear depth is obtained assuming an
exponential distribution and

3% x; =16 mils, n =34, 1-p =0.01,y = 0.95
if1

£n (0.01) = -4.605, ,% = 50, Pr(y2 >y% ) =0.95
S 68,0.95 68 68,0.95

L% . -2(16)(-4.605) . .
X 4 2.95 mils.

That is, with 95% confidence, at least 99% of all rods will have wear of less
than 2.95 mils in depth at the point of spring contact.

2

(Note: wusing a normal approximation for gives.
. 68,0.05
2 = 68 - 1.645 /2 x 68 = 48.8 and 5 * = 3.02 mils)
X X
68.0.05 -
4.7 The Chi-Square Goodness-of-Fit Test -

In Section 3.9.1 the Chi-Square goodness-of-fit test was discussed
and illustrated for test1ng a normal distribution hypothesis. In this section
two examples are given in which the distribution is not hypothesized to be
normal. It should be recognized that for any given set of data, more than one
distribution may be found to be reasonable. Accéptance of an hypothesis does
not mean that the data definitely is that.distribution, but only that there is
no reason to discount that d1str1but1on -and it may be used.

i
f
K]
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Example 4.15

It is desired to determine if the number of defectives found in lots of 500
items can be described by a Poisson distribution with mean = 2. A total of
50 lots were checked with the results given below: :

Hp: x Poisson ( A =2), n = 50.

# defective

found, x; Prix< x;1x) = 2 Pi Ej=np; 0y (0 - Ei)z/Ei
0 0.135 0.1T35 7 - 6.75. 10 1.56
1 0.406 0.271  13.55 15 - 0.16
2 © 0.677 0.271  13.55 12 0.18
3 0.857 - 0.180 9.00 1 0.44
>3 ' 1.000 0.143 7.15 2 3.1
50.00 50 6.05

With 5 intervals used the observed test value XI4 6.05 is found to

be less than x < = 9.488. Thus, a Poisson with X = 2 is a reasonable

4,0. 05
distribution for descr1bing the number of defectives per lot.

Example 4.16

Consider the wear depth data from Example 4.14. To test the hypothesis that
an exponential d1str1butlon describes this data, consider estimating the mean
value X by A = = 16/34 = 0.471.

Hg: f(x) ~ exponential (mean A )

Upperfbound . Prix <x;)
on interval xs s A A A : 2
(xj) < x<xq)  =1-¢ /X P Ej =npy 05 (04-E{)%/Ey
U.2% o 0.812 0.412 14.0 16 0.07
0.50 0.654 0.242 8.2 7 0.18
0,75 0.797 0.143 4.9 3 0.74
>0.75 1.000 0.203 6.9 Y 0.64
34.0 34 1.63
w&  =1.63 [ 42 = 0.103, 42 = 5.99]
X 41122 xz,o.gs xz 0.05

An exbonentia] distribution 1s accepted.
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CHAPTER 5
QUALITY CONTROL STATISTICS:

Whether producing or receiving manufactured goods. care must be taken
to assure that the product meets specified requirements with as little risk
and at the lowest cost possible to the producer and/or consumer. This chapter
presents some of the techniques utilized to assure all involved of the quality
of the product in question.

5.1 Sampling Inspection

Consider the situation in which a manufacturer of a pressurized water
reactor is faced with the decision to either accept or reject a large supply
or lot of fuel elements. The manufacturer certainly does not want to purchase
material from the vendor which will lead to an inferior or defective
reactor. Thus, the manufacturer will subject the supply of fuel elements to a
test of its qua11ty based on the known manufactur1ng specification
requirements.

The first question to arise is, "What kind of a test?" Should the
fuel content be measured precisely, or simply judged to be within or outside
the specifications. The former is an example of variable sampling and the
latter is an example of attribute sampling Variable sampling deals with any
continuous measurement, such as height, weight, length, weight percent, etc.,
and will be discussed in Sections 5.5--5.7 under the general heading of
Control Charts. Attribute sampling deals with discrete data: for example,
counts or number of defects, or more usually, go/no-go, and accept/reJect
data.

Having decided to perform attribute sampling, the sampling inspection
procedure must then specify how many items should be examined. Ideally, every
item should be inspected for all possible attributes from all possible
angles. Practically speak1ng however, many of the tests required to evaluate
attributes are destructive in nature, thus necessitating a sample to be
taken. Even in non-destructive testing the cost in both time and money may
favor a sampling procedure also.

The question of how to sample, i.e., the choice of a sampling plan,
is taken up in the next section and is followed by a discussion of the
evaluation of sampling plans. For a detailed discussion and compilation of
Ea?p1ing plans, see MIL-STD-105-D [20] and the Dodge-Romig Sampling Tables

9]. :

5.2 Types of Attribute Sampling Plans

The purpose of a sampling plan is to provide the examiner with a
basis for the acceptance or rejection of a 1ot of material based on a sample
of n individual items from the lot. The basis of acceptance is the
probability of obtaining a specified number of defectives (i.e., items outside
the specification Timits) in the sample. In the simplest terms, if the number
of defectives, in the sample is too large, the entire lot is rejected If the
number of defectives is less than or equal to the critical number of
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defectives, called the acceptance number for the sample, the lot is
accepted. The mathematical details of the evaluation of a sampling plan will
be given in the next section.

5.2.1 Single Sampling Plan
The most basic sampling plan is the single sampling plan in which a
single sample of n items is inspected and the number x of defective items is

recorded. If x is greater than the acceptance number c, the lot is
rejected. If x<c, the Tot is accepted.

Example 5.1: Single Sampling Plan
Sample Size (n) = 200
=3

Acceptance Number (c¢)
Accept 1ot if Number of Defectives (x) <3
Reject Otherwise
5.2.2 Double Sampling Plan

In a double sampling plan two samples are planned. After the first
sample of size ny, the sample may be rejected if -the number of defectives x
is greater than or equal to the rejection number ry, or it may be accepted if
xq1 is Tless than or equal to the acceptance number C1- More often, however,
c; < x <ry and a second sample of size n, is taken. If the total number of
defectives X = xq + x, is less than or equal to c,, the final acceptance
number, the lot 1s accepted. If X > Cp, or equivalently x, > ¢; - x;, the lot
is rejected. ' :

- Example 5.2: Double Sampling Plan

Sample Size Acceptance No. (Ci) Rejection No. (r;)
1. nl = 125 Cl = ] V Y‘l =4
2. nz = 125 C2'= 4 ro = 5

Accept the iot if xy<cq, reject if X121y
Take second sample 1f ¢ < x; < ry
Accept the Tot 1f X = %X + XpS¢p
Reject otherwise
5.2.3 Multiple Sampling Plans 7
Multiple sampling plans are simply an extension of the double sampling

plan with more than two stages. At each stage a}samp]e of size ny is taken
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and the number of defectives x; found is compared to acceptance (c;) and
rejection (ri) numbers. - At each stage, a lot is either accepted, reJected or
the decision to take another sample is.-made. (An exception is that in some
plans, no acceptance decision can be made at the first stage.) After a
spec1f1ed number of stages, a final decision is made.

Example 5.3: 7-Stage Samp11ng Plan

Sample Size " Acceptance No. (ci)”' ‘Rejection No. (r;)
1. “i = 50 ' , No Decision .. - | 3

2. ny = 50 0 3

3. n3 =250 | 1 4

4. ng =5 2 “ 5

5. ng = 50 3 Y

6. ng =50 o o 6

7. ng=50 6 7

Total of N = 350, maximum number

In the Tong run a multiple sampling plan produces a lower average total
sample size N than the equ1va1ent double sampling plan (which in turn has a
Tower average total sample size than the equ1va1ent single sampling plan).
For a given lot, however, the maximum sample size may be required. A drawback
to the multiple sampling plans are that .they require more careful adherence to
the sampling procedures, more careful data handling, and may requ1re samp]es
from other lots to be held in limbo waiting to.be tested.

5.2.4 Other Sampling Plans.

Two other sampling plans are sequent1a1 sampling and. cont1nuous
sampling. Sequential sampling is the ultimate extension of mu1t1p1e samp11ng
with the number of stages unspecified. Continuous sampling is 4 procedure in
which 100% inspection is applied until a specified number of consecutive non-
defective items is found. Then sampling is performed at some given. rate.
When a new defective is found, 100% inspection is re-instated and the process
is repeated. : .- : S : L

5.3  Evaluation of Sampling Plans

Given any single sampling plan (n, c), where n is the sample size and ¢
is the acceptance number, it remains to be determined if the plan provides the
desired discrimination between good and bad lots. The statistical tool for
evaluating the worth of a sampling plan 1s the operating characteristic (0OC)
curve, which was first discussed in connection with hypotheses tests on a mean
in Section 3.6.2.
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What is required of-a sampling plan is a high probability of accepting
a good lot (i.e., one with a low proportion of defectives), and a low -
probability of accepting a bad lot (i.e., one with a high proportion of
defectives). More specifically, let's require the high probability of
accepting a good lot to be 1 - a = 0.95. Further, define the proportion of
defectives p in a good lot as the Acceptable Quality Level (AQL). Thus, given’
a sampling plan (n, c),

Pr (Accept lot!| n, c, p‘<AQL) 0.95.

If we further define the Rejectable Quality Level (RQL) as the smallest p for
which we want to have a low probability, e.g., 8 = 0.05, of accepting the Tot
(equivalently, a high probability of 0.95 of rejecting the lot), then

Pr (Accept lot | n, ¢, p2RQL) < 0.05.
To relate this terminvlogy with that ucsed in Section 2,.6,2, note that
the Type I Error of reJect1ng a true hyputhesis is equivalent to rejecting a
lot .with p = AQL; i.e.
Pr (Type I Error) = Pr (Reject lot | n, c, p = AQL)

1 - Pr(Accept lot]| n, c, p = AQL)
a .

1A

Type II Error is equivalent to accepting a lot with p = RQL} 1.e.;

Pr (Type II Error) = Pr (Accept lot| n, ¢, p = RQL)
. <8

The operating characteristic curve is then the plot of probabilities
for the whole range of possible p values.

5.3.1 0.C. Curve for a Single and Double Sampling Plan

The probability of accepting a lot can be based on the binomial
distribution. For a single sampling plan,

c
Pr (Accept lot| n, ¢, p) = b (")px(l o)
: x=0\x

where x is the number of defectives found in the sample, p is the proportion
assumed to be defective in the lot, and ¢ is the acceptance number for a
single sampling plan with sample size n. (For large n (220) and small

p (£0.05), a Paisson distribution may be used to approximate the binomial
probabilities, i.e.,

c X
Pr (Accept 1ot| n,c,p)=35 e .LER) .
X=0

For a double sampling plan, the calculation is a b1t more Lumplex.
The probab111ty of accepting on the first sample is
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c
r (Accept lot | nys €ps Fys D) = 21("1)p'x1 (1 p)"l =X,
: x1=0 Xq

However, if the value of X, is between 9] and r; (the rejection number), a
second sample is taken. %e probability that t%e lot is accepted after the
second sample, given that a second sample was taken, is the sum of
probabilities that the second samp]e w111 not produce more than ¢, - x
defectives (for a total of X] * Xp€£Cy) times the probab111ty of gett1ng
exact]y Xl defectives -in the f1rs% samp]e. :

Pr (Accept Tot after second sample[ UPYS c2, rz, p)”
r,=1
1 .
x5 ]+] Pr (x2< o= X1| Mps Cps 1o Py X7) Pr(f— ]1 g c?,r],p)

r.=1 Ch=X Ny=X
1 25" n Xo ¢ 2 "2 n Xy ny=Xx
x]2%1+] [x2§0 (x%) p 2 (1-p) ] [Kx}) pL- (1-p) 1 q

Putting it all together, the probability of aCceptfng a lot with a double
sampling plan is the probability of accepting the lot based on the first
sample only, plus the probability of accepting the lot after the second
sample.

H

Pr (Accept Tot | nj,np, €15Cp,r5r0,p)

= Pr(Accept lot | ny»Cq,>r5p)+Pr(Accept lot after 2nd sample|ns,cp,rpsp,xg)

SRR ) e N[

To illustrate, let's evaluate the examples of 5.1 and 5.2.

Example 5.4: Single Sampling Plan: n =200 ¢ = 3

3 :
Pr (Accept lot | . c. p=20.05) =5 (200) px(lfp)200 - X

~x=0 \ X
= 0.009.
Double Sampling Plan n = 125 . c1'= 1, ry = 4
n2 = 1256 C2\= 4, Y‘Z =5

Pr (Accept 1ot| Nys Nps €, Cps P = 0.05)

L /125 - 2 25 -
=3 ( xl)(o.os) X1 (0.95)2° x'+[2 (| )(o 05)*2(0.95)%° xa] [('25)(005) (0. 95)'23]
X|=O XZ=0

+[§2=o‘(l§2) (o.os)"‘?- (0.95)'25"‘2] [(1235) (0.05)3(0.95)'22]
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= 0.0124 + 0.0353 x 0.0477 + 0.0124 x 0.0761
= 0.015.
5.3.2 Interpretation of 0.C. Curves

Many sampling plans may exist whose operating characteristic curves
go through one of the specified points (1 - a, AQL) or (B, RQL). Thus, to
satisfy both type of error requirements, at least two points on the 0.C. curve
_are needed to evaluate the curve. In fact, several sampling plans may have
approximately the same 0.C. curves. For each single sampling plan, there are
approximately equivalent double and multiple sampling plans. Table 5.1 gives
a set of 0.C., values for the single and double sampling plans and Figure 5.1
shows their 0.C. curves. ’

Table 5.1: Operating Characteristic Values

Single Sample Double Sample
Plan (Ex. 5.1) Plan (Ex. 5.2)
 n=200,c=3 o =125,¢c =1,1r =4
Percent
Defective, p np = 125, ¢ = 4, rp =5
0.0] : 00858 . . 0.900
0.02 - 0.431 0.486
0.03 0.147 0.175
0.04 0.040 0.053
0.05 0.005 0.015
1.0
8 n =125, ¢ =1, rpeé
np=125,€:4,r2=5
6 |-
Pr (ACCEPT)
' 4 [— n=200
c:=3
2
o |

ol .02 .03 .04 .05

Proportion Defective

FIGURE 5.1: Operating Characteristic Curve for Nearly
Equivalent Single and Double Sampling Plans
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The producer of
not rejected too frequ
Error of rejecting a g
good lots, Pr(Reject 1
consumer on the other
probability of the Typ
is often called the Co

lots of material wants to be sure that good material is

ently. Thus, he is concerned primarily about the Type I
ood lot; i.e., p = AQL. The probability of rejecting

ot | p = AQL) is often called the Producer's Risk. The

hand is more concerned about accepting bad Tots. The

e II Error of accepting bad lots, Pr(Accept lot|p=RQL),

nsumer's Risk.

Accordingly, sam
consumer protection.
operating characterist
B=0.10, p=0.05. T
accepted lot will be d

ple plans are sometimes constructed to assure a certain
For example, a 90/95 assurance plan requires that the
ic curve of the sampling plan pass through the point-
hat is, with 90% confidence no more than 5% of an
efective. Similarly, a 99/90 consumer assurance plan

states that for an accepted lot there is 99% confidence that no more than 10%
of the lot is defective. The astute student may recognize the explanation
here to be very similar to that of a tolerance interval (Sections 3.7, 4.5),
where y= 1-8 , P = 1-p. Figure 5.2 shows four single sampling plans that
give 95/99 assurance to the consumer. ’

FIGURE 5.2: Operating Characteristic Curves

100 4

80

PROBABILITY 60
OF
ACCEPTANCE 40

20

*5.4 Average Outgoing

Sampling Plans to Meet a 95/99
“Assurance Level

ATTRIBUTE PLAN
> J T T T T 1T 1T 1 rrr

n=77s, ¢=3
n=630,C=2

| I S W W I N |

T T T T

1.l
O 02 04 06 08 10 12 I4
PERCENT DEFECTIVE

Quality Levej

Assume that the quality of a lot of incoming material is a certain

percent defective and,

given a sampling plan, it is advantageous to know the

quality of material outgoing. Obviously, a sampling plan which produces a
Tower average outgoing quality level, AOQL, than does another plan is a

preferable sampling plan.
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Let p be the proportion of defective pieces in an incoming lot,.and
Pr(Alp). be the probability of accepting the lot according to a specified
sampling plan; e.g., if x < ¢ defectives are found in the sample, accept the
Tot. The average outgoing quality AOQ for the accepted lots is the proportion
p of defectives in the lots which were accepted t1mes the probability of a
lot being accepted.

AOQ (Accepted lots) = p Pr(Alp).

If the rejected lots are subjected to 100%.inspection_and all défectives are
replaced with acceptable items, then the total AOQ is .

A0Q = p Pr(Alp) + 0 Pr(Rlp)

where Pr(RIp) is the probability of rejecting a lot given the particular
sampling plan and proportion defective p, and 0 is the proportion of defects
that supposedly is left after 100% inspection.

The average outgoing quality limit or level AOQL, is defined as the
limiting quality of the accepted material and is the maximum AOQ over all
values of incoming quality, p. If the atual incoming quality p is less than
the acceptable quality level, AQL, then few lots are rejected and the AOQ is
good. If the incoming quality is greater than the rejectable level, RQL (or

LTPD, 1ot tolerance percent defective) then many lots will be rejected. With
- 100% inspection of these lots and replacing defectives by good quality
material, the AOQ will again be good, even though the incoming quality was
poor. When the incoming quality is between the dcceptable level and rejectable
level, the outgoing quality is the poorest, but still acceptable.

Pr(Accept lot) | 20Q

\/

0 AaL RQL )
(LTPD)
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Examg]g 5.5

Suppose lots of 1,000 fuel elements for a commercial. nuclear reactor are
received from the vendor and are tested by sampling 100 elements from each

~lot. The acceptance criterion is to reject the 1ot if three or more
defectives are found and accept the lot if 2 or fewer are found. The rejected
Tots are then subjected to 100% inspection and all defectives replaced. The
AOQL .can be obtained as follows: :

AOQ = p Pr(Alp)

using a Poisson approximation for the sampling p1an,

2
r(Alp) = Z,271%% (100p)%/x!

= ¢7100P(7 4 q00p + (100p)2)2)
P Pr(Alp) ___A0Q . .
AQQ |-
0 1 0 otk
0.01 : 0. 92 0.0092 -
0.02 0.68 0.0136 R
0.03 0.42 0.0126 -
0.04 0.24 0.0096 o L L — .
0.05 . 0.12 0.0060 .ol .02 ) .03 04 .05 .06
0.06 0.06 " 0.0036 -

Maximizing p Pr(Alp) with respect to p we obtain a maximum value AOQL
of 0.0138 at p % 0.023.

Example 5.6 '

A modification can be made by replacing the defectives found in the accegted
lots also. Let D be the number of defectives in the lot and assume a
hypergeometric distribution (review Section 2.4.3),

s GG
© W_

C 1000 D
= 3 ]OO x

x=0 - 1000
100
where-x is the number of defect1ves found in the sahple and n-x is the number
of acceptable items in the sample. If p is the proportion defective, then

p = D . The probability of accepting a lot is Pr(Alp= D ), but
1000 : 1000

Pr(x<c|n)
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if one defective is found in the sample, it is replaced. Then subtract from
Pr(Ajp) the probability 1 Pr(x = 1l D). Similarly for finding two

defectives, subtract from Pr(Alp) the value 2 ' Pr(x = 2|D). Thus,
' ' ' T000 '

aoQ = D Pr(x<2|D) - 1 Prix =1|D) - 2 Pr(x = 2|D)
T000

Values for AOQ, where p = D/JOOO, D = 1000 p, are:

p D AOQ p D AOQ
0.00 0 0.000 0.05 50. 0.0060
0.01 10 0.0085 0.06 60 0.0036
0.02 20 0.0127 . 0.07 70 0.0020
0.03 30 0.0121 ©0.08 80 0.0011
0.04 40 0.0092 0.09 90 0.0005

The A0Q function can be shown to have a maximum of AOQL = 0.0129 at p=0 023.
Note that this is very similar to the previous calculation where we did not
replace defectives in the acceptable lots and we used the Poisson
approximation. .

'Examgle 5.7

" Consider the double sampling plan,

lot size N = 400

sample size ny = 30
First accept if no defectives found, ¢y = 0
Sample reject if 2 or more fourd, r; = %

if one defect is found, take second sample.

size of rema1n1ng Tot = N' = 370
Second sample §ize ny = 60
Sample accept if no additional defectives are found, Cr =1
reject if one or more additional defectives are found, rp, = 2

Suppose D, = 5 is an acceptable number of defectives for the Tot

D
(i.e., AQL = 90 = _§_.) and D; = 10-is a rejectable number of.
N 400 o
defectives for the 1ot (i.e., RQL = D1 "= 10 ). Then for the first

N 400

sample, D =D, = 5and D = D 10, and for the second sample, g1ven that one
defective was found in the ¥1rst sample, D' = D'y = 4 and D' =D'y = 9. Thus,

Pr(Accept|D, =" 5) = Pr(x1=0|D0 = 5) + Pr(x;= 1|Dg = 5) Pr(x,=0|D', = 4)
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002,09 ¢
% e

= 0.6758 + 0.1361 = 0.8119

is the probability of accepting a Tot at the AQL value.The probability of
accepting a lot at the RQL value, Dy = 10, is

Pr(Accept|D; = 10) = Pr(x;=0]|D;=10)+Pr(x;=1]D;=10)Pr(x,=0D;= 9)
008 @ C8
L W1\ 29 0 60
(400)
30

(370)
60
0.4544 + 0.0753 = 0.5297

The AOQL level is obtained by maximizing pAOQ = D  Pr(Accept|D).
400

For D = 5, AOQ = 0.0101, and for D = 10, AOQL = 0.0133, where we assumed
rejected lots are subjected to 100% inspection and all defectives replaced.

5.5 Variable Sampling

Variable sampling deals with continuous measurements, such as length,
weight, weight percent, rather than success/failure type data. Many of the
principles discussed for attribute data have already been discussed for
variable data in Chapter 3. Specifically, the concepts of tests of hypotheses
for the mean, operating characteristic curves, and sample sizes determination
for specified Type I and Type II error levels were presented earlier. The
interested reader should review sections 3.5--3.7 at this time.

In the remainder of this chapter, then, attention will be focused on
the quality control techniques of production control charts for continuous
variables. An elementary discussion of Shewhart Control Charts for the mean
and variation of a production process will be presented. Many other types of
control charts cxist, including charts for attribute sampling. For more
information on control charts, see books on Quality Control, such as by Duncan
[11], and basic statistical texts, such as by Johnson and Leone [19], and
Miller and Freund [25].

5.6 Shewhart Control Charts
The object of a control chart is to provide an automatic procedure

for warning the manufacturer of trouble with his production process. There
are several aspects of his product with which he may be concerned. He is
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concerned about the average quality of his product, the variability of the
product, and the proportion of individual items that do not meet the
manufacturing specifications. In addition, he would like a procedure for
checking these characteristics of his product that can be performed quickly
and easily by the personnel on the line, thus avoiding a possible serious lag
time between the occurrence of a problem and its discovery by plant
personnel. With these points in minds, three basic types of charts will be
discussed: the x-chart for detecting departure from the process average, the
R-chart for detecting problems with process variability, and an individual-
measurement chart for monitoring the relationship of individual items to the
product specification limits. Finally, an Acceptance Control Chart will be
discussed which combines some of the features of an X-chart and a chart for
individuals. - ‘

5.6.1  The x-Chart

The objective of the x-chart is to keep tabs on the average quality
of the product. This is done by taking a sample of n observatiuns at regular
intervals. Hopefully, the averages obtained will stay close to the process
average established by a collection of previously obtained averages of n
observations. If the process drifts or shifts, or simply goes berserk
temporarily, the control chart should detect this departure from usual
. behavior .quickly.

The first step in using an x-control chart is obtaining the process
average and control limits. Ideally, the process average will be the same as
the nominal or target value for the product characteristic in question.
Unfortunately, this is almost never the case in practice, but hopefully it
will be close. The process average X is obtained from the averages of k
samples each of size n, o

:_1
S

._.
M=

" M=

X, Xo =

[
—

1

At least 20 such averages of about 5 observations each are recommended.

The control limits must be established next. The choice of control
limits is arbitrary, but a standard practice is to use 3-sigma limits. That
is, the contrnl limits correspond to

7% 4 302-1.

where p is the true process mean and o ¢ = o/+/n is the true process
: i

standard deviation from an average ;i of n observations. The 3-sigma limit
yields a probability of 0.0027 for an average to exceed either the upper or
lower 1imit by chance alone; i.e., Pr( |X -p| > 30";i) = 0.0027. This

low chance of exceeding the limits gives a great deal of protection against
the costly error of unnecessarily stopping production.
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In practice, of course, u andoy_ are unknown. From the same
1

data used to compute the process average X, the estimate of 30-2, is
i

obtaingd. The estimate to be-used for this X-control chart is

X+ AR

- k

where R = = 3§ R, R; = max (x
k i=1

] - min (xij)’ and A, is a tabled value
(Table XIV) such that AjR is an estimate of 3o %;° The range R; is known

ij)

to be a satisfactory estimate of o for small sample sizes. It should be noted
that it is assumed here that X; follows a normal distribution. The central
1imit theorem, however, reduces considerably the impact of any departure from
normality in the individual observations Xjje

Having established the process average and control limits, one should
first plot the original k averages as illustrated in Figure 5.3 to be assured
that the process is indeed in control. . It is very unlikely, however, that any
average X; will exceed the control lines since it was used in establishing
those lines. Now succeeding averages may be plotted and the process observed
for evidence of being out-of-control. Actually not one, but several,
indicators may be used: -

)—(+A2§ 7—,’,’
i 1x1 L1 |X|1 // 1 lejxlllxl
x X X X
X X
' RUN ORDER

Figure 5.3: Xx-Control Chart with 3-Sigma Limits
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1. X exceeds 3-sigmé lTimit.
This implies a sudden shift in the process has occurred or
a trend has developed which may be irreversible if left
alone. If the violating value seems isolated, perhaps a

data handling error has occurred. The original data for X3
should be investigated.

2. ii exceeds 2-sigma limit.

This is often used as a warning signal, but is not
necessar11y an out-of-control signal. (2-sigma limits are
given by 2 A,R/3.)

3. A run of considerable length on one side of the target

value (x) indicates a possible shift or trend. A run is a
series of consecutive averages X; that occur on the same
side of the target value. A run of 8 consecutive averages
will occur by chance alone approximately 4 times out of a
1,000 compared to the chance of a single average exceeding
the 3-sigma 1imit (3 out of 1,000). Other run indicators
with similar probabilities of occurring by chance are

~ 10 out of 11 on same side
12 out of 14 on same side
14 out of 17 on same side
16 out of 20 on same side.
If evidence is obtained that the process 1s out-of-cuntrol,

production is usually stopped, and the process fnvestigated. Upon restart1ng
the process, new control 1ines should be established.

5.6.2 The R-Chart

Although the process average is important to control, the successive
averages could be well within the 1imits and the process sL|11 be out=0f=-
control. This may occur if the process has become extremely erratic. If the
standard deviation of the process goes up considerably, the average may appear
adequate, but a large proportion of individuals may be exceeding the
spec1f1cat1on limits. Obviusly, then, a control chart monitoring prucess
variability is in order. One such Lher would be the s-chart but due to the
greater complexity and time required for an operator to calculate

a .
Sii//z (Xij - i})zl(n - 1) rather than R;, only the R-chart will be presented
J=1

here. This is in keeping with the principle of establishing procedures which
can be performed quickly and easily by personnel on the production line.
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For an R-Chart, the ranges R1 are obsérved for each of the k samples
of n observations used for estab11sh1ng the limits of the x-control chart.
The 3- s1gma control limits for Ry, then are

Upper Control Limit UCLg = D4R

D3R

Lower Control Limit LCLp

where D, and D, are found in Table XIV. If an individual range value R;
exceeds the limits, there is strong evidence of lack of control. The process
should be stopped and an investigation into the cause of the change in
varjation begun.

5.6.3 An Example of an x-Chart and R-Chart

The x-chart and the R-Chart go hand-in-hand- and should be applied
together. ‘ '

_Examgle 5.7

The data given in Table 5.2 represents coded measurements of the grain size of
fuel pellets for the light-water breeder reactor. Samples were taken for 25
consequtive blends of pellet material.

The process average and average range are 1
X =13.70, n=5, k =25

R 5.88

The 3-sigma control 11m1ts for x] are

X AR
LCL = 13.70 - 0.577 (5.88) = 10.31.
UCL = 13.70 +'0.577 (5.88) = 17.09

The 3-sigma control limits for R are
' LCLg = D3R =0
UCLR = D4R = 2.115 x 5.88 = 12.44

The control charts are shown in Figures 5.4 and 5.5. The process appears to
be under control.
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Table 5.2:

Sample Measurements (Coded)

Pellet Grain Size for 25 Consecutive Blends

Statistics
Sample -
Number X1 X2 X3 X X, X3 Ri szi S
1 1 13 11 9 8 10.4 5 3.80 1.95
2 12 10 13 15 13 12.6 5 3.30 1.82
3 14 1 11 16 11 12.0 5 5.30 2.30
"4 n 12 n 12 15 12.0 5 LA0 1.87
n 14 13 12 10 13 12.4 4 2.30 1.52
b 14 7 13 18 8 4.0 9] 15.50 3.94
7 18 16 14 11 18 15.4 7 8.80 2.97
8 14 12 9 16 16 13.4 7 8.80 2.97
9 18 13 15 15 14 15.0 5 3.50 1.87
10 12 .14 19 16 11 14.4 8 10.30 3.21
1 15 10 18 12 13 13.6 8 9.30 3.05
12 18 13 12 13 14 14.0 6 5.50° 2.35
13 15 13 13 14 20 15.0 7 8.50 2.92
14 16 15 14 13 14 14.4 3 1.30 1.14
15 11 9 12 14 12 11.6 5 3.30 1.82
16 13 16 15 19 12 15.0 7 7.50 2.74
17 8 11 12 11 15 11.4 7 6.30 2.51
18 10 11 8 13 13 1.0 5 4,50 2,12
19 14 18 14 - 20 16 16.4 6 6.80 2.61
20 14 17 16 9 14 14.0 7 9.50 3.08
21 12 16 14 13 13 13.6 4 2.30 1.52
22 21 15 15 15 14 16.0 7 0.00 2.83
23 14 11 12 13 13 12.6 3 1.30 1.14
24 16 22 13 17 17 17.0 9 10.50. 3.24
25 14 14 14 16 15 14.6 2 0.80 0.89
Ri = 147
R = 5.88
i = 2i| = 13,70
25
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observations to be within the specification limits.
~ for individuals is sometimes desired.
" average X as a center line and the control limits should be the specification

x-Chart on Grain S1ze
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Figure 5.5.

Control Charts on Individual Measurements

Neither the x-chart nor the R-chart ensure the individual

limits, or some function of the specification of limits. An ideal
would be for the specification 1imits to be identical to the 3-sigma limits,

X+ 30

normal distribution, s a¢4§2(x1

and (2) indirectly, by the estimate of 3o ; for the X-control chart,
moving range could be used to estab]1sh the

R-Chart on Grain Size

For this reason a chart
This chart would use the process

arrangement

The process standard deviation may be estimated in at least two ways:
(1) directly, by the usual estimate of the standard deviation of a

P R¢ﬁ]3 . A1ternat1ve1y,
11m1ts
- N-1 .
where R = 1 |x - x5 |
N=1 i= ]

I

>

+3 ﬁ/dz

and d, is given in Table XIV,
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successive samples of size 2 used in obtaining R are not independent, the use
of closer control limits (e.g., 2 R/d2) is suggested-by some authors (for
example, see Johnson and Leone [19]).

5.6.5 Acceptance Control Charts

An acceptance control chart is a control chart for the process
average that takes into account the specification limits for individual
_items. If these specification limits are sufficiently far apart compared to
the usual X-control limits, this procedure may then lead to a relaxation of
the X-control limits.

The procedure is to first determine the process mean that will just
meet the specification requirements that not more than 100P% of the individual
items will exceed the specification limit (assuming a normal distribution).
This process mean is then the rejectable process level,upp . We next wish to
establish a test that will give a low probability of aCCépgmg a mean at the
RPL level or worse. That is, we want to establish a critical value X ,.jt such
that the Type II error of accepting p2pupp is small; i.e.,

Pr(X; < Xepit | = mppy) € B, (B small).
Finally, an acceptable process level upp can be determined by applying a

Type I error calculation for a given a level;

PY‘()-(.I > )_(CF'itI’J':'u' APL) <a, ( Q smaH).
Thus, the probability of rejecting an average by chance (and hence
illustrating a lack of control), when the process mean is as good or better
thanppp, is small. The control Timits for X are then the calculated critical

values X.pjte

In summary, the acceptance control chart will provide control lines
for a sample average such that (1) there is a small probability of stopping
production unnecessarily, (2) there is a small probability of continuing
production when the process average is indeed out-of-control, and (3) the
required proportion of individual items meet the specification limits. This
modified control chart for averages should then be used in conjunction with
the R-Chart. '

Example 5.8

Suppose the nominal stack length of a fuel rod is 84 inches with specification
limits of + 0.5 in. No more than 0.5% of manufactured rods are allowed to .
exceed each limit. A Type I error probability of 0.05 is to be applied to the
process at the APL level and a Type II error probability of B = 0.01 is to be
applied to the process at the-RPL level.
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Assuming a normal distribution for stack lengths, a sample size of n = 4, and
a standard deviation of o = 0.06 in., the upper acceptance control limit for X
is obtained as follows.

1. - First calculate the rejectable procéss 1eve1 The requirement
is that at u =y pp| no more than 0.5% of the popuqatwn shall exceed
the upper specification limit (USL).

Pr(X > 84.5 | p= pgpLs o = 0.06) = 0.005

This yields 84.5 pp) = 2,576 = Pr(z > zg.gg5). Then
a .

HRPL = 84.5 - 2.576 (0.06)
= 84.35

2. The second step is to calculate the critical value of a test on X
that will accept pu= p pp with a probability of 0.01. The upper
contro] hm1t for X s Xopige .

PR < Repqg | #= mppLs @ = 0406, n = 4) = 0.01

This gives Xcrit = HRPL _ _ 5 306 - ¢
TR - 2( 6 Pr‘_(z“. z5.01)

crit = BRPL - 20.01 @/ VM
84.35 - 2.326 (0.03)
84.28

UcL = x

3. Finally, to establish the 'process'a.ver"ag‘e that will be accepted with
a high probability, i.e., the acceptable process level HApL

Pr()-(. > icr‘it ' F=F’APL’ o= 0.06, n= 4) = 0.05.

This gives Xcrit ~ MAPL _ }
g c/f = 1.045 = Pr(z > 20.05) V

84.23

These  steps are illustrated in F1"gL‘Jre 5.6. The student should perform
the calculations required to obtain the lower ppp;, LCL, and ppp.
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UPPER CONTROL LIMIT
' © BR4.2A

|
84.0 84.l 84.23 84.35 84.5
TARGET ' n n SPEC.
VALUE APL RPL LIMIT
AN
FIGURE 5.6

Upper Acceptance Control Limit for X: Example 6.8
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CHAPTER 6
COMPARISONS OF POPULATIONS

Thus far we have discussed the analysis of data coming from a single
population. In many circumstnces we want to compare two or more '
-populations. We may compare the mean value of two production processes or
compare their variance to see if one process is more consistent or precise
than another. We may compare a new process against a standard or compare many
processes to see if any differences exist. In this chapter we shall first
examine the problem of comparing two populations and then present a general
procedure for comparing any number of populations by an Analysis of Var1ance
(ANOVA) table.

6.1 Comparison of Two Means, Variance Known

Suppose we are interested in comparing the means of two processes,
observations from which are considered to have come from the same
population. Let x;.: be the ith observation from the jth populat1on M
the mean of that poﬂu]at1on and e ij be the random error occuring on tﬂe 1th
observation on the jth population. “Thus, we may write a model for the problem
as ‘

x'IJ =,u.j + €1J K

where we usually assume that the érroré are independently and normally
distributed w1th mean 0 and var1anceo- The processes under ‘consideration

may differ in their means because they represent different treatments, such as
two chemical additives, two analytical measuring devices, or two plans of
operation. With variances known we can with the use of the Central Limit
Theorem compare the means of the treatments by a standard normal variable; let

X =% - lpy )

z= 77 2
1,2
M N2

2

is the average of the nj observations from the jth treatment and o j

' (6.1.1)

where xj

is the known variance. These observations are obtained in a random order to
enéure thelE independence. Thus, the variance of the statistic 21 - X, is

/n1 +7 2 /n2 To test the null hypothesis that Ho Ky - = 0 (or any

other value), or to compute a confidence interval for;LI - i 2, We need only to
refer to the table of standard normal deviates.

Example 6.1

Suppose it is thought that by changing the rate of coéling liquid
flowing across the cutting edges of a high speed drill the tool Tlife
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could be increased. To test this hypothesis, seven observations were
obtained using the standard flow rate (process 1) and six
observations were obtained using the new (process 2) flow rate, all
thirteen trials performed in random order. The results were
Xy = 12.4 hours np =7, Xp = 13.6 hrs., np = 6, where

£21.0 (hrs.)?, and 95 = 2.0 (hrs.

2
2 )

it is also assumed that ©
Hot 1 = p2 (equivalentlypq - po = 0)

Hat py<mp (pq - o <0)

,- X% - (py-p2) | 12.4-13.6 - (0)
2 2 1T, 2
\/’1 e 7' %
n) ny
==z - .74

~/0.48

Since -1.74 is much less than -1.645 (Pr(z<-1.645) = 0.05), we reject
the hypothesis that the flow rates have no effect on tool life. This
inference is based on a one-sided hypothesis test with a 5%
significance level (i.e., Type I error probability).

6.2. Comparison of Two Variances

We may also desire to test whether or not two variances are the
same. Suppose observations from two sources are normally distributed. Is one
process or treatment more variable than another? More precise or
reproduceable? To answer the question, we need first estimate the variance
from each process as follows:

n n :
1 = 2 2 - 2
= (X- - X ) ’ 2 _ (X- - X ) :
ST I = i1 dp 2
' 2
2 2 e e ny - 1) s
Each s® follows a x,° distribution. More specifically >
2 71
. 2 (n, - 155 2
distributed as x = _; and ———— is 'distributed as x 1+ To test
1” o N2~
: 2
. . 2 _ 2 _ 2
the null hypothesis H,: o1 0, = ©C , we need to develop a test

7
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statistic. In testing a hypothesis about a single variance we used the x2
d%str%bution. To test two-variances for equality we use the test statistic
$s°1/s%p, which follows the F-distribution.

2 2
o T1 %1
~Definition Fo v, -3 5
1,2 ?2 xv2 /v2A

Where Fyl, vz is a F-distribution with 2 parémeters, Vs vz'

2

which are the degrees of freedom of the tiwo x~ distributions

involved in the ratio, vy associated ‘with the numerator and vo with
the denominator.

It follows that

» .
2 2 2
s o1 XepmWin-1) o) -
2 2 2 - 2 n,-1, ny-1.
2 T2 X1 /ingm 1) 72 172
. 2,2 e by . 2 _ 2
That is, s%/s%) follows a F, n distribution, if &° =4 Thus
1-12 M2-1 1 o ,
L2 22 . 2 ;2 I
.under Ho.al o, =0 (1.e., o] /cr2 1), the test statistic

s% /sg follows a F-distribution with np - 1 and n, - 1 degrees of freedom.

f(Fy), v,)
PROB (F >Fq) = @

F.ss
.0 Faq F.os F.or

Figure 6.1. F-Distribution
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‘ine test of 0]2_,= U% becomes then (for Hp: 0% # a'g )

W{F : <F <F }=]-a
. y.l’ Vz, ]- 0/2 Vl’ VZ l/l’ VZ’ 0/2
What are the reasonable values to expect from the distribution? A useful

relationship when dealing with the left hand tail of a F-distribution is

1
sz,'ul,a

Vls ”2’ 1-a

.Example 6.2,

Returning to the tool life problem in Example 6.1, construct a 90%
confidence inlervdl fur Lhe ratio of variances. Suppose the
estimates of variances are :

2 . 0.74, n, =7, -6

5] 1 vy
2 = = -
52 el 20239, n 2- 6, y2— 5
2 2.
is: H_: 1 51 _ 074 .
Hypothesis: H: 5 =1 5 = o - 0.3305
g S [y .
2 2
,,%
e —= # 1
2
2 2
6,5 —Lz/ o2
52/ g .
S 2 l v 2
1 | 1 1 -
Pr{‘— <Fg,5 ~ <F }= 0.90
F5,6,0.05 6.5 2 / o2 6,5,0.05

Then inverting and reversing the signs of the inequalities,

2 2
S 1

F6,5,0.05 q

. 7 F5.6,0.05 °

N N — N



From the table of the F-distribution,.F5 ¢ o g5 = 4.39, Fg 5 0,05 = 4.95.

. o 2
0.3305 ¢ _ )1 ¢ 0.3305 x 4.39
[ 3 a .
2
o]
0.067 < . 5 < 1.45
[+
2 .
. : - 2
. . . . 1 .
Thus, we can believe with 90% confidence the — lies between
0.067 and 1.45. Therefore, accept Hy that o > and o° could be equal.
' 1 2

A standard approach to comparing two variances is to put the larger

estimate in the numerator and test only against o-i ><r§ (where si >s E ).

2 2

By this approach, we would test HO: o, /o'1 = 1 against HA:°§,>0§
2
) S2_2.239 _ . )
by comparing =TT - 3.03 against F5 6..0.05 - 4,39,
s . [y ’.'. ) .
' 1

Then we would accept Ho" (This is a one-sided 5% test, or equivalently, a
two-sided 10% testi. ’

The assumption of normality of the observations was made in
constructing this test. In comparing variances, departures from a normal
distribution can cause significant errors in the probability of accepting
unequal variances as equal, and vice versa. Thus, care should be taken in
comparing variances, particularly in recognizing the distributions involved.

6.3 Comparing Two Means, Variance Unknown

In comparing two processes for differences in. their means when the
variances were known, it made no difference whether or not these variances
were equal. We simply calculated the appropriate standardized normal value
and compared it to the critical value. When the variances are unknown, we
proceed jEst as we did when ye dealt with a single population; i.e., we
replace o by its estimate s“ and z by t. As we shall see, however, the
inequality of varianceés causes certain extra difficulties. We shall being
with the assumption that the variances are equivalent. This is often a
reasonable assumption s1nce the var1ance of the data is the variance of the
errors involved, Var(x Var ( = Var ( : We often use the
same equipment dnd procgdure to obtg1n daﬂa even thougﬂ the process may have
changed, and these errors are sometimes larger than d1fferences in process
variability.
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6.3.1 t-Test, Variance Equal

— N

In comparing means of two populations where © =<T§ s we use the
following:

X=Xy - (- Hp)

n,+n,-2 vﬁ————————— ’
172 sp /nl + 1/n2 .

t

(6.1.2)

where tn1+n2-2 is a t-distribution with n1+n2~2 degrees of freedom since

these are the deqrees of freedom in the pooled estimate of variance sg,

S(x -x% + T(x -x )2
2 . _ ] 2i 2
p nl-l + nz—l n]+n2-2 '

If it is true that 0'] = 0'2 , then the observations about 21 can be

expected to vary about as much as the observaEions about X, vary. Thus, two
independent estimates of the same parameter o“ are available and can be
combined. Since there are n - 1 and n, - 1 degrees of freedom (i.e., the
means and po were estimated by X; and iz) in the individual estimates,

there are ny - 1+ np - 1 degrees of freedom in the pooled or combined

? 1 1

o If Xl - X’) > tn1+n2_2 0,025 SP n] + —nz then the
hypothesis 7 -pp = 0 has been rejected at the 5% 1eve1(2 sided test). This
statistic, however, is completely general for testing any hypothesis

estimate of o

Ho: #1- #2 = A, Note that if

) . : » . ’
a-;‘ =cr'é , then Va'r (,’_(] = R2) =(—;T.]ﬂ+ HJ\_Z—) UZ

is minimized when hl-= ny [try ny +:n2 =8:ny = ny = 4 yields

i

1 1 1
4 4

1. ny =3, n, =5 yields L+ 1 - 0,533, Lo L yierds 0.667, etc]
2 , 3 s 2 6 |

This also holds when we estimate o2 by szp. Thus, if we assume
o8 = a2 =o? (known or unknown), chioose équal Sample $izes
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Ny = no in order to minimize Var(X; - X») and hence shorten the corresponding
confidence interval.

If ny = np, then the test statistic reduces to

x]"iz' (I-’-l' /-"2)

t = (6.1.3)
2(n-1) 2
2
‘\/Sp /2n
where np = np=n, 0'12 = O'S = o and
. 2 n
2 2 S s L3 2
2.7 % S E Ky o ¥y :
P 2_ 2(n-1)

Example 6.3. Consider again the tool 1ife problem.
Given the following results, test uq -po = 0.

%; = 12.4, s2

{=0.74,ny =7, vy =6

Xp = 13.6, 5= 2.239, np = 6, v = 5

HO:P']. iy ) =0
Hp: oy -pp 70

A 95% confidence interval is

VAR E

Xo- X, + T o S
1 2 11, 0.025 N n,

- 2.20, Sf, ) 6(0.74). ;]5(2.23@ ) 153?35 142

Sp\/‘]?- + % = 0.66.

t41,.025

The 95% confidence interval, then, is
12.4 - 13.6 + 2.20 (0.66)

-1.2 ¢ 1.45

“+

(-2.65 <y - mp < 0.25).

133



Since the interval contains the value of zero, we do not reject thé
hypothesis H,, that the means are equal.

6.3.2 t-test, Variances Unequal -

2 2

1 by si and o5 by 52

2 ’

If 0% # 0% » what happens? Replacing o

the test statistic becomes

* xl")—(z"(l»‘-l 'I-‘-z)

but the exact distribution 1s not clear. The problem of comparing two means
when the variances are unknown but unequal is known as the Behrens-Fisher
problem and there have been several solutions proposed. Two are suyyesled
here. The basic problem is to correctly specify the critical t-value.

A weighted critical value suggestion is found in Cochran and Cox [51.

2 2
1o, R S

* ny 1, a/2 n, 2, a/2 .
t = ] :

5 5 (6.1.5)

S S

1 + 2

M X

which reduces to t,_y 472 if'n] = np. It can be shown [26] that the Type I
error probab111ty remé1ns reasonably constant over the whole range of possible

ratios for o 1 /0'2 if the sample sizes are equal. Thus, when the

variances are unknown, choosing equal sample sizes protects against erroneous
conclusions,

A second solution makes uae of the fact that the. sum of two independent. )(2

variables is a weighted x“ variable.
That is,
2 2
s s
n1 ¥ f ~ax§
1 2
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where a is a mu}t1p1y1ng constant, a > 0, and b is the degree of freedom of
the resulting x~ distribution.

By equating the first two moments of the two
sides and solving for b, we can obtain the appropriate critical va]ues for the
test of means.

A si sg cf 2 g 2
E |[— + —= = F X,] + Xy
n n, nyv

1 vy, V2
o] °5
"oy, 1t q V2
1Y1 2 V2
2 2
_ 0, e
M N>
o 2 ol 2 cr‘l1 2, o3 2v,
Var Xy, + Xy = - — t e
n., v N, v _2—
171 22 2 n v n v,
1 1 2 2
E(axg ) = ab, .Var(axg) =2 a2b
o7 o3
Thus, ab = +
M N2
s4 T4
24 1, 72
2y, ndy
171 2°2
Solving gives
2
2 2
o o
( n Lo n 2)
R 2
2
("‘_f_) ("i)
n n
10 2
1. Y2
4 4 2 2
(%1 72 71 72
a= * 2 // n * n
n v nzv o' 1 2



. 2 2
* . . 51 S2 2.2
Thus, t follows a ty distribution since + ~a X
" N, b
. . . 2 2 2 2
where b is estimated by replacing o1 and T by s] and Sy s
2
2 2
S S
(& + )
b = —1 - ) (6.1.6)
2 2
(51 /n1)+ (Szlnz)
n -1 n -1

Note that min (ny-1, np-1)

<b<n + n2—2.

The calculation of degrees of freedom in this manner is known as

Satterthwaite's Approximation

and the method can be applied in general four

combining several independent estimates of variance into a single estimate of

total variance.

However, in some complex cases, care must be taken to assure
that one is adding estimates of variances, not subtracting them.

In such

complex cases, it is recommended that you consult your local statistician!

compared to the critical value ¢

= 2.546

Example 6.4. Tool life data from Example 6.2.
ng =7, s =0.74, vy =6
no =6, s = 2.239, vy =5
X - % - (py- mp) ‘
¢ = 2 1 2 is to be
2 2
S s
«/1 -
" 2
Cochran-Gox,
3 52
ex . T_'6,0005" 5 '5,0.0%
0.025 2 2
—_ 4+ =
M ™
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or Satterthwaite's Approximation ty g o5 = 2.32

3 7 (s5/m) (53/n3)
where b =( nl + nZ) // (‘ﬁ;:r‘ * e )
- 7.7

6.3.3 Determining Sample Size for Comparing Two Means

In Section 3.6 we discussed how to determine the sample size required
to test a hypothesis with given Type I and Type 11 error probabilities.
Specifically, we illustrated how to find n the required sample size to assure
that we would reject a true null hypothesis p=pg about a mean with no more
than 100 a% error and would accept a false alternative hypothesis p=pp with
no more than 1008% error. If the variance of the distribution were known,
the required sample size could be determined directly from

2.
(2a - ZI-B) 0’2

(kA = K0)

n =

If the variance were unknown, an iterative procedure could be used utilizing
the t-distribution, or the required sample sizes could be looked up in Table
IX. , .

We can accomplish the same thing in dea]ihg with the problems of
comparing two mean. Let

HO: pl - pz = 0
HA: Kl - K2 = 3

where & is a difference in means which we would like to detect with high
probability (i.e., accept H, when Hp correct with small probability). The

=O'§ = 0'2 'is

test statistic assuming a’§

i]_.' 3(‘2 - Ky - I-‘-z)

v@i;d'/ n

where for 2 2 the variance of (%X; - %p) is minimized
1 ' .
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when the sample sizes for each average are equal. Now foT]owing the same
procedure as in Section 3.6.3, we find ‘ :

(2 Zl-B) 20 2

n = .
3¢

Example 6.5

Suppose we wish to detect a differehce between two means of size Z;r;
if it exists, where o is the common standard deviation of the two
populations. If we allow a = 0.05 probability for mistakenly

rejecting the null hypothesis w1 =p,, and want to be 95% sure of
detecting 8= 20, i.e., B = 0.65, t%en ‘

20.05 = ].645, 20.95 = -].645, 'S-_ = ZQ-L"_' 2
p = (1.645-(-1.616))2 " 2
‘(8/0)2

_ (3.29)2 2 _ 10,82
j“I‘L""' 2

= 5,41 — 6 (rounding up to nearest integer)

That is, we need 6 observations for each average if we are to test
pq1 = po with 95% (one-sided) confidence and detect By =pp = 20
witk,pro%ability 0.95. '

If the variance is unknown and is to be estimated by the data
obtained, we replace z by t and must iterate to obtain n. Table X
provides the required sample size in this ¢ase. For 8 = 2,

e=B8 = 0.05, we find from the table n = 7 (for each average).

lortunatcly, the condition of equal variance is not an overriding
consideration provided that the sample size from each population is
the same or nearly the same. Then, the probability that a 100y %
confidence interval contains the true value, uy -puo, is
approximately y= 1 -a . For equal sample sizes, tﬁen, the t-test is
insensitive to departures from the assumption of equal variances. It
is robust with respect to this assumption.

6.4 The Paired-t test

It is not unusual for an experiment for distinguishing between means
to have a very large variance estimate, thus making it extremely difficult to
find differences even when they do exist. The situation is not unlike finding
a golf ball in the rough! If the grass (variance) is high, we have to look
hard and long (large sample size) to detect the ball (1 -pp). If we can
"cut the grass", we have a better chance of finding what we are looking for.

- What often occurs js that there is a greater variance between experimental
units being tested than there is between the treatments!
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Suppose we are comparing the corrosion resistance of a sample of a
particular type of alloy, subject to a particular chemical treatment, with
that of an untreated sample. Applying the treatment to one set of samples and
no treatment to another set of samples will enable us to perform a t-test for
comparing corrosion resistance. However, if the observed resistances of the
samples were quite variable, we may not be able to tell whether a difference
existed, i.e., the test would not be very sensitive. What if the samples of
alloy were large enough to test both the treatment and no treatment to each of .
the samples?

1
}( ‘ }\\\—TREATMENT

NO TREATMENT

Then we can compare the results of corrosion resistance for each experimental
- unit (samples of alloy). The test for comparing two means then becomes a
single population problem by taking differences of the observed pairs. Thus,
the test is called a paired-t test. The analysis is as follows:

Hot #1 - k2 = pg =0
Hae kg 70
Paired-test Test

No Treatment di = X1§ - X2
Treatment or Standard Differences
X11 X21 dq
X12 X22 - dy E(dy)=py - k2
» . . ‘ Var(d;)=Var(xji-xp4)
_ _ 2
. . ) . a_d
X1n X2n dy
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o o 2 & 2
Rg= X % sq = i5(d-d)
n -1
X
t _d ®d
n"] 2
S
d
n

We note the f011bwing:

1. The degrees of freedom is n - 1 not 2(n - 1) as in the unpaired t
test. Everything else being equal, a test with 2(n = 1) degrees
of freedom will be more sensitive than one with n - 1 degrees of
freedom. But all things are not equal here. By comparing
results within each experimental unit, we reduce the variance of
the observations d;j. That is, we have removed the between unit
or block variation from the problem,

2. The sample size must be equal for each treatment.
3. The variables X74 and Xxp; may or may not have equal variances

and in fact may be correlated. All that majters in the paired-t
test is the variances of the differences, o 4 In a development

of this fact, the paired-t is sometimes called. a correlated-t
test. —

The advantage of using a paired-t test for comparing means is that
you block out a large source of variation in the data due to the differences
among experimental units, thus developing a more sensitive test, provided that
a large between unit variation exists! An important consideration, however,
is that there be a natural basis for comparing treatments within experimental
units. Fxamples of natural pairings are measurements than can be designated
by such terms as before/after and with / without, or can be repeated under
different conditions on the same experimental unit, such as on two halves of
an ingot or by two different measuring devices. If you blocked out between .
unit variation where none existed, the resulting estimate of variance would
not be appreciably reduced, but your t-statistic would have half the degrees
of freedom (n - 1) that the more correct unpaired test would have (2(n-1)).

On the other hand, if you fail to block out between unil variation that is
large, the resulting pooled estimate of variance would be too high. Both
situations will result in insensitive tests, i.e., tests that would accept the
null hypothesis more often that they should. A rule of thumb, however, is
that if you suspect a unit (block) to unit variation, use a paired-t test with
as many degrees of freedom as possible. The resulting error in using, say
t5 0.025 = 2.571 rather than t10,0.05 = 2.228,will usually be less than that
error made in not pairing and assuming 0'2 =02 incorrectly.

1 2
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Example 6.6.
Ten -sample specimens of an a]ioy are chosen randomly to use in

testing the corrosion resistance of a particular chemical
treatment. Half of each specimen is treated, the other half not.

Corrosion Resistance

Sample: X1 X2 X - X1

Experimental . Ry Sample
Unit or Block Untreated Treated . Difference Average
1 12.1 14.7 2.6 - 13.40

2 10.9 14.0 3.1 - 12,45

3 13.1 12.9 -0.2 13.00

4 14.5 16.2 1.7 15.35

5 9.6 10.2 0.6 9.90

) 11.2 - 12.4 1.2 ¢ 11.80

7 9.8 : 12.0 2.2 10.90

8. 13.7 14.8 T.1 14,25

9 12.0 11.8 -0.2 11.90

10 - 9.1 9.7 0.6 9.40

)_(1 = 11.60 .)22 = 12.87 )—(d = ;(-2~- 21

- =1.27
Hot w1 =pp Orpy -pp =0
HA: /.4.1 <;L2
¢ - d " pd | ;2 = Ls(d.-0) - 1[2;1?-(2d.)2/10]
9 54 Z/Tﬁ d T i Tl i
_ _27.55 - 16. 129
)
_ 1,27 _ _ 11,421 _
= —gIsET G 3.57 e = 1.269
> 2.262 = t9,0.025 o - Sy =4]‘126; hin = 0'1269_,

i.e., Reject Hy: pq = 0. Thére_i§ a difference between the treated alloy and
the untreated alloy in corrosion resistance. The treated alloy yields
significantly higher corrosion resistance values.
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6.5 The Assumptions of the t-test

There are three under1y1ng assumptions involved in comparing means by
a t-test. There are

1) Ndrma11ty
2) Equality of Variances
3) Independence

Since we are dealing with means, the central limit theorem allows us
to assume that x is normally distributed. The assumption of normality of the
individual observtions, then, although required for very small sample sizes
An < 4); is of no real practical consequence. Departures from normality must
be extreme before it has any substantial effect on the result. ‘

~ We have already stated that the t-test is robust with respect to
inequality of variances. OUne way around the assumption of equal variances is
to use a paired-t test. Another approach is to use equal sample sizes to
minimize the chance of an erroneous conclusion. :

The third assumption, independence of the observations, is very

. important, however. (In a paired-t test, the differences d; must be
independent.) To assure independence, random1zat1on shou1d be performed.
That is, select the order of observations 1n a random fashion such as flipping
a coin, or using a random number generator. We need to choose a treatment to
apply to a particular response randomly. In a paired-t test, we need to
randomly select the units to be tested and randomly select one treatment to be
applied first (or to one side of the unit).

6.6 Comparison of k Variances

We now turn to the problem of comparing more than two populations.
To compare more than two variancés for possible differences there are several
available methods, each with their own d1ff1cu1t1es.

1. Hartley's Test - Max-F Test

For k populations and s% , sg s e e e, sf each with

degrees of freedom, compute
_ 2 2

_ Foax  ~ *max ! Smin
The critical values have been tabled for various and k at the 5% and 1%
levels. However, these tables are not readily available. One source is the
Handbook of Statistical Tables by Owen, [24]. An additional drawback to the
maximum F-test is restriction to equal degrees of freedom for each variance
estimate.

142



2. Cochran's Test

This test is for determining whether one of k estimates of
variance is out-of-line with the others. All estimates must have equal
degrees of freedom and one estimate dominate the others. The test is:

X 2

C = (max s Y / & Sy -

Again, this test requires a special table which is not read11y ava11ab1e. See
Table A-17 of Dixon and Massey [8].

3. Bartlett's Test for Homogeneity of Variances

This test is more general in that it does not require that the
degrees of freedom be equal for all s?. However, it suffers from a

sensitivity to the assumption of normality, and it is cumbersome to
calculate., However, it can be programmed and requires only the use of a

standard XZ table. For k normally distributed populations, then,
/) ; 2
v ns - X v, ns
2 _ € i=] !
X =
k-1 ) k
1+ s o1
ITk=-Ty \i=1 v; Y
k k
where 52 = T v s? v = Z v .
p s 1 e i1
Ve ?
Example 6.7  Comparison of Four Variances
k = 4 Normal Populations
2 _ 2_
Sy = 62.5, v, = 4 dn s $1° 4.,13513
2 _ ag g g 2_ 2118 _ 2
S, = 38.67,v2 =6 S oo 26 " 81.46 Ln s $o= 3.65490
2 - 2
3 = 72.0, vy —,9 £n S3= 4,27667
2= 1118, = 7 In si= 4.94975
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264n 81.46 = 114.41508

A3
S
p
w
N
n

e p
Vo =Zv1- = 26
x 2- "eﬁ']‘ s %) 2]”1"" ]S ?1 - 114.41508{0;11.70820"
vzt 5t T - ) )
= 2.53 [x§ .gp5° 9+35

No evidence of inequality of variances.
6.7 Comparing k Means

Analysis of data from any number of normal populations can be
summarized by means of an analysis of variance table, or ANOVA table for
short, and a model to represent the situation. A model is always present in
data analysis, but unfortunately is often not written out. Nevertheless, it
~is implicity there. Before attacking the problem of comparing k means, it is
advantageous for us to examine the ANOVA approach to the simpler problems of
testing a single mean and comparing two means.

6.7.1 The Analysis of Variance for Testing p =0
For observing data from a single population the model is
Xy =pt+ €5, ~ (6.7.1)
where p is the mean value of x and e;~N(0, o?), i =1, 2, .., n.
n " A
The sum of squares i§1 x? can be considered as a measure of the

total information in the data. This can be partitioned into two parts:

n n
2-_ % - =2
21K =y -k
n =\ 2 =2
= (x. - X) + nX .
where n,iz (or -—% (§:x1.)2 ) is the amount of. information accounted for

by the estimate X of the mean. The measure of information that remains,
)2 is attributable to the errors €;, and when divided by n - 1
2

2

gives s“, the estimate of variance, o“. This term Z (x; ~ i)z is called the
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residual sum of squares, since x; - X is what is left over, the residual,
after estimating the mean of the population. The residuals estimate the
random errors that ave occurred in obtaining the observations. The sum of
squares, Z(X1 - X)¢, is in general the measure of total variability in the
data and incorporates all sources of variability in the observations. ‘

Definition

The Analysis of Variance is the partitioning of this total variability into
component parts according to the model being examined, and then determining

which, if any, of these components s contribute significantly to the total
variation in the data.

For model (6.7.1) the analysis can be summarized in the ANOVA Table as
follows: - :

Table 6.1 ANOVA for x; = p+e

Source Sum of Squares Degrees of Freedom Mean Square
n
Total b xg n
Rt
: i=1
Mean —%- (2 x )2'= n X 2 1 n %
Residuals ?2 (x, - 2)2 n-1 s2
) i
or Errors =

where the Mean Square is the sum of squares divided by the degrees of freedom

and is used to estimate a function of the variance. To test_the hypothesis

that u = 0, we need first to find the expected value of n X 2. We know that

Var(x) = E(%) - w2 so | |
E(n %2) = n [Var (%) + p2]
- i+ ]
= 02 +n #Z .
Thus, if H, p=0 is true, we find that n %2 estimates o 2. The residual

sum of squares divided by its degrees of freedom is called the residual or
error mean square and estimates 0-2?‘and, in fact, is the best, unbiased
estimate of o 2. There is no other source of variability in the residuals
other than random error. Hence, n %% and the residual mean square s¢ should

be compatible estimates of'cz, if p=0. we can test this hypothesis by an
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F-ratio where

Hy: »=0, and
Hp, » 70,
c _ n®/1 R
Bro T sk s

That is, the test of p=20 haszbeen answered in terms of a test of equality of
two independent estimates of o under the hypothesis that = 0. [Note: It

can be shown that n X2 and Z(xj - i)z are statistically independent

by showing Cov ( X , T(x; - i)z ) = 0, where Cov stands for the covariance
of two random variables.] If the calculated F-value is greater that the
cr1t1cai Fl,n-1,0.05 value,we reject Ho: p = 0. [Notle: F],n-],O.OS =
t%-1,0.0251-

Example 6.8

The metallurgy laboratory has five observations on a zircaloy alloy
produced by an arc melting process. The weight percents of zirconium
in the alloys samples are 90, 91, 93, 90, and 94.

Zx; =458, x =-91.6, n=5

- ANOVA Table

sSource Sum of SQUGY‘ES Deg‘r‘ees of Freeadom Mean Sf]U&V‘E
Total zxf - 41966 5
Mean (>:x1.)2/5 = 41952.8 1 41952.8
Residuals or 13.7 : 4 2 = 3.3—=¢2
Errors
(=+ mcans
. estimates)

The estimate of the mean is 91.6 and of s2 is 3.3, The F-test
for significance of the mean is 41952.8/3.3 and is certainly
significant. This is equivalent to the t-test

. . _X a3
W R

When an F or t test is found to reject the null hypothesis, we say that the
estimated parameters are significantly different from the hypothesized
values. In this example, the mean u is significantly different from zero.
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6.7.2  Analysis of Variance for Comparing k Means

A question of more interest is whether or not two or more means are
equal. The model associated with this problem is

Xjj T opjteqy o I 2o kii=1,2, 0,y (6.7.2)
- 2
E(X'IJ) _/“'j H E.ij ~ N(0,0‘ ) .

That is, there are n; observations: from the jth popultion and all
populations are assumed to haee equal variance. We may rewrite this model as

x'ij= Bt _Tj + E'IJ . (6.7.3)
where p is the overall mean of the population and is the extra impact on
the response.of having come from the jth population.” t; is usually called the
treatment effect. From the definition of v; = w: - % a linear
constraint, 2Znj r; = 0, exists on the tregtment.‘.

The test of Hot w1 =p2 = eeo = p is equivalent tg the test of |
Ho: 71 = 72 ees =7 = 0, since p is common to all populations.

We can proceed as before and find the sum of squares due to the grand

mean u, i.e.,

_ ' _ k : k
NRE = - (22X ) where X =+ I Zx,. and N= %, n.. This is
N i N i i ij J=1 7 .
commonly referred to the correction factor. The remaining or Corrected
Sum of Squares is ? % (xij - ;)2 . This still contains a source of

variability from the different treatment effects. The total sum of squares
~may be partitioned as follows: ’ ‘

Define: X. el 2?J~ X.:, then
J nj i=1 1J
k n. k n.
J 2 _ J .z = _ T .52
AR B ATRLRL R

. - 2 - =2 =2
=2 2 (X;: =%x:)+ Z n. (X;=-Xx)"+ Nx
7 Vi i i % ’

where the first term is the residual sum of squares, the second is the
treatment sum of squares, and the last is the correction factor (due to the
mean). The ANOVA table becomes
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Source
Total

Mean
(Correction
Factor)

Corrected
Tota] SX

Treatments
SST

Residuals
or Errors
SSE

Table 6.2.

Sum of Squares

5 3o
J 1

N x2

RACTIREY

J (x

§
J

_JM:

2

ANOVA Table for Comparing k Means

Degrees of Freedom Mean Square. EMS
N
1 N x 2 o2 + Np?2
N -1
- =2 2
-« :(x-'-X) 2 N T
) k-1 ==y 0%+ A
%)% N - K s2 #2

The treatment sum of squares represents the variability of the data

attributable to differences in population means u ;

effects Tje

estimate of the population effect beyond the grand mean is %.
can be shown (see Appendix D) that the expected value of the“mean

treatments,

true treatment effects.

k
%=1 "j(xj

freedom of the estimEtesvby one.

(pooTed) estimates o

%) =0

LI (%; - %7

kT 0§ 7

by definiton of X.

unbiasedly.

o2 01 -2
» 1507 + 7 an Ty where T

Of course, the residual mean square, or s
The treatment mean square can be considered

, or simply due to treatment
The estimate of popu]ation mean is tﬂe sample average X;

i the

- X. It
square for

:xJ.

are the

The degrees of freedom here is k-1 not k since

This Tinear contrast restricts the

2

as the estimate of between treatment variation and the residual mean square is
the within treatment estimate of variance, which under the assumption

HO: T = 0

F

, all j, should be the same.

k-1,N-k ~

The F-ratio
_ MS (treatments)

MS (residuals)

is a test of the assumption that these estimates of variance are compatible,
wh1ch in turn is a test of the hypothesis H,

t's =
value.

0, we can expect that the ca]cu]ated F w1i1 b
If it is larger, we would reject H, that all treatments were equal.
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In general, treatment means may be compared in the presence of other
sources of variability which have been blocked out of the analysis, such as in
the paired-t test. Consider the model

X.IJ = ,u_'f‘ Tj +B1 + E]J N €-|J ~N(0, 0“2) (6.7.4)
2z 2 : :
0 T = < -B. = 0 J = ], 2, oook
J J 1 * 1 1. = ]’ 2, o--n,

where B; represent block effects and in general may represent one or more
block e}fects,each of which can be separated out individually. The ANOVA
table can be summarized as follows:

ANOVA Table

Source Sum of Squares Degrees of Freedom Mean Square EMS

Total - =5x%; N

Mean (CF) N %2 O

Corrected ZZ(xij - >=<)2 N-1

Total Sy :

Treatments 2 ni(x; - ;)2 k-1 = MS(Treatments) 02+FET Zr?
ssT 3 -t
Blocks zki(’-‘i - ;)2 n-1 MS(Blocks) 02%251.2
SSB | |
Residuals By subtraction (n=-1)(k=1) s2 o?

or

Errors

SSE

The test for treatment differences is still the MS(tréatments)/s2 as
above as long as the block variables have been properly blocked out, and with
adjusted degrees of freedom. More details of the ANOVA table analysis will be
presented at a later time when we deal with designs of experiments.

Example 6.9

Suppose the metallurgy laboratory wants to compare the mean w/o
zirconium in zircaloy alloy from the arc melting process with
zirconium w/o from an induction process. The data from the arc
process is given in Example 6.8. Five observations from the
induction process are 91, 90, 91, 89, 91 (w/o zirconium). The model
for comparing the two means is

Xjj = #* T3 0t €55

x]J = 9]0’ ; = 9.].0’ il = 9].6’ 22 =90.4, nl = n2 = 5
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ANOVA Table
'Source ’ Sum of Squares Degrees of Freedom Mean Square

Total g2830 10

Mean 82810 | 1

Corrected

Total Sy 200 9

Treatments - Z5(; - %2 = 3.6 1 3.6~02 if 1y= 7,0

Residuals or ‘ ‘ ‘ 9 « n
Errors : 16.4 ' 8 _ s“ = 2.05 —~ of

The F-test for treatment effects is
Fl,6 = 2505 = 176
The critical value of F1,8,.05 = 5.32. Therefore, we say that there is

.no evidence that the arc and induction processes differ.

Another way of ca]cu]ating the treatment sum of squares and block sum of
squares is by the use of the treatment and block sums.

1§ 2 L

SST = ‘ﬁ J'=-‘ J-
) |
ssa=T‘<- zs? - C.F.
i1 |

where T; is the sum of all n observtions for tréatment J and By is tng sum of
all k oﬂseryations in block i, and C.F. is the correction factor, N X~.

Example 6.10

. Consider again the corrosion resistance data of Example 6.6. The
appropriate model for this data is

| x'ij = pt AR + Bi +‘1'J'
where t; are the treatment effects, j =1, 2, andl?i are the block

effects) i =1, 2, 3, ..., 10. We have

‘12 xq1 = 116.0 , %xiz = 128.7, ny = ny = 10, k = 2
Xi5 = 244.7
Frrig - 27
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The ANOVA table is
ANOVA Tab] e

Source ‘ Sum of Squares Degrees of Freedom Mean Square |
Total 3070.33 20

Mean - 2993.9045 - R
- Corrected . A

Total Sy " 76.4255 19 o
Treatments - 8.0645 1 806 -
Blocks 62.6505 9 6.9
Residuals 5.7105 9 s = 0,635

The F-ratio for treatments is

_ MS(Treatments)' _8.06 _ 59
9 - MS {Residuals) 0.635 : :

F]’

which is much larger than the critical F-value at the 0.05 level,
F1,9,0.05 ='5-12. Thus, there is evidence that the treatments-differ.

Although it is not immediately obvious, this F-test is the square of the
paired-t test performed in Example 6.6. That is

Fr,0 = 12.7 = g = (3.57)% and"
F],Q,O 05 = 5.12 = t 9,0,025 = (2.262) .

We may also test to see if the blocks had a s1gn1f1cant effect on the
response, -

6.96

F9,9 0 10.9 >F9,9,0.05= 3.18

The blocks do have an effect. Note that there is not a t-test to
correspond to this F-test for blocks, since the degrees of freedom for
blocks is greater than 1.
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REVIEW

Tabled

Test Statistic Distribution

Use

Xj=Xp- (1 1p)

1. > . 4na-2 Test means of two
\/é'g + s ; MTne unpaired groups of
_ M 2 observations.
d - (uy - 1) . ~
2. —= th - Test means of two
>d groups through n paired
comparisons.
n _.2 "
3. P (xi—x)~ X -1 . Test an estimated
i=1 5 variance against a
T, hypOthes1ze9 or triue
: variance,a0 '
4 52/52 F ' Test two
* 1/°2 n1-1,n2-1 L Lw
variances for
k . =2 equivalence.
;§1n, (x:=x)"/(k=1)"
5. J J J Fk-1’ ve Test for difference
Residual Sum of Squares/ Va between k means
(error) : Hot 1 “H2 = oo =y
where '
d=—1—§(x Xo: ) 3'<=12x' x=12x §=-]—ZZX ‘
n i=1 14 2i’* %3 n i ij? n“"i? K="4g
2_2 2_1 2 2_1 -2 2 2,1 1
Sd-sd/n’sd-:] %(di'd) ss.i n _]z(xij' 1) »Sz S /(_n] + "@ )s
2 _r = 32 4+ 2 Y ' -
s = D Oy - X7+ 500 - %) 3/ (ny +mp - 2)
and v, is the degrees of freedom for error in the analysis of variance table.
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CHAPTER 7
LINEAR REGRESSION ANALYSIS

7.1 " Introduction

Suppose we are interested in some response n for which it has been
detemined that a set of variables Xy, X2, ceny Xk control the response.
There is more of interest here than in just determining whether the average
response at one set of conditions differ from the average response at another
set of conditions. It is advantageous to determine how the response changes
as the levels of the independent variables X; change. . To answer this question
we need to first hypothesize a model which we think may apply in some region
of interest and then perform an experiment to obtain data to verify or reject
the hypothesized model. This verification process is performed under a
variety of names, such as curve-fitting, maximum likelihood analysis, least
squares, and regression. '

There are three objectives which may be approached by regression
analysis. These are (1) prediction, (2) estimation and (3) model building.
In the first, we are interested in fitting a model to obtain the best
prediction of the response as possible. It is not of utmost importance here
to have the best model in terms of accuracy of the parameters being estimated

~as long as the model predicts well. In the second, interest is in obtaining
the best or most precise estimates of the parameters of the model under
consideration. The purpose of this is usually to make precise evaluations on
the significance of a term in the model. 1In the third objective, interest is
in the process of obtaining the best explanatory model. Whether it deals with
finding the best set of independent variables or finding the best function to
represent the response, model building is an iterative process and requires
numerous steps along the way. Of course many problems require a combination
of these three objectives.

7.1 Models

The .models suggested for describing a response may be of a
-theoretical nature or of an empirical nature. For example, the equation for
Ohm's Law I=V/R represents the theoretical change in amperage as a function of
voltage and resistance. - By an empirical model we mean one suggested by the
data itself. If we considered an experiment in which the resistance was held
constant and plotted the change in amperage as a function of voltage we would
obtain data which follows a straight line. Note, of course, that not all the
.observations fall on the line since random error is involved in all data
taking procedures.

yI=a+BxV+¢

(R FIXED)

v
Figure 7.1: 1I=V/R
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More typically, the exact theoretical function representing some re-
sponse is unknown or too complex to use for some purposes of investigation.
In these cases empirical models are used by necessity. For example, all the
causative effects which control the height and weight of individuals are un-
known. We could nevertheless predict one variable given knowledge of the other
by fitting an empirical model to the data. That is, we can predict an

HEIGHT'

WEIGHT

Figure 7.2: Height vs. Weight

individual's height from the fitted 11ne.BH obtained hy assum1ng the weights
to be known quantities,or predict one's weight fronLZ by assuming the heights
to be known. In another situation a response may he qu1te complicated but, in
a given region of interest to the experimenter, may be approximated
satisfactorily by a simple model. For example, in Figure 7.3 a straight line
could not possibly fit the response along the entire range of X. Divided into
three segments, however, a different straight line may he a satisfactory '

Figure 7.3: 'Straight line fits to Segments

154



representation of the response for each separate segment for some purposes of
investigation. This illustration shows dramatically the dangers in
extrapolating empirical models beyond the region in which data was obtained.
Following any of the lines in Figure 7.3 beyond the boundary line will result
in extremely large deviations from the true response curve. Part of correct
analytical procedure is to provide tools to detect such departures.

In this section we shall discuss only linear models. By Tinéar, it
is meant linear in the parameters. A straight line or plane is linear not:
only in the parameters, B8's, but in the variables, X's, as well.

Straight-line Model: #¢= Bo + B1X
Planar Model: n =BO + lel + 32X2
Models involving linear terms of variables we shall ca]] first order

models. A second order model contains quadratic terms in the X's, But 1S
still linear in the parameters.

Quadratic or Second Order n=B +[31X1 +BZX2 +,811 ] +B22 2 +Blz 1%2
Liner Model

Some non-linear models are intrinsically linear. That is, they can be
converted to a linear model by a simple transformation; e.q.,

Intrinsically Linear Model

a, a, «
n=a ¥ lf % A

a, a
4R 5

Bn‘n =4n (a )o *apXit @Kot agdatd Xyt agks

where X]=jn(V), x2=£n(f), x3=jn(d), X4=.,Gn(A) and X5.=.ﬁn(R)'

Finally, of course, there are intrinsically non-linear models such as those
which typically describe chemical rections. These models are not easily dealt
with and usually require iterative procedures to obtain the best estimates of
the parameters. Computer programs are available for analysis of such models.

Intrinsically Non-linear Model

-6,t -6,t
1 2
~926 + 8]e

92 . 91

n=1+
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7.1.2  The Principle of Least Squares

The analysis technique we will apply to fitting linear models is
called the least squares procedure. Since all observations are suiject to
error, we have the model :

Yoy =Ty €y

where y, is the uth observation and is the value given by the hypothesized
model for the settings of the.indepengent X variables on the uth trial. The
eu's are the errors involved. The least squares principle is to estimate the
parameters of the model

nu = f(Bl, B?_’ o-.Ble]‘, X2, ...,Xp' )

by choosing the B8's to minimize .the sum of squares of the errors, i.e., choose
the B's so as

N n N 2
A AT

is a minimum.

If we further assume that these errors ¢, are independently Qnd
identically distributed as normal variates with mean 0 and variance %, the
least square estimates are also the maximum likelihood estimates (see Appendix
B) of the parameters. Furthermore, if we assume that the X's are given as
fixed quantities we may write the model as

n= ey {8} . {x} ) .

The expected value of y given the X's is called the regression function.

Thus, assuming any distribution for the errors, the least squares procedure is
also called regression analysis whenever we consider the X's known and fixed.
(The misnomer "regression" apparently came into being when an early
statistical investigator studying the relative heights of fathers and sons
discovered that tall fathers tended to have shorter sons and short fathers
tended to have taller sons. He called this a "regressive" tendency and hence
the term "regression" came into being.)

In general we shall assume the errors of observation are normally
distributed and hence the curve-fitting estimation procedures of maximum-
1ikelthood, regression and least squares are identical. We now turn to
illustrating the procedure for the simple case of fitting a straight line.

7.2 Fitting a Straight Line

We suppose now that a straight line is an adequate representation of
the response of interest in the region in which we are dealing. We want to
(1) obtain the best straight line to fit our data, and (2) evaluate the
adequacy of the straight line model. The model is
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Yy = BotByr Xy tey
where we assume eu~N(0,0'2), u=1;2, «eo, No. We want to seject BO and Bl
such that ’ :

N 2 N v 2
S = u§1 ‘0 7 uE] (yu-’e'o' ’leu)

is a minimum. That is, the deviations of the observations from ‘the fitted or
predicted 1ine are minimum in the above sense.

Figure 7.4. Straight Line Model

7.2.1 Analysis

We proceed to find the estimates ofB and ng by determining the

normal equations by differentiating S by B, an B1 an setting equal to zero.-

Lo e 2y < By -Byx) = 20y - B,:ByX,) -0
TOB#+BX)  =EZy,
N BQ +BiZXu ="2yu

S _ 0 2 _ on -
2. m = a_Bl (_Yu - BO - leg) = -2 qu(_yu - BO_ Bl.Xu)-O '
z(Boxu * leu ) '=2Xuyu
B, ZX, + BiEXﬁ '=2Xuyu
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The two equations
1. NBO + B]. zxu = zyu
2 _
2. Bo EXU_ + Bl EXU -EXuyu

are the normal equations of this system and may be solved simultaneously for
B, and Bj. The resulting estimates, b, and by, are

Tooby =y -bR |
2. (¥ - bR)EX, — b zxﬁ =SX Y,

E&yu-N Xy
b] = 5 ” == , yhere NX = ZX
?Xu -NX v
_ 2'(Xu - X)-(yu -'3').
$(x, - %)°

where - _
ZXyy - WXy = Z(X,; - X) (y, - ¥) and

zxu2 - NX2 = w(x, - X)2.

The computation can be made easier if we design the experiment so
that the average of the X's is zero. Equivalently, consider the model

y=at Byt ¢
whefeBl =B, a=8, +Bli, and x, = X, - X. ThenZx, =0 (X =0). The
estimates are now

a =y=bo+ b1X s b‘0=y-b]X
b = i - b
SyC 1
uu

These estimates are in fact linear unbiased estimates of the parameters and
have minimum variances of all such linear unbiased estimates of a and 8 .
The varidance of b i3 in fact

2

Zx

- U Var (y ) =ef L - d :
(zxﬁ) . Sx T (X -%)2



where o2 = Var (‘e,)s For b

9 2
2 1 X
Var( b ) = o =+ .
' ° <N Z(XU-X)? >

If we assume €, ~N (0, 0-2) and using the fact that linear combinations of
normal variables are distributed nommally, we may obtain conf1dence intervals
for BO and Bq:

1 2 /2
B: b + zofw+ —2—0
° [O Z <N+ Z(Xu—)-()2> il
' : 1/2

lowever, we usually do not knowo ¢ but must estimate it from the data. The
estimate of the variance is obtained from the residuals

. A
Tu = Yu ™Yy
where y, = by + byX, are the fitted or predicted value of the model. ' That is
A ' ,
&2 _ N A 2 / (N- 2)

21 (.Yu - yu))

where the divisor N - 2 are the degrees of freedom for the estimaté of
variance in which two parameters Bo andBI were already estimated from the
data. This is the usual unbiased estimate of variance 52. The interval
statements for B, and By are now :

1/2
1 2\
b tt +
Bo[o N-25<N' Z(XU'-X)Z/}
1/2
and B,: Ib,t t s 1 \ :
1[1 o <2<XU-X>2/ ]

Statements about the significance of the parameter can be made using these
estimates. If the intervals evaluated at some confidence level y include the
value zero, we say that the data does not contradict the assumption that the
parameter is negligible.

Another way of examining the significance of the parameters being
estimated is by the ANOVA table. The ANOVA table is constructed as follows.
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ANOVA Table: Model Yy = Bo +B1X, + €y

Source ~ Sum of Squares Degrees of Freedom Mean Square
Total g yS o N
u=1
Regression Zyﬁ 2 Reg SS/Z
Mean (Sy,)2/N 1
Slope ( By) by %I (XU - X)y"l 1 A
 Residuals Ty, - 9u)2 N - 2 s2=pes SS/(N-2)

The significance of the overall model can be detéermined by the F-test

. _Reqg S§/7
2, N -2 Res SS/(N - 2)

In other words, if the model B, +leu accounts for a significant proportion

F

of the variation in the data, then this‘ratio will be larger than the.critica1
value of an Fz, N -2 distribution at the specified confidence level. This

will usually be the case since the experimenter expects something to be
controlling the response besides random error, or else he would not bother to
propose the model. The regression model in-this case can be separated into
the two component parts, mean and slope, and hence each of these parameters
can be tested separately for significance, either by the t-interval approach
or by the appropriate Fl, N - 2 test suggested by the ANOVA table. For

straight line models usually only the slope term is of interest since, with
the exception of a line thought to pass through the original, the y-intercept
is almost always significant.

Given that the straight line model is found to be significant,i.e.,
both the slope and intercept parameters contribute significantly to the
explanation of the variation of the data, we can next calculate confidence
intervals, tolerance intervals and prediction intervals for the fitted line.
The variance of a fitted value is

Var(yu)’= Var ( bo + blxu)

= Var(y + b (X, - %))

u

- %)
,¢2<.g¢ R )
X K)

and is estimted by replacing o2 by s2, Thus, a 95% confidence interval for
the mean value of the fitted line at a point Xk is
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1/2

A ;X - )2
Ye Bty o2, 00025 S\W Y oo
k* N-20. Z(x,-%)

TOLERANCE
BANDS
A
y
CONFIDENCE
/ i BANDS

Figure 7.5. Confidence and Tolerance Bands for a
Straight Line Fit

’

Note that the confidence bands diverge, being most narrow at X, = X.

This reflects that our knowledge of the model decreases as we move away from
the center of the experimental region. The true straight line relationship
(assuming it is appropriate) lies between the confidence lines. Extrapolating
the fitted line much beyond the experimental region could lead to large
departures from the true line.

Ay /P tolerance interval at X = X, is constructed much as before, as

-Yk K s

6hly K is obtained by a complex approximation formula

i ‘ V5¥(9k) Vg}(Qk)z(Zz(]+p)/2—3) l/d
Z(ep)2 N P2 B 24 ®, N-2, 1-y

A LA . . A
where Var (yK) is an estimate of the variance of yy.

The interpretation is that at each point along the line 100P% of the
population of y, at X = X, will fall w1th1n the interval with 100 y %
confidence.

These intervals are bands like the confidence bands for the mean VaIUe‘of the
line, only much wider.

A prediction interval for a single future observation of y at X = X¥

can be obtained by stmply recognizing that a future observation will be equa
to the predicted value plus a random error,
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A
Yfuture ~ Yk t €
and its variance is

: A
Var (yeytyre) = Var(yy) +ol .

Thus, a 100(1-a )% prediction interval is
: 1/2

2
(x, - %)
A 1 k
Vit tne2,ay2 S Q W '*'gﬂ;‘jggz > o
u

For the mean of q future observations, a prediction interval is
1/2

2
i ) (xk-X) >

- : A
y 5 =y, t L - 5l— + w +
qs future k N-2,a/2 <é N Z(XU-X)Z

7.2.2 Interpretation and,Diagnostic Checks

We can test for the significance of the intercept or slope parameter
of the fitted line and produce confidence bands, tolerane bands or prediction
bands about the line provided the model under consideration and its underlying
assumptions are correct. The. least squares procedure provides the best fitted
equation for the type of model examined, but it does not assure that the model
is correct .or appropriate! The question of significance of parameters Bo
and[31 is irrelevent and the corresponding bands inappropriate if a line is a
wrong model to fit to the data. There are several methods of detecting model
inadequacies, but first let us identify the ways that the model may fail.

The cqmp1ete'representation of the model is
y=m(x,B) +e

where n is the true response and is 'a function of a set of one or more input
variables, x, and a set of coefficients or parameters 8. The observations are
designated by y and differ from the true value because of random error. The
errors are usually assumed to Ee independently and normally distributed with
mean 0 and common var%ance o ¢. If this holds, then the observations
themselves are N(0, o<). The four assumptions involved, then, are

1. Normal distribution

2, Independence

3., Common variance

4. The function  is of the correct form

The functionn may be incorrect due to wrong functions of the input variables

or due to the absence of terms involving other variables not previously
considered.
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We shall first discuss some procedures for plotting the residuals
from the analysis which have been found to be very helpful in diagnosing
departures from the above assumptions and the reasons for these departures.

‘A.  Residual Plots

1. Normality assumption

a)

Histogram - A histogram dﬁ the resulting residuals may
be plotted. This histogram should appear to have come
from a nomal distribution. There are two warnings to

“be made, however. For.few observations, a h1stogram

may appear quite scattered and non-normal, but may in
fact be an adequate representation of a nonna]
distribution. Secondly, although there are N
residuals, there are only N-2 independent values
(i.e., degrees of freedom), since two parameters were
estimated from the data. This constraint on the
residuals has the effect of bunching the data closer
to the origin. The problem becomes much more acute as
the degrees of freedom for residuals gets small
compared to N. In both cases experience in the
interpretation of these plots is important to avoid
errors. . :

Cumulative distribution’pipt on probabi]ity paper

In some computer programs the cumulative distribution
of the residuals are plotted on a scale (probability)
so that if the assumption of normality is appropriate,
a straight line may be drawn through the points.
Departures from a straight line are indicative of
departures from normality. Figure 7.6 illustrates
typical histogram and cumulative probability plots.

NORMAL APPEAR|NG HISTOGRAM SKEWED HISTOGRAM

f/ . L/”

NORMAL APPEARING CUMULATIVE PLOT ' NON-NORMAL CUMULATIVE PLOT -

Figure 7.6.

Plots for Checking Normality Assumption
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2. Independence
Weican check the residuals for a time dependency by
plotting the residuals as a function of the order in which
they were observed. Figure 7.7 illustrates such a plot.
What we would like to see is that two lines horizontal to
the time axis can be drawn which include all or most.of the
residuals. The conclusion is then that there is no
apparent time trend present.
10 =
5 X X : ' X
T 2 3 4 5 6 T 8 9 10 1 12 13
0 | | 1 | S R P11 11
X y X TIME ORDER
-5
X X
-10

Figure 7.7. Plot of Residuals r vs Time Order

Figure 7.8 shows other types of bands which are drawn to
include most of the data which are indicative of departure
from the models. When the horfizontal axis fs considered to
be time, then the funnel shaped band (1) is indicative that
the variation or spread of the residuals 1s increasing with
time. That is, the variance of the errors is apparently
increasing as the process continues. The parallel but
diagonal lines (2) indicate a linear trend in occurring in
time. The curved bands (3) are indicative of a need for a
quadratic term involving time.

Homogeneity of Variance

It may happen that the variance of the observations
¢handges with the size of the response, thus violating
the homoganeity or equality of variance assumption.
This is best examined by plotting the residuals
against the fitted values §. The fitted values, ¥,
are used instead of the obsgrvations because the
residuals r, = y, - §, and ¥, are statistically
independent of each ogher‘ ﬂga)n, horizontal bands
are desired.
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(1)

(2)

(3)

VARIANCE INCREASING

LINEAR TERM NEEDED

QUADRATIC TERM NEEDED

Figure 7.8. Residual Plots: Diagnostic Bands

Figure 7.9. Residuals vs Fitted Values

When the horizontal axis in Figure-7.8. is considered"

~ to be 9, (1) indicates increasing variance and the

need for a weighted least squares procedure or trans-
formation on the observations (for transformations and
weighted least squares, see Section 7.4)e Figures
7.8(2) and (3) would indicate that the model is.
inadequate. (2) may be caused by wrongly omitting a

" linear term from the model. (3) may be caused by

omission of quadratic or cross-product terms.
Other Plots

Other .residual plots may be warranted, depending on
the model. If more ‘than one x variable is in the
model, a plot of r, against each of the x's is ad-
visable to determine omissions or departures from the
model due to each variable.

Also plotting residuals within each block or treatment

‘may provide clues to departures from assumptions that
are not detected by the analysis procedure.
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B.

The Lack-of-Fit Test

A quantitative test may be performed to test for model
inadequacy also. There are two conditions under which this

lack of fit test may be performed. First, if a prior

estimate of variance 9-3 is avai]able. the variance

estimate 52 resulting from the present data may be
compared to it. If the model is adequate to represent the

data, the F-ratio s /0' should result in an non-

p
significant value, i.e.,
Fy, 14 (Fv, Vy u
1 2 1 2

whera 1, are the degrees of freedom for residuals from the

analysis and v, are the degrees of freedom in

3-2. The drawback to this test is that a sufficiently

p .
reliable prior estimate of o2 is rarely available. In
addition, care must be taken to ensure that the data is
obtained under the same conditions as was the estimate

A2
o

p° This is often extrenely'difficult to assure.

The second condition under which a lack-of-fit test ‘
may be performed is that replicate observations be made in
Lhe current experiment. If observations are repeated under
the same conditions and same x settings, then the only
explanation for differences in the observations is pure
random error. The sum of squares of these repeat points
about their,average may be used to estimate the

variance a-seof.this pure error.

Lct Y:: be the Jtp of n observations at the ith setting or
cond1%qo Then he estimate of variance from these n1
observat1ons is
n.
21 (y‘ij- .Yi)z
ASZ. - J:]

i n, - 1

Pooling the estimates s% over all sets of repeat
points, we obtain
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ki - 2

(¥:5 = ¥5)

2. Zrgh TH

k
(n, - 1)
&
= SS p.e./ Vo
k
where vy = 12;] ("1' - 1) =}'.‘n1. - k.

The residual sum of squares from the ANOVA table, however,
contains the information about the repeated points in
addition to other unexplained variation. The residuals can
be broken up, then, into two independent parts:

- A -
Yij. - 91 = (yij - Yi) - (¥1 ',Yj) .

The first term we have already identified as the pure error
estimate. The latter term, then, represents the
discrepancy between the averages of repeated points and the
fitted model itself. The sum of squares of the lack

2

of fit term estimates o-p e

plus the size of the
departure from the model. The sum of squares for lack of
fit and the degrees of freedom are obtained by subtraction.

SS

SS1of = SS p.e.

residuals -~

Vief = N-2 - Yp.e.

SS
Thus -~ 8% o=
lof 5
S
and F - _Jof
“1of Vp e 52
> EeEe PsCs

tests the assumption that the model is adequate to fit the
data. If the calculated F-ratio is larger than

F, v s then we may take this to mean
lof, 'p.e.,

that the data is testifying to the fact that the model does
not adequately fit the data. Since rejecting a
hypothesized model is usually a serious consequence, some
statisticians suggest that the model not be declared
inadequate unless the F-ratio is twice the critical

value. This procedure is arbitrary but nevertheless points
out the feeling that we should not be too anxious to reject
a hypothesized model unless a good alternative is
available.
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D.

Shapiro-Wilk Statistic for Non-Normality

For n<50 observations a test for non-normality of the
distribution of the residuals can be made. This test,
known as the Shapiro-Wilk Test [33], compares a
distribution-free estimate of the variance of the residuals
against the usual sum of squared deviations from the

mean. Specifically, let '

k n
= _J 2 , neven
b= &1 g (M) ")) KT o '
2 , n odd

Each difference P i+1)77(H) is a range estimate
of the standard deviation o, where "(5) is the jth ordercd

residual and the a's are constants (see [33]). The test,

then, 1s to compare b2 against 52 = Z(ri-F)Z,

(52=52/(n-2)). If the ratio
2
b

w=_2_
S

is quite small, the residuals are showing evidence of non-
normality. Only values which are significant at a small
error level (e.g., @ = 0.01) are considered important.

Coefficient of Determination

Another measuring tool to use to evaluate the usefulness of
a model is the coefficient of determination, also known as
the squared correlation coefficient. The parameters of a
model, the y-intercept and slope under consideration here,
may be judged to be significant even if the variation is
high. A question of interest is how much of the
variability is accognted for by the model? The coefficient
of detemination, R°, measures the proportion of total
variation about the average y that is explained by the
model. Functionally,

=2
)]
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In general the larger R2 the better. However, R2 can be
made artifically large by adding parameters to the model
which are not really significant. In fact, if we fit N
parameters to N distinct data points, R will be 1,
obviously an artificial result. However, when no or few
replicated observations appear in the data and the number
of parameters gs small compared to the number of distinct
data points, R serves- as a useful tool for evaluating the
model. It is especially useful when trying to evaluate the
worth of an extra parameter under consideration for
inclusion in the model. This will be discussed further in
the section ahout model building.

A11 of these diagnostic tools should be used together
whenever possible. The lack-of-fit test indicates an
inadequate model but does not tell you why it is
inadequate. The residual plots are very useful for this
purpose. In fact, the residual plots are useful even when
a lack-of-fit test is not available.

7.2.3 Summary

Evaluation of a Straight Line Model

I. Objective - To determine the straight line which best fits the data
for the purpose of predicting the response in a specified region of
" interest and to examine this fitted model for inadequacies.

II. Assumptions
A. Model: yu=[30+[31 Xy * € U =12, ceuyn,
where

Yy = the observed value of the dependent-variable—on the
uth run, -

= the true y-intercept of the line,

™
o
I

By = the true slope of the line,"
X, = the value of the independeht variable on the dth run,

and e, = the randam error associated with observing y. The
errors are assumed to be independent _with a common

mean of zero and a common variance«rz.

Alternative Model:

yu=cx+[3(xu-)-()-l-eu

169



III.

whefe
n
°=Bo+pl X, X = u§1 Xu/n
B, B |

B. Procedure - Least Squares Principle

n
Minimize S = uz=1 (y,-a-B (X, - X)) 2

Computatiaon

A.  Estimate of Slope Parameter

LT X, =Ry, - W (- R)

B. [Estimate of y-intercept

<1

a =

by = a - biX

C. Fitted or Predicted Va]lues

Yy = a+b (X, -X) =by+ by X,

D. Estimate of Variance 4
-2 A2
T =2 (y, - ¥,)/(n-2)

E. The Analysis of Variance Table

1.  Total Sum of Squares: b3 yuz
u

This is a measure of the total information contained

in the data.

2. Regression Sum of Squares: 59u2

u

This is a measure of the amount of information in the
straight line
model, the regression sum of squares can be separated

data explained by the model. For a

into two parts.

170



V.

‘qo

~

a. Sum of squares due to the presence of a mean:

SS(a)
b. Sum of squares due to the slope: SS(b)
3. Residual Sum of Squares: z(yu - 9u)2

- u : 4

This is a measure of the variation in-the data which
is unexplained by the model; i.e., it is the amount of
variation attributable to chance- and, perhaps, an
inadequate model.

Eva1uafion

F-test for the Slope Parameter

Assuming now that the errors €, are normally distributed,
the statistical significance o¥ the slope parameter of the
fitted straight line can be tested. If the calculated value
is significantly large, this is evidence that the slope is
non-zero.

F = §§§El , with 1 and n-2 degrees of freedom .
S

Coefficient of Determination (Squared Correlation

Coefficient)

This vialue measures the proportion of total variation about
the mean of y that is explained by the model.

Confidence Interval for the Slope Pa?ameter

The 100 (1 - a)% confidence interval forB; is
obtained from

' _,.1/2
where s(b); = s/[E(X,- %) 2] )

If tﬁe confidence interval does not include the point
By = 0, then B, is said to be significantly different from
zero. ‘
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V.

D. Confidence Interval for the Predicted Mean Value of y
at X = Xy -
A 100 (1 - a)% confidence band about the predicted line can
be obtained from
A
Bt toa, 1 -as2 s
where X)Z 1/72
X, -
A 1 ( k
s(y,) = s<T +
u
E. Tolerance Interval for the.Population of y's at X = X,

A tolerance band within which at least 100 P% of the
population of y's at X = X, will lie can be constructed
with
100(1 - @ )% confidence from

9kiKS

where K is a constant depending P, @, n, X and X,.

Checks on the Assumptions

A.

Test for Model Inadequacy

1. If a prior eslimale A s of the variance o

2

¢ qs

available, compare s“ against 9?} .

2. If repeat observations are available, the residual sum
of cquares can be divided into two parts: (1) thec pure
error or replicdtes sum Of squares measuring the
variation within replicates and (2) the remaining
portion of the residual sum of squares, called the
lack-of-fit or linearity sum of squares, measures the
varfability about the fitted 11ne only.

Compute:
. L4 - 2
Te SSpoe. = 1~=‘| '='| (yij - y-i) 3

J
where y; is the average of n; observations at Xj,
.. - 2 _
ite v SN om ks

p.e
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B.

p.e. N Ssp.e./ VpoEo

1ve SS10f = SSpesiduals = SSp.e.

Ve o vypf = N - 2= vp e,
2 .
Vie Syor = SS10f [ Viof
Test: 2
£ - S1of
lof © 7 -
p.e.
with vyo¢ and vp.e. degrees of freedom.

If the straight line model is inadequate, an excessive
amount of variation about the fitted line will result,

i.e., S1of2 will be large compared to‘sg.e. R

resulting in a significantly Targe Flof Vvalue.

Shapiro-Wilk

The Shapiro-Wilk Statistic W for n<50 observations
indicates non-normality of the residuals (and hence the
observations) if it is significant at a low Type I error
level, e.q., a= 0.01 or 0.05.

Residual Plots

The residuals r, =y, - 9u can be plotted in several ways
to check on the assumptions of :

e
ii.
iii.
Some
ie
iie
jii.

ive

Normal distribution

Equality of Variance for all €,
Independence of the Errors o
typicalrplots are:

Normal prohahility plot

r, versus time seqﬁence

r, versus 9u’ the. fitted values

u

r, versus Xu

u
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7.3 An Example

Suppose that a new assay gage is to be evaluated for determining the
end-of-1ife fissile loading of LWBR rods. Let

Yij =Bo *B1 Xi * e€jje

where Yij is the gage response. and X; is the fissile loading of the ith rod
obtaine& by destructive analysis.

The hypothetical data given in Table 7.2 show that 24 observations
are provided for 13 rods. Seventeen gage responses represent repeated
measurements from 6 rods, while seven other responses represent single
observations of a rod. The data were analyzed utilizing the computations
provided in Section 7.2.3. The analysis is summarized by use of a worksheet.

Table 7.2
Data for Assay Gage Example

EOL Fissile Loading by ‘ Assay Gage
Destructive Analysis Response
X : Y
8.00 gns U | 50.49, 51.56
8.30 55.69, 56.44
8.50 57.17 |
8.55 57.80, 56.93
'8.65 : 58.30
8.75 59.49
8.80 59.37, 60.60, 60.30
: 59.74, 59.88, 60.00
'8.85 - 59.21, 59.92, 59.92
9.00 61.19
9.05 ‘ ‘ 62.70, 62.85
9.15 59.88
9.20 ' 63.23
9.45 : 61.28
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Ind.
zX

X =

(M

(2)

(3)
(4)

(5)
(6)
(7)
(8)

(9)

(10)

(11)
(12)

(13) by = ¥ - byX = (11) - (12) = -12.1629

(14)

(15)

(16)

T X2

Worksheet for:Simple Linear Regression

Var. X w/o Total Uranium

= 209.850
8.74375 No. of observations

XY = 12386.074
(ZX)(SY)/N = 12363.13788

Sxy

(1) - (2) = 22.93612

1837.6975

(SX)2/N =
Syx = (8) - (5)
Y2 = 83521.6274

1834.875938
= 2.821562

(SY)2/N = 83301.09683

Syy = |
Voo«

b

7) - (8) = 220.53057

} _%_ _ 8.1289

58.9142

+<

1

Y =
byX = 71.0774

,
Cxy) . (3)(3) .

SXX (6T7

186.4448

(N-2) 55 - (9) - (14) = 31.0858

s§ = (15) & (N-2) = 12894

175

" Dep.

(18)

Var. Y Assay Gage Values

n

2Y = 1413.94

N =24

(17) s, = {16 - 1,265

Y = 58.9142

_ 0.5491

(19) S2 - S2 Cl . 42,0472
bo y N

A .
Y = by + byX = -12.163 + 8.129X

S = 6.484
bo

sb1 = 0.741
sy = 1,245

for v =N -2, tyy 5 gp5 = 2.074

A
fOY‘szk,Yk=bo+b1Xk

Conf. interval on n(1ine) for
X '= Xk:

- /2

" [] (Xk-X)j|

ttoam S |lwmt———
k* Fvasz Sy [N TS

Pred. interval on next observatfon
for X = Xp: .
‘ - 21/2
A 1 (Xk - X)
“WWrtop Syttt —5—
2

XX
R=L}§%=o.85 ,

Note: Sy, = Z(X-X)2 s =% (v-V)?
2 (X-X) (Y-Y)

Yy
S =



The fitted model is
. § = -12.163 + 8.129 X
and the ANOVA table is

Table 7.3
ANOVA Table

Source SS df MS F-Ratio

Intercept 83301.10 1
(Mean y)
Slope, By 186.44 1 186.44 120.34
Residuals - 34.09. o 22 ' 1.55° -
Lack of Fit 31.58 1 2.87 12,6
Pure Error 2.51 i ~0.é3
RZ = 0.85

Using the residual mean square as our estimate of 02, a 95%
confidence interval for B, is 0.66 <S8, <0.97. Thus, B, is certainly
significantly non-zero. The F-ratio of 120.34 testifies to this conclusion
also. A 95% confidence band for selected X values is listed below in Table
7.4 along with 95/99 tolerance bands at these points.

Table 7.4
Confidence and Tolerance for New Assay Gage
95% Conf-idence 95/99 Tolerance
X y lower  upper . lower upper
8.000 52.87 51.61 54.13 48,18 57.55
8.362 55. 82 55.03 56.60 51.35 60.28
8.725 58.76 58.23 59.29 54.39 63.13
9.087 61.71 60. 96 62.45 57.26 66.16
9.450 64.66 63.45 £5.86 | 59.99 69.32

The center of the region of experimentation.is X = 8.74375. Note that the
confidence and tolerance intervals become wider as X moves away from X. Our
information about a system is best at the center of the region of
experimentation and gets progressively warse as we move away from the center.

O0f course, the above intervals and tests of significance are of no

value if the model is inadequate. We have several ways to study this
question. First note that the lack-of-fit test gives an F-ratio of 12.60.
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The critical F for 11 degrees of freedom in both numerator and denominator is
2.82 for a= 0.05. This is strong evidence of lack of fit. Furthermore, the
cumulative distribution plot of residuals on a probability scale shows marked
departures from a straight line. The bow in the middle of the data may be
indicative of a need for a quadratic term in the model. (See Figure 7.10). A
plot of residuals against the fitted values, or equivalently for a straight
line model against the X values, reinforces this conclusion. Figure 7.11
shows large negative residuals at each end of the scale for X and -
predomingntly positive residuals in the middle. A tentative conclusion is
that a X© term would be beneficial in the model. Of course, other information
about the processes under study may dictate other conclusions. Nevertheless,
the data has witnessed to the apparent inadequacy of the straight line model
and the residual plots suggest a remedy in terms of a quadratic model.

NORMAL PROBABILITY PLOT

Figure 7.10. Cumulative Distribution of Residuals
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Figure 7.11. Residuals versus X
7.4 Transformation on the Dependent Variable

In some instances a transformation of the response variable is
required to meet the assumptions of normality and equality of variance. That
js, if it is known that the distribution of observations is skewed or if the
variance increases with increasing response,then a properly chosen function of
y will result in the distribution of the transformed variable being more
nearly normal and the variance more nearly constant over the range of
experimentation.

Briefly, the most common transformations are:

1) Logy If Var(yj) is proportional to the square of the mean,

or An y:
m2 , a common log transformation, Log, or a
natﬂra] log, &n, is abp]icab]e; j.e.,
i.e., Vaf(yJ)a ﬂ? ,usey' =Logyory' =.dn y.
2) Square [f the variance of y; is proportional to the meén
RQOF’ mj» the square root™of y should be used; i.e.,

Var(yj)a n3» use y' = Jy.
3) Inverse If the variance of y; increases faster than
proportionally with ﬂhe mean %, the reciprocal or
inverse function is applicable;

j.ee, Var(yj) > nj» use y' = 1/y.
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4) Arcsin: If y is the number of observed successes out of n
events (i.e., y/n is the proportion of successes) and
y/n is near 0 or 1, then an appropriate transformation
to reduce non-normality is z = arcsin(+/ y/n).

In general, if the plot of y versus x is curved, some sort of
transformation is required to straighten the line. However, if the line turns
over, usually a quadratic function is required to fit the data rather than a-
log or 4/ or -inverse function.

: Another procedure to handle heterogene1ty ofzvariances is the ,
weighted least squares approach. Suppose Var(y:) #o< but is a function of y
or x. Let w; = 1/Var‘(yj). Then the_]east_squgres estimation of the

J
parameters of the model,'qj, is to minimize
= 2 g )2
| S = 4251 wilyy -m ) -
7.5 . Multiple Linear Regression

Consider the linear model

Yy = B, "'31’(1“ +Bz"zu +kaku t ey

where e ~'N(0,0'2) for all u. The variables X; =1, 2, «e., k may

u Ju’ \]

represent different factors under investigation or functions of one or more of
the factors in the experiment. The basic tools for fitting this general
linear model have already been discussed. The general approach is to account
for as much of the total variation in the data which can be accounted for by
the estimation of the coefficients of the variables in ﬁhe model and the
constant term, Bo. The regression sum of squares X y R is the measure of

the variability associated with the model, and the residual sum of squares
represents what is unexplained.

ANOVA Table

Source ss of : s
~ Total Zyﬁ | N

Regressioh 23/2u k + 1 MS'Reg.
Residuals Z(yu-9u}2 N-k-1 MS Res.
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The F-ratio, MS Reé/MS;Res, can be compared to»anij + 1. Nok=1. value to

determine the significance of the model. The residuals may still be

partitioned into pure error and lack of fit components, if replicate points
are available.

In general the estimate of the parameters and the corresponding sum
of squares are not easily attained by the usual procedures given in Section
7.2. A terse matrix approach to the least squares analysis will be given
later. First, however, it is useful to note that the analysis of a multi-
variable model can be performed quite easily under the appropriate conditions.

We restrict our discussion here to k different factors Xj, and do not
allow higher order terms. The model is the same as given above. “If the

design, that is the settings of the X factors, is orthogonal, the analysis is
a simple extension of the straight line problem. By orthogonal we mean that

uxiuxju 0 for all i # j.

Under this condition all the estimates in the model are independent and

N
p B B
37 > (x. %)%
.0
R L

The regression sum of squares can be best calculated by

=342 - b3
Reg S =2, bofyu+§u 5 XjuYu

The residual sum of squares is the difference between_the total sum of squares
and the regression sun of squares. The estimate of o< is then

2 N2
S2 - Zyu =2yu
- N=k-T ¢

Because of the independence of the estimates, however, each term bj can be
examined for significance independently by

z _
- _ b.u X.Lyu
1,N-k-1 2
s
by
or by tN-k-] = s
s {/2 (Xju - X)
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2 - : ‘
In fact these are equivalent since ty ., 4 = Fl,N-k—l' This may be seen
y)

/ EU:(X. - %)% . Thus, separate

b } . = - X
y noting that bJ 2( ) (y ju

ll

confidence intervals may be computed for each parameter. This cannot be done
if the design is not orthogonal since the estimates are not then independent
of each other.

There is one further principle which we will present next, that
enables us to break out the effect of each factor from the others, even if it
is a function of other X terms. This principle is known as the extra sum of

squares principle.

7.5.1 The Extra-Sum-of-Squares Principle

Suppose we have two factors in a linear model of some response,

Y, = B

ot By Xy tBXy e -
If the settings of Xy and X, were not chosen to be orthogonal, we cannot

estimate and evaluate Bl and BZ independently. Suppose, however, we first
fit the model :

u™ BotBiXyy e -

The resulting sum ef squares for B, and By is

S1 = SS(by, b1) = by Zy, + by ZXq,yy.
We now fit the data to the larger model. We should find that we obtain a new
value for b, and by as well as a value for bp. If we denote the new estimates
hy b3 »  we can compute the regression sum of squares for the mode],

Now, the extra sum of squares due to including the termByX, in the model is

RS(h2| bys by} =S, - Sy -

That is, 1fBo and B are a]ready in the model, the additional information
obtained by 1nc1ud1ngB 2Xo in the model is measured by S% - Sq._ If we added a
third term, B3X3 to the mode1 the extra sum-of-squares due to B3X3 would be
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We should note one important thing, here. The extra-sum of-squares for a
given term is dependent on what has gone before it into the model. Thus, the
extra sum of squares for'B3X3 will be different if we go from

By + B1Xy to By + ByXy +B3X3 than if we went from By + BXy + B)X;
to BO_ + B1Xq + ByXy + B3X3. The only circumstance in which it will
not be different is if X3 is orthogonal to X; and X,. The procedure is also

general with respect to addition terms which are functions of previous
terms. Thus,
SS(b b

bys by) = SS(b, b SS(b

11| Pos by)s

1° 11) - o’

where bll is the coefficient of Xf .

The principle of computing the extra-sum-of-squares is very important
in the development of models, as we shall see in discussing model building in
Section 7.6. The significance of the extra-sum-of-squares can be tested,
then, by comparing it to the residual variance estimate of the fuller model,

i.e.,
SS(b]] , b )

Fis

| “(bg by bn)
*7.5.2 Matr1x Approach to the Least Squares Analysis of the Multiple
Regression Model

We present here a brief description of the danalysis of a multiple
regression model using matrix notation.

Let_x_be the ¢olumn vector of N observat1ons, X be the N by p matrix
of X settings and B be the column vector of .p parameters to be estimated in
the model. That is, :

/ \ 4 /
vy re(r o xg X e Xq] . B=[Bo)
Y2 1 X2 Kpp Y2 By
N By
/
T Xy Xon Xk J
/ \
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where p = k + 1, The model may be written

Y=X B +e ,
where ¢ is a column vector of N errors. The least squares principle says to
minimize the sum of squares

2 ' 2
Se =¢e =(y -XB) (y -X B)-= §.(yu-§;% X5y)

u —_

where ' means the transpose of the vector or matrix. The least squares
estimates are given by
A
oo xy

where X 'X is a non-singular matrix and hence 1nvert1b1e. The variance of the
parameter “estimates is

Var (b) = (X'X)7'o?
and is estimated by replacing«r2 by s2. Note that if the X's are orthogonal,
X' X is a diagonal matrix and hence so is, (X ' X) . Then all the estimates
are independent of each other and separate confidence intervals may be
constructed. 1In general this is not the case. Constructing separate
confidence intervals may lead to erroneous results. As an example, a joint
confidence interval may be elliptical. The corresponding separate
t-confidence intervals form a rectangle.

Figure 7.12. Joint Confidence Region vs. Separate Confidence Intervals
The variance of fitted values may be obtained from
Var(¥) = X (X' X)L X ' o2

For one point, not necessarily one of the design points,

Var (5(xg) ) = xo' (X ' 1)L x, 02



Again, we estimate the variance by replacing o2 by s, We can then compute
confidence bands about the fitted model,

A . -1
y, +tt §v/§' (X" X) 'x
k Ve, a/2 -0 - - 0

The regression sum of squares can be compiled from

[} 5 b

SS Reg= %' 93 =
but is subject to less roundoff error if computed as ‘
SSReg=h' X'y =y rx'OTxy .

The residual sum of squares is, as always, obtained by subtraction.

ANOVA Table: Multiple Regression

Source ss df S
Total Yy N

Regression 2'&_ =bX'y k +1 MS Reg
Residuals 'y -3y N-k-1 s2 = MS Res
*7.6 Model Building

In this section we will summarize an iterative procedure for finding
the best empirical model to fit the data. The process of finding the best-
fitting model, whether empirical or theoretical, is called model building.

The general procedure is to start with a given model and to add or subtract
terms from-the model until the best set of variables is included in the

model. In general, there are four procedureé and we evaluate the results by
exam1n1ng Ehe coefficient of determination R“ and the resigual estimate of
variance s¢. We seek that model which gives the highest R¢ and the lowest 52,
while keeping the number of parameters to be fitted as small as possible.

The four basic procedures are (1) all possible regressions,
(2) backwards elimination, (3) forward selection, and (4) stepwise regression.

7.6,1 A1l Possible Regressions

If there are k candidates for entry into a model, we can perform all
possible regressions and compare the results. There will be k models using
one variable, k(k - 1)/2! using two terms, k(k - 1) (k - 2)/3! using four

» 4 o o302 . 5
terms, etc. For k = 5, there are 5 + E’-;;'- + 5 §I3 + 5°4'2?2 + %‘r = 3]

possible regressions., As an extra variable is added to the model, R will
increase. However, 52 may also increase. The experimenter must make a choice
from the available information about the best model.
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An analysis of thoria pellet grain size with respect to 5 thoria
powder characteristics is provided below to illustrate model building
procedures. The powder characteristics are

X1 = Maximum particle size
Xo = Average particle size
X3 = Porosity

Xgq = Surface area

X5 = Bulk density.

Only linear (first order) terhs will be considered in this example. The
results of all regressions on pellet grain size are:

Number Terms in Model ‘33 Efi
1 ‘ Xl 62.1 3.65

2 X5 46,7 5.13
3 X3 : 37.3 6.05
4 Xq . 48.6 4,95
5 Xg . 23.6 7.37

b Xl,Xz 68.8 3.19
7 X15X3 - 63.9 3.69
8 X1:Xg 85.4 1.49
9 Xl,X5 . 63.6 3.73
10 Xo5X3 54.7 4.64
11 - X5, Xy -52.7 4,89
212 X2,Xg _ 58.7 4,22
13 X3,Xg 57.2 4,38
14 X3,Xg 43.2 5.82
15 Xg,Xg 48.6 5.26
16 . X1sX9,X3 i 69.3 3.35
17 ' X1:X2,Xg 91.6 0.92
18 X1:X2,Xg 74.9 2.74
19 X15X3,X4- _ 86.2 - 1.51
20 X1sX35Xg 64.9 3.84
21 , X1Xg,X5 - 94,0 0.65
22 X25X3,Xg . . 58.9 4,48
23 Xo,X3,Xg ‘ 63.6 3.97
24 X2,Xq5Xg 63.5 3.98
25 X3,X3,Xg 57.5 4.64
26 - K1aKp,X3,Xg 93.6 0.75
27 X1 +%X25X3,Xg : 75.1 2.91
28 X15X2,Xg,Xg 94.1 0.69
29 X15X3,Xg,Xg 96.0 0.47
30 X2:X3,X4,%g 67.3 - 3.8
31 X1:X2,X3,X4,Xg 96.2 0.48
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The best férst order model; i.e., the model which produces the h1ghest R2, and
smallest s© for the fewest number of parameters possible, is

Yy= By ¥ ByXyy*t baXgyt bgXy *t beXe s
for which R2 = 96.0 and s2 = 0.47. This four variable model is preferable to
the complete five variable model since it requires fitting one 1es§ parameter
(and hence requires.one fewer observation) at the cost of 0.2 in R¢ and
actually has a smaller estimated residual variance. Similarly, a good
argument can be made in favor of the threE variable model involving X;, X4 and
Xg since itzstill has a,large value of R< (94.0 vs. 96.0) and a smal}
variance (s¢ = 0.65 vs.s¢ = 0.47). The final choice between these two models
may be based on examination of residuals through lack of fit tests and
residual plots.

7.6.2 Backwards Elimination

When k is large, all regressions become cumbersome and expensive to do. A
better approach which chooses which new variables to add or delete is
required. One such procedure begins with all terms in the model and
eliminates them one at a time until a decision is reached. If the analysis is
performed in the proper way, the extra sum.of squares (see Section 7.5.1) for
each term is available for comparison; i.e., compare SS b4| by» b1, b2, b3)

with s for by s bg. We then simply throw out the variables which
have the 1ns1qn1f1can% ex ra sum-of—squares when the other terms are included
in the model.

Using the backwards elimination.procedure, we would first throw out X, from
the complete model since the F-value for its extra-sum-of-squares is
_definitely insignificant (see Appendix E, pages 215,216). The next candidate
for elimination is X3. The F-test for the extra-sum-of-squares for X3, given
X1> X4, and Xg are in the model is 6.86 which is significant at the 1% level.

Thus, the best model obtained by backwards elimination is the .same as found by
all regressions.

7.6.3 Forward Selection

In the forward selection procedure, we begin with the smallest model. The
first step is to find the variable with the greatest absolute correlation with

the response y, i.e., _
S0 )y - §)

(20, 2)%80y,, - 9)7]

.
X:sy
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The X variable with the highest rX,y is the first term to enter the model,
X1 in the example. The values for ry and the correlation matrix between

X's are given‘below.

X5y X1 X2 X3 X4 Xg
Xq -0.788 | - -0.606  -0.643  -0.300  -0.482
X; 0.684 | - - 0.547  0.808  0.915
X3 0.610 | - - - 0.515  0.437
Xz 0.697 | - - - . 0.721
Xg . 0.485 | - - - - -

Variable X7 is the first to enter the model since it has the highest
absolute corre]a%ion with y. The second and each subsequent variable to enter
the model is that variable which has the greatest absolute correlation to the
residuals from the previous fit. Thus, X4 enters the model second because it
has the highest absolute correlation of the remaining variables to the
residuals, y-b -b]X1. Similarly, X5 enters the model next since it has the
highest abso]uge correlation to the residuals, y-by-byX1-bgXs. Next comes

X3. The variable X, does not add significant information and so is not
accepted into the model.

Combinations and modifications of these forward and backward procedures
can be proposed. One such modification is the stepwise procedure.

7.6.4 Stepwise Regression

The stepwise regression procedure is a modified forward selection
procedure in which at each step, the previously selected variable is re-
examined for deletion from the model. The procedure begins just as above in
the forward selection procedure, first selecting X; and then X;. The next
step, however, was to re-evaluate Xl given X4 was in the model. The variable
X1 could be dropped if the extra sum of squares for X; given Xz was found to
be negligible. However, X; was maintained in the model and Xg was added
next. Both Xj and X, were kept. Finally X3 was added to complete the
model. This, of course, is the same model as was obtained by the other
procedures. As a final step for all procedures, the residuals should be
plotted to examine for departures from assumptions undetected by a lack of fit
test. ‘
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APPENDIX A. UNCERTAINTY ANALYSIS
1. Introduction

Whenever a response y can be related to .a group of contributing factors or
variables, x} , which are subject to error, the true response value for a
given setting of the x's is also subject to error. The description and
analysis of the induced variability in y is sometimes called uncertainty
analysis. In other words, the uncertainty of the value of the x's Teads to an
uncertainty in the resulting value of y. If certain information about the
uncertainties in the x's is available, the uncertainty of y can be determined
or at least closely approximated. The best type of information on the x's is
the probability distribution function, or at least knowledge of the mean and
variance of the unknown distribution is essential. (Note: If a probability
distribution can be described by a mathematical function, f(x), the mean p of
the distribution of x is the center of gravity, m= [xf(x)dx, and the

variance is the moment of inertia, ol = f(x—y.)2 f(x)dx. The mean

Tocates the distribution and the standard deviation (square-root of the
variance) measures the spread of the distribution.) A

To determine the uncertainty of a response y, then three characteristics
must be known or assumed: :

(a) The Model - The mathematical description y = f(xl,xz;...,xk) of

the functional relationship between y and.the x's. The
model may represent an approximation to the true
relationship,

(b) The Distribution of each x - i.e., knowledge of the probability
- function of the uncertainties in the x's or at least the
means and variances,

(c) The Interdependencies among the x's - i.e., knowledge as to
whether uncertainties in the x's act together
(correlated) or separately (independent).

€x2 '..' .” € xz ':"0’.,
LA -: R
s 1 ¢ (]
» 2s ®
€x1 €xi
Independent Positive Correlation
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These features will be discussed repeatedly in the remainder of this Appendix.
The mathematical basis for analysis of uncertainties in x's as they propagate
through a model to y will be discussed. Keep in mind that the objective is to
determine the size of an uncertainty (error) and the frequency (probability)
of their occurrence. This is illustrated in the figure below.

Distribution of Uncertainty in

y = f(Xl, x2’ X3)

P(Xl)» | p(xz)
f(y)

p(x3) y = £(x,%5,%5)
—

2. Simple Propagation of Error
Suppose y = a + bx, a, b are constants and x has a mean value u about
which the true value of x varies in a random (unpredictahle) fashion. Assume
the variability of x about u is given by its variance o“. Then, denoting the
mean by E( ), (read as "expected value of") and variance by Var,
Mean of y = E(y) = a + bu (A1)
Variance of y = Var(y) = b2 ¢ 2 (A2)

This is found to be the case as follows:

E(y) = E(a+bx)

Mean of y.

a+ b E(x)

a+b [x f(x) dx

a+ bu
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where f(x) is the probability distribution function for x.

The var1§nce of 9 constant 1§ zero, a?d by definition of variance
Var(bx) = b f(x-pu) dx = b¢J (x f(x) dx. The variance of y
becomes

Variance of y = Var(y) = Var(a + bx)
Var(y) = b2 o2

Since the model contains only one random variable, x, the distribution
function for y is the same ?s Ehe distribution function for x except the mean
is atbu and the variance b . Hence, all questions about the probable
value of y can be answered by knowing the distribution of -x. For example, if
X is a normal distribution with mean 0 and variance 1, and a=5, b=2, then y is
a normal distribution with mean 5 and variance 4. Thus, approximately 95% of
the values for y can be expected to be between 5+20-(1<y<9§ and 99.7% of the
values of y can be expected to lie between 5t3c¢ (-1<y<11).

3. Linear Combination of Several x's.

Suppose the model for y can be written as a linear combination of a set of
. .

x's,
Y = ag tapxy t agky toees +oaXp. (A3)

In part1cu1ar, if ap=0, a;=1, i=1,2,400,k, then y is simply the sum-of k
values of x.

Let;L be the mean of x;

and c? be the variance. Then the mean of y; is
given by 1 '

i

E(y) = A é a;x;) =

k
§ ca s S
i) = et g3y Ry = ag * Ty Ak (A4).
Furthermore, if the x's are independent of each other (i.e., a change in one x
does not force a change in any other x), then the variance of y is

k

k .
Var(y) = Var( aj + 1-23] a;y;) = .Z-] a 2 ¢2 | x's independent (A5)

1 1 1

For an=0, a;=1, this says that the mean of a sum is the sum of the means,
' regargless of corre]at1on, and the variance of a sum is the sum of var1ances

for independent variables.

To illustrate the correlated case, consider first ‘only 2 variables x; and
X, for which the correlation coefficient p must 1ie between -1 and +l.
%he covariance is given by pclaz). Then
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Var(x; + xp) = G% +o'§+ 2 poq0y (A6)

Expanding to a general linear combination,

_ 2 2 2 2

For complete generality,

k k
B 2 2 5
or for oj =0, 3 = 1, i=1, 2, eeey Kk,
k ? (k=1) 2 :
Var (1.21 X;) = ko "4 2k 5t oo . (Abc)

Note that p may be positive or negative. Thus, the variance of y may be
increased or decreased by the presence of correlation, depending also on the
signs of the ai's. Another interesting note can be seen from (A6c). Since

“the variance of y can never be negative (by definition), this implies that the
most negative value of p is not -1, but in (A6c) p > - 1/(k-1). Of course, p
may be +1, which yields the result that the standard deviation of y is the sum
of the standard deviations: :

var(y) = 1‘:1 ¢ 2+ ZX () e age (é 7 ;)°
7y = 1§1 71
4, Variance of Simple Product
Consider now thé mode]l
Y = XyXp .. ' (A7)

The best way to illustrate the variance of y here is to write y as a Taylor
Series expansion about the means of x; and x5, i.e.,

iy of X )+ (=
Y-~(#47#2)+(5;§ (Xy=p ) + (ax2> (X2-p2) (A8)
: Hia K2 TR H2
+( 324 ) 20X -p)(Xa-p2)
: 2!
ax'ale"ljl-"z

pipe (X =) +pa (Xa-p2)+ (X =p ) (Xz-p2)

*
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Thus, an eXact representation of the mean of y for x; and x2 independent
(i.e., E[(X]_ '}1-1) (X2 -#2)] = 0), is H1 F'2 .

Then, since Van(y) = E(y -/41;12)2” .
Var(y) = E[pp (xp=p) * 11 (Xp- Bp) + (x- #1) (xp - #p)12 (A9)
-2 2 L2 2 2 o2 ' '
By o7 By T 9 2

(x1, Xo independent)

Since nuclear engineers and scientists often deal with relative errors, the
relative variance of y can be obtained as follows: -

| 2.2 2 o2 52,2
Var(y), = 100%ar(y) . (100)2|%271 ,#1 72,717 (A10)
Y )2 e Al 2o A
N S R at) " c K £ ue
. ]
(e (em? 4 leBSLleB) 2
(100)

and since the last term is often quite small, it is usually dropped, and

Var(y)y = (a%)% + (o'%)g ‘ (A10a)

which is the well-known result that relative errors of a product add.

If xq and xp are correlated, the cross product term in (A8) is .usually
dropped and the result is

.. 2 2 2 .2 v ;
Var(y) THy 9]t M) T, H 2B HP T T, (A11)
and
Vadym=?(a%ﬂ14-(c%£-+2p(0%)1 (G%h ' ' (A11a)

5. Variance of Complex Models Using Taylor Series Expansions

Exact variances for a linear combination of input variables and for
products have been obtained above. For most other cases, of a more complex
model, only approximate variances can usually be obtained. The Taylor Series
expansion as used in the previous section is the tool used to obtain the
approximation. The technique will be illustrated for a simple quotient
Yy = x1/xp and for a more complex model. '

195



.a. ~.Simple Quotient

Let
Yy = x{/x2, xp #0 = (A12)
Then

_ of - (d_f) .
y-f(x,,x2)|#'#2 ¥ (0x|)p.,#z rmmd + (o m.#a(xz #e)

2 - \2 2 (A13)

a°f (Xi=#) (a f ) : (X2-H2) :

* (ax,z)}tl,ﬁz 3T "\oxZ iy, 2

+ ( O‘f )2 2 (XI'F-IHXZ'P'Z) PR
! 0X|6x2 /'li,'Z 2

=plut (X|-/J.|)/2 + (-;J.|//.L2) (xz—p‘z)

+.’.. .

It can be seen that an infinite number of derivatives with respect to X2
exist. Thus, the Taylor Series is usually truncated after the linear terms.
The mean of y is then an approximation,

E(Y) #pi/pp o pp #0 (A14)

and
Var(y) = VarBI% (Xl-lLl) -.liz(xz- Ko %
2
2
2
L2 1 2 . N
0]t ——05 (Xl’ X, independent ) (A15)
P K
> .
R S U el o o (A15a)
L2 17T T A% T T PO ),
2 "2 K2 (xl, Xo correlated)
*In some cases, it is advisable to include cross product term (1/;Lg) 0% <r§
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The relative variance of y is given as
‘ (a‘%)% + (o-%)g , (xl, Xos independent) (A16)
Var(y)% = 2 5 .
((7%)1 + (a-%)2 -2 p(o-%)1 (o-%)2, (Xl’ X2 corre]ated)'

as expected.

b.  Complex Model

xle'axz
Suppose y. = 1-bx3
ot ,"Ip2 ' ~Opzy
. H e e : ap e -
2 B 4 () (xmm)+ (- BE—2) (npmy)
3 3 3 (A17)
b#|9—a“2) (X3-p3)
('u-b#a)E ' o
(truncated after linear terms). Then,
) . --0/.1.
2 pe 72
E(y) = -y (A18)
| “0pa\2 5 02
L(e %F2\ 2 (ape ) 2
Vady)¢(7:5;;-> o+ (q-bp3) %
(A19)

((:-bﬁ;Tﬁ* 3

if X1, Xp, X3 are independent.
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If X1, X» and x3 are correlated, the following covariance terms need to be
added to (A]g)

—2apu "2, oo _2pbp €7 2%2 p.a.c
(1-bu 2 Pi2%1%  T(-bpy)3 13 %1%
‘ (A19a)
2 _-a
2abp, e "H2
+ (-l-bL3)3 P23%2%3

6. The Distribution of y

Thus far, the discussion has concentrated on the variance of y for a given
model for independent and correlated x's. In order to make statements about
the frequency of given values of y, it is necessary to know the distribution
of y. In some cases, the distribution of y can be inferred directly from the
model and the distribution of the x's. More often, however, the distribution
of y can only be approximated.

For a linear model of the type given in Equafion (A3), the exact
distribution of y can be determined if the distributions of the x's are of the
proper form. In particular, if all the x's are normally distributed with

means p; and variances 0'§ » then y =‘§ ajx; is also normally distributed
i=1

k

with mean 2, a,p,; and variance

M=

i=1
(+ covariance term if x's are correlated). Symbolically,

if all x; are distributed as N(;Li,cﬁ), then

;
, kz o k2 KZ 2 2
Y = 5% aixg s distributed as N(i71 a5 pis 2 259 )e

In general, however, if the x's are not all normally distributed, the
distribution of a linear combination cannot he inferred exactly. (The only
other distribution that sums to the same distribution is the gamma, and then
only for a simple sum).

Theoretically, given the distributions of the x's and a model, the
statistician can, through his knowledge of mathematics and distribution
theory, derive the exact distribution of y. In practice, however, this is
usually impossible except for the simplest cases.
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Fortunately, however, there is.a very powerful theorem that enables a
useful approximation to be made in many practical situations. The theorem is
known as the Central Limit Theorem and says simply that a linear combination
of several independent variables with the same distribution tends to have a
normal distribution with the mean equal to the sum of means and a variance
equal to the sum of variances. How closely the normal distribution appro-
ximates the true distribution depends on the number of variables involved and
the individual distributions, but the theory, nevertheless, dallows a reason-
able approximation to be made in most circumstances. More generally, if the
distributions of the independent variables are not identical, but no one
variable dominates the others, the theorem still holds. Furthermore, since
any functional form of a model can be approximated by a Taylor Series
expansion truncated after the linear termms, the theorem can be seen to be
applicable to any model, provided no one term dominates.

8. Conclusion

It has been stated that to be able to say anything about the uncertainty
of a response y, which is a function of one or more input variables, x, it is
necessary to know or assume three important facts: (1) the form of the model,
(2) the distribution, or at least the mean and variance of the distribution,
of the x's, and (3) the correlation structure of the x's. By use of the
Taylor Series expansion, exact or approximate expressions for the variance of
the response y can be obtained. Finally, under certain conditions, the
distribution of y can be inferred, or by the use of the Central Limit Theorem,
an approximate normal d1str1but1on can be applied to make probab111ty
statements about y.

The key to this uncertainty analysis is the assumptions. Like "Garbage In-
Garbage Out," if the assumptions of an uncertainty analysis are grossly
incorrect, any conclusions based on these assumptions must be viewed with
caution,
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APPENDIX B. ESTIMATION THEORY
1. Maximum Likelihood Principle

Having determined which distribution functions describe variables of
interest, it usually remains to determine the values of the parameters of
these distributions. We may not know, for example, where the distribution of
data is centered, or exactly how spread out it is. Hence, we must estimate
these values by collecting data. Just what the best guess or estimate of a
particular parameter is, and how precise we think it is, is the subject matter
of estimation theory. We must gather our information, i.e., the data, in such
fashion that will give use the best value according to some criterion. There
are many criteria which may be used, but the most common approach is known as
the maximum likelihood procedure. The maximum likelihood procedure, as its
name implies, simply finds that value of the parameter that makes the event of
obtaining a given set of data most probable. To illustrate, consider an urn
full of red. and blue balls. Let x be recorded as 1 if a red ball is drawn out
of the urn, and 0 if a blue ball is drawn. The distribution of obtaining a
red ball in a single draw from the urn is a binomial with n =1 and p being
the probability of drawing a red ball,

1, if red
p(x) = pX (1-p)1"% , x = 10, if not red

Suppose that one person claims that three-fourths of the balls are red, while
another claims that the red and blue balls are equally distributed. The
object is to determine which person is more probably correct. To answer the
question involves taking data. Suppose one ball is drawn from the urn, the
color recorded and the ball replaced until four balls have been drawn. Each
draw has exactly the same distribution as every other and each result is
independent of the others. Thus, if the results were red, red, blue, red, the
probability of obtaining this result tor a given p would be

Pro (x1=1, xp=1, x3=0, x4=1) Pr(x1=1)Pr{xy=1)Pr(x3=0)Pr(xs=1)

p(x1)p(x2)p(x3)p(xq)

pt(1-p)0 p(1-p)0 pO1-p)? pl(1-p)0
= p3(1-p).

Now which value of p, 1/2 or 3/4, will result in the larger probability?

172, p* (1-p)

3/4, p® (1-p)

1/16
27/256 = (27/16) x 1/16

For p

for p
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Obviously, four draws from the urn resulting in 3 reds and one blue is more
probable if the proportion of reds were p =.3/4 than if p = 1/2.

What is the most probable value of p, given the results obtained? It is
that value of p that maximizes the joint probability function -

p(x1, X9, X3, %) = p{x1)p(x2)p(x3)p(%4)
= p3(1-p).

When this function is written as a function of the unknown parameter p, given
the observed x values, it is called the likelihood function, L(p). Since the
range (i.e., possible outcomes) of x; does not depend on p, we may maximize
L(p) by taking its derivative with respect to p, equat1ng to zero and solving
for p. Thus,

2 _43-0

d hép) . dg (p°(1-p)) = 3p

Solving for p, we obtain

p2 (3-4p) = 0
p2.= 0
p = 3/4

It is quickly obvious that p = 0 does not maximize L(p), thus we have the
“unique maximum likelihood estimate of p, given the results (red, red, blue,
red), to be 3/4. Of course, given a different set of data, e.g., red, red,
blue, blue, we would have found a different maximum likelihood estimate. -

The maximum likelihood principle then is to maximize the likelihood
function in the 1ight of the data on hand. To distinguish between the joint
- probability density function f(xy, xp..., X, | p), of n independent random

variables, given the parameter value, and the likelihood function of the
parameter given the observed values of the random variables, we write the
Tikelihood function more.formally as L(p| X1, Xp,ees, Xp)e

If the range of the x; do not depend on the parameter, the maximization
procedure is to take %he derivative of the likelihood function, or
equivalently the derivative of the natural log of the 11ke11hood function, set
to zero and solve.

We have already seen how to obtain the maximum likelihood estimate of p
for a binomial distribution for n =1, For n > 1 the result generalizes in a
straight-forward manner and we find that the maximum likelihood estimate of p
for a binomial is X. ' The maximum likelihood estimates of the parameters in
Poisson, exponential, and nonna] distributions are given below.
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a. Poisson Distribution

p(x|\) = e A AX S/ x!, x=0, 1,2, ceeues

Let X1, X2seees Xp be n independent observations from this Poisson
distribution. Then

n X
AT
.§] e N /x;!

L(x] X1 s XpsesesX) ;

X,
=™ 1/'1rx1.!

where m means the product of XxjXp...Xpe Then
: ' SN
InL(x)=>-n -+$x1.znx'- 1§1 in x,!

i
dizi_gk) - o+ i .o

Solving for A gives the maximum likelihood estimate.
A -
N, =521 X/n =X
b. Exponential Distribution

1
X

f(x|n) = e'x/x , x>0, x> 0.

Let X1, X2, «es, X ben independent observations from f(xlx ). Then

n

= T 1 =Xs/N
L()\l Xl, Xz,oo., Xn) 1=]Te 1
) e -in/x
kn

In L{(A) = -ndnx -Zx,/A

- =xt—z Y
which gives Ay, = X
c. Normal Distribution
2 ' 1 1 2
F(x| g, 0l ) = exp[——z—(x-p)] , -0< x <o ,
:;Zvcr 20 -wf B <O |,
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Let X1, Xp,ee., X, De n independent observations from f(x|,i,o-2). Then

L(p,o? | X1 X2""")'(n) = ——?],,72— exp [— 2_]'2_2()(1',“' )2:| .

(27o") c
2 n n 2 1 -\ 2
Inl{p,0%) = -5=dn2w- —dne® - i Z(x;-p)
abn L _ -2
= X.=
a# 20’2 Z( i l“-)
adn L _-n 1 1 \2
d3¢2 -7 o2z ° 22 ngi-#)
‘ 2(c")
Setting both equations to zero and solving for p.ando-z, we obtain,
Pu = X
: =2
A2 Z(Xi - X)
o " S ——
ML -n
Note: The estimate & ﬁL = —%T— > (x,i-i)2 is a biased’
estimate of the variance o2 of a normal distribution. That is, the
expected value or mean of the distribution of -c’:\-ME is not 0’2'but (n-])o-z/n.
As a result, the unbiased estimate of 0-2, 52 ='F}T z (xi-i)2

is preferred in most cases and will be used where required in the next
sections.
2, Uther Estimation Criteria

a. Unbiased Estimator:

A : : A
Let 8 be an estimate of 8. 1If E( 8 ) then 8 1is an unbiased
estimate of 8. For example, E(X) = p s hence X is unbiased for u .

b. Minimum Variance Estimator:

A
Let.e be one of,a class of estim tors {9 } If Var(Gl) is less thar
or equa] to Var(§1), i# 1, then 3 he minimum variance estimator
of that class of est1mators, i.e., Var( 1) € Var(B ), all i. For
example,

o _ 1 1 1
X=Xt Qe Y X
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Ce.

is a linear, unbiased estimate of p = E(xi). The Gauss-Markov

Theorem of least squares tells us that X 1s also the minimum variance
linear unbiased estimator of u . :

Minimum Mean Square Error Estimator:

Let 51 be an estimtor of 8. If 61 gives the minimum value of

E(éi -8 )2 among a class of estimators'[ai}, it is the minimum mean
square error estimator. Note, if E(@l) =@, i.e.,'if 61 is unbiased,
then the mean square error is the same as the variance. However, 31
need not be unbiased. If E(@l) # 6, then

£(8, -6)% = €[(8, - £(8))1° + [£(8,) -8 T
2

u

1

Var (61) = (Bias)
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APPENDIX C. THE CENTRAL LIMIT THEOREM
Theorem:
Let Xq, Xp,..., X, be 19dependent1y and identically distributed as f(x)
with mean p and var1ance T o Then x has in the limit a normal d1str1but1on
with mean pu and variance o “/n for n suff1c1ent1y 1arge.

Proof:

Every probability distribution funct1on with at least a finite mean and .
variance has an associated moment generating function.

M (t) = E (e¥X)

E(1 + tx + (tx)Z 21 + (tx) /31 +....)

1]

1 + /.Ll t + :“'2 t2/2' +'u3 t3/3' teves

where ;L@ are the raw moments and can be obtained by

. der(t)

The central moments for the distribution of x can be obtained as follows:

Mo (t) = E[et(X-u)]

X-U
_ ~ut
= @ Mx(t)

Expanding e~Ut and M (t), mu]tip]jing.the two series together and collecting

terms, and making use of the relationship between central and raw moments .
given in Section 2.3.2, we have :

- 2 9] 331
Mx_u(t) =1+ p,t /2! o+ ,g3t /3!
u
where p. = —m——— .
r qt"
% {xj= p) the mean of which is 0. Then since x; are

Now consider w
independent,

M, (t)

Efet Z(Xi-p )3

[ool et 2061 f(x))u. fx,) dxqenedxy
Jot(xy-p) f(xl)dxlf et(xp-p) f(xz)dxz..; Jetlxy-p) f(x,)dx,

"

e ety
M ()37

[V %y t2720 + Ry(t) ]
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where Ro(t) is a remainder term that converges.

Recall that the variance of n independent variables with common variance o?

is no2. Then we can standardize w by dividing by its standard deviation

Jno . Thus,

;=Y
A Jno
and 4
M (1) = M, (1) = € [eM/ V7
which can also be written as VA
M (t) = E[eMt/V/NT)]
= Mw('t;/.,/n—u-)

[1+ —'t2/2'+R L)
“2fs) ' ")

Since Ry(t) convergés, so does Ry(t/+/no ), so that
epztz/zaz»

I

Lim M, (t)

2
L Lt

since u; =0'2. But this is the central moment generating function of a

normal distribution with mean 0 and variance 1. This can be seen as
follows: For a N(0, 1) variable z,

2
M, (t) = E[etz]== j;tz —l e 2 /24,
2

- (zZ-th + tz-tz)/Z

1 dz
= ——  Je
Jer ‘f, 2
_ etz/Z 1_/;'”2 (zet) i
2w
2
- et /2

Since the function inside the integral is a'noﬁma1 distribution with mean t
and variance 1 and thus integrates to 1.

Now since z is a N(O, 1) variable, it follows that w =+/noz follows a
N(O, no 2) distribution and X =+ (o/+/M) z follows a N(p,o2/n)

distribution as n becomes large.
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APPENDIX D.- CALCULATION OF EXPECTED MEAN SQUARES
Consider the case of comparing k‘different treatments on a set of N
homogeneous experimental units. TheAjth treatment (j = 1, 2, ..., k) is
assigned to n randomly chosen units, and N = nk. Leiithé ith.bssefvatidn

(i = 1,2, oo, n) on the jth treatment be represented by x; The

J'o

mathematical model is Xjj =H¥Tit €, where u and Tj are unknown true

constants or parameters (subject to the contraint that'Zj T = 0) and the

€

jj are random variables independent of each other and the t's, and have a

mean of zero and common variance 0-2

for all i, j. The calculational
procedures for the ANOVA for this fixed-effects model are given in Section
6.7.2.

Substituting into the model the least squares estimates, we have

Xi: = X + (ij - X) + (Xij - ij). Note that this is an identity for all values

iJ
of xij. Transposing, we may write (xij - X) = (X5 - X) + (xij = Xj)-

Thus, the deviation of the response of the ith observation on the jth
treatment from the grand -mean is equal to the deviation of the jth treatment
mean from the grand mean plus fhe deviation of Xij from the jth treatment
mean. Now, squaring both sides of the identity and summing over all N
observations, we have

Jj=1 i=1

But 25 (% - O(xgs - %) =3 (X - X) § (x.. - X:) =0

J ij 77 NI ij =7
3D 5) =2 Z(x. -3+ =3 Y
Thus, $ (Xij X) § 3 (xj x)< + 2 1(Xij xJ)
D P AN A > Y
A T B A G R TR
Let Ty = F) xg; and C.F. - (F F xij)Z/N.



Then the sum of squares for treatments SST can b% written

_ T
$ST = 2 n (X - %)% - =31 _ c.r.

n
Substituting the model Xij = m * Tt €4 into T§ we obtain
2 _ 2
TJ- - (nI.L+ nTJ- +€1J- +oo- + an)

Squaring and taking expectations, recalling thét p and Ty are constants,

2
2 g =0 E( €..) = 0, and E( e, . ) =47 1=1', we have
J J * ) J° 1) g 0: i#il’
n
E(18) = e(npd) + el ) + 3 E(e2) ¢ E(@nlur )
] it E T i
=n2,u.2+n T + n02+2n2;4.r..

Then

j=1
k k
-1 [knzp.z +n7° T 5 +kno® 4+ 2nkp2, T ]
n Jz] J-]

Substituting the model into C.F. gives :
; 2

= -_]. 2 T 2 ZE"
CF = (nkp + n 55 + I ).
Squaring and taking expectations term by term,

E(CF) =5 [nfkPul+nka? 1 = mku? 402,

Thus, 2
E(SST) = E (ZTj/n) - E(C.F.)

=kny2+ n%ﬁ-+k°2- Dmpz + 0217,
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2 3y 2
= (k-1 + - .
(k=-1) o | n A
: _ SST
Define the mean square by. treatments by MST = o
Then, E(MST) = o2+ L5
k-1 9

The error sum of squares (SSE) or, alternatively, the Sum of squares within
treatments (SSW), can be written as :

2
k ' TS
_ _ 2 2 2 J
where
2 2 _ 2,2 2
X'ij = (y,+"rj + eij) =p t Tj + eij + 2;1.rj + Z;Le_ij + 2 'rJ. e'ij'
Then ‘ .
E(x?J.) =ul s rg vol +2p rj.'
Thus, -
E(SSE) = E[Z% x..21 - EL 2 T.2/n]
13 J J
=nk,,¢2+n>.".r§ +nk0'2-[kn,u.2+n‘r§+'k0'2]
=k (n-1) 0'2

e . _ 2 _ _SSE
The mean square for within treatments Ts MSW = sg (=TT °

‘Thus, E(MSE) = E(s2 ) ==02. Hence, the within treatment or residual or
error - € ' '

mean square calculated in the ANOVA is an unbiased estimate ofcrz, the

variance of e;;. The between treatment mean'square has an

J'o
expectation of e? + —E:] 2 r? .
4 J
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Appendix E - Model Building (see Section 7.6)

Listing of Input Data

* Fuel Powder Characteristics

* X1 = Maximum Particle Size

* X2 = Average Particle Size

* X3 = Porosity

* X4 = Surface Area

* X5 = Bulk Density

*

* Y = Center Grain Size (ASTM No.)

*

= Grain Size of Fuel Pellets

46.0 1.57 0.7600 6.33 1.45 4,5
46,0 1.57 0.7600 6.33 1.45 3.5
44,5 1.415 0.7725 6.25 1.40 5.5
44,5 1.415 0.7725 6.25 1.40 5.5
44,5 1.415 0.7725 6.25 1.40 5.5
47.0 1.52 0.7735 6.51 1.44 3.5
47.0 1.52 0.7735 6.51 1.44 3.5
44,5 1.58 0.7725 6.34- 1.48 3.5
44,5 1.50 0.7725 6.34 1.48 3.5
46.0 1.86 0.7750 7.08 1.51 8.5
46.0 1.86 0.7750 7.08 1.51 7.0
37.0 1.925 0.7800 6.74 1.02 11.0
37.0 1.925 0.7800 6.74 1.52 11.5
41.0 1.765 0.7790 6.80 1.48 9.5
41.0 1.765 0.7790 . 6.80 1.48 2.5
41.0 1.765 0.7790 6.80 1.48 10.0
44,5 1.705 - 0.7745 6.38 . 1.48 3.5
44,5 1.705 0.7745 1 6.38 1.48 1.5
42.5 1.690 0.7770 6.32 1.46 5.5

A selection of the 31 possible first order regression models for the 5
independent variables listed above are given in the next pages. The results
needed to follow through the steps of backwards eliminatian and forward
selection are included. The final model and the residuals are provided. The
results presented can he obtained from most standard least squares analysis
computer programs or can be obtained by hand calculations by following the
procedures discussed in Chapter 7.

NBI Log No. 79-778B/0027L
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GRAIN SIZE OF FUEL PELLETS
RESPONSE VARIABLE Y(1) (MEAN = 6.10526)

CASE 1 | REGRESSION COEFFICIENTS

NO. I B(I) - - STD. DEV. OF B T-VALUE MEAN OF X
) 0 40,8545 o

(1) -0.796424  .150823 -5,28%* 43.6316

(*, ** DENOTE SIGNIFICANT AT ALPHA = 0.05, 0.01, RESPECTIVELY)
| | ANALYSIS OF VARIANCE TABLE '

SOURCE DEGREES OF FREEDOM SUM OF SQUARES' MEAN SQUARE  F=RATIO

REGRESSION 1 ' 101.7536 - 101.7536 27.88

RESIDUAL 17 62.03584 3.649167 (S.D. = 1.91)
LACK OF FIT 4 32.34239 8.085598 3.54
REPLICATES .13 29.69345 ' 2.284112

TOTAL (CORRECTED) 18 163.7895 -

SUM OF SQUARES ACCOUNTED FOR BY REGRESSION = 62.1 PERCENT

CASE 2 REGRESSION COEFFICIENTS |
NO. I B(1) STD. DEV. OF B T-VALUE = MEAN OF X
0) 0 -13.8779 o :
(2) 2 12,0688 3.12495 3.86%%  1.65632

(*, ** DENOTE SIGNIFICANCE AT ALPHA = 0,05, 0.01, RESPECTIVELY)
ANALYSIS OF VARIANCE TABLE °

SOURCE DEGREES OF FREEDOM  SUM OF SQUARES  MEAN SQUARE  F=RATIO
REGRESSION 1 - 76.51939  76.51939 - 14.91
“RESIDUAL 17 : 87.27009  5.133535 (S.D. = 2.27)
LACK OF FIT 8 83.35342 10.41918 23.94
RCPLICATLS ) ©3.916667  0.4351852
TOTAL (CORRECTED) 18 | 163.7895

SUM OF SQUARES ACCOUNTED FOR BY REGRESSION = 46.7 PERCENT
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REGRESSION COEFFICIENTS

NO. I B(1) STD. DEV. OF B T-VALUE MEAN OF X
) 0 -248.,963 ,
3) 3 329.624 103,751 3.18%* 0.773816

(*, ** DENOTE SIGNIFICANCE AT ALPHA = 0.05, 0.01, RESPECTIVELY))
ANALYSIS OF VARIANCE TABLE

SOURCE DEGREES OF FREEDOM  SUM OF SQUARES  MEAN SQUART  =RATIO
REGRESSION 1 61.01942 61,0192 10,09
RESIDUAL 17 102.7700 6.045297 (S.D. = 2.46)

LACK OF FIT L6 94,0530 15. 67556 19.78
REPLICATES N 8.716667 0.7924242 .
"TOTAL (CORRECTED). 18 . 163.7895

SUM OF SQUARES ACCOUNTED FORHBY REGRESSION = 37.3 PERCENT

CASE 4 :
REGRESSION COEFFICIENTS
NO. T B(I) STD. DEV. OF B T-VALUE MEAN OF X
) o0 _43.4005
) 4 7.57152 1.88912 N.01%* 6.53812

(*, ** DENOTE SIGNIFICANCE AT ALPHA = 0.05, 0.01, RESPECTIVELY))
ANALYSIS OF VARIANCE TABLE

SOURCE DEGREES OF FREEDOM  SUM OF -SQUARES  .MEAN SQUARE  F=RATIO

RCGRCSSION 1 ﬂ 79.56276 79.56276 16.06

RESIDUAL | 7 84.22672 4.954513  (S.D. = 2.23)
LACK OF FIT 7 .- 80.31005 11.47286 29.29
REPLICATES =~ . 10 -3.916667 0.3916667 :

TOTAL (CORRECTED) 18 163.7895
| SUM OF SQUARES ACCOUNTED FOR BY REGRESSION = 48,6 PERCENT
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REGRESSION COEFFICIENTS

NO. I B(I) STD. DEV. OF B T-VALUE MEAN OF X
(0) 0 -50.3337 : ‘
(5) 5 38.4903  16.8172 2.29% 1.46632

(*, ** DENOTE SIGNIFICANCE AT ALPHA = 0.05, 0.01, RESPECTIVELY))

ANALYSIS OF VARIANCE TABLE

SOURCE DEGREES OF FREEDOM SUM OF SQUARES
REGRESSION 1 38.58146
RESIDUAL 17 125.2080
LACK OF FIT 5 A 44.10087
REPLICATES - 12 81.10714
TOTAL (CORRECTED) 18 163.7895

SUM OF SQUARES ACCOUNTED FOR BY REGRESSION

MEAN SQUARE  F=RATIO

38.58146 5.24
7.365177  (S.D. =-2.71)
8.820174 1.30

6.758929

= 23.6 PERCENT

CASE 6 |
REGRESSION COEFFICIENTS

NO. I B(I) STD. DEV. OF B T-VALUE = MEAN OF X

(0) 0 -1.78431 v

(1) 1 -0.643029  0.101078 -6.36** 43,6316

(4) 4 5.49765  1.08671 5.06%* 6.53842

(*, ** DENOTE SIGNIFICANCE AT ALPHA = 0.05, 0.01, RESPECTIVELY))

'ANALYSIS OF VARIANCE TABLE

SOURCE DEGREES OF FREEDOM  SUM OF SQUARES
REGRESSION 2 139. 9256
RESIDUAL ST 23.86389
LACK OF FIT 6 19, 94723
REPLICATES 10 3.916667
TOTAL (CORRECTED) 18 163.7895

SUM OF SQUARES ACCOUNTED FOR BY REGRESSION
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MEAN SQUARE  F=RATIO -

69.96279 46.91
1.491493 (S.D. = 1.22)
3.324538 8.49

0.3916667

= 85.4 PERCENT



CASE 7

REGRESSION COEFFICIENTS

NO. I B(1)

(0) "0 37.1473
(1) 1 -0.779617
(4) 4 8.67526
(5) 5 - 36.6556

STD. DEV. OF B T-VALUE MEAN OF X
7.294200E-02 -10.69** 43.6316
0.990771 8.76** 6.53842
7.87631 -4.65** 1.46632

(*, ** DENOTE SIGNIFICANCE AT ALPHA = 0.05, 0.01, RESPECTIVELY))

ANALYSIS OF VARIANCE TABLE

SUM OF SQUARES

SOURCE DEGREES OF FREEDOM MEAN SQUARE  F=RATIO
RFGRESSTON 3 154.0249 51.34163 78,87
RESIDUAL 15 9.764582 0.6509721 (S.D. = 0.81)
" LACK OF FIT 5 5.847915 - 1.169583 2.99

REPLICATES 10 3.916667 0.3916667
TOTAL (CORRECTED) 18 163.7895

SUM OF SQUARES ACCOUNTED FOR BY REGRESSION = 94.0 PERCENT
CASE 8 '
REGRESSION COEFFICIENTS
NO. I B(I) STD. DEV. OF B T-VALUE MEAN OF X
(0) 0 122,228 . B o
(1) 1 -0.943688 9. 534583£-02 -9, 90 ** 43.6316
(2) 2 -2.66410 3.53233 -0.75 1.65632
(3) 3 -115.534 43.6176 -2.65*% 0.773816
(4) 4 10.3221 1.22214 8.45%* 6.53842
(5) 5 -33.1608 11.1524 -2.97% 1.46632
(*, ** DENOTE SIGNIFICANCE AT ALPHA = 0.05, 0.01, RESPECTIVELY))
ANALYSIS OF VARIANCE TABLE '

SOURCE DEGREES OF FREEDOM . SUM OF SQUARES  MEAN SQUARE  F=RATIO
REGRESSION B 157.5117 31.50234 65,23
RESIDUAL 13 6.277795 0.4829073 (S.D.=0.69)

LACK OF FIT 4 2.361128 0.5902821 1.36

REPL ICATES 9 3.916667 0.4351852
TOTAL (CORRECTED) 18 163.7895

SUM OF SQUARES ACCOUNTED FOR BY REGRESSION = 96.2, PERCENT
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FINAL MODEL: y = 126.631 - 0.904X; - 111.7X3 + 9.74%X, - 39.77Xg

CASE 9
REGRESSION COEFFICIENTS

NO. I B(I) .  STD. DEV. OF- B T-VALUE. MEAN OF X

() 0 126.631

(1) -0.903525  7.786194E-02 -11.60%* 43.6316

(3) 3 -111.743 42.6547 -2.62% 0.773816

(4) 4 9.74044 0.933323 10. 44%+ 6.53842

(5) 5 -39.7744 6.78380 -5.86%* 1.46632

(

*; ** DENOTE SIGNIFICANCE AT ALPHA = 0.05, 0.01, RESPECTIVELY))

ANALYSIS OF VARIANCE TABLE

SOURCE ~ DEGREES OF FREEDOM SUM OF SQUARES ~ MEAN SQUARE  F=RATIO

REGRESSION 4 157.2370 39.30925 83.99

RESIDUAL 14 6.552484 0.4680346 (S.D.= 0.68)
LACK OF FIT 4 2.635818 0.6589545 . 1.68
REPLICATES 10 3.916667 0.3916667

TOTAL (CORRECTED) 18 163.7895

SUM OF SQUARES ACCOUNTED FOR BY REGRESSION = 96.2 PERCENT

Correlation of Parameter Estimates

I= J= 1 3 4 5
1T 1.00 0.61  -0.32 0.42
3 1.00 -0.44 - 0.18
4 1.00 - 0.69
5 : | 1.00
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DISTRIBUTION OF DEVIATIONS FROM REGRESSION

CLASS UPPER LIMIT FREQUENCY C.D.F. C.D.F. (%)
1.25000E+00 1 19 100.0
1.10000E+00 0 18 94.7
9.50000E-01 0 18 9.7
8.00000E-01 0 18 94.7
6.50000E-01 3 18 9.7
5.00000E-01 1 15 78.9
3.50000E-01 5 14 73.7
2,00000E-01 1 9 47.4
5. 00000E-02 0 8 12,1
-1.00000E-01 1 8 42.1
-2.50000E-01 3 7 36.8
-4,00000E-01 2 4 21.1
-5,50000E-01 1 2 2 10.5
~-7.00000E-01 0 1 5.3
-8,50000E-01 0 1 5.3
-1.00000E+00 0 1 5.3
-1.15000E+00 .0 1 5.3
-1.30000E+00 0 1 5.3
-1.45000E+00 1 1 5.3
SKEWNESS = G1 = -0.86, T-TEST OF Gl = -1.64
KURTOSIS = G2= 2.13, T-TEST OF G2 = 2.10
SHAPIRO-WILK W STATISTIC = 0.926.
WHICH IS SIGNIFICANT AT THE ALPHA = 0.50 LEVEL

NORMAL PROBABILITY PLOT
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PREDICTION AND DEVIATIONS

OBSERVED PREDICTED DEVIATION

4.500 4,128 0.3720
5,500 5.296 0.2040
3.500 3.867 -0.3670
18,500 7.371 1.129
11.50 11.23 0.2658
10.000 9.907 9.2727£-02
5. 500 4,896 0.6045.
3.500 4,128 -0.6280
5.500 5.296 0.2040
3.500 2.991 0.5093
7.000 7.371 -0.3707
9.500 9.907 -0.4073
3.500 3,157 0.3432
5.500 5,296 0.2040
3.500 3,867 -0.3670
3.500 2.991 0.5093
11.00 .23 -0.2342
9.500 9.907 -0.4073
1.500 3.157 -1.657
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Table 1
Binomial Distribution Funct1on*

Pr(k < x) = B(x; n, p) (e - p) ™

x
"M x

0

. ) P C .

L I 0.05 010 - 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
2 0 | 09025 08100 07225 0.6400 0.5625 0.4900 ~0.4225 0.3600 0.3025 0.2500
1 09975 0.9900 09775 0.9600 0.9375 0.9100 0.8775 ) 0.8400 0.7976 0.7500
8 O | 08574 .0.7200 0.6141 0.5120 0.4219 0.3430 0.2746 0.2180 0.1684  0.1250
1 | 00028 09720 0.8892 0.8800 0.8438 0.7840 0.7182 0.6480 0.5748 0.5000
2 090900 00000 09966 09920 0.9844 0.9730 0.9571 0.9360 0.9089 0.8750
4 0 | DRI NARAT  NE220. Nanas 03164 02401 01785 0.1008 0.0016 0.0086
1 | 0860 00477 0.8905 0.8102 0.7383 0.A817 0.RRN  N.ATR2  0.2010 03125
2 | 09005 0.9963 0.9880 0.9728 0.9492 0.9163 0.8735 0.8208 0.7585 0.8875
3 | 1.0000 0.0909 0.0085 0.098¢ 0.0961 0.9919 0.9850 0.9744 0.0590 0.9375
5 0 | 07930 0.806 0.4437 0.927T 0.2573 0.1081 0.1160 0.0778 U003 0.UB1Z
1 ] 09774 09185 0.8352 0.7373 0.6328 0.5282 0.4284 0.3370 0.2562 0.1875
2 |.00088 0.9914 00734 0.9421 0.8965 0.8369 0.7648 0.6826 0.5931  0.5000

3 | 1.0000 0.9995 0.9978 0.0933 09844 0.9692 0.9460 0.9130 ' 0.8888 0.8125
4 | 10000 1.0000 0.9999 0.9997 0.9990 0.9576 0.9947 0.9898 0.9815 0.9688
6 0 | 07351 04314 03771 02621 01780 0.1178  0.0754 - 0.0467 0.0277 0.0158
1 | 09672 0.8857 0.7765 0.6554 0.5339 0.4202 0.3191 0.2333 0.1636 0.1084
2 | 09978 0.9842 0.9527 0.9011 0.8306 0.7443 0.6471 0.5443 0.4415 0.3438
3 | 090909 0.9987 0.9941 00830 0.9624 0.9205 0.8826 0.8208 0.7447 0.8562
4 | 1.0000 09909 06996 09981 0.9954 0.9891 0.9777 0.8590 0.9308 0.8908

5 | 1.0000 1.0000 1.0000 0.9999 0.9998 0.9993 0.9982 0.6959 0.9917  0.9844
7 0 | 06983 0.4783 0.3208 0.2087 0.1335 0.0824 0.0490 0.0280 0.0152 0.0078
1 | 08556 0.8503 0.7160 0.5767 0.4449 0.3294 0.2338 0.1586 0.1024 0.0625
.2 | 09962 09743 00262 0.8520 0.7564 0.6471 0.5323 0.4199 03164 0.2266
3 (00008 00073 00879 09667 0.9204 0.8740 0.8002 0.7102 0.6083 0.5000
47| 1.0000 0.99908 0.9988 0.9953 0.9871 0.9712 0.9444 0.9037 0.8471 0.7734
6 | 1.0000 1.0000 . 0.9090 0.9996 0.0987 0.9962 0.9910 0.9812 0.9643 0.4375

8 | 1.0000 1.0000 1.0000 1.0000 09999 0;9998 0.9994 0.8984 0.9963  0.9A22
8 0 | 06631 04305 0.2725 0.1678 0.1001 0.0570 0.0319 .0.0168 0.0084 0.0039
1 | 00428 08131 06572 0.5033 0.3671 0.9653 0.1691  0.1064 0.0632 0.0352
2 | 09942 09618 088 0.7869 06785 0.5518 ' 0.4278 03154 0.2201 0.1146

3 | 0.9996 0.9950 0.9786 0.9437 0.8862 0.8059 0.7084 0.5941 0,4770 0.3633

4 1.0000 0.9996 0.9971 0.9896 0.9727 0.9420 0.8939 0.8263 0.7396 0.6367
5 | 1.0000 . 1.0000 0.9998 0.0988 0.9958 0.9887 0.9747 0.9502 0.9115 0.8555
6 | 1.0000 1.0000 1.0000 0.9999 0.9996 0.9987 0.9964 0.9915 0.9819 0.9648

7 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.6993 0.9983  0.9961
9 o | 06302 03R74 02316 01342 00751 0.0404 00207 00101 00048 0.0020
1 | 09288 07748 0.5995 0.4362 03003 0.1960 0.1211 0.0705 0.0385 0.0195
2 | 0.60i6 0.9470 0.8391 0.7382 0.6007 0.4628 0.3373 02318 0.1495 0.0808
3 | 00994 0.9917 0.9661 0.9144 0.8343 0.7207 0.6089 0.4826 0.3614 0.2539
4 | 1.0000 0.0091 0.9944 0.0804 ~0.9511 0.9012 0.8283 0.7334 0.6214 0.5000

=y

5 | 1.0000 0.9999 0.9994 0.0969 0.9900 0.9747 0.9464 0.9006 0.8342 0.7461
6. 10000 11,0000 1.0000 O0.9887 0.98RT 0.0817 N.GRAR  NAT5) 00502 Qw02
7 | 1.0000 1.0000 1.0000 1.0000 0.9989 0.9996 0.9986 0.9862 0.9909  0.0805

8 -1.0000 1.0000 10000 .1.0000 10000 1.0000 0.9999 0.9997 0.8992 0.9980

*Reprinted by permission from Irwin Miller and John E. Freund Probability and
Statistics for Engineers, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
Copyright J965.
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Table 1

BINOMIAL DISTRIBUTION FUNCTION (Continued)

P A .

n z 0.05 0.10 0.15 0.20 0.25 0.30 035+ 040 0.45 0.50
10 O 0.5987 0.3487 0.1969 0.1074 0.0563 0.0282 0.0135 0.0060 0.0025 0.0010
1 0.139 0.7361 0.5443 0.3758 0.2440 0.1493 0.0860 0.0464 0.0232 0.0107

.2 0.9885 0.9298 0.8202 0.6778 0.5256 0.3828 0.2616 0.1673 0.0996 0.0547

3 0.9680 0.9872 0.8500 0.8791 0.7759 0.64v6 0.5138 0.3823 0.2660 0.1719

4 09999 0.998¢ 0.9901 0.9672 0.9219 0.8497 0.7515 0.6331 0.5044 0.3770

5 1.0000 0.9999 0.9986 0.9936 0.9803 0'952’" 0.9651 0.8338 0.7384¢ 0.6230

6 1.0000 1.0000 0.9999 . 0.9991 0.9965 0.9894 0.9740 0.9452 0.8980 0.8281

7 1.0000 1.0000 1.0000 0.9999 0.9996 0.9984 0.9952 0.9877° 0.9726 0.9453

8 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.8995 0.9983 0.9955 0.9893

9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9980

i1 0 0.5688 0.3138 0.1673 0.0859 0.0'422 0.0198 0.0088 0.0036 '0.0014 0.0005
1 0.8981 0.6974 0.4922 0.3221 0.1971 0.1130 0.0606 0.0302 0.0139 -0.0059

2 0.9848 0.9104 0.7788 0.6174 0.4552 0.3127 0.2001 0.1189 0.0852 0.0327

3 0.9984 098815 0.9306 0.8389 0.7133 0.5696 0.4256 0.29063 0.1911 0.1133

4 0.0989 0.9972 0.0841 0.9496 0.8354 0.7897 0.6683 0.5328 0.3971 0.2744

5 1.0000 0.9997 0.9973 0.9883 0.9657 0.9218 0.8513 0.7535 0.6331  0.5000

[ 1.0000 1.0000 0.9997 0.9980 0.9924 0.9784 0.9409 0.9006 0.8262 0.7256

7 1.0000 1.0000 10000 0.9998 0.9988 0.9957 0.9878 0.9707 0.9390 0.8867

8 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9980 0.8841 0.8852 0.9673

9 1.0000 1.0000 1.0000 1.0000 1.0000. 1.0000 0.9998 0.9993 0.9978 0.9941

10 1.0000 1.0000 10000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9-998 0.9993

12 0 0.5404 0.282¢4 0.1422 0.0687 0.0317 0.0138 0.0057 0.0022 0.0008 0.0002
1 0.8816 0.6580 0.4435 0.2749 0.158¢ 0.0850 0.042¢ 0.0196 0.0083 0.0032

2 0.9804 0.8891 0.7358 0.5583 0.3807 0.2528 0.1513 0.083¢ 0.0421 0.0183

3 0.9978 0.9744 0.9078 0.7946 0.6488 0.4925 0.3467 0.2253 0.1345 0.0730

4 0.9998 0.9957 0.9761 0.9274 0.8424 0.7237 0.5833 0.4382 0.3044 0.1938

5 | 1.0000 0.9995 0.995¢ 0.9806 0.9456 0.8822 0.7873 0.6652 0.5269 0.3872

6 1.0000 0.9999 0.9993 0.9961 0.9857 0.9614 09154 08418 0.7383 0.6128

7 1.0000 1.0000 0.9998 - 0.9994 0.9972 0.8905 0.9745 0.9427 0.8883 0.8062

8 1.0000 1.0000 1.0000 0.9999 0.9996 0.9983 ' 0.9944 . 0.9847 0.8644 0.8270

9 |- 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9992 0.9972 0.9921 0.9807

10 1.0000 1.0000 1.0000 1.0000 1.0000 . 1.0000 0.9999 0.9997 0.9980  0.9068

11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998

13 0 0.5133 0.2542  0.1209 0.0550 0.0238 0.0097 0.0037 0.0013" 0.0004 0.0001
1 0.8846 0.6213 0.3883 0.2336 0.1267 0.0637 0.0206 0.0126 0.00490 0.0017

2 0.9755 0.8661 0.6920 0.5017 0.3326 0.2025 0.1132 0.0579 0.0269 0.0)12

3 0.9069 0.9658 0.8820 0.7473 - 0.5843 0.4206 0.2783 0.1686 0.0029 0.0461

4 0.9997 0.9935 0.9658 0.9009 0.7940 0.6543 0.5005 0.3530 0.2279 0.1334

5 1.0000 0.6891 0.9925 0.9700 0.9198 0.8346 0.7159 0.5744 0.4268 0.2605

(] 1.0000 0.9999 0.9987 0.9930 0.9757 0.9376 0.8705 0.7712 0.6437 0.5000

7 1.0000 1.0000 0.9998 0.9988 0.9944¢ 0.9818 0.9538 0.9023 0.8212 0.7095

8 1.0000 1.0000 1.0000 0.9998 0.9990 0.9960 0.9874 0.8879 0.9302 0.8666

9 1.0000 1.0000 1.0000 1.0000 0.9899 0.9993 0.9975 0.9922- 0.8797 0.8539

10 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9987 0.9959 0.9888

11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.8985 0.9983

12 1.0000 1.0000 1.0000 1.0000 1.0000 10000 1.0000 1.0000  1.0000 0.9999

14 0. 0.4877 0.2288 0.1028 0.0440 0.0178 0.0068 0.002¢ 0.0008 0.0002 - 0.0001
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Table 'I

BINOMIAL DISTRIBUTION FUNCTION (Continued)

: P
n =z 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 - 0.45 0.50:
¢ 32 0.0609 0.8416 C.04790 0.4481 0.2811 0.1608 0.0839 0.0388 0.0170 0.0065
-8 0.0058 00559 O0.8585 0.6982 0.5213 0.3552 0.2206 0.1243 0.0832 0.0287
4 0.9006 09908 0.9533 0.8702 0.7418 0.5842 0.4227 0.2793 0.1672 0.0898
8 1.0000 0.0985 - 0.9885 0.0561 0.8883 0.7805 0.6405 0.4859- 0.3373 0.2120
] 1,0000 009098 0.0078 0.8884 0.8617 0.9067 0.8164 0.6925 0.5461 0.3853
7 1.0000 1.0000 0.0097 0.9976 0.9807 09685 0.9247 0.8409 0.7414 0.6047
8 | 1.0000 1.0000 1.0000 O0.0006 00078 0.0017 0.9757 0.0417 08811 0.7880
] 1.0000 1.0000 10000 1.0000 -0.0997 0.9983 0.9940 0.8826 0.9574 0.9102
10 1.0000 10000 10000 10000 1.0000 0.0008 06080 09601 00888 0.0713
11 1,0000 10000 1.0000 1.0000 10000 1.0000 0.9000 09904 0:.9970 0.9905
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 - 0.9899 0.9997 ~ 0.8991
18 1.0000 10000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
185 O 04633 0.2059 00874 0.0352 0.013¢ 0.0047 0.0016 0.0005 0.0001 0.0000
1 0.8200 05490 0.31868 0.1671 0.0802 0.0353 0.0142 0.0052 0.0017 0.0005
2 0.6638 0.8159 0.6042 03980 0.2361 0.1288 0.0817 0.0271 0.0107 0.0037
8 | 0.0045 0.0444 08227 0.6482 04618 0.2060 0.1727 0.0905 0.0424 0.0176
4 09994 00873 06383 0.8358 0.6885 0.8158 0.3519 0..2173 0.1204 0.0592
8 00800 06978 00832 0.8389 0.8516 0.7216 0.5643 0.4032 0.2608 . 0.1509
[} 1.0000 0.0007 0.80064 09810 09434 0.8689 0.7548 °0.6098 0.4522 0,3036
7 1.0000 1.0000 09996 0.9958 00827 0.9500 0.8868 0.7869 0.8535 0.5000
8 1.0000 1.0000 09099 09992 0.90958 0.9848 0.9578 0.9050 0.8182 0.6964
] 1.0000 1.0000 10000 0.99090 09992 0.9963 0.987¢ 0.0662 09231 0.8491
10 1.0000 1.0000 1.0000 10000 0.0099 00993 0.9972 0.9907 0.9745 09408
11 1.0000 1.0000 1.0000 1:.0000 1.0000 0.9999 0.0995 0.9881 0.9937 09824
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9908 0.9997 0.9980 0.9963
13 1.0000 1:.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9095
14 1.0000 1.0000 1.0000 1.0000 .1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
16 0 0.4401 . 0.1833 0.0743 0.0281 0.0100 0.0033 0.0010 0.0003 0.0001 0.0000
1 0.8108 0.5147 0.2839 0.1407 0.0635 0.0261 0.0088 0.0033 0.0010 0.0003
2 0.0571 0.7803 0.8614 0.3518 0.,1071 0.0004 0.04561 0.0183 0.0088 0.0021
9 | 0.9800 0.8010 0.7889 0.3881 0.4050 0.2439 0.1399 0.0051 0.0281 0.()100
4 | 09001 00830 00200 07983 0.6302 0.4499 0.2892 0.1666 0.0853 0.0384
8 09099 09967 09765 09183 0.8103 0.6598 0.4800 0.3288 0.1976 0.1051
6 1.0000 0.9985 0.0944 09733 09204 0.8247 0.6881 0.5272 0.3660 0.2272
7 1.0000 09999 000890 0.90930 0.0720 09256 0.8406 0.7161 0.5629 0.4018 °
8 1.0000 11,0000 09998 0.0985 0.9925 0.9743 0.8329 -0.8577 0.7441 0.5982
[} 1.,0000 1.0000 10000 09998 0.9984 0.09020 0.9771 0.9417 0.8759 0.7728
10 1.0000 1.0000 1.0000 1.0000 09997 0.9984 09938 0.9809 0.9514 0.8949
n 00N 10000 YO 10000 1000 00007 NQ0087 00051 N8R NO4IA
12 | 1.0000 1.0000 1.0000 i.0000 1.0000 1.0000 0.0098 0.9091 0.0065 0.0804 .
13 1,0000 1.0000 1.0000 10000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9970
14 1,0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0600 1.6000 0.8987
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 31.0000 10000
17 0 U.4181 U.1888 0.0831 0.0225 0.0075 0.0023 0.00U07 0.0002 00000 00000
1 | 07922 04818 0.2525 01182 00501 00183 0.0067 0.0021 0.0006 0.0001
2 09407 07648 0.5198 0.3W6  0.1897 00772 0.03%/ 0.0123 00041  0.0012
3 M0.9912 0.89174 0.7556 0.5489 0.3530 0.2019 0.1028 0.0464 0.0184 0.0064
4 0.0088 09779 09013 0.7582 '0.5730 0.3887 0.2348 0.1260 0.0245

222



Table |

BINOMIAL DISTRIBUTION FUNCTION (Continued)

n z 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
17 b 0.9999 0.9953 0.9681 0.8943 0.7653 0.5968 0.4107 0.2639 0.1471 0.0717
8 10000 0.9992 0.9917 0.9623 0.8920 0.7752 0.6188 0.4478 0.2002 0.1662
7 1.0000 0.9999 0.9983 0.9801 0.9598 0.8954 0.7872 0.6405 0.4743 0.3145
8 1.0000 1.0000 0.9997 0.9974 0.9876 0.9597 0.9006 0.8011 0.6626 0.5000
9 1.0000 1.0000 1.0000 0.9995 - 0.9968 0.9873 0.8617 0.9081 0.8166 0.6855
10 1.0000 1.0000 1.0000 0.9999 0.9994 0.9968 0.9880 0.9652 0.90174 0.8338
11 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9970 0.98904 0.9699 0.9283
‘12 1.0000 1.0000 1.0000 1.0000 1.0000 0.9899 0.9994 0.9975 0.99014 0.9755
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.8995 0.9981 0.9936
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9997 0.9988
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .1.0000 -1.0000 .- 1.0000
18 0-| 03972 0.1501 0.0536 0.0180 0.0056 0.0016 0.0004 0.0001 0.0000 0.0000
1 0.7735 0.4503 0.2241 0.0991 0.0395 0.0142 0.0046 0.0013 0.0003  0.0001
2 0.0419 0.7338 0.4797 0.2713- 0.1353 0.0600 0.0238 0.0082 0.0025 0.0007
3 0.9891 0.9018 0.7202 0.5010 0.3057 0.1646 0.0783 0.0328 0.0120 0.0038
4 09985 0.9718 0.8794 0.7164 0.5187 0.3327 0.1886 0.0942 0.0411 0.0154
] 0.0998 0.0036 0.9581 0.8671 0.71756 0.5344 0.3550 0.2088° 0.1077 0.0481
[} 1.0000 0.9988 0.9882 0.9487 0.8810 0.7217 - 0.5481 0.3743° 0.2268 0.1189
7 1.0000 0.9998 0.9973 0.9837 0.9431 0.8583° 0.7283 0.5634 0.3915 0.2403
8 1.0000 1.0000 0.9995 0.9957 - 0.9807 0.9404 0.8609 0.7368 0.5778 0.4073-
] 1.0000 1.0000 0.9999 0.9991 09946 0.9700 0.9403 0.8653 0.7473 0.5927
10 1.0000 1.0000 1.0000 09998 0.9988 0.9939 0.9788 0.9424 0.8720 0.7597
11 -/ 1.0000 1.0000 1.0000 1.0000 0.9998 0.9988 0.9938 0.9797 0.8463- '0.8811
12 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9986 -0.99042° 0.9817 - 0.9519
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9987 0.9951 - 0.9846
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 09998 0.9990 0.9962 .
15 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 -0.9999 0.9993
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10000 0.0999
19 0 0.3774 0.1351 0.0456 0.0144 0.0042 0.0011 0.0003 0.0001 0.0000 0.0000
1 0.7547 0.4203 0.1985 0.0829 0.0310 0.0104 0.0031 0.0008 0.0002 0.0000
2 0.9335 0.7054 0.4413 0.2369 0.1113 0.0462 0.0170 0.0055 0.0015 0.0004 .
3 0.8868 0.8850 0.6841 0.4551 0.2630 0.1332 * 0.0591 0.0230' 0.0077 0.0022
4 0.9980 0.9648 0.8556 0.6733 0.465¢ 0.2822 0.1500 0.0696 0.0280 0.0096
] 0.0998 0.9014 0.8463 0.8369 0.6678 0.4739 0.2068 0.1620 0.0777 0.0318
] o000 09083 0.0837 0.0324¢ 0.8201 0.06005 0.481Z 0.0081 0.1797 0.0000
7 1.0000 0.9097 0.0959 0.9767 0.9225 0.8180 0.0060 0.4878 0.3160 0.1798
8 1.0000 1.0000 0.9992 0.9933 0.9713 09161 0.8145 0.6675 0.4940 0.3238
9 1.0000 1.0000 0.9999 0.9984 0.9911 0.9674 0.9125 0.8139 0.6710 0.5000
10 1.0000 1.0000 1.0000 0.9997 0.9977 0.9885 0.9653 0.9115 0.8158 0.6762
11 1.0000 1.0000 1.0000 1.0000 0.90995 0.9972 0.9886 0.9648 0.9120 0.8204
12 1.0000 1.0000 1.0000 1.0000 0.9990 0.9904 0.9969 0.9884 0.9658 0.9165
13 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 -0.9963 0.9969 0.9801 0.0682
14 1.0000 10000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9972 0.9904
15 1.0000 . 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0999 0.8995 0.9978
16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996
17 1,0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table |

DINOMIAL DISTRIBUTION FUNCTION (Cuidinued)
® 0.05 0:10 016 0.20 0.25 0.30 0.35 0.40 0.45 0,50
)] 0.3585 O.1216 0.0388 0.0115 0.0032 0.,0008 0.0002 0.0000 0.0000, 0.0000
1 0.7358 0.3917 0.1756 0.0692 0.0243 0.0076 0.0021 0.0005 0.0001 0.0000
2 0.9245 0.6769 0.4049 0.2081 0.0v13 0.0355 0.0121 0.0036 0.0000 0.0002
3 0.9841 0.8670 0.6477 0.4114 0.2252 0.1071 0.0444 0.0160 " 0.0049 0,0013
4 0.9974 09568 0.8208 0.6208 0.4148 0.2375 0.1182 0.0510 0.0188 0.0059
5 0.9997 0.9887 0.9327 0.8042 0.6172° 0.4164 0.2454 0.1256 0.0553 0.0207
6 1.0000 0.9976 0.9781 0.9133 0.7858 0.6080 0.4166 0.2500 0.1299 0.0577
7 1.0000 0.0006 0.9841 0.9679 0.8982 0.7723 0.6010 0.4159 0.2520 0.1318
8 1.0000 Q9990 0.90987 0.0900 0.9591 0.8867 0.7624 0.5956 0.4143 0.2517
] 1.0000 1.0000 0.9098 0.9974 0.9861 0.9520 '0.8782 0.7553 0.5914 0.4119
10 1.0000 1.0000 1.0000 0.99§4 0.9961 0.9820 0.9468 0.8725 0.%507 0.5881
11 1.0000 1.0000 1.0000 09999 0.9991 0.0049 0.9804 09435 0.8682 0.7483
12 1.0000 10000 1.0000 1.0000 0.9998 0.9987 0.9940 0.9700 0.9420 0.8684
13 1.0000 1.0000 1.0000 1.0000° 1.0000 0.0007 0.0086 0.0036 09786 0.9420
14 1,0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.99097 0.9984 09938 0.9793
15 | 1,0000 1.0000 1.0000 1.0000 1.0000 1,0000 10000 0.9997 0.9985 0.9941
16 1.0000 1.0000 1.0000 1.0000 1.0000° 1.0000 1.0000 . 1.0000 0.9997 0.9987
17 31,0000  1.0000 1.0000 1.0000 1.0000 1.0000 10000 1.0000 1.0000 0.3998
18 10000 10000 L0 L0000 LOLWU 10000  1.0000 11,0000 10000 | 1.0000
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Table Il
Poisson Distribution Function*

( ) = ! ( ) 'kT
Prik < x F X3 A > e
k=0 .

z| 0 1 2 3 (.4 5 6 7 8 9
A
0.02 0.980 | 1.000
0.04 0.961 | 0.999 | 1.000
0.06 0.942 | 0.998 | 1.000
0.08 0.923 | 0.997 | 1.000
010  [0.905 | 0.995 | 1.000
0.15 0.861 | 0.990 | 0.999 | 1.000
0.20 0.819 | 0.982 | 0.999 | 1.000
0.25 0.779 | 0.974 | 0.998 | 1.000
0.30 0.741 | 0.963 | 0.996 | 1.000
0.35 0.705 | 0.951 | 0.994 | 1.000
0.40 0.670 | 0.938 | 0.992 | 0.999 | 1.000
0.45 0.638 | 0.925 | 0.989 | 0.999 | 1.000
0.50 0.607 | 0.910 | 0.986 | 0.998 | 1.000
0.55 0.577 | 0.894 | 0.982 | 0.998 | 1.000
0.60 0.549 | 0.878 | 0.977 | 0.997 | 1.000
0.65 0.522 | 0.861 | 0.972 | 0.996 | 0.999 | 1.000
0.70 0.497 | 0.844 | 0.966 | 0.994 | 0.999 | 1.000
0.75 [ 0.472 | 0.827 | 0.950 | 0.993-| 0.999 | 1.000
0.80 0.449 | 0.809 | 0.953 | 0.991 | 0.999 | 1.000
0.85 0.427 | 0.791 | 0.945 | 0.989 | 0.998 { 1.000
0.90 0.407 | 0.772 | 0.937 | 0.987 | 0.998 | 1.000
0.95 0.387 | 0.754 | 0.929 | 0.984 | 0.997 | 1.000
1.00 0.368 | 0.736 | 0.920 | 0.981 | 0.996 | 0.999 | 1.000
1.1 0.333 | 0.699 | 0.900 | 0.974 | 0.995 | 0.999 | 1.000
1.2 0.301 | 0.663 | 0.879 | 0.966 | 0.992 | 0.998 | 1.000
13 0.273 | 0.627 | 0.857 | 0.957 | 0.989 {0.998 | 1.000
14 0.247 | 0.592 | 0.833 | 0.946 | 0.986 | 0.997 | 0.999 | 1.000
1.5 0.223 | 0.558 | 0.809 | 0.934 | 0.981 | 0.996 | 0.999 | 1.000
1.6 0.202 | 0.525 | 0.783 | 0.921 | 0.976 | 0.994 | 0.999 | 1.000
17 0.183 | 0.493 | 0.757 | 0.907 | 0.970 | 0.992 | 0.998 | 1.000
18 0.165 | 0.463 | 0.731 | 0.891 | 0.964 | 0.990 | 0.997 | 0.999 | 1.000
1.9 - |0.150 | 0.434 { 0.704 | 0.875 | 0.956 | 0.987 | 0.997 | 0.999 | 1.000
2.0 0.135 | 0.406 | 0.677 | 0.857 | 0.947 | 0.983 | 0.995 | 0.999 | 1.000 |

*Reproduced with permission from E.C. Molina, Poisson's Exponéntia] Binomial

Limit, D. Van Nostrand Company, Inc., Princeton, New Jersey, 1947.
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Table Il

POISSON DISTRIBUTION FUNCTION (Confinued}

Table 11

POISSON DISTRIBUTION FUNCTION (Confinued)

1 2 3 4 5 6 7 8 9
A
2.2 0.111 | 0.355 | 0.623 | 0.819 | 0.928 | 0.975 | 0.993 | 0.998 { 1.000
24 0.091 { 0.308 | 0.550 | 0.779 | 0.904 | 0.964 | 0.988 | 0.997 { 0.999 | 1.000
26 0.074 | 0.267 | 0.518 | 0.736 | 0.877 | 0.951 | 0.983 | 0.995 | 0.999 | 1.000
2.8 0.061 | 0.231 | 0.469 | 0.692 | 0.848 | 0.935 | 0.976 | 0.992 | 0.998 | 1.999
3.0 0.050 | 0.199 | 0.423 | 0.647 | 0.815 | 0.916 | 0.966 | 0.988 | 0.996 | 0.999
3.2 0.041 {1 0.171 | 0.350 | 0.603 | 0.781 | 0.895 | 0.955 | 0.983 | 0.994 | N.998
3.4 0.033 0.147 0.3<0 | 0.558 | 0.744 | 0.871 | 0.942 | 0.977 [ 0.992 | 0.997
3.6 0.027 | 0.126 | 0.303 [ 0.515 | 0.706 | 0.844 | 0.927 | 0.969 | 0.988 | 0.996
3.8 0.022 | 0.107 | 0.269 | 0.473 | 0.668 | 0.816 | 0.909 | 0.960 | 0.984 | 0.994
4.0 0.018 | 0.092 | 0.258 | 0.433 | 0.629 | 0.785 | 0.889 | 0.949 | 0.979 | 1.992
4.2 0.015 | 0.078 | 0.210 | 0.395 | 0.590 | 0.753 | 0.867 | 0.936 | 0.972 [ 0.989
4.4 0.012 | 0.066 | 0.185 | 0.359 | 0.551 | 0.720 | 0.844 | 0.921 | 0.964 | 0.985
4.6 0.010 | 0.056 | 0.163 | 0.326 | 0.513. [ 0.686 | 0.818 | 0.905 | 0.955 | 0.980
4.8 0.008 | 0.048 | 0.143 | 0.294 | 0.476 | 0.651 | 0.791 | 0.887 | 0.944 | 0.975
5.0 0.007 | 0.040 | 0.135 | 0.265 | 0.440' | 0.616 | 0.762 | 0.867 | 0.932 | 0.968
5.2 0.006 | 0.034 | 0.109 | 0.238 | 0.406- | 0.581 | 0.732 | 0.845 | 0.918 | 0.960
54 0.005 | 0.029 | 0.0¢5 | 0.213 | 0.373. | 0.546 | 0.702 | 0.822 | 0.903 | 0.951
5.6 0.004 | 0.024 [ 0.082 [ 0.191 | 0.342|0.512 | 0.670 | 0.797 | 0.886 | 0.941
5.8 0.003 | 0.021 | 0.072 { 0.170 | 0.313. | 0.478 | 0.638 | 0.771 | 0.867 | 0.929
6.0 0.002 | 0.017 | 0.062 { 0.151 | 0.285 | 0.446 | 0.606 | 0.744 | 0.847 | 0.916

19 11 12 13 14 15 16

2.8 1.000
3.0 1.000
3.2 1.000
34 0.999 | 1.000
3.6 0.999 | 1.000
3.8 0.998 | 0.999 | 1.000 -
4.0 0.997 | 0.999 | 1.000
4.2 0.996 | 0.999 | 1.000
44 0.994 | 0.998 | 0.999 | 1.000
46 0.992 | 0.997 | 0.999 | 1.000
48 0.990 | 0.996 | 0.999 | 1.000
50 - 0.686 | 0.995 | 0.998 | 0.999 | 1.000:
5.2 0.682 | 0.993 | 0.997 | 0.999 | 1.000
5.4 0.977 | 0.990 | 0.996 | 0.999 | 1.000
5.6 0.972 | 0.988 | 0.995 | 0.998 | 0.999 | 1.000
5.8 0.965 | 0.984 | 0.993 | 0.997 | 0.999 | 1.000
6.0 0.957 | 0.980 | 0.991 | 0.996 | 0.999 | 0.999 | 1.000

0 1 2 3 4 5 6 7 8 9
2
6.2 0.002 | 0.015 [ 0.054 | 0.134 | 0.259 | 0.414 | 0.574 | 0.716 | 0.826 | 0.902
6.4 0.002 }0.01:2 | 0.045 | 0.119 [ 0.235 | 0.384 | 0.542 | 0.687 | 0.803 | 0.886
6.6 0.001 | 0.010 ] 0.049 | 0.105 | 0.213 | 0.355 | 0.511 | 0.658 | 0.780 | 0.869
6.8 0.001 | 0.009 | 0.034 | 0.093 [ 0.192 | 0.327 | 0.480 | 0.628 | 0.755 | 0.850
7.0 0.001 { 0.007 | 0.030 | 0.082 | 0.173 | 0.301 | 0.450 | 0.599 | 0.729 | 0.830
7.2 0.001 | 0.006 | 0.025 | 0.072 | 0.156 | 0.276 | 0.420 | 0.569 | 0.703 | 0.810
7.4 0.001 | 0.005 | 0.022 | 0.063 | 0.140 | 0.253 | 0.392 [ 0.539 | 0.676 | 0.788
7.6 0.001 | 0.004 | 0.019 | 0.055 [ 0.125 | 0.231 | 0.365 | 0.510 | 0.648 | 0.765
78 0.000 | 0.004 | 0.016 | 0.048 |0.112 | 0.210 | 0.338 | 0.481 | 0.620 | 0.741
8.0 0.000 | 0.003 | 0.014 | 0.042 | 0.100 | 0.191 | 0.313 | 0.453 | 0.593 | 0.717
8.5 0.000 | 0.002 | 0.009 | 0.030 | 0.074 | 0.150 | 0.256 | 0.386 | 0.523 | 0.653
9.0 0.000 | 0.001 | 0.005 | 0.021 [ 0.055 | 0.116 | 0.207 | 0.324 | 0.456 | 0.587
9.5 0.000 1 0.001 | 0.004 | 0.015 { 0.040 | 0.089 { 0.165 | 0.269 | 0.392 | 0.522
10.0 0.000 | 0.000 [ 0.003 | 0.010 | 0.029 | 0.067 | 0.130 | 0.220 | 0.333 | 0.458
10 11 12 13 14 15 16 17 18 19
6.2 0.949 | 0.975 | 0.989 | 0.995 | 0.998 | 0.999 | 1.000
6.4 0.939 | 0.969 [ 0.985 | 0.994 | 0.997 | 0.999 | 1.000
6.6 0.927 | 0.963 | 0.982 | 0.992 | 0.997 | 0.999 { 0.999 | 1.000
6.8 0.915 | 0.955 | 0.978 | 0.990 | 0.996 | 0.998 | 0.999 | 1.000
7.0 0.901 | 0.947 | 0.973 1 0.987 | 0.994 | 0.998 | 0.999 | 1.000
7.2 0.887 | 0.937 [ 0.967 | 0.984 | 0.993 | 0.997 | 0.999 | 0.999 | 1.000
7.4 0.871 | 0.926 | 0.961 | 0.980. 0.991 [ 0.996 | 0.998 | 0.999 | 1.000
76 0.854 [ 0.915 1 0.954 | 0.976 | 0.989 | 0.995 | 0.998 | 0.999 | 1.000
7.8 0.835 | 0.902 | 0.945 | 0.971 | 0.986 | 0.993 | 0.997 [ 0.999 | 1.000
8.0 0.816 | 0.888 | 0.935.| 0.966 | 0.983 | 0.992 | 0.996 | 0.998 | 0.999 | 1.000
8.5 0.763 | 0.849 [ 0.909 | 0.949 | 0.973 | 0.986 | 0.993 | 0.997 | 0.999 | 0.999
9.0 0.706 | 0.803 | 0.875 | 0.926 | 0.959 | 0.978 | 0.989 | 0.995 ( 0.998 ( 0.999
9.5 0.645 | 0.752 | 0.835 | 0.898 | 0.940 | 0.967 | 0.982 | 0.991 | 0.996 | 0.998
10.0 0.583 | 0.697 [ 0.792 | 0.864 | 0.917 | 0.951 | 0.973 | 0.986 | 0.993 | 0.997
20 21 22
8.5 1.000
9.0 1.000
9.5 0.999 | 1.000
10.0 0.998 | 0.999 | 1.000




Lee

POISSON

Table I}

DISTRIBUTION FUNCTION (Conlinued)

POISSON

Table 11

DISTRIBUTION FUNCTION (Continued)

o

0 1 2 3 4 5 6 7 8 9

A

10.5 0.000 | 0.000 | 0.002 | 0.007 | 0.021 | 0.059 | 0.102 | 0.179 { 0.279 | 0.397

11.0 0.000 | 0.000 | 0.001 | 0.005 | 0.015 | 0.033 | 0.079 | 0.143 | 0.232 | 0.341

11.5 0.000 | 0.000 | 0.001 | 0.003 | 0.011 | 0.028 ; 0.060 | 0.114 | 0.191 | 0.289

120 0.000 | 0.000 | 0.001 [ 0.002 | 0.008 | 0.020 | 0.046 | 0.090 | 0.155 | 0.242

12.5 ©0.000 | 0.000 | 0.000 | 0.002 | 0.005 | 0.015 | 0.035 | 0.070 | 0.125 | 0.201

13.0 0.000 | 0.000 | 0.000 {0.001 | 0.004 | 0.011 | 0.026 | 0.054 | 0.100 | 0.166

13.5 0.000 | 0.000 | 0.000 | 0.001 | 0.003 | 0.0C8 | 0.019 | 0.041 | 0.079 | 0.135

14.0 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.066 | 0.014 | 0.032 | 0.062 | 0.109

145 . 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.004 | 0.010 | 0.02¢ | 0.048 | 0.088

15.0 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.003 | 0.008 | 0.013 | 0.037 | 0.070
10 11 12 13 14 15 16 17 18 19

10.5 0.521 10.639 | 0.742 [ 0.825 | 0.888 | 0.932 | 0.960 | 0.978 | 0.988 | 0.994

11.0 0.460 { 0.579 | 0.689 | 0.781 | 0.854 | 0.907 | 0.944 | 0.968 | 0.982 | 0.991

11.5 0.402 | 0.520 | 0.633 | 0.733 | 0.815 | 0.878 | 0.924 | 0.954 | 0.974 | 0.986

12 0.347 | 0.462 | 0.576 | 0.682 | 0.772 | 0.844 | 0.899 | 0.937 | 0.963 | 0.979

125 0.297 | 0.406 | 0.519 | 0.628 | 0.725 | 0.806 | 0.869 | 0.916 | 0.948 | 0.969

130 0.252 | 0.353 | 0.463 | 0.573 | 0.675 | 0.764 | 0.835 | 0.890 | 0.930 | 0.957

135 0.211 | 0.304 | 0.409 | 0.518 | 0.623 | 0.718 | 0.798 | 0.861 | 0.908 | 0.942

140 0.176 | 0.260 | 0.358 | 0.464 | 0.570 | 0.669 | 0.756 | 0.827 | 0.883 | 0.923

145 0.145 | 0.220 {0.311 | 0.413 | 0.518 | 0.€19 | 0.711 | 0.790 | 0.853 | 0.901

15.0 10.118 | 0.185 | 0.268 | 0.363 | 0.466 | 0.268 | 0.664 | 0.749 | 0.819 | 0.875
20 | 21 [ 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29

10.5 10.997 | 0.999 | 0.999 | 1.000

11.0 0.995 | 0.998 | 0.999 { 1.000

11.5 0.992 | 0.396 | 0.998 |0.999 | 1.000

12.0 0.988 | 0.994 | 0.997 | 0.999 | 0.999 | 1.000

125 0.983 | 0.591 | 0.995 | 0.998 . 0.999 | 0.999 | 1.000

13.0 0.975 | 0.986 | 0.992 | 0.996 | 0.998 | 0.999 [ 1.000 |

13.5 0.965 | 0.980 | 0.989 | 0.994 | 0.997 | 0.098- | 0.999 | 1.000

14.0 0.952 | 0.971 | 0.983 | 0.991 | 0.995 | 0.997 | 0.999 | 0.999 | 1.000

145 0.936 | 0.960 | 0.976 | 0.986 | 0.992 | 0.996 | 0.998 | 0.999 | 0.999 | 1.000

15.0 0.917 | 0.947 | 0.967 | 0.981 | 0.989 | 0.994 | 0.997 | 0.998 | 0.999 | 1.000

. 4 5 6 7 8 9 (10| 11| 12] 13
16 0.000 | 0.001 | 0.004 | 0.010 | 0.022 { 0.043 | 0.077 | 0.127 | 0.103 | 0.275
17 0.000 | 0.001 | 0.002 | 0.005 | 0.013 | 0.026 | 0.049 | 0.085 | 0.135 | 0.201
18 0.000 | 0.000 | 0.001 | 0.003 | 0.007 | 0.015 | 0.030 | 0.055 | 0.092 | 0.143
19 0.000 | 0.000 | 0.001 | 0.002 { 0.004 | 0.009 | 0.018 | 0.035 | 0.061 | 0.098
20 0.000 { 0.000 | 0.000 | 0.001 | 0.002 | 0.005 | 0.011 |0.021 | 0.039 | 0.066
21 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.003 | 0.006 | 0.013 | 0.025 | 0.043
22 0.000 { 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.004 | 0.008 | 0.015 | 0.028
23 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.004 | 0.009 | 0.017
24 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.003 | 0.005 | 0.011
25 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.003 | 0.006
14 | 15 [ 16 [ 17 | 18 | 19 | 20 | 2| 2|2
16 0.368 | 0.467 | 0.566 | 0.659 | 0.742 | 0.812 | 0.868 | 0.911 | 0.942 | 0.963
17 0.281 | 0.371 | 0.468 | 0.564 | 0.655 | 0.736 | 0.805 | 0.861 | 0.905 | 0.937
18 0.208 | 0.287 | 0.375 | 0.469 | 0.562 | 0.651 | 0.731 | 0.799 | 0.855 | 0.899
19 0.150 | 0.215 | 0.292 | 0.378 | 0.469 | 0.561 | 0.647 [ 0.725 | 0.793 | 0.849
20 0.105 [ 0.157 | 0.221 | 0.297 { 0.381 | 0.470 [ 0.559 | 0.644 | 0.721 | 0.787
21 0.072 | 0.111 | 0.163 | 0.227 | 0.302 | 0.384 | 0.471 | 0.558 | 0.640 | 0.716
22 0.048 | 0.077 | 0.117 | 0.169 | 0.232 | 0.306 | 0.387 | 0.472 { 0.556 | 0.637
23 0.031 | 0.052 | 0.082 | 0.123 | 0.175 | 0.238 | 0.310 | 0.389 | 0.472 | 0.555
24 0.020 | 0.034 | 0.056 | 0.087 | 0.128 | 0.180 | 0.243 | 0.314 | 0.392 | 0.473
25 0.012 | 0.022 | 0.038 | 0.060 | 0.092 | 0.134 | 0.185 | 0.247 | 0.318 | 0.304
24 | 25 | 26 | 27 | 28 | 290 | 30 | 31 | 32 | 33
16 0.978 | 0.987 | 0.993 | 0.996 | 0.998 | 0.999 | 0.999 | 1.000
17 0.959 | 0.975 | 0.985 | 0.991 | 0.995 | 0.997 | 0.999 | 0.999 | 1.000
18 0.932 | 0.955 | 0.972 | 0.983 | 0.990 | 0.994 | 0.997 | 0.998 | 0.999 | 1.000
19 0.893 | 0.927 [ 0.951 | 0.969 | 0.980 | 0.988 | 0.993 | 0.996 | 0.998 | 0.999
20 0.843 | 0.888 | 0.922 | 0.948 | 0.966 | 0.978 | 0.987 | 0.992 { 0.995 | 0.997
21 0.782 | 0.838 | 0.883 [ 0.917 | 0.944 | 0.963 | 0.976 | 0.985 [ 0.991 | 0.994
22 0.712 | 0.777 | 0.832 | 0.877 [ 0.913 | 0.940 | 0.959 | 0.973 | 0.983 | 0.989
2 0.635 | 0.708 | 0.772 | 0.827 | 0.873 | 0.908 | 0.936 | 0.956 | 0.971 | 0.981
24 0.554 | 0.632 {0.704 | 0.768 | 0.823 | 0.868 | 0.904 | 0.932 | 0.953 | 0.969
2 0.473 | 0.553 | 0.629 | 0.700 { 0.763 | 0.818 | 0.863 | 0.900 | 0.929 | 0.950
34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43
19 0.999 | 1.000
20 0.999 | 0.999 | 1.000
21 0.997 | 0.998 | 0.999 | 0.999 | 1.000 i
22 0.994 | 0.996 | 0.998 | 0.999 | 0.999 | 1.000
2 0.988 | 0.993 | 0.996 | 0.997 | 0.999 | 0.999 | 1.000
% 0.979 | 0.987 | 0.992 | 0.995 | 0.997 | 0.998 | 0.999 | 0.999 | 1.000
25 0.966 | 0.978 0.991 | 0.994 0.998 | 0.999 | 0.999

0.985

0.997

1.000




Table III
‘Normal Distribution*

1(2)

3 -2 -1 0o 1 2 3
Area under the Normal distribution to the right of z
EXAMPLE: Prob(z = 0.84) = 0.2005

z] 00 .00 .02 .03 .04 ..05 .06 .07 .08 .09

0.0/.5000 .4960 .4920 .48R0 .4840 .4801 .4761 .4721 .+681 .4641
.1.4602 4562 .4522 .4483 .4443 .4404 4364 .4325 .4286 .4247
.21.4207 4168 .4129 4090 .4052 .4013 .3974 .3936 .3897 .3859
.3].3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
.41.3446 .3409 3372 3336 .3300 .3264 .3228 .3192 .3156 .3121

.5|.3085 3050 .3015 .2981 .2946 2912 .2877 .2843 .2810 .2776
61.2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
.7(.2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148

.8(.2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867

.91.1841 1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
1.0|.1587 .1562 .1539 .1515 1492 .1469 .1446 .1423 .1401 .1379
1.1).1357 1335 .1314 .1292 .1271 1251 ,1230 .1210 .1190 .1170
L2].1151 1131 .11i2 .1093 .1075 .1056 ' .1038 .1020 .1003 .0985
'1.31.0968 .0951 .0934 .0918 .0901 .0885 .0669 .0853 .0838 .0823
_1.4|.0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 . .0694 .0681
1.5|.0668 .0655 .0643 .0630 .0618 .0606 .0594 .0S82 .0571 .0559
1.61.0548 .0537 .0526 .0816 .0505 .0495 .0485 .0475 .0465 .0455 .
1.7].0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.81.0359 .0351 .0344 .0336 .0329 .0322 .0314° .0307 ..0301 .0294
1.91.0287 .0281 .0274 .0268 .0262 .0256 0250 .0244 .0239 .0233
2.0(.0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183

2.11.0179 .0174 .0170 .0166 .0162 .0158 .0154 .01SO .0146 .0143
2.21.0139 .0136 .0132 .0129 .0125 .0122. .0119 .0116 .0113 .0110 -
2.31.0107 .0104 .0102 .00990 .00964 .00939 .00914 .00889 .00866 .00842
>4 .00820 00798 00776 .00755 .00734 .00714 .00695 0(!)76 00657 .00639

2.51.00621 .00604 .00587 .00570 .00554 .00539 .00523 00508 00494 .00480
26).00466 .00453 .00440 .00427 .00415 .00402 .00391 .00379 .00368 .00357
2.71.00347 .00336 .00326 .00317 .00307 .00298 .00289 .00280 .00272 .00264 -
2.81.00256 .00248 .00240 .00233 .00226 .00219 .00212 .00205 .00199 .00193
2.9(.00187 .00181 .00175 .00169 .00164 .00139 .00154 .00149 .00144 .00139

3.01.00135 .00131 .00126 .00132 .0U118 .00114 .00111 .00107 .00104 .00100

*Reproduced with permission of the Biometrika trustees from E.S. Pearson and
H.0. Hartley, Biometrika Tables for Statisticians, Volume 1, Cambridge
University Press, New‘Yofk 195%6.

228



6¢¢

(4 4

TABLE IV
Chi-Square Distribution Pr(xi>‘ xs a)=2a
' ° xzma

v a = 0,995 a-=0,39 a = 0,975 a= 0,95 a=0.05 a= 0,025 a@a=-001 a=0,005 v
1 0.0000393 0.000:57 0,000982 0,00393 3.8 5.024 6. 635 7.879 | 1
2 0,0100 0.020= 0,0506 0.103 5.991 7.378 9.210 10.597 | 2
3 0.0717 0.115 0.216 0.352 7.815 9.348 11,345 12,838 3
L 0.207 0.297 0,484 0.711 9,488 11,143 13.277 14,860 N
5 0.412 0.55k4 0.831 1.145 11,070 12,832 15.086 16,750 5
6 0.676 0.872 1,237 1,635 12,592 1L 4k 16.812 18,548 6
7 0.989 1,239 1,690 2,167 14,067 16,013 18.475 20,278 7
8 1,344 1,646 2,180 2,733 15,507 17.535 20,090 21,955 8
9 1,735 2,088 2,700 3.325 16,919 19,023 21, 666 23.589 9
10 2,156 2,558 3.247 3.940 18,307 20,483 23,209 25.188 |10
11 2,603 3.053 3.816 L, 575 19,675 21,920 2k, 725 26,757 |11
12 3,074 3.5T1 b, Lok 5.226 21,026 23,337 26.217 28.300 |12
13 3.565 4,107 5.009 5.892 22,362 24,736 27.688 29,819 |13
14 L, o075 L, 660 5,629 6.571 23,685 26.119 29,141 31,319 |14
15 4, 601 5.229 6.262 7.261 24,996 27,488 30.578 32.801 ] 15
16 5,142 5.812 6,908 7.962 26,296 28,845 32,000 34,267 | 16
17 5.697 - 6,408 7.564 8,672 27.587 30.191 33.409 35.718 | 1T
18 6.265 7.015 8.231 9.390 28,869 31,526 34,805 37.156 ] 18
19 6.8k 7.633 8.907 10,117 30,1bk4 32.852 36.191 38.582 | 19
20 7.434 8.260 9,591 10,851 31,410 34.170 37.566 39.997 § 20
21 8.034 8.897 10,283 11,591 32,671 35.479 38.932 b1 koi | 21
22 8.643 9,542 10.982 12,338 33,924 36.781 40,289 L2, 796 | 22
23 9.260 10,196 11,689 13,091 35.172 38,076 41,638 Ly 181 | 23
2k 9.886 10,856 12,401 13,848 26,415 39.364 b2,980 45,558 | 2k
25 10,520 11,524 13,120 14, 611 37.652 40,646 L, 314 L. 28 | 25
26 11,160 12.198 13.844 15.379 38.885 s X} hs, 6h2 48,290 | 26
.27 11.808 12,879 14,573 16,151 40,113 43,194 L6.963 Lg 645 } 27
28 12,461 13,565 15,308 16,928 41,337 L ke 48,278 50.993 | 28
29 13,121 14,526 16,047 17.708 42, 557 45,722 49,588 52.336 | 29
30 13,79 14,95 16,79 18,49 43,77 46,98 50.89 53.67 | 30
40 20.71 22,16 24,43 26,51 55.76 59.34 63.69 66,77 4o
60 35,53 37.48 40.48 43,19 79.08 83.30 88.28 91.95 60

*Adapted with permission of ths Biometrika trustees from E, S, Pearson and H, A, Hartley, Biometrika Tables for
Statisticians, Volume 1, Cambridge Univ, Press, New York, 1956,




Table V
t-Distribution*

£ty

e + L—— t
4 -2 -1 0 |
EXAMPLE: Prob (tw =

i
2.228) = 0.025

Percentage Points of the t distribution =~ -
Q=1-Ptiv)

v (025 010 0.05 0.025 0.01 0.005 0.0025 0.001
1{1.000 3078 6.314 12.706 31.82F 63.657 127.32 318.31
2]0.816 1.886 2.920 4.303 6965 9.925 14.089 22.326
3| .765 1.638 2353 3.182 4.541 5.841 7.453 10.213
41 .741 1533 2132 2776 3.747 4.604 5.598 7173
510727 1.476 2015 2571 3365 4.032 4.773 5.893
6] -718 1440 1943 2.447 3143 3.207 4.317 5.208
7 -711 1415 1.895 2365 2998  3.499 4.029 4.785
8 .706 1.397 1.860 2306 289  3.355 3.833 4.501
9| .703 1.383 1833 2262 2821 3.250 3.690 4.297
mi0700 1372 1812 2228 2764 3.169 3.581 4.144
11 ]| 697 1.363 L79% 2200 2718 1.1006 3497 4075

12 695 1.356 1.782 2179 2.681 3.055 3.428 3.930
131 .694 1350 1.771 2160 2650 3.012 3.372 3.852
14 692 1.345 1761 2145 2624 2977 3.326 3.787

15 0691 1.341 1753 2131 2602 2947 3.286 3.73s

16 f 690 1.337 1746 2,120 2.58) 2921 '3.252 1686
174 680 1333 I.7gg 2110 2567  2.898 3.222 1.646
18| .688 1.330 L7 2.101 2332 2878 3197 1610
19 .688 '1.328 1.729 2093 2539 2861 3.174 3.579
20 (| 0.687 1.325 1.725 2.086 2528 2845 3.153 3.552 .

21| 686 1.323 1.721 2.080 2518 2.831 " 3.135 3.527

22| 686 1.32F 1717 2074 2508 2819 3119 3.505
23| .685 1.319 1714 2.069 2500 2807 3.104 3.485
24 685 1.318 L7111 2064 2492 2797 3.091 3.467
25| 0.684 1.316 ‘1708  2.060 2485 2.787 3078 1.450
26| .684 1.315 1.706 2.056 2479 2779 3.067 3.435
27 684 1314 1703 2082 %j;l; 27171 "3.057 3.421
28 F .683 1.313 L1701 2.048 2763 3.047 J.408
298 .683 1311 1.699 2045 2462 2.756 3.038 3.396

3010683 1.310 1.697 2.042 2457 2750 g.g;? 3.385
401 .681 1.303 1.684 2021 2423 2704 8 3.30/
60 679 1.296 1671 1000 2390 2660 2.915 3.232
1201 677 1.289 1.658 1980 2358 2.617 2.860 3.160
oo 674 1.282 1.645 1.960 2326 2576 2.807 3.090

Q? 1- Pt is the upper-tail area of the distribution for ¥ degrees of freedom. ap-
propriate for use in a single-tailed test. For a two-tailed test, 2Q must be used.

*Adapted with permission of Biometrika trustees from E.S. Pearson and H.0.
Harley, Biometrika Tables for Statisticians. Volume 1, Cambridge Univ. Press,
New York, 1956.
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Table VII(a) Factors for Two-Sided Tolerance Limits for Normal Distributions*

Factors K such that the probability is y that at least a proportion
P of the distribution will be included between X * Ks, where X and s
are estimates of the mean and the standard deviation computed from

a sample size of n. '

Example Fory= 0.90, P = 0.95, n = 20, then K = 2.564

y = 0.75 y = 0.90
P
\| 075 | 090 | 095 | 099 | 0999 | 075 | 090 | 095 | 099 | 0.999
2 | 4.498 | 6.301 | 7.414 | 9.531 | 11:920 || 11.407 | 15.978 | 18.800 | 24.167 | 30.227
3 | 2.501 | 3.538 | 4.187 | 5.431 | 6.844 || 4.132 | 5.847 | 6.919 | 8.974 | 11.309
4 | 2.035 | 2.892 | 3.431 | 4.471 | 5.657| 2.932 | 4.166.| 4.943 | 6.440 | 8.149
5 | 1.825 | 2.599 | 3.088 | 4.033 | 5.117 | 2.454 | 3.494 | 4.152 | 5.423| 6.879
6 | 1.704 | 2.429 | 2.889 | 3.779 | 4.802 | 2.196 | 3.131 | 3.723 | 4.870 | 6.188
7 | 1.624 [ 2.318 | 2.757 | 3.611 | 4.593 || 2.034 | 2.902 |- 3.452'| 4.521 | 5.750
8 | 1.568 | 2.238 | 2.663 | 3.491 | 4.444 | 1.921 | 2.743| 3.264 | 4.278 | 5.446
9 |1.525|2.178 | 2.593 | 3.400 | 4.330 || 1.839 | 2.626 | 3.125 | 4.098 | 5.220
10 | 1.492 | 2.131 | 2.537 | 3.328 | 4.241| 1.775 | 2.535 | 3.018 | 3.959 | 5.046
11 | 1.465|2.093 | 2.493 [ 3.271 | 4.169 | 1.724 | 2.463 | 2.933 | 3.849 | 4.906
12 | 1.443 [ 2.062 | 2.456 | 3.223 | 4.110 | 1.683 | 2.404 | 2.863 | 3.758 | 4.792
13| 1.425 [ 2.036 | 2.424 | 3.183 | 4.059 | 1.648 | 2.355 | 2.805 | 3.682 | 4.697
14 | 1.409 | 2.013 | 2.398 | 3.148 | 4.016 || 1.619 | 2.314 | 2.756 | 3.618 | 4.615
15 [1.395 | 1.994 | 2.375 | 3.118 | 3.979 || 1.594 | 2.278 | 2.713 | 3.562 | 4.545
16 | 1.383 | 1.977 | 2.355 | 3.092 | 3.946 | 1.572 | 2.246 | 2.676 | 3.514 | 4.484
17 | 1.372 | 1.962 | 2.337 | 3.069 | 3.917 || 1.552 | 2.219 | 2.643 | 3.471 | 4.430
18 | 1.363|1.948 | 2.321 [ 3.048 | 3.891 | 1.535| 2.194 | 2.614 | 3.433 | 4.382
19 | 1.355 | 1.936 | 2.307 | 3.030 | 3.867 | 1.520 | 2.172 | 2.588 | 3.399 | 4.339
20 | 1.347 | 1.925 | 2.204 | 3.013 | 3.846 | 1.506 | 2.152 | 2.564 | 3.368 | 4.800
21 | 1.340 | 1.915 | 2.282 | 2,998 | 3.827 || 1.493 | 2.135 | 2.543 | 3.340 | 4.264
22 | 1.334 [ 1.906 | 2.271 | 2.984 | 3.809 | 1.482 | 2.118 | 2.524 | 3.315 | 4.232.
23 | 1.328 | 1.898 [ 2.261 [ 2.971 | 3.793 | 1.471 | 2.103 | 2.506 | 3.292 | 4.203
24-1.322 [ 1.891 | 2.252 | 2.959 | 3.778 | 1.462 | 2.089 | 2.489 | 3.270 | 4.176
25 [1.317 | 1.883 [ 2.244 [ 2.948 | 3.764 | 1.453 | 2.077 | 2.474 | 3.251 | 4.151
26 | 1.313 | 1.877 | 2.236 [ 2.938 | 3.751 || 1.444 | 2.065 | 2.460 | 3.232 | 4.127
27 | 1.309 |1.871 | 2.229 [ 2.929 | 3.740 | 1.437 | 2.054 | 2.447 | 38.215| 4.106

*Adapted from Techniques of Statistical Analysis by C. Eisenhart, M.W. Hastay,
and W.A. Wallis, Copyright 1947. Used with permission of McGraw-Hill Book

Company.
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Table VII(a) Continued

vy = 0.95 vy = 0.99
P : . ‘

075 | 090 | 095 | 0.99 | 0999 | 0.75 0.90 0.95 0.99 | 0.999
2 [22.858 (32.019 [37.674 (48.430 |60.573 (114.363 [160.193. 188.491 [242.300 |303.054
3 | 5.922 | 8.380 | 9.916 (12.861 |16.208 || 13.378 | 18.930 | 22.401 | 29.055 | 86.616
4 |3.779 | 5.369 | 6.370 | 8.299 |10.502 || 6.614 | 9.398 | 11.150 | 14.527 | 18.383
5 | 3.002|4.275|5.079 | 6.634 | 8.415 ||. 4.643 | 6.612 | 7.855 | 10.260 | 13.015
6 |2.604 |3.712 |4.414 | 5.775 | 7.337 | 3.743 | 5.337 | 6.345| 8.301 | 10.548
7 | 2.361 | 3.369 | 4.007 | 5.248 | 6.676.|| 3.233 | 4.613 | 5.488 | 7.187 | 9.142 |
8 |2.197 | 3.136 | 3.732 | 4.891 | 6.226 || 2.905 | 4.147 | 4.936 | 6.468 | 8.234
9 |2.078|2.967 | 3.532|4.631 | 5.899 || 2.677 | 3.822 | 4.550 | 5.966 | 7.600
10 | 1.987 | 2.839 | 3.379 | 4.433 | 5.649 | 2.508 | 3.582 | 4.265| 5.594 | 7.129
11 | 1.916 | 2.737 | 3.259 | 4.277 | 5.452 || 2.378 | 3.397 | 4.045| 5.308 | 6.766
12 | 1.858 | 2.655 | 3.162 | 4.150 | 5.291 {| 2.274 | 3.250 | 3.870 | 5.07Y | 6.477
13 [ 1.810 | 2.587 | 3.081 | 4.044 | 5.158 || 2.190 | 3.130| 3.727 | 4.893 | 6.240
14 | 1.770 | 2.529 { 3.012 | 83.955 | 5.045 | 2.120 | 3.029 | 3.608 | 4.737 | 6.043
15 [1.735|2.480 | 2.954 | 3.878 | 4.949 || 2.060 | 2.945 | 3.507 | 4.605| 5.876
16 [ 1.705 | 2.437 | 2.903 | 3.812 | 4.865 || 2.009 | 2.872 | 8.421 | 4.492 | 5.732
17 | 1.679 | 2.400 | 2.858 | 3.754 | 4.791 || 1.965 | 2.808 | 3.345 | 4.393 | 5.607
18 [ 1.655|2.366 [ 2.819 | 3.702 | 4.725 || 1.926 | 2.753 | 3.279 | 4.307 | 5.497
19 [1.635|2.337 ([ 2.784 | 3.656 | 4.667 || 1.891 | 2.703 | 8.221 | 4.230 | 5.399
20 |1.616 | 2.310 ([ 2.752 (3.615|4.614 | 1.860 | 2.659 | 3.168 | 4.161 | 5.312
21 | 1.599 | 2.286 | 2.723 | 3.577 | 4.567 || 1.833 | 2.620 | 3.121 | 4.100 | 5.234
22 |1.584 | 2.264 | 2.697 | 3.543 | 4.523 || 1.808 | 2.584 | 3.078 | 4.044 | 5.163
23 [ 1.570 | 2.244 | 2.673 [ 3.512 | 4.484 || 1.785| 2.551 | 3.040 | 3.993 | 5.098
24 | 1.557 | 2.225 | 2.651 | 3.483 | 4.447 | 1.764 | 2.522 | 3.004 | 3.947 | 5.039
25 |1.545|2.208 | 2.631 | 3.457 [4.413 || 1.745| 2.494 | 2.972 | 3.904 | 4.985
26 | 1.534 | 2.193 [ 2.612 | 3.432 (4.382 || 1.727 | 2.469| 2.941 | 3.865 | 4.935
27 |1.523(2.178 12.5053.409 | 4.353 || 1.711 ( 2.446 | 2.914 | 3.828 | 4.888
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Table VII(a) Continued

FACTORS FOR TWO-SIDED TOLERANCE LIMITS FOR
NORMAL DISTRIBUTIONS

vy =078 v = 0.90
‘” P 075 | 090 | 0.95 | 0.99 | 0.999 0.75 0.90 0.95 0.99 0.999
30 | 1.297.| 1.855 | 2.210 | 2.904 | 3.708 || 1.417 [ 2.025 | 2.413 | 3.170 | 4.049
35 (1.2831.834 (2.185 | 2.871 | 3.667 || 1.390 | 1.988 | 2.368 | 3.112 | 3.974
40 | 1.271 [ 1.818 [ 2.166 | 2.846 | 3.635 || 1.370 | 1.959 | 2.334 | 3.066 | 3.917
45 | 1.262 ( 1.805 | 2.150 | 2.826 | 3.609 | 1.354 | 1.935 | 2.306 [ 3.030 | 3.871
50 [ 1.255 | 1.794 | 2.138 | 2.809 | 3.588 | 1.340 ( 1.916 | 2.284 | 3.001 | 3.833
55 | 1.249 | 1.785|2.127 | 2.795 | 3.571 || 1.829 | 1.901 | 2.265 | 2.976 | 3.801
60 | 1.243 1 1.778 | 2.118 [ 2.784 | 3.556 | 1.320 | 1.887 | 2.248 | 2.955 | 3.774
65 [1.2391.771|2.110 | 2.773 | 3.543 || 1.312 | 1.875 | 2.235 | 2.937 | 3.751
70 | 1.235 | 1.765 | 2.104 | 2.764 | 3.531 || 1.304 | 1.865 | 2.222 | 2.920 | 3.730
78 [ 1.231 | 1.760 | 2.098 | 2.757 | 3.521 || 1.298 | 1.856 | 2.211 | 2.906 | 3.712
80 | 1.228 | 1.756 | 2.092 | 2.749 | 3.512 ([ 1.292 | 1.848 | 2.202 | 2.894 | 3.696
85 | 1.225|1.752 | 2.087 | 2.743 | 3.504 || 1.287 | 1.841 | 2.193 | 2.882 | 3.682
90 | 1.223 [ 1.748 [ 2.083 | 2.737 | 3.497 || 1.283 | 1.834 | 2.185 | 2.872 | 3.669
95 | 1.220 [ 1.745 | 2.079 { 2.732 | 3.490 | 1.278 | 1.828 | 2.178 | 2.863 | 3.657
100 | 1.218 | 1.742 | 2.075 | 2.727 ( 3.484 || 1.275 | 1.822 | 2.172 | 2.854 | 3.646
170 | 1.214 | 1.736 | 2.069 | 2.719 | 3.473-|| 1.268 | 1.813 | 2.160 | 2.839 | 3.626
120 | 1.211 | 1.732 | 2.063 | 2.712 | 3.464 || 1.262 | 1.804 | 2.150 | 2.826 | 3.610
130 [ 1.208 | 1.728 [ 2.059 | 2.705 | 3.456 || 1.257 | 1.797 | 2.141 | 2.814 | 3.595
140 | 1.206 | 1.724 | 2.054 | 2.700 | 3.449 || 1.252 | 1.791 | 2.134 | 2.804 | 3.582
150 | 1.204 | 1.721 | 2.051 | 2.695 | 3.443 || 1.248 | 1.785 | 2.127 | 2.795 | 3.571
160 | 1.202 | 1.718 | 2.047 | 2.691 | 3.437 || 1.245 | 1.780 | 2.121 | 2.787 | 3.561
170 [ 1.200 | 1.716 | 2.044 | 2.687 ( 3.432 || 1.242 | 1.775 | 2.116 | 2.780 | 3.552
180 | 1.198 | 1.713 | 2.042 | 2.683 | 3.427 || 1.239 | 1.771 | 2.111 | 2.774 | 3.543
190 [ 1.197 | 1.711 | 2.039 | 2.680 | 3.423 || 1.236 | 1.767 | 2.106 | 2.768 | 3.536
200 [ 1.195 [ 1.709 | 2.037 | 2.677 | 3.419 || 1.234 | 1.764 | 2.102 | 2.762 | 3.529
250 | 1.190 | 1.702 | 2.028 | 2.665 | 3.404 | 1.224 | 1.750 | 2.085 | 2.740 | 3.501
300 (1.186 | 1.696 | 2.021 | 2.656 | 3.393 || 1.217 | 1.740 | 2.073 | 2.725 | 3.481
400 | 1.181 | 1.688 | 2.012 | 2.644 | 3.378 || 1.207 | 1.726 | 2.057 | 2.703 | 3.453
500 | 1.177 | 1.683 | 2.006 | 2.636 | 3.368 || 1.201 | 1.717 | 2.046 | 2.689 | 3.434
600 | 1.175 | 1.680 | 2.002 | 2.631 | 3.360 || 1.196 | 1.710 [ 2.038 | 2.678 | 3.421
700 | 1.173 | 1.677 | 1.998 | 2.626 | 3.355 || 1.192 | 1.705 | 2.032 | 2.670 | 3.411
800 (1.171 | 1.675 | 1.996 | 2.623 | 3.350 || 1.189 | 1.7061 | 2.027 | 2.663 | 3.402
900 | 1.170 | 1.673 [ 1.993 | 2.620 | 3.347 || 1.187 | 1.697 | 2.023 | 2.658 | 3.396
1000 | 1.169 | 1.671 [ 1.992 | 2.617 | 3.344 || 1.185 | 1.695 | 2.019 | 2.654 | 3.390
o |1.150|1.645|1.960 ( 2.576 | 3.291 || 1.150 | 1.645 { 1.960 | 2.576 | 3.291
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Table VII(a) Continued

FACTORS FOR TWO-SIDED TOLERANCE LIMITS FOR
NORMAL DISTRIBUTIONS

vy = 0.95 v = 0.99
. )

n 0.75 0.90 . 0.95. 099 | 0.999 0.75 . 0.90 0.95 0.99 0.999
30 | 1.497 | 2.140 | 2.549 | 3.350 { 4.278 | 1.668 | 2.385 | 2.841 | 3.733 | 4.768
35 | 1.462 [ 2.090 | 2.490 | 3.272 | 4.179 || 1.613 | 2.306 | 2.748 | 3.611 | 4.611
40 | 1.435 [ 2.052 | 2.445 | 3.213 | 4.104 || 1.571 | 2.247 | 2.677 | 3.518 | 4.493
45 | 1.414 { 2.021 | 2.408 | 3.165 ( 4.042 || 1.539 | 2.200 | 2.621 | 3.444 | 4.399
50 | 1.396 | 1.996 { 2.379 | 3.126 | 3.993 || 1.512 | 2.162 | 2.576 | 3.385 | 4.323
55 | 1.382 | 1.976 | 2.854 | 3.094 | 3.951 || 1.490 | 2.130 | 2.538 | 3.335 | 4.260
60 | 1.369 | 1.958 | 2.333 | 3.066 [ 3.916 | 1.471 | 2.103 | 2.506 | 3.293 | 4.206
65 |'1.359 | 1.943'| 2.315 | 3.042 { 3.886 || 1.455 | 2.080 | 2.478 | 3.257 | 4.160
70 | 1.349 | 1.929 | 2.299 | 3.021 | 3.859 || 1.440 | 2.060 | 2.454 | 3.225 | 4.120
75 | 1.341]1.917 | 2.285 | 3.002 | 3.835 || 1.428 | '2.042 | 2.433 | 3.197 | 4.084
80 | 1.334 | 1.907 | 2.272 | 2.986 | 3.814 || 1.417 | 2.026 | 2.414 | 3.173 | 4.053
85 | 1.327 | 1.897 [ 2.261 | 2.971 | 3.795 || 1.407 | 2.012 | 2.397 | 3.150 | 4.024
90 |1.321 | 1.889 | 2.251 | 2.958 | 3.778 || 1.398 | 1.999 | 2.382 | 3.130 | 3.999
95 | 1.815|1.881 | 2.241 | 2.945 | 3.763 || 1.390 | 1.987 | 2.368 | 3.112 | 3.976
100 | 1.311 | 1.874 [ 2.233 | 2.934 { 3.748 || 1.383 | 1.977| 2.355 | 3.096 | 3.954
110 | 1.302 | 1.861 | 2.218 | 2.915 | 3.723 || 1.869 | 1.958 | 2.333 | 3.066 | 3.917
120 | 1.294 | 1.850 | 2.205 | 2.898 | 3.702 || 1.358 | 1.942 | 2.314 | 3.041 | 3.885
130 | 1.288 | 1.841 | 2.194 | 2.883 | 3.683 || 1.349 | 1.928 | 2.298 | 3.019 | 3.857
140 | 1.282 | 1.833 | 2.184 | 2.870 | 3.666 ||* 1.340 | 1.916 | 2.283 | 3.000 | 3.833
150 | 1.277 | 1.825 | 2.175 | 2.859 { 3.652 || 1.832 | 1.905 | 2.270 | 2.983| 3.811
160 | 1.272 | 1.819 | 2.167 [ 2.848 | 3.638 || 1.826 | 1.896 | 2.259 | 2.968 | 3.792
170 | 1.268 | 1.813 | 2.160 | 2.839 | 3.527 || 1.320 | 1.887 | 2.248 | 2.955 | 3.774
180 | 1.264 | 1.808 | 2.154 [ 2.831 | 3.616 || 1.314 | 1.879 | 2.239 | 2.942 | 3.759
190 | 1.261 | 1.803 | 2.148 [ 2.823 | 3.606 || 1.309 | 1.872 | 2.230 | 2.931 | 3.744
200 | 1.258 | 1.798 | 2.143 [ 2.816 { 3.597 || 1.304 | 1.865 | 2.222 | 2.921 | 3.731
250 | 1.245 [ 1.780 | 2.121 | 2.788 [ 3.561 | 1.286 | 1.839 | 2.191 | 2.880 | 3.678
300 | 1.236 | 1.767-| 2.106 | 2.767 | 3.535 || 1.273 | 1.820 | 2.169 | 2.850 | 3.641
400 | 1.223 | 1.749 [ 2.084 | 2.739 [ 3.499 || 1.255| 1.794 | 2.138 | 2.809 | 3.589
500 | 1.215 | 1.737 | 2.070 | 2.721 [ 3.475'|| 1.243 | 1.777 | 2.117 | 2.783 | 3.555
600 | 1.209 | 1.729 | 2.060 [ 2.707 | 3.458 | 1.234 | 1.764 | 2.102 | 2.763 | 3.530
700 | 1.204 | 1.722 | 2.052]2.697 | 3.445 | 1.227 | 1.755| 2.091 | 2.748 | 3.511
800 | 1.201 | 1.717 | 2.046 [ 2.688 | 3.434 | 1.222 | 1.747 | 2.082 | 2.736 | 3.495
900 | 1.198 | 1.712 { 2.040 | 2.682 | 3.426 || 1.218 | 1.741 | 2.075 | 2.726 | 3.483
1000 | 1.195 | 1.709 | 2.036 | 2.676 | 3.418 | 1.214 | 1.736 | 2.068 | 2.718 | 3.472
o |1.150 | 1.645]1.960 | 2.576 | 3.291 || 1.150 | 1.645| 1.960 | 2.576 | 3.291
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Table VII (b) Factors for One-Sided Tolerance Limits for-
Normal Distributions* ‘

"Factors K such that the probability is ¥ that at least a proportion P_of the
distribution will be less than X + Ks (or greater than X - Ks) where X and s
are estimates of the mean and the standard deviation computed from a sample
size of n. : ‘ S :

EXAMPLE: For = 0.90, P = 0.95, n = 20; then K = 2.208

vy = 075 ; v = 0.90
P .

n 075 | 090 [ 095 | 0.99 {0999 | 075 | 090 .| 0.95 | 0.99 | 0.999
3 [1.464|2.501 | 3.152 | 4.396 | 5.805 || 2.602 | 4.258 | 5.310 | 7.340,| 9.651
4 |1.256|2.134 | 2.680 | 3.726 | 4.910 || 1.972 | 3.187 | 3.957°| 5.437 | 7.128
5 | 1.152 | 1.961 [ 2.463 | 3.421 | 4.507 || 1.698 | 2.742 | 3.400 | 4.666°| 6.112
6 |1.087|1.860 | 2.336 | 3.243 [.4.273 || 1.540 | 2.494 | 3.091 | 4.242 | 5.556
7 [1.043|1.791 | 2.250 | 3.126 | 4.118 || 1.435 | 2.333 | 2.894 | 3.972 | 5.201
8 |[1.010|1.740 | 2.190 | 3.042 | 4.008 | 1.360 | 2.219 | 2.755 | 3.783 | 4.955
9 [0.984 |1.702 | 2.141 | 2.977 | 3.924 | 1.302 | 2.133 | 2.649 | 3.641 | 4.772
10 | 0.964 | 1.671 | 2.103 | 2.927 | 3.858 || 1.257 | 2.065 | 2.568 | 3.532 ; 4.629
11 [0.947 | 1.646 | 2.073 | 2.885 | 3.804 | 1.219 | 2.012 |.2.503 | 3.444 | 4:515
12 |0.933 | 1.624 | 2.048 | 2.851 | 3.760 || 1.188 | 1.966 | 2.448 | 3.371 | 4.420°
13 |0.919 | 1.606 | 2.026 | 2.822 | 3.722 || 1.162 | 1.928 | 2.403 | 3.310 | 4.341
14 [0.909 | 1.591 | 2.007 | 2.796 | 3.690-| 1.139 | 1.895| 2.363 | 3.257 | 4.274
15 10.899 | 1.577 | 1.991 | 2.776 | 3.661 | 1.119| 1.866 | 2.329 | 3.212 | 4.215
16 [0.891 | 1.566 | 1.977 | 2.756 { 3.637 || 1.101 [ 1.842 | 2.299 | 3.172 | 4.164
17 | 0.883 | 1.554 | 1.964 | 2.739 | 3.615 | '1.085 | 1.820 | 2.272 | 3.136 | 4.118
18 |[0.876 | 1.544 | 1.951 | 2.728 | 3.595 {| 1.071 | 1.800 | 2.249 | 3.106 | 4.078

19 | 0.870 [ 1.536 | 1.942 | 2.710 | 3.577 | 1.058 | 1.781 | 2.228 | 3.078 | 4.041

20 | 0.865 | 1.528 | 1.933 | 2.697 ) 3.561 || 1.046 | 1.765 | 2.208 | 3.052 | 4.009
21 [0.859 | 1.520 | 1.923 | 2.686 | 3.545 {| 1.035| 1,750 | 2.190 | 3.028 ! 3.979
22 [0.854 | 1.514 | 1.916 | 2.675 | 3.532 | 1.0251| 1.736 | 2.174 | 3.007 | 3.952
23 | 0.849 | 1.508 | 1.907 | 2.665 | 3.520 | '1.016 | 1.724 | 2.159| 2.987 | 3.927
24 |0.845|1.502 | 1.901 | 2.656 | 3.509.- 1.007 | 1.712 | 2.145| 2.969 | 3.904
25 |0.842 | 1.496 | 1.895 | 2.647 | 3.497 || 0.999 | 1.702 | 2.132 | 2.952 | 3.882
30 |0.825|1.475|1.869 | 2.613 | 3.454 | 0.966 | 1.657 | 2.080 | 2.884 | 3.794
35 [0.812]1.458 | 1.849 | 2.588 [ 3.421 | 0.942 | 1.623 | 2.041 | 2.833 | -3.730
40 | 0.803 | 1.445 | 1.834 | 2.568 | 3.395 || 0.923 | 1.598 | 2.010 | 2.793 | 3.679
45 | 0.795 | 1.435|1.821 | 2.552 {3.375 || 0.908 | 1.577 | 1.986 | 2.762 | 3.638
50 | 0.788 | 1.426 | 1.811 | 2,538 | 3.358|| 0.894 | 1.560 | 1.965| 2.735| 3.604

*Adapted with permiséion from G.J. Lieberman, "Table for One-Sided Statistical
Tolerance Limits", Industrial Quality Control, Volume XIV, 10, }958.
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Table VII (b)

FACTORS FOR ONE-SIDED TOLERANCE LIMITS FOR
NORMAL DISTRIBUTIONS

= 0.95 = 0.99
P .
0.75 0.90 | 0.95 0.99 | 0.999 0.75 0.90 0.95 0.99 0.999
3 |3.804 | 6.158 | 7.655 |10.552 |13.857 — — — — —
4 | 2.619 ,4.163 | 5.145 | 7.042 | 9.215 — — — — —
5 12.149 | 3.407 | 4.202 | 5.741 | 7.501 — — — — —
6 1.895 | 3.006 | 3.707 | 5.062 | 6.612 2.849 | 4.408 | 5.409; 7.334 9.540
7 |1.732 | 2.755 | 3.399 | 4.641 | 6.061 2.490 | 3.856 | 4.730 | 6.411 ; 8.348
8 1.617 | 2.582 | 3.188 | 4.353 | 5.686 || 2.252 | 3.496 | 4.287 | 5.811 I 7.566
9 1.532 | 2.454 | 8.031 ; 4.143 | 5.414 2.085 1 3.242 | 3.971 5.380 | 7.014
10 | 1.465 | 2.355 | 2.911 | 3.981 | 5.203 1.954 | 3.048 | 3.739 | 5.075! 6.603.
1" 1.411 | 2.275 | 2.815 | 3.852 | 5.036 1.854 | 2.897 | 3.557 | 4.828 ° 6.284
12 | 1.366 | 2.210 | 2.736 | 3.747 | 4.900 1.771 2773 | 3.410 | 4.633 - 6.032
13 1.329 | 2.155 | 2.670 | 3.659 | 4.787 1.702 | 2.677 | 3.290 : 4.472 5.826
14 | 1.296 | 2.108 | 2.614 | 3.585 | 4.690 1.645| 2.592 | 3.189 | 4.336 ° 5.651
15 1.268 | 2.068 | 2.566 | 3.520 | 4.607 1.596 | 2.521 i 3.102 | 4.224 ; 5.507
16 [ 1.242 | 2.032 | 2.523 | 3.463 | 4.534 1.553 | 2.458 | 3.028 | 4.124 5.874
17 |1.220 { 2.001 | 2.486 | 3.415 | 4.471 1.514 1 2.405 | 2.962 | 4.038 ; 5.268
18 1.200 | 1.974 | 2.453 | 3.370 | 4.415 1.481 1 2.357} 2.906 | 3.961 . 5.167
19 | 1.183 | 1.949 | 2.423 | 3.331 | 4.364 1.450 | 2.315| 2.855| 3.893 © 5.078
20 | 1.167 | 1.926 | 2.396 | 3.295 | 4.319 1.424 | 2.275 | 2.807 1 3.832 ¢ 5.003
}
21 1.152 1 1.905 | 2.371 | 3.262 | 4.276 1.397 | 2.241 | 2.768 | 3.716  4.932
22 1.138 | 1.887 | 2.350 | 3.233 | 4.238 1.376 | 2.208 | 2.729 | 38.727 - 4.866
23 [ 1.126 | 1.869 | 2.329 | 3.206 | 4.204 1.356 | 2.179 | 2.693 | 3.680 ; 4.806
24 |1.114 1 1.85312.309|3.181 | 4.171 1.336 | 2.154 | 2.663 | 3.638 | 4.755
25 1.103 | 1.838 | 2.292 | 3.158 | 4.143 1.319 1 2.129| 2.632 | 3.601 : 4.706
30 | 1.059 | 1.778 | 2.220 | 3.064 | 4.022'] 1.249 ! 2.029 | 2.516 | 3.446 ° 4.508
a5 |1.025 | 1.732 {2.166 | 2.994 | 3.934 1.195 ) 1.957 } 2.431 3.334 | - 4.364
40 | 0.999 [ 1.697 | 2.126 | 2.941 | 3.866 1.154 1.902 | 2.8365 | 3.250 4.255
45 [ 0.978 | 1.669 | 2.092 | 2.897 | 3.811 ;} 1.122 1.857 @ 2.313 3.181 : 4.168
50 | 0.961 | 1.646 | 2.065 | 2.863 | 3.766 || 1.096 1.821 2.296 | 3.124 | 4.096
!
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TABLE VIII

Two-Sided Prediction Intervals for k Additional Observations
from a Normal Distribution*

X i r(k, n, 7 )s

X is average of n observations, s is estimated
standard deviation

(2) y = .90 Prediction Interval
n=Size of |- k = Number of Additional ObServztions
Previous :
Sample 1 2 3 4 5 & 8 _10 10 15 20
I 2,63 . 3.33  3,74. 4,03 4,26 443 u.T1 4L.95 5.09 5.20 5.5
5 2.3 2,91 3,25 3,48 3,67  3.81 4,04 k.22 .36 4,53 4,Th-
6 2,18 2,69 -2,98 3,19 3,35 348 3,68 3.8 3,96 4,11 L.30
7 2.,08- 2.55 2,82 3,01 3,15 3,27 3.46 3.60 3.77 3.85 4,02
8 2,00 2,45 2,71 2,88 3.02  3.13 3,30  S.huk 3,54 3,67 3.83
9 1,96 2,38 2,63 2,79 2.92 3,03 3.19 3.32 342 354 3.70
10 1.92 2,33 2,56 2,73 2.85 2,95 3.1 3.23 333 3.ub 3,59
M 1.89 2.29° 2,52 2,67 2,79 2.89 3.04 3.0 3,250 3,30 3.9
12 1,87 2,26 2,48 2,63 2,75 2.8 2,99 3,10 3.19 3.30 3.4b
15 1.82 2,19 2,39 2,54 2,05 2,74 2.87 2,98 3.0t 3.17 3.20
20 1,77 2,12 2,32 2,45 2,56 2,64 2,77 2.87 2.95 3.04  3.1C
25 1,74 2,09 2.27 2,40 2,5 2.58° 2.71 2,80 .88  2.97  3.05
20 1,73 2,06 2,25 2,37 247 2,55 2.67 2,76 #.83 .92 3.03
4o 1,71 2.03%  2.21 2,34 2,43 2,50 2,62 2,717 273 2.8 2,97
60 1,60 . 2.00 2.18 2,30 2.39 2.46 2,57 2.66 2,72 281 2.9
b 1.64 1.95 2,11 2,23 2.5 2,38 2.48 2,56 2,67 2,70 2.79

*Adapted by permission from G. J. Hahn, "Faniors for Calculaiing Two-
Sided Prediection Intervals for Samples from & Normal Distribution,”
Journal of the American Statistical Association, Vol. (i, No. ™7,
1969, and "Calculating Prediction Intervals for Samples from o
Normal Distribution,” Journal of the American Statistical Assoc—
iation, Vol. &5, No. 332, 1970.
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TABLE VIII (cont'd)
(b) y = 0.95 Prediction Interval* :

n= size k = Number of Additioné] Observations
of previous:

sample 1 2 3 4 5_ b 7 8 9 10 11 12 15
4 3.56 4.41 4.92 5.29 5.56 5.79 5.98 6.14 6.28 6.41 6.52 6,62 6.88
5 3.04 3.70 4.09 4.36 4.58 4.75 4.90 5.02 5.13 5.23 5.32 5.39 5.60
6 2.78 3.34 3.66 3.90 4.09 4.23 4.35 4.45 4.55 4.63 4.70 4.47 4.93
7 2.62 "3.11 3.41 3.61 3.78 3.91 4.01 4.10 4.20 4.26 4.33 4.40 4.54.
8 2.51 2.97 3.24 3.43 3.58 3.70 3.80 3.88 3.96 4.02 4.09 4.14 4.28
9 2,43 2.86 3.12 3.29 3.43 3.55 3.64 3.72 3.79 3.86 3.91 3.96 4.09
10 2.37 2.78 3.03 3.20 3.33 3.44 3.52 3.59 3.67 3.72 3.77 3.83 3.94.
11 2.33 2.73.2.96 -3.12 3.24 3.34 3.43 3.50 3.56 3.62 3.67 3.72 3.83
12 2.29 2.68 2.90 3.05 3.17 3,28 3.35 3.43 3.49 3.54 3.59 3.63 3.75
13 2.06 2.64 2.85 3.01 3.12 3.22 3.29 3.36 3.42 3.47 3.52 3,56 3.68
14 2.24 2.61 2.81 2.97 3.08 3.16 3.24 3,31 3.37 3.42 3.47 3.61 3.61
15 2,22 2.58 2.78 2.9Y3 3.04 3,12 3.20 3.26 3.32 3.37 3.41 3.46 3.56
20 2.15 2.49Y 2.68 2.81 2.91 2.99 3.06 3.12 3.17 3.22-3.26 3.30 3.39
25 2.10 2.43 2.62 2.74 2.84 2.91 2.98 3.04 3.09 3.13 3.17 3.21 3.30
31 2.07 2.39 2.57 ‘2.69 2.79 2.86 2.92 2.98 3.03 3.06 3.10 3.14 3.22
4 2.05 2.35 2.52 2.64 2.73 2.80 2.86 2.91 2.96 3.01 3.03 3.07 3.15
61 2.02 2.32 2.48 2.60 2.68 2.75 2.81 2.85 2.90 2.94 2.97 3.01 3.08
121 1.99 2.28 2.44 2.54 2.63 2.69 2.75 2.79 2.84 2.88 2.91 2.94 3.01
1.96 2.24 2.39 2.50 2.58 2.64 2.74 2.78

2.69 2.82 2.84 2.88 2.95
(c) y = 0.99 Prediction Interval* '

10.27 10.59 10.87 11.12 11.33 11.52 11.70 12.14

4 6.53 7.94 8.80 9.41 9.88
5 5.04 5.97 6.54 6.94 7.25 7.51 7.72 7.91 8.07 8.22 .8.35 8.47 8.77
6 4,36 5.08 5.51 5.82 6.07 6.27 6.44 6.58 6.71 6.83 6.93 7.02 7.26
7 3.96 4.56 4.93 5.19 5.39 5.56 5.69 5.82 5,93 6.02 6.10 6.10 6.38
8 3.71 4.28 4.56 4.78 4.96 5.10 5.23 5.34 5,43 5.51 5.58 5.65 65.83
9 3.54 4.02 4.30 4.51 4.66 4.80 4.90 5.00 5.08 5.16 5.23 5.29 5.45
10 3.41 3.85 4.11 4,31 4.45 4.57 4.67 4.76 4.83 4.90 4.96 5,02 b5.1h
1 - 31 373 3.99 4.14 4.28 4.39 4.49 4.5/ 4.64 471 4.76 4.82 4.95
12 3.23 3.63 3.86 4.03 4.15 4.26 4.35 4.43 4.49 4.55 4.60 4.65 4.78
13 3.17 3.55 3.77 3.93 4.05 4.15 4.23 4.31 4.37 4.43 4.48 4.52 4.65
14 3.12 3.48 3.70 3.86 3.96 4.06 4.15 4.21 4.27 4.33 4.38 4.42 4.53
15 3.07 3.43 3.64 3.78 3.90 3.98 4.07 4.13 4.19 4.24 4.29 4.34 4.44
20 2,93 3.26 3.44 3.56 3.66 3.74 3,81 3.87 3.92 3.97 4.01 4.05 4.14
25 2.85 3.15 3.32 3.44 3.53 3,61 3.67 3.73 3.70 3.81 3.86 3.89 3.98
31 2,79 3.08 3.24 3.35 3.414 3.51 3.57 3.62 3.66 3.71 3.74 3.78 3.86
4 2.74 3.01 3.16 3.27 3.35 3.42 3.48 3.52 3.56. 3.60 3.64 -3.66 3.74
61 2,68  2.94 3.08 3.19 3.26 3.33 3.30 3.42 3,46 3.50 3.52 3.56 3.63
121 2.63 2.88 3.01 3.11 3.17 3.24 3.28 3.33 3.36 3.40 3.43 3.45 3.52
' 2.58 2.80 2.94 3.03 3.10 3.15 3,19 3.24

3.27 3.31 3.33 3.3% 3.41
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TABLE VIII (d)

One-Sided Prediction Intervals for k. Additional

Observations from a Normal Distribution*

x+r'(k, n,y)or X-r'(k,n, y)

Size of .
prev;ous Number of additional observations-(k)
sample :
(n 1 2 3 4 5 6 8 10 12 15 20
y = 0.90 prediction interval :
4 1.83, 2.48 2.87 3.15 3.36 3.54 3.81 4.02 4,18 4,39 4.64
5 1.68 -2.24 2.57 2.80 2.98 3.12 3.34 3.52 3.66 3.82 4,04
6 1.59 2.1 2.40 2.61 2.76 2.89 3.09 3.25 3.37 3.52 3.71
7 1.54 2,02 2.29 2.48 2.63 2.75 2.93 3.08 3.19 3.33 3.50
8 - 1.50 1,96 2.22 2.40 2.54 2.65 2.83 2.96 3.07 3.20 3.36
9 1.47 1.92 2.17 2.34 2.47.  2.58 -2.75 2.87 2.98 3.10 3.26
10 1.45 1.88 2.13 2.29 2.42 2.53 2.69 2.8l 2.9 3.02 3.18
1 1.43 1.86 2,09 2.26 2.38 2.48 2.64 2.76 2.85 2.97 3.1
12 1.42 1.84 2.07 2.23 2.35 2.45 2.60 2.71 " 2.81 2,92 3.06
15 1.39 1.79 2.01 2.16 2.28° 2,37 2.52 2.62 2.7 2,82 2.95
20 1,36 1.75 1.96 2.11 2.21 2.30 2.44 2.54 2,62 ~ 2.72 2.85
25 - 1.34. 1.72 1.93 2.07 2.18 2.26 2.39 2.49 2.57 2.67 2.79
30 1.33 1.71 1.91 2.056 2.15 2.24 2.36 2.46 2.54 2,63 2.75
40 1.32 1.69 .1.89 2.02 2.12 2.20 2.33 2.42 2.50 2.59 2.70
60 1.31 1.67 1.86 1.99 2.09. 2.17 2.29 2.38 2.46 2.54 2.65
1.28 1.63 1.8 1.94 2.04 2.11 2,22 2.31. 2.38 2.46 2.56 .
y = 0.95 Prediction interval
4 2.63 3.40 " 3.87 4.21 4.47 4.69 5.02 5.28 5.49 5.74 6.06
5 2.34 2,95 3.32 3.58 3.79 '3.95 4.22 4.42 4,58 - 4.78 5.03
6 2.18 2.72 3.03 3.26 3.43 3,58 3.80  3.97 4 4,28 4.49
7 2.08 2.57 2.8 3.06 3.22 3.34 3.55 3.70 3.82 3.98 °  4.17
8 2.01 2.47 2.74 2.93 3.07 3.19 3.37 3.52 3.63 3.77 3.95
9 1.96 2.40 .2.65 2.83 2.97 3.08 3.25 3.38 3.49 3.62 3.79
10 o 1.92 2,35 2.59 2.76 2:89% 2.99 3.16 3.28 3.39 3.51 3.67
n 1.89 2.30 2.54 .2.,70 2.8 2.93 3.08 3.21 3.30 . 3.42 3.58
12 1.87 2.27 2,50 2.65 2.78 2.87 3.03 3.14 3.24 3.35 3.50
15 1.82 2.20 2.41 2.56 2.67 2.76 2.90 3.0l 3.10 3.21 3.34
20 1.77 2.13  2.33 2.47 2,57 2.66 2.79 2.89 2.97 3.07 3.19
25 1.74 2.09 2.29 2.42 2.52 2.60 2.73 2.8 2.90 2.99 3.1
30 1.73  2.07 2.26 2.39 2.48 2.56 2.68 2.78  2.85 2.94 3.05
40 1.71  2.04 2.22 2.35 2.44 2.52 2.63 2.72 2.79 2.88 2.99
60 1.69 2.01 2.19 2.31 2.40 2.47 2.58 2.67 2.74 2.82 2.92
1.64 1.95 2.12 2.23 - 2.32 2.39 2.49 2.57 2.63 2.7 2.80
y = 0.99 Prediction interval
4 5.07 '6.30 7,07 7.63 8.07 8.43 9.00 9.43 9.79 10,22 10.76
5 4,10 4,94 .5.46 5.83 6.13 6.37 6.75 7.04 7.28° 7.57 7.95
6 3.63 4.30 4.70 4.99 5.22 5.41 5.71 5.9 6.12 6.35 6.64
7 3.36  3.93 4.27 4.51 4.70 4.86 5.11 5.30 5.46 5.65 5.90
-8 3.18 3.69 3.99 4.20 4.37 4.51 4.73 4.9 5.04 5.21 5.43
9 3.06 3.52 3.79 - 3.99 4.14 4.27 4.46 4.62 4,74 4,90 5.09
10 2.96 3.39 3.65 3.83 3.97 4.09 4.27 4.41 4.53 4,67 4,85
1N 2.89 3.30 3.54 3.71 3.84 3,95 4,12 4,25 4.36 4,50 4.67
12. 2.83 3.22 3.45 3.61 3.74 3.8 4.00 4.13 .4.23 4,36 4,52
15 2.1 3,07 3,27 3.42 3,53 3.62 3.77 .3.88 3.97 4.08 4,22
20 2,60 2.93 3.11 3.24 -3.34 - 3.42 3.55 3.65 3.73 3.83 3.95
25 2,54 2.85 3.02 3.14 3.24 3.31 3.43 3.52 3.60 3.69 3.80
30 2.50 2.80 2.97 3.08 3.17 3.24 3.36 3.44 3.51 3.60 3.71
40 2.46 2.74 2.90 3.01 3.09 '3.16 3.27 3.35 3.4 3.49 3.59
60 2.41 2.68 2.83 2.94 3.02 3,08 3.18 3.26 3.32 3.39 3.49
: 2,33 2.58 2.7 3.09 3.14 3.21 - 3.29

2.81 2.88 2.93 3.02
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NuMBEFE: OF OBSERVATIONS FOR ¢-TEST OF MEAN
The entries in this table show the numbers of observa:ions needed in a t-t=st of the significzrce of a mean ia order to control the probabllmes
of errors of “he firs: and second kinds at « anc f respectively.

LEVEL OF [-TEST

SINGLE-3IDED TEST a = 0.005 a =0.01 o = 1.025 o = 0.05
DOUBLE-SIDED TEST a=0.0] © @ =0.02 a = 0.05 a=0.1
g= 001005 0. 02 05[{001 005 0.1 02 0.5[0.01 005 0.1 @2 05[001 005 0.1. 02 05
0.05 , = ' . ' 0.05
0.10 o 0.10
0.15 - ‘ 1221015
020 | ' 139 99| - 70(0.20
0.25 1i0 90 128 64 139 101  45(0.25
03¢ 134 78|, 115 63 119 9C 45 122 97 71 32[0.30
0.3¢ 125 99 58 109 85 47 109 8 67 34 9 72 52 24/|035
0.40 s 97 17 5 101 8 66 37(117 84 68 50 26/1001 70 55 40 19]0.40
045) - 92 77 62 37|10 -81 68 53 30| 93 67 S4 41 21| 80 S5 44 33 15(0.45
VALUE ;’F 050 {100 75 63 51 30{ 90 66 S5 43 25| 76 S4 44 34 18{ 65 45 36 27 13]0.50
D=- 055|8 63 53 42 2675 55 46 3€ 21| 63 45 37 26 15| 54 38 30 22 11[055
060 [ 71 53 45 36 22| 33 47 39 31 18/ 53 38 32 24 (3] 46 32 26 19 9[0.60
065 | 61 46 39 31 20| 55 41 34 23 16| 46 33 27 21 12[ 39 28 22 17 8|0.65
070 | 53 40 34 28 17| 47 35 30 24 14|40 29 24 19 10|34 24 19 15 8[070
075 [ 47 .36 30 25 16| ¥ 31 27 21 13{35 26 21 16 9|30 21 17 13 7/0.75
080 | 41 32 27 22 14|37 28 24 1¢ 12|31 22 19 15 9|27 19 15 12 6|080
085) 37 29 24 20 13|33 25 21 17 11|28 21 17 13 8|24 17 14 11  6[085
090 |'34 26 22 18 1229 23 19 16 10{ 25 19 16 12 7/ 21 15 13 10 5[0.90
095 31 24 20 17 11[27 20 18 1 9|23 17 14 1 719 14 1 9 slogs
10028 22 19 16 10(25 19 16 13 9|2t 1€ 13 10 6/ 18 13 11 8 5[100
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NUMBER OF OBSERVATIONS FOR f-TEST OF MEAN

The entries in this table show the numbers of observations needed in a ¢-test of the significance of a mean in order to control the probabilities
of errors of the first and second kinds at « and § respectively.

LEVEL OF {~TEST

SINGLE-SIDED TEST a = 0.005 . a=0.01 : a = 0.025 a = 0.05
DOUBLE-SIDED TEST a =0.01 a = 0.02 a = 0.05 a=0.1
f= 0.01 005 01 0.2 05)001 005 0.1 02 050.01 005 0.1 0.2 0.5}0.01 005 01 0.2 0S5
C 1 24 19 16 14 9|21 16 14 12 8] 18 13 11 9 6| 15 11 9 7 1.1
1.2 210.16 14 12 8|18 14 12 10 7{15 12 10 8 5/13 10 8 6 12
1.3 18 15 13 11 8 16 13 11 9 6/ 14 10 9 7 11 8 7 6 1.3
1.4 16 13 12 10 714 11 10 9 6|12 9 8 7 10 8 7 5 1.4
1.5 15 12 11 7113 10 9 8 6| 11 8 7 6 9 7 6 1.5
6 {13 11 10 8 6(12 10 9 7 5110 8 7T 6 8 6 6 1.6
1.7 12 10 9 8 6f11 9 8 7 9 7 6 5 8 6 5 1.7
1.8 12 10 9 8 610 8 7 7 8 7 6 7 6 1.8
VALUE OF 1.9 11 9 8 7 6/10 8 7T 6 8 6 6 7 5 1.9
é 2.0 10 8 8 7 S 9 7T 71 6 7 6 5 6 2.0
o 2.1 10 8 T 1 8 7 6 6 7 6 6 2.1
2.2 9 8 7 6 8 7 6 5 7 6 6 2.2
23 9 7 T 6 8 6 6 6 5 5 23
2.4 8 71 T 6 7 6 6 6 24
25 8 7 6 6 7 6 6 6 2.5
3.0 7 6 6 5 6 5 5 5 3.0
35 6 5 5 5 35
4.0 6 4.0
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'NUMBER OF OBSERVATIONS FOR f-TEST OF DIFFERENCE BETWEEN TwO MEANS

The entries in this table show the number of observations needed in a t-test of the significance of the difference between two means in
order to control the probatilities of the errors of the first and second kinds at « and 8 respectively.

LEVEL OF f-TEST

SINGLE-SIDED TEST a = 0.005 a = 0.01 ca = 0025 o.= 0.05
DOUBLE-SIDED TEST a = 0.01 x = 0.02 « = 005" x =01
g= 0.01 €.05. 0.1 0.2 0.5({0.00 005 0.1 02 0.5(001 005 0.. 02 0.5|0.01 005 0.1 02 05
0.05 ' o 0.05
0.10 ' ‘ "~ 10.10
0.15 0.15
0.20 . 137/0.20
0.25 124 8810.25
0.30 123 . 87 61/0.30
0.35 110 90 64 102  45(0.35
0.40 85 70 100 50 108 78 35(0.40
. 045 118 58| - 101 55 105 9 39 108 8 62 28|0.45
VALUE g’ 0.50 9 55 106 82 45 105 8 ‘64 32 88 70 51 23{0.50
D=; 0.5¢ 101 79 16 106 88 68 38 87 71 53 27|112 73 S8 42 19[0.55
0.6C 101 85 67 39 . 90 74. 58 32(104 74 60 45 23[ 89 61 49 36 16{0.60
0.65 87 73 57 34|104 77 64 49 27| 8 63 51 39 20| 76 S2 42 30 14/0.65
076100 75 63 SO 29/ 90 66 S5 43 24| 76 S5 44 34 17| 66 45 36 26 12/0.70
0.75] 83 56 55 44 26/ 79 58 48 38 21| 67 438 39 29 15| 57 40 32 23 11075
080 77.. 58 49 39 23| 70 S1 43 33 19| 59 42 34 26 14{ S0 35 28 21 10{0.80
085 69 51 43 35 21| 62 46 38 30 17} 52 37 31 23 12[ 45 31 25 18 9|08S
090 62 46 39 31 19| 55 41 34 27 15| 47 34 27 21 11} 40 28 22 16 8/0.90
09| S5 42 35 28 17|50 37 31 24 14/ 42 30 25 19 10/ 36 25 20 15 7/095
100 S0 38 32 26 iS5/ 45 33 28 22 137 38 27 23 17 9|33 23 18 14 17100
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NUMBER. OF OBSERVATIONS FOR £-TEST OF DIFFERENCE BETWEEN Two MEANS
The entries in this table show the number of observations needed in a r-test of the significance of the difference between two means in
order to contro} the probabilities of the errors of the first and second kinds at « and f respectively.
LEVEL OF {-TEST )
SINGLE-SIDED TEST a = 0.005 a = 0.01 a = 0.025 a = 0.05

DOUBLE-SIDED TEST a = 0.01 a = 0.02 a = 0.05 a =0.1
B = 0.01 005 0.1 0.2 05(001 005 0.1 02 05|00 005 0.1 0.2 05([0.01 005 0.1 0.2 05
1.1 . 42 32 27 22 13| 38 28 23 19 11132 23 19 14 '8 27 19 15 12 6{1.1
1.2 36 27 23 18 11} 32 24 20 16 91 27 20 16 12 7123 16 13 10 5(1.2
1.3 31 23 20 16 10| 28 21 17 14 8123 17 14 11 6] 20 14 11 9 5(1.3
1.4 27 20 17 14 91 24 18 15 12 8120 15. 12 10 6l 17 12 10 8 4|1.4
1.5 24 18 15 13 8 21 16 14 11 71 18 13 11 9 5115 11 9 7 4]1.5
1.6 21 16 14 11 7119 14 12 10 6l 16 12 10 8 5|1 14 10 8 6 4]1.6
1.7 19 15 13 10 71 17 13 11 9 6| 14 11 9 7 4 12 9 7 6 3(1.7
- 1.8 17 13 11 10 6| 15 12 10 8 5| 13 10 8 6 4| 11 8 7 5 1.8
VALUE OF 1.9 16 12 1 9 6| 14 11 9 8 S| 12 9 7 6 4] 10 7 6 5 1.9
D é 2.0 14 11 10 8 6] 13 10 9 7 5| 11 8 7 6 4 9 7 6 4 2.0
' ° 2.1 13 10 9 8 5| 12 9 8 7 51 10 8 6 5 3 8 6 5 4 2.1
2.2 12 10 8 7 5] 11 9 7 6 41 9 . 7 6 5 8 6 5 4 2.2
2.3 11 9 8 7 51 10 8 7 6 4| 9 7 6 5 7 5 5 4 23
24 |. 11 9 8 6 5| 10 8 7 6 4| 8 6 5 4 7 5 4 4 2.4
2.5 10 8 7 6 4] 9 7 6 5 4| 8 6 5 4 6 5 4 3 2.5
3.0 8 6 6 5 41 7 6 5 4 3] 6 5 4 4 5 4 3 3.0
3.5 6 5 5 4 3] 6 5 -4 4 5 4 4 3 4 3 35
4.0 6 5 4 4 : 5 4 4 3 4 4 3 4 4.0

(penuijuod) x a|qel



Table XI (a)

CONFIDENCE BELTS FOR PROPORTIONS
- (Confidence coefficient 0.95)
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*Reproduced with permission of Biometrika trustees from C.J. Clopper and E.S.
Pearson, “"The Use of Confidence.or Fiducial Limits I1lustrated in the Case of
the Binomial," Biometrika. 26, 1934. ‘
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Table XI (b)
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TABLE XII

CONFIDENCE LIMITS FOR THE EXPECTED VALUE OF A POISSON DISTRIBUTION*

TOTAL TOTAL
OBSERVED SIGNIFICANCE LEVEL OBSERVED SIGNIFICANCE LEVEL
COUNT COUNT
2y = Xy ‘o = 0.04 o = 0.0 z, = Xy o = 0.01 o = 0.05
Lower Upper Lower Upper Lower Upper Lower Upper
Limit  Limit  Limit  Limit Limit  Limit Limit Limit
] 00 53 00 37 ' '
1 0.0 7.4 0.1 5.6 26 14.7 42.2 17.0 38.0
2 0.1 9.3 02 72 27 1 15.4 43.5 17.8 39.2
3 0.3 11.0 0.6 8.8 28 16.2 14.8 18.6 40.4
4 0.6 12.6 1.0 10.2 29 17.0 16.0 19.4 11.6
5 1.0 11,1 ‘1.6 11.7 n 1717 4772 0.2 47.8
6 1.5 15.6 2.2 13.1- 31 185 . 484 21.0 44.0
7 20 17.1 2.8 14.4 32 19.3 49.6 21.8 45.1
3 2.3 18.5 2.4 15.8 33 30,0 0.8 22.7 16.3
9 3.1 20.0 4.0 171 34 20.8 52.1 23.5 47.5
10 3.7 21.3 4.7 18.4 35 21.6 53.3 24.3 48.7
1 4.3 22.6 5.4 19.7 36 224 54.5 25.1 49.8
12 49 240 6.2 21.0 37 23.2 55.7 26.0 51.0
13 5.5 254 69 223 38 24.0 56.9 26.8 52.2
14 . 6.2 267 7.7 235 39 ‘248 58.1 271.7 53.3
15 6.8 28.1 84 2438 40 25.6 59.3 28.6 545
16 7.5 294 9.4 260 41 264 60.5 29.4 55.6
17 8.2 30.7 9.9 272 42 27.2 61.7 30.3 56.8
18 8.9 320 10.7 284 43 28.0 62.9 31.1 57.9
19 9.6 333 11.5 296 44 28.8 64.1 32.0 59.0
20 10.3 34.6 122 3038 45 - 29.6 65.3 32.8 60.2
21 11.0 359 130 320 46 304 66.5 33.6 61.3
22 11.8 37.2 13.8 332 47 31.2 67.7 34.5 62.5
23 12.5 38.4 146 344 48 32.0 8.9 35.3 63.6
24 13.2 397 154 356 49 32.8 70.1 36.1 64.8
25 14.0 41.0 16.2  36.8 50 33.6 71.3 37.0 65.9

NOTE, There is at least 1 — x confidence that 8 will be between the limits when
T z; is the total number of occurrences of an event in n independent observations on a
_ Poisson variable with expected valuc 6.-

xReproduced with permission from W.' E, Ricker, "The Concept of Confidence
on Fiducial Limits Applied to the Poisson Frequency Distribution,"
The Journal of the American Statistical Association, 32, 19}7.
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Table XIII (a)
Sample Sizes for Two-Sided Distribution-Free Tolerance Limits*
n is sample size required to assure with 100y % confidence that at least
log_P % of the population will 1ie between the smallest and largest obser-
ations. ' :

EXAMPLE y = 0.95, P = 0.90, then n = 46

Y 0.500 0.700 0.750 0.800 0.850 0.900 0.950

0.500 3 6 7 9 11 17 k13
0.700 5 8 10 12 16 24 49
0.750 5 9 10 13 18 27 53
0.800 S 9 11 14 19 29 59
0.850 6 10 13 16 22 3 67
0.900 7 12 15 18 25 38 77
0.950 8 14 18 22 30 46 93
0.975 9 17 20 26 35 54 110
0.980 9 17 21 27 37 56 115
0.9%0 n 20 24 31 42 64 130
0.995 12 22 27 k14 47 72 146
0.999 14 27 33 42 58 89 181
0.9995 15 29 36 46 63 96 196
0.9999 18 34 42 54 73 113 230

P
Y 0.975 0.980 0.990 0.995 0.999 0.9995 0.9999

0.500 67 84 168 336 1679 3357 16783
0.700 97 122 244 488 2439 4878 24392
0.750 107 134 269 538 2692 5385 26926
0.800 119 149 299 598 2994 5988 29943
0.850 134 168 337 674 3372 6744 33724
0.900 155 194 Jes 77 3889 7778 38896

0,930 188 236 473 947 4742 9486 47437
0.975 221 277 555 1113 5570 11141 55715
0.980 231 290 - 581 1165 5832 . 11666 58337
0.990 263 330 662 1325 6636 13274 66381

0.995 294 369 740 1483 7427 14858 74299
0.999 366 4S8 920. 1843 9230 18463 92330
0.9995 396 496 . 996 1996 9995 19993 99983
0.9999 465 583 1171 2346 11751 23508 117559

*Reproduced with permission from D.B. Owen, Handbook of Statistical Tables,
Addison-Wesley Publishing Company, Inc., 196Z.
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Table XIII (b)

Proportion of Population Contained in A Two-Sided
Distribution-Free Tolerance Interval*

P is proportion of population which lies between the smal]est and largest of n
observations with 100 y % confidence.

EXAMPLE For y = 0.90, n = 15, then P = 0.7644

Sample size

n____ y = 0.75 y=0.90 y=0.95 - y=10.99 y = 0.999
2 0.1340 0.0513 0.0253 0,00501 0.00050
3 0.3263 0.1958 0.1353 0.0589 0.01838
4 0.4563 0.3205 0.2486 0,1409 006410
5 0.5458 0.4161 0,3426 0.2221 0.12196
6 0.6105° 0.4897 0.4182 0.2943 0.1812
7 0.6593 0.5474 0.4793 0. 3566 0.2375
8 0.6973 0.5938 0.5293 0.4101 0.2888
9 - 0.7277 0.6316 0.5709 0.4560 0.3350

10 0.7526 0.6631 0.6058 0.4956 0.3763
15 0.8303 0.7644 0.7206 0.6321 0.5283

20 0.8710 0.8190 0.7839 0.7112 0.6216

25 0.8959 0.8531 0.8239 0.7625 0.6854

30 0.9127 0.8764 0.8514 0.7984 0.7308

35 0.9249 0.8933 0.8715 0.8249 0.7598

40 0.9341 0.9062 0.8868 0.8452 0.7911

45 0.9413 0.9163 0.8989 0.8614 0.8123

50 0.9171 0.9244 0.9006 0.8744 0.8299

60 0.9558 0.9367 0.9234 0.8944 0.8557
70 0.9620 0.9456 0.9340 0.9089 0.8749

80 0.9667 0.9522 0.9421 0.9199 0.8898

90 0.9704 0.9575 0.9484 0.9285 0.9016

100 0.9733 0.9617 0.9534 0.9354  0.9114
150 0.9821 0.9743 0.9688 0.9566 0.9398
200 - 0.9866 0.9807 0.9765 0.9673 0.9546
250 0.9893 0.9845 0.9812 0.9737 0.9625
300 0.9911 0.9071 0.9843 0.9781 0.9697
350 0.9923 0.9889 0.9865 0.9812 0.9739
400 0.9933 0.9903 0.9882 0.9835 0.9772
450 0.9940 0.9914 0.9895 0.9853 0.9797
500 0.9946 0.9922 0.9905 0.9868 0,9817
600 0.9955 0.9935 0.9921 0.9890 0.9847
700 0.9962 0.9945 0.9932 0.9906 0.0969
800 0.9966 0.9951 0.9941 0.9917 0.9885
900 0.9970 0.9957 0.9947 0.9926 0.9898
1000 0.9973 0.9961 0.9953 0.9934 0.9908

*Adapted with permlss1on from R.B. Murphy, Non-Parametric Tolerance Limits",
Annals of Mathematical Stat1st1cs, 19, 1948,
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GRAPHS OF P SUCH THAT AT LEAST A PROPORTION P OF THE POPULATION IS BETWEEN
THE MINIMUM AND MAXIMUM OBSERVATION WITH CONFIDENCE LEVELS*

¥ =0.90, 0.95, 0.99

TWO-SIDED DISTRIBUTION-FREE TOLERANCE INTERVALS

0.998
. — T T
o 9% |- T T T TT1T] T T T T T11T] T T
0.99
_0.97 |
0.95 |-
B y =0.90
0.85 |-
y =0.95
0.70 |
. ‘
- @ — y=0.99
0.50 |-
0.30 |- i,
0.15 |- .
4 ~ *CONDENSED WITH PERMISSION FROM R. B. MURPHY,
0.05 |- “NON-PARAMETRIC TOLERANCE LIMITS," ANNALS OF = —
. ' MATHEMATICAL STATISTICS, 19, 1958.
oot b—— 1/ 1 1111l 41l | 1 1 j11]

| 2 4 6 8 10 20 40 60 80 100 200 400 600 1000
SAMPLE SIZE, n '

FIGURE Xlil (C)



Table XIII (a)

Confidence Associated with a Two-Sided D1str1but1on Free
To]erance Interval* -

Confidence y with which we may assert that 100P percent of the population
lies between the largest and smallest of a random sample of n from that

population (continuous distribution assumed)

= 0.10

EXAMPLE For P = 0.95, n = 11, then y
n P=.75 P = .90 P = .95 P = .99
2 . 18 : C 03 .m . 00
4 .26 .05 .01 :00
5 .37 .08 .02 .00
6 .47 q1 .03 .00
7 .56 .15 .04 .00
8 .63 .19 .06 .00
9 .70 .23 .07 .00
10 .76 .26 .09 .00
1 .80 .30 .10 .01
12 .84 .34 12 .01
13 .87 .38 .14 .01
14 .90 .42 .15 .01
15 .92 : .45 A7 .01
16 .94 .49 .19 .01
17 .05 .62 .21 .01
18 .96 .55 .23 .01
19 .97 .58 .25 .02
20 .98 .61 .26 .02
25 .99 .73 .36 .03
30 1.00- .82 .45 .04
40 — .92 .60 .06
50 - ' .97 72 .09
60 — .99 .81 12
70 — .99 .87 - .16
80 — 1.00- .91 .19
90 — — .94 .23
100 — — .86 .26

*Adapted with permission from P.N. Somerville, "Tables for Obtaining Non-
Parametric Tolerance Limits," Annals of Mathematical Statistics, 29, 1958.
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Table XIII (e)
Sample Sizes for One- S1ded Distribution-Free Tolerance Limits*
n is samp1e size requ1red to assure that the 100y % confldence that at least
100 P % .of the population samp1ed will lie above the sma]lest observation (or
below the largest). . .

EXAMPLE For y = 0.90, P = 0.95, then n = 45,

"< 1 —7
. p - : .

Y 0.500 0.700 0.750 0.800 0,850 0.900 0.950
0.500 1 2 3 4 5 7 14
0.700 2 4 5 6 8 12 24
0.750 3 4 5 7 9 14 28
0.800 3 5 6 8 10 16 32
0.850 3 6 7 9 12 19 . 37
0.900 4 7 9 11 15 22 45
0.950 [ 9 11 14 19 29 59
0.975 6 11 13 17 23 16 72
0.980 6 11 14 18 25 38 77
0.990 7 13 17 21 29 4 %0
0.995 8 15 19 2% 33 . 51 104
0.999 10 20 25 31 43 66 135
0.9995 11 22 27 35 47 73 149
0

-9999 14 26 - 33 42 57 - 88 180

: . ) N
Y 0.975 0.980 0.990 0.995 0.999 0.9995 0.9999

.500 28 35 69 139 693 1386 6932

0
0.700 48 60 120 241 1204 2408 12040
0.750 55 69 138 277 1386 2772 13863
0.800 64 80 161 322 1609 3219 16094
0.850 75 9% 189 379 1897 3794 - 18971
. '0.900 91 114 230 460 2302 4605 23025
0.950 119 149 - 299 598 2995 5990 29956
0.975 146 183 368 736 3688 7376 36887
0.980 155 194 390 781 3911 7823 39119
©0.990 182 228 459 919 4603 9209 46050
0.995 210 263 528 1058 5296 10594 52981
0.999 273 342 688 1379 6905 13813 69075
0.9995 301 377 757 1517 7598 15199  7A0NA

0.9999 364 456 917 1838 9206 18417 92099

*Reproduced with permission from D.B. Owen, Handbook of Statistical Tabies,
Addison-Wesley Publishing Company, Inc., 1962, :
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Table XIII (f)

Proportion of Population Contained in a One-Sided
: Distribution-Free Tolerance Interval*

P 'is proportion of population that lies below the maximum observation (or
above the minimum observation) for sample size n and confidence level y.

EXAMPLE  y = U.90, n = 15, then P = 0.8577

Sample size

n : y = 0.80 y=_0.90 y = 0.95 y=0.99  y=0.999
1 0.2000 0.1000 0.0500 0.0100 0.0010
2 0.4472 0.3162 0.2236 0.1000 0.0316
3 0.5848 U.4641 0.3684 0.215% 0.1000
4 0.6687 0.5623 0.4729 0.3162 0.1778
5 0.7248 0.6310 0.5493 . 0.3981 0.2512
6 0.7647 0.6813 - 0.6069 0.4641 0.3162
7 0.7945 0.7196 0.6517 0.5178 0.3726
8 0.8177 0.7499 . 0.6876 0.5623 0.4217
9 - 0.8362 0.7743 0.7169 ~  0.5995 0.4642
10 0.8514 0.7943 0.7411 0.6310 - 0.5012
15 0.8983 0.8577 0.8190 0.7356 0.6310
20 0.9227 0.8912 0.8609. 0.7943 0.7079
25 0.9377 - 0.9120 . 0.8871 0.8317 0.7586
30 0.9478 0.9261 0.9050 0.8577 - 0.7944
35 0.9551 0.9364 0.9180 0.8767 0.8209
40 0. 9606 0.9441 0.9278 0.8912 0.8414
45 0.9649 0.9501 0.9356 0.9027 0.8577
50 0.9683 0.9550 0.9418 0.9120 0.8709
60 0.9735 0.9624 0.9513 0.9261 0.8912
70 0.9772 . 0.9676 0. 9581 0.9363 0.9060
80 ' 0.9801 0.9716 0.9633 0.9440 0.9173
90 0.9823 0.9747 0.9673 0.9501 0.9262
100 : 0.9840 0.9772 0.9705. 0.9549 0.9332.
150 0.9893 0,9848 0.9802 0.9698 0.9549
200 0.9920 0.9885 0.9852 0.9772 0.9661
250 0.9936 0.9908 0.9881 0.9817 . 0.9728
300 0.9946 0.9924 0.9901 0.9848 0.9773
350 0.9955 - 0.9934 0.9915 - 0.9869 0. 9805
400 0.9960 0.9943 0.9925 0.9886 0.9828
450 0.9964 0.9949 0.9934 0.98Y9 0.9848
500 0.9968 0.9954 0.9941 0.9908 0.9863
600 0.9973 0.9962 0.9951 0.9924 0.9886
700 0.9977 0.9967 0.9958 0.9934 0.990
800 0.9980 0.99N 0.9963 0.9943 0.9914
900 0.9982 0.9974 0.9967 0.9949  0.9923
1000 "0.9984 0.9977 0.9970 0.9954 0.9931

*Adapted with permission from R.B. Murphy, "Non-Parametric Tolerance Limits,".
Annals of Mathematical Statistics, 19, 1948. .
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GRAPHS OF P SUCH THAT AT LEAST A PROPORTION P OF THE POPULATION IS ABOVE THE
MINIMUM (OR BELOW THE MAXIMUM) OBSERVATION WITH CONFIDENCE LEVELS*
Y=0.90, 0.95, 0.99 '

ONE-SIDED DISTRIBUTION-FREE TOLERANCE INTERVALS

0.998 — T T 1T T 11T1] T T T TTrrg T T
0.996

0.99

L
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!
1

0.97
0.95

R

y =0.90

I

|
1

y=0.95~

|
1

0.85

|
l

Y = 0.99\
0.70 |-

050 g | | -
0.30 |- T - o

0.15 | —

- *CONDENSED WITH PERMISSION FROM R.B. MURPHY,
0.05 A "NON-PARAMETRIC TOLERANCE LIMITS", ANNALS OF —
MATHEMATICAL STATISTICS, |9, 1958.
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Table XIV

Factors for Computing Control Limits*

X CHART R ouany
Factor for
Number of Fartars far Cantral {eniral .Fartars for Cantral
Observations Limits Line Limits
in Sample, n -
A A dy D, - D,
2 2.121 1.880 1,128 0 ©3.267
3 1.732 1.023 1.693 0 2.575
4 . 1.500 0.729 2.059 0 2,282
5 .1.342 0.577 . 2.326 0 2.115
6 1.225 0.483 2.534 0 2.004
7 1.134 0.419 2.704 0.076 1.924
8 1.061 0.373 2.847 0.136 1.864
9 1.000 0.337 2.970 0.184 1.816
10 0.949 0.308 . 3.078 - 0.223 1.777
11 0.905 0.285 3173 0.256 1.744 -
12 0.866 0.266 3.258 0284  '1.716
13 0.832 0.249 3.336 0.308 1.692
14 0.802 0.235 3.407 0.329 1.671
15 0.775 0.223 3.472 0.348 1.652
16 0.750 0.212 3.532 0.364 1.636
17 0.728 0.203 " 3.588 0.379 1.621
18 0.707 0.194 3.640° 0.392 1.608
19 0.688 0.187 3.689 0.404 1.596
20 "0.671 0.180 3.735 0.414 - ° .1.586
21 0.655 . 0.173 3,778 0.425 1.575
22 0.640 0.167 3.819 0.434 1.566
23 0.626 0.162 3.858 0.443 1.557
24 0.612 0.157 3.895 0452 L1348
25 0.600 0.153 3.931 0.459 1.541

*Adapted with permission from ASTM Manual on Quality Control of Materials,
Copyright 1951 by the American Society for Testing and Materials.
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TABLE XV

CRITICAL VALUES FOR TESTING OUTLIERS*
(z, is the extreme value)

. NUMBER OF CRITICAL VALUEst
STATISTIC MEANS, n a = 0.05 a = 0.01

3 0.941 0.988

v — .4 0.765 0.889

ryo = ——— 5 0.642 0.780

In =% 6 0.560 0.698

7 0.507 0.637

A . — 8 0.554 0.683

ry =— 9 0.512 0.635

Tu-1 — % 10 10.477 0.597

. x 1 0576 0.679

ry = ——= 12 0.546 0.642

a1 T 13 0.521 0.615
\ N N

14 0.546 0.641

2y — 1, 15 0.525 0.616

Fog = ———
BT @y — 16 0.507 - 0595

17 0:490 0.577 -

18 0.475 0.561

19 0.462 0.547

20 0.450 0.535

21 0.440 0.524

22 0.430 0.514

23 0.421 0.505
24 0.413 0:497 .

25. 0.406 0:489

26 0.399 0.486

27 0.393 10,475

28 0.387 0.469

29 0.381 0.463

30 0.376 0.457

) *Rebréduced with permission frim W, J. Dixon and F. J. Massey,
Introduction to Statistical Analysis, McGraw-Hill Book
Company, 1951,
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Table XVI

Table of Critical Valucs for T (One-sidcd Test) When Standard Deviation
1s Calcutated from the Same Samplex

Number of 5o 2.5% 19,

o
Obhservations Significance Significance - Significance
n Level Level Level
3 1.15 1.15 1.15
4 1:46 1.48 1.49
5 1.67 1.71 1.75 ..
6 1.82 1.89 1.94
7 1.94 2.02 2.10
8 2.08 213 2,20
) 2.11 2.21 2.32
- 10 2.18 229 2.41
11 23.33 2.36 2.48.
12 2.29 2.41 2.556
19 2.43 2 an 2.61
1a 2.37 2.b1 2.00
i5 2.41 2.55 2.71
16 2.44 2.59 2.75
17 2.47 2.62 2.79
18 2.50 2.65 2.82
19 2.53 2.68 2.85
20 2.56 2.71 2.88
2 2.58 2.73 2.91
22 2.60 2.76 2.94
23 2.62 2.78 2.96
24 2.64 2.80 2.99
25 2.066 2.82 3.01
30 2.75 2.091
35 2.82 2.98
40 2.87 3.04
43 2.92 3.00
50 2.96 3.13
60 3.03 3.20
70 3.09 3.26
80 3.14 3.31
920 3.18 . 3.35
100 3.21 3.38
- it > r ;
T, = 2 . - {_(__(z. 2)2. - {n 32 : (Z—,‘_):}Q
: n—-1 . a(n — 1)
Tl -f..-—'-l’.I Ils:,g...s,- t

A NOTE: Forn > 25, the
values of 7" are approximated. All values have been adjusted for division by n = 1 instead of n
in calculating s.

*Reproduced with permission from F.E. Grubbs, "Procedures for Detecting
Outlying Observations in Samples", Technometrics, Volume 2, 1969.
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TABLE XVII

Critical Values for T When Standard Deviation Sy.

is Independent of Present Sample

2 -2
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¥Reproduced from H, A, David, "Revised Upper Percentage Points of the

Extreme Studentized Deviate from the Sample Mean", Biometrika,

43, 1956, by permission of the Biometrika trustees,
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