

LEGIBILITY NOTICE

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

LA-UR -90-2759

SEP 01 1990

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

**TITLE: GENERATION OF A RECTANGULAR BEAM DISTRIBUTION FOR
IRRADIATION OF THE ACCELERATOR PRODUCTION OF TRITIUM
TARGET**

LA-UR--90-2759

DE90 016504

AUTHOR(S): Barbara Blind

SUBMITTED TO:
1990 LINAC Conference
Los Alamos National Laboratory
Accelerator Technology Division
MS H811
Los Alamos, NM 87545
Sept. 9-14, 1990 (Albuquerque Hilton Hotel)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce this published form of this contribution, or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Los Alamos

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

RM NO. B36 R4
NO 2629 5/81

DISTRIBUTION **U.S. GOVERNMENT IS UNLIMITED**

GENERATION OF A RECTANGULAR BEAM DISTRIBUTION FOR IRRADIATION OF THE ACCELERATOR PRODUCTION OF TRITIUM TARGET*

Barbara Blind

MS H811, Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

A scheme has been developed to produce a well-confined rectangular beam-intensity distribution of greatly enhanced uniformity from initially-peaked intensity distributions such as Gaussian or parabolic distributions without beam scraping. This scheme employs a system of linear and nonlinear transport-line elements. The linear elements prepare the beam for the nonlinear focusing and govern the beam size at the target. Uniformity is achieved with octupoles, and beam confinement is assured with duodecapoles. The scheme was applied to the target focus for the Accelerator Production of Tritium (APT) system. An initially Gaussian-distributed beam of 1.6-GeV protons was shaped into a rectangular 4 m by 2 m beam spot of acceptably uniform intensity at the tritium-production target. The scheme eliminates the need for sweeping the beam in a raster pattern to produce uniform target illumination. Details of the scheme are discussed.

Introduction

Uniform target illumination, either static or in a time-average sense, prevents target damage and optimizes efficiency in high-intensity accelerator systems such as the APT system.¹ There, tritium production is achieved by interaction of energetic protons with a target composed of lead pins and LiAl pins. Neutrons are produced by spallation in the lead and interact with the lithium to produce tritium. The APT beam, with 250 mA of 1.6-GeV protons, has 400 MW of beam power. The maximum power density allowed in the production target is 100 W/cm². This dictates a beam at the target of approximately-uniform intensity covering an area of 8 m². The desired beam footprint is a rectangle 4 m wide by 2 m high. Due to the high beam intensity no beam can be tolerated outside this area. Beam loss in the high-energy beam transport is not acceptable and beam scraping is not an option.

Uniform target illumination in a time-average sense is achieved with sweep magnets, while static beam redistribution is accomplished with a beamline containing a combination of linear and nonlinear transport-line elements, henceforth called a beam expander.^{2,3} For the APT geometry, a two-dimensional raster scan requires sweep magnets with unfeasible specifications for power and size. An alternative approach, a ribbon beam of uniform intensity, swept across the target in the direction orthogonal to the ribbon, requires a sweep magnet with achievable performance specifications, but with a peak reactive power of 20 MW. No sweep magnets are needed to run the two-dimensional beam expander.

Beam-Redistribution Method

The method for producing a ribbon beam is explained in detail elsewhere.⁴ With an octupole one can affect the beam phase-space area in one transverse plane in such a way that during subsequent transport the beam fringes are folded into the core

of the beam and the peaked intensity profile is transformed into a profile of greatly enhanced uniformity. With the proper focus the other transverse plane is not affected and its intensity profile remains unchanged.

The method can be applied to both transverse planes. With the appropriate linear transport, this results in a folded horizontal and a folded vertical beam phase-space area at the target. Both the horizontal and the vertical intensity profile is relatively uniform and the contours of the intensity distribution are rectangles.

An acceptable beam distribution at the target can not be produced with a single octupole. Due to the x-y coupling caused by the octupole, such attempts result in a beam with distorted rectangular intensity contours that display big lobes in the corners of the distribution, as illustrated in Fig. 1 for a Gaussian input distribution. Here, as for all figures of this type, an input distribution containing 10⁵ particles was transported through the beam expander using the beam transport code PATH⁴ and the resulting distribution was characterized by its x and y projections and by its 10%, 50%, and 90% contour-lines.

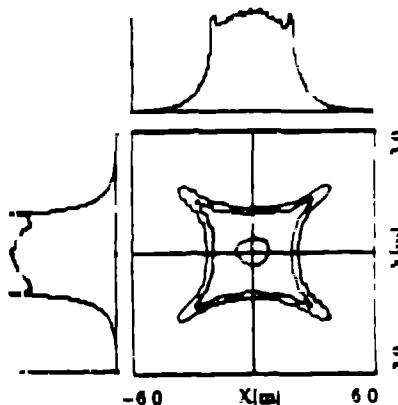


Fig. 1 Beam intensity distribution obtained from a Gaussian input beam and a beam expander with a single octupole

The following components are needed to successfully produce a uniform rectangular distribution: a section to prepare the beam for the first octupole, a first octupole where the beam is large horizontally and small vertically to manipulate the horizontal beam phase-space area without distorting the vertical beam phase-space area, a section to prepare the beam for the second octupole, a second octupole, where the beam is large vertically and small horizontally, to manipulate the vertical beam phase-space area without further distorting the horizontal beam phase-space area, and a section to prepare the beam for the target.

The simplest beam expander for producing an acceptable beam distribution at the target consists of two octupoles separated by a drift. Depending on the desired beam footprint at the target, more magnetic elements may be required. Adding a quadrupole between the two octupoles serves at the second octupole both to decrease the beam size in the transverse plane manipulated by the first octupole and to increase the beam size in the transverse plane manipulated by the second octupole.

* Work supported by Los Alamos National Laboratory Program Development under the auspices of the United States Department of Energy.

Adding a quadrupole after the octupoles serves to reduce the length of the final drift. Care must be taken when placing quadrupoles. Depending on position and polarity, a quadrupole will enhance beam folding, negate beam folding, or not affect beam folding.

APT Beam-Expander Specification

Table I lists the elements of the APT beam expander, designed to produce a sufficiently uniform rectangular beam with the required 4-m by 2-m footprint. This beam expander represents one of many possible combinations of magnetic elements and drifts to achieve this goal. The pole-tip fields of all magnets are kept at or below 1.5 T, and the drifts are kept short. Even then, it is not unique and further optimization is desirable before building the system.

TABLE I

APT beam expander to produce a uniform rectangular beam with a 4-m by 2-m footprint. The drift lengths between elements, and the element effective lengths, bore radii, and pole-tip fields are given.

type of element	length [m]	r_0 [m]	B_p [T]
first octupole	0.50	0.020	0.768
drift	6.50		
focusing quadrupole	0.50	0.100	0.712
drift	2.19		
second octupole	1.00	0.134	0.914
drift	15.50		
defocusing quadrupole	2.00	0.356	1.499
drift	10.50		

The first octupole manipulates the horizontal beam phase-space area. Once the beam is folded, the focusing quadrupole decreases the horizontal beam size and increases the vertical beam size at the second octupole while not affecting beam folding. The second octupole manipulates the vertical beam phase-space area. The defocusing quadrupole achieves the large footprint at the target, a very short distance away.

In high-intensity accelerator systems with highly energetic particles, it is impossible to dimension nonlinear beamline elements so that they have a substantial effect on the beam in the significantly-populated beam fringes, and, at the same time, do not scrape the insignificantly-populated far fringes of the beam. The APT beam expander was designed to clear 7σ (where σ is the rms beam size) of a Gaussian-distributed input beam. The radii given in Table I are those necessary to accept this beam.

APT Output-Beam Characteristics

The dimensions of the beam footprint at the target are fixed by the beam-expander configuration and the input-beam σ -matrix, but the beam distribution at the target depends on the input beam distribution. Consequently, there are different optimal input-beam σ -matrices for different input distributions. Changes in input-beam emittance also do not change the footprint dimensions but do affect the intensity distribution. Arbitrary changes in input-beam σ matrix lead to mismatched input beams, causing arbitrary final footprint dimensions and intensity distributions. Changes in octupole strength affect both footprint dimensions and intensity distribution in a predictable way.

Nominal Beams

A Gaussian beam distribution provides the most realistic simple model for the distribution from the Coupled-Cavity-Linac (CCL) planned for APT. A parabolic distribution, although often considered in beam transport calculations, is not a good model for the CCL output beam. With an initially parabolic distribution one can achieve essentially uniform beams, while, with an initially Gaussian distribution, one can not. Figures 2 and 3 show the beam distributions at the target for the nominal Gaussian and for the nominal parabolic input beam, respectively.

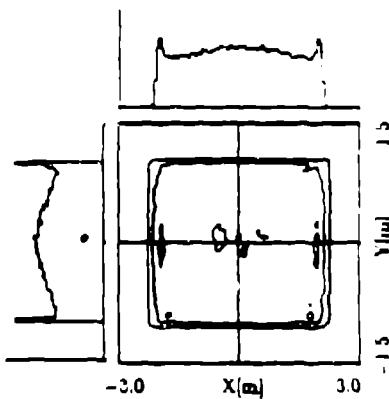


Fig. 2. Beam intensity distribution at the target obtained from the APT beam expander and the nominal Gaussian input beam.

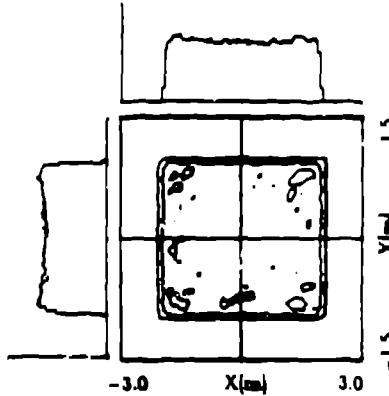


Fig. 3. Beam intensity distribution at the target obtained from the APT beam expander and the nominal parabolic input beam.

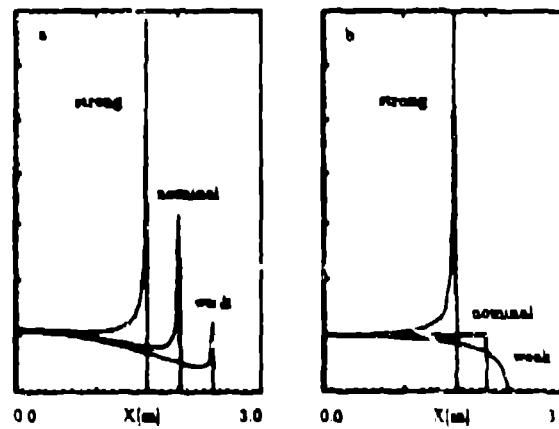


Fig. 4. z projection of the beam intensity distribution obtained from the APT beam expander with a weak, nominal, and strong first octupole and (a) the nominal Gaussian and (b) the nominal parabolic input beam.

Beam-Profile Dependence on Octupole Strength

The dependence of the x projection of the beam-intensity distribution on the strength of the first octupole in the APT beam expander is illustrated in Fig. 4, both for the nominal Gaussian and the nominal parabolic input beam. Only half of the symmetric distributions is shown. Very weak octupoles only influence the far fringes of the beam, resulting in an output beam which is similar to the input beam except for the tails of the distribution. Excessively strong octupoles fold the beam near the core, producing an output beam with large spikes at the distribution edges.

Mismatched Input Beams

Failure of an accelerator quadrupole causes a doubling of the transverse emittances of the CCL output beam. Instead of the nominal beam, a larger beam passes through the beam expander, and therefore the distribution at the target exhibits large spikes at the edges, characteristic of a beam subjected to excessively strong octupoles. The footprint dimensions are unchanged. Increased beam loss in the beam expander occurs.

Failure of an rf module causes a shift in the energy of the CCL output beam by up to ± 10 MeV. The resulting mismatched beams have different but acceptable target distributions and footprint dimensions.

Beam Jitter

Beam jitter is a problem because the rms beam sizes and divergences at the target are orders of magnitude larger than those at the exit of the CCL. Jitter of the beam centroid by one rms at the exit of the CCL would result in jitter by one rms at the target without octupoles and thus in only slightly less with octupoles, since these are dimensioned to have little effect on the core of the beam. Unless severe, jitter does not affect the footprint dimensions. On the other hand, jitter has noticeable effects on the beam intensity distribution.

Jitter control to 0.1 rms is feasible, and 0.1 rms of jitter can be tolerated for APT. The effect of a particular case of 0.1 rms jitter is given as an example in Fig. 5. In Fig. 2, the same input beam traverses the beam expander with its centroid on axis. The symmetric contours and projections of Fig. 2 have become skewed in Fig. 5.

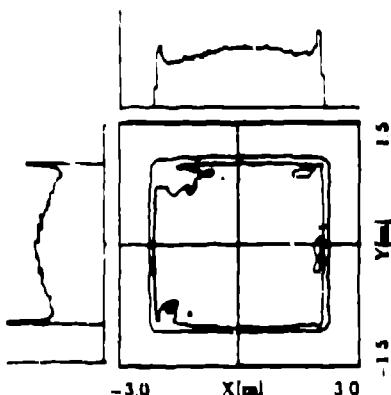


Fig. 5. Beam intensity distribution at the target obtained from the APT beam expander and the nominal Gaussian input beam with a 0.1 rms centroid shift.

Halo Control With Duodecapoles

Octupoles dimensioned to cause beam redistribution have the desired effect on the particles in the near beam fringes but an undesirably large effect on the particles in the far beam fringes. This results in intolerable beam loss downstream of the octupoles. Addition of an appropriately dimensioned duodecapole to the octupole counteracts this effect.

The duodecapole to be added to each of the two APT beam-expander octupoles is specified in Table II.

TABLE II

Duodecapoles to be added to the APT beam-expander octupoles for halo control.

type of element	length [m]	r_0 [m]	B_p [T]
first duodecapole	0.50	0.020	0.538
second duodecapole	1.00	0.134	0.678

In Fig. 6 the beam footprint at the target of a Gaussian-distributed input beam populated to 7σ is shown for the APT beam expander without and with duodecapoles. Without duodecapoles, the far fringes of the original distribution have been folded into the core and actually protrude from the opposite distribution edges. With duodecapoles the halo particles to 7σ are totally contained in the core of the beam.

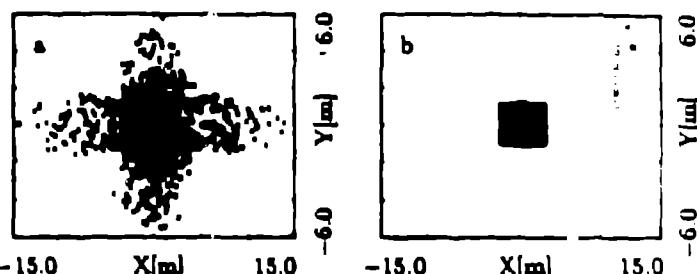


Fig. 6. Beam footprint obtained with the nominal Gaussian input beam populated to 7σ and the APT beam expander (a) without duodecapoles and (b) with duodecapoles.

References

1. G. P. Lawrence, "New Applications for High-Power Proton Linacs," Los Alamos National Laboratory document LA-UR-XXXX (to be submitted to 1990 Linear Accelerator Conference Proceedings).
2. P. F. Meads, Jr., "A Nonlinear Lens System to Smooth the Intensity Distribution of a Gaussian Beam," IEEE Trans. Nucl. Sci. 30 (4), 2838 (1983).
3. B. Sherrill, J. Bailey, E. Kashy, and C. Leakeas, "Use of Multipole Magnetic Fields for Making Uniform Irradiations," Nucl. Instr. and Meth. B40/41, 1004 (1987).
4. A. J. Jason, B. Blind, and E. M. Svaton, "Uniform Ribbon-Beam Generation for Accelerator Production of Tritium," 1988 Linear Accelerator Conference Proceedings, CEBAF Report 89-001, 192 (1989).
5. J. A. Farrell, "PATH - A Lumped Element Beam Transport Simulation Program with Space Charge," Proc. of Berlin Conf. on Computing in Accel. Design and Operation, W. Busse and R. Zelany, Ed., Springer Verlag, Berlin, 267 (1984).