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INTRODUCTION 

A f l e x i b l e  superconducting power t ransmiss ion cab le  i s  under 

development a t  Brooknaven National  Laboratory ( B I G ) .  This p r o j e c t  

was undertaken i n  1972 a s  one means of responding t o  n a t i o n a l  power 

problems. A s  a  r e s u l t  of bo th  growing urbaniza t ion  and pub l i c  d i s -  

s a t i s f a c t i o n  with  overhead t ransmiss ion l i n e s ,  it has become in- 

c reas ing ly  d i f f i c u l t  t o  acqui re  t h e  l a r g e  amount of right-of-way 

needed f o r  a e r i a l  t ransmiss  ion. A fur t .her  increase  'in system 

vol tage would r equ i r e  even n igher  towers and wider t r a c t s  of land.  

I n  c o n t r a s t  an underground superconducting cab le  would r equ i r e  only  

a  few f e e t  of right-of-way width and would be ab l e  t o  t r ansmi t  

s e v e r a l  thousand megawatts of power a t  very high e f f i c i e n c i e s  and 

w i t n  e x c e l l e n t  network cha rac t e r  i s t i c s  . 
I n i t i a l  des ign s t u d i e s  ind ica ted  t h a t  a  f l e x i b l e ,  forced- 

cooled cab le  o f f e r ed  the b e s t  combination o f .  t e chn ica l  and economic 

*Work performed under t he  auspices  of t h e  U.S.  Department of 
Energy. 



fea tures .  (1) An ac, helium cooled, cable  with Nb Sn superconductor 
3  

was chosen for  the  BNL e f f o r t .  The o p e r a ~ i n g  temperature of t h i s  

design w i l l  be i n  the  range of 6-8 K. The major goal of the  BNL 

program is tne  construct ion of a 100 m long, 138 kV oucdoor system 

ra ted  a t  1000 MVA. The cryogenic envelope and r e f r i g e r a t i o n  equip- 

ment for  t h i s  cable  a re  already in  place.  

Many of the  design fea tures  of the d i e l e c t r i c  a re  governed by 

the decision t o  operate the  cable a t  a  temperature t h a t  is s a t -  

i s f ac to ry  f o r  the  Nb Sn superconductor. The choice was made t o  
3  

form the  insula t ion  of many layers  of p l a s t i c  tape applied i n  a 

h e l i c a l  pa t t e rn  s ince  extruded polymer is  not a  viable  mode of 

insula t ion  appl icat ion,  the very la rge  thermal contract ion as- 

sociated with extruded polyolef ins  . . would lead t o  mechanical f a i l u r e  

of the d i e l e c t r i c .  

The .net tnermal contract ion of tne lapped d i e l e c t r i c  medium 

must be cont ro l led  so t h a t  the insula t ion  of the cable cont rac ts  

evenly with the  conductor during the cooldown period. Too small a  

value of d i e l e c t r i c  contract ion would lead  t o  voids between the  

inner conductor and the  d i e l e c t r i c  medium, These voids would per- 

m i t  harmful p a r t i a l  discharges t o  occur. Too la rge  a cont rac t ion  

would keep the  tapes under t e n s i l e  and compressive load while a t  

operating temperature. This s t r e s s  t o  the  tapes,  i f  not  la rge  enough I 
I 
I 
I 

t o  cause immediate tape f rac ture ,  could cont r ibute  t o  accelerated 



f a i l u r e  due t o  other  mec.nanisms. 

I Additional, c r i t i c a l  implications of t h i s  des ign became ap- 

parent a f t e r  tne f i r s t  experimental t e s t  cables were b u i l t .  ( 2 )  

W e  learned t h a t  our pla 'st ic d i e l e c t r i c  tapes required very high 

values of y ie ld  strength, t e n s i l e  s t r eng th  and t e n s i l e  moduli in  

order t o  be accurately lapped on taping machines o r i g i n a l l y  de- 

~ signed t o  cons t ruc t  conventional paper-oil  cables .  Although a  ~ t i g h t l y  wound, hard, cable  is des i rab le  i f  lapped of k r a f t  paper, 

~. 
t h i s  property may cause ser ious  problems i n  the  fabr ica t ion  o f  a 

p l a s t i c  lapped cable .  The s imi la r  values of tensile and compres- 

s ive  moduli of p l a s t i c  mater ia l s  causes high taping tensions t o  be 

transformed i n t o  high i n t e r f a c i a l  pressures  - between layers  of tape.  

During the bending of the  completed cable during reel ing,  these 

excessive r a d i a l  pressures can force tapes t o  wrinkle r a the r  than 

s l ide .  on one another. Wrinkles can r e s u l t  i n  a  lower d i e l e c t r i c  

s t rength  and shorten the  l i f e  of the cable .  Another fea ture  d is -  

covered during e l e c t r i c a l  t e s t i n g  of small cable  samples is t h a t  

the individual  d i e l e c t r i c  tapes m u s t  be a, s o l i d  r a the r  tnan of 

porous construction. Helium impregnated porous tapes were found t o  

have s i g n i f i c a n t l y  lower d i e l e c t r i c  s t rengths  than-  s o l i d .  tapes.  ( 3  

Also our des i re  t o  minimize r e f r i g e r a t o r  loading required the  

se lec t ion  of a  d i e l e c t r i c  mater ia l  t h a t  had minimum values of d i -  

e l e c t r i c  loss  and d i e l e c t r i c  constant .  



Final ly ,  in order f o r  an underground cable t o  be c o s t  e f -  

fec t ive ,  it sh,ould have a l i f e  expectancy of 30 t o  4 0  years.  

Studies of the e f f e c t s  of crazing and fa t igue  f a i l u r e  on the l i f e  

of d i e l e c t r i c  tapes a re  being conducted. 

Die lec t r ic ,  mechanical and thermal speci\fications ' for  the 

design of d i e l e c t r i c  tapes t o  be used on superconducting cables 

are shown in Table I .  

TAPE DEVELOPMENT 

i 

An i n i t i a l  evaluation of a l l  ava i l ab le  polymeric films d i s -  

closed t h a t  none would simultaneously s a t i s f y  a l l  of our many d i -  

e l e c t r i c ,  mechanical, and thermal requirements. (4) D i e l e c t r i c a l l y  

acceptable tapes were mechanically weak and mechanically s t rong 

tapes had unacceptable d i e l e c t r i c  propert ies ;  See Table 11. Dur- 
-. 

ing the  i n i t i a l  tape se lec t ion  and evaluat ion process, emphasis 

was placed on the possible  use of "high temperature" tapes because 

of the  ir exce.l lent mechanical c h a r a c t e r i s t i c s  a t  cryogenic tem- 

peratures .  However, attempts t o  reduce the  60 HZ, 4 .2  K los s  

tangents of polysulfbne and polycarbonate by a l t e r i n g  t h e i r  chem- 

. i ca l  construct ion were unsuccessful and these tapes were then 

' eliminated as  major candidates.  The Teflons, Kaptons, and o ther  

exot ic  tapes had a t t r a c t i v e  proper t ies  b u t  were s e t  as ide  because 

of t h e i r  very high cos t s .  Rather, the dec is ion  was made t o  a t -  

tempt t o  modify the d i e l e c t r i c  and mechanical c h a r a c t e r i s t i c s  of 

the l e s s  expens ive, i n t r i n s  i c a l l y  lower l o s s  polyolef ins .  



Modifications t h a t  were made t o  the  tape p roper t i e s  i n  the  course 

of t h i s  work a re  described i n  the  following sec t ions .  

A. D ie lec t r i c  Propert ies  

I n  accordance with the  concept of a low.-loss cable,  we, 

placed a g rea t  dea l  of emphasis on the  s e l e c t i o n  of tapes having 

very low values of both d i e l e c t r i c  constant  and d i s s ipa t ion  fac to r .  
. . 

A d i e l e c t r i c  constant o f  n n  greater tnan 2.5 was chosen t o  both 

minimize d i e l e c t r i c  losses  and t o  keep . t h e  pe rmi t t iv i ty  of the  

I p l a s t i c  a s  c 1 o s e . a ~  possible  t o  t h a t  of the helium impregnant. 

-6 
Tne goal for  the l o s s t a n g e n t  of 20x10 was s e t  so t h a t  t h e  d i -  

e l e c t r i c  loss  a t  the  l i k e l y  operating voltage would be no g rea te r  

than e i t h e r  conductor loss  o r  the  hea t  leak through the cryogenic 

envelope. 

The d i e l e c t r i c  losses  of pure samples of polyetnylene 

-6 
and polypropylene a re  very sma.11 a t  4.2 K ( i . e . ,  ~ 5 x 1 0  ) The 

nigher values of tan 6 measured f o r  commercial .polyolefins a r e  

due t o  the presence of addi t ives  placed i n  the polymer during tne  

manufacturing process t o  p r o t e c t  the polymer i n  i t s  normal room 
\ 

temperature-air environment. Work by.King and Thomas (5) indicated 

I. t h a t  t h e  anti,oxidant may be one of the major sources of d i e l e c t r i c  

l o s s  a t  temperatures of 6-8 K. A more extensive study of the 



e f f e c t s  of antioxidant on l o s s  tangent of polyec'nylene was conduct- 

ed in  a  j o i n t  cooperative study c a r r i e d  out  by B a t t e l l e  Columbus 

Laboratories (BCL) , t he  National Bureau of Standards (NBS) , and 

BNL. This work snowed t h a t  t h e  60 H z  loss  tangent of polyethylene, 

in  the  region of 4-10 K, was scrongly dependenc upon both type 

and concentration of ant ioxidant .  See Table 111. One var ie ty  of 

ant ioxidant ,  Topanol, i n  a  concentrat ion of 0 .l% was found t o  re- 

-6 
s u l t  i n  a  loss  tangent C10x10 over the temperature range 4 - 2 -  

10 K. See Table 111. 

B. Mechanical Propert ies  

The most severe problems facing the designer of cryogenic 

d i e l e c t r i c  insula t ion  a r e  those of obtaining s a t i s f a c t o r y  mechan- 

i c a l  proper t ies .  The d i e l e c t r i c  must be able  t o  withstand the 

various forces ex i s t ing  during taping, ree l ing ,  . pu l l ing  i n t o  the  

cryogenic envelope, and those present  during cooldown t o  operating 

temperatures as wel l  a s  the long term t e n s i l e  and compressive 

s t r e s s  present  during the  l i f e  of  the cable.  Yield and t e n s i l e  

s t rengths  and t e n s i l e  moduli must be very high fo r  these p l a s t i c s .  

On the  o ther  hand, compressive moduli (normal t o  the tape)  m u s t  be 

small, and tape-to-tape f r i c t i o n  coe f f i c i en t s  should be as  low as poss ib le .  



P l a s t i c  lapped cables now under development i n  t h i s  

' coun t ry  w i l l  probably be fabr ica ted  on taping machines o r i g i n a l l y  

designed t o  bui ld  conventional ."paper-bil" -cables t h a t  used a  d i -  

e l e c t r i c  tape t h a t  was a  s t i f f ,  s t rong va r i e ty  of k r a f t  paper. 

Taping tensions of 4-5 pounds a r e  commonly used t o  ensure t h a t  

each layer  of tape is lapped "out  of phase" with the previous lay- 

e r ,  so t h a t  the  small b u t t  gaps between adjacent  turns  a r e  com- 

p l e t e l y  covered by the  width of a  tape from a subsequent layer .  

This avoidance of " r eg i s t r a t ions"  or  exact ly  coinciding b u t t  gaps 

between successive layers  is of paramount importance with super- 

conducting cables .  Double- thick b u t t  spaces would give r i s e  t o  
- 

high part ia l  discharge leve ls  t h a t  could ul t imately cause tape 

degradation and d i e l e c t r i c  f a i l u r e .  ( 2 )  Accurate taping prec is ion  

5 
requi res  tapes having t e n s i l e  moduli of g rea te r  than 5x10 p s i  

, 
3 2 

(35 .2~10  kg/cm ) . I n  order t h a t  t y p i c a l  2 cm wide by 100 pm- 

th ick  tapes do not break o r  s u f f e r  p l a s t i c  deformation during 

lapping under high tens ions, tape y i e l d  s t rengths  g rea te r  than 

Z 
1400 p s i  (100 kg/cm ) a r e  required.  Off-the-shelf polyolef ins  

were found t o  be too weak t o  withstand taping loads without 

s t r e t ch ing  o r  breaking. 

Uniaxially or iented polyolef in  tapes were found t o  have 

superior  t e n s i l e  proper t ies  tnan the nonoriented versions,  b u t  

these mater ials  o f t en  f i b r i l l a t e d  during cooldown t o  operating 



temperature. Further s tudies  showed t h a t  commercially produced, 

25  pm-thick, b i a x i a l l y  ori.ented polypropylene' tapes a d  acceptable 

t e n s i l e  proper t ies  a t  a l l  temperatures. See Table 11. The desired 

tape thickness was achieved by' cementing severa l  of these together 

with a 2 .5  pm-thick layer  of polyuretnane .adhesive.. Two and three  

p ly  laminates under evaluation a t  BNL have thicknesses of 66 pm and 

approximately 100 pm, respect ively,  Loss measurements performed 

by the  Polymer Division, NBS, Gaikhersburg ( 6 )  show t h a t  the  Loss 

tangent of these tapes meets design considerat ions of Table I .  

Die lec t r i c  t e s t s  on small cable sec t ions  of Ynis  very high modulus 

polypropylene tape a r e  being ca r r i ed  out a t  BNL, 

B.2.  Cable Bendinq and Reelinq 

One of t h e  reasons t h a t  p l a s t i c  tapes have not been 

commonly used as  cable  insula t ion  is  t h a t  la rge  diameter p l a s t i c  

lapped cables a re  known t o  have poor bending proper t ies .  The 

f i r s t  comprehens ive study of the bending behavior of lapped, high- 

voltage paper cables i s  described i n  d e t a i l  i n  a r epor t  prepared 

by the  Pirelli 'Company of Milan, I t a l y  i n  1961. ('I This theory 

p red ic t s  t h a t  cables  w i l l  bend without wrinkling o r  deformation 

of tapes when the  i n t e r n a l  r a d i a l  pressure @ '  is l e s s  than some 
1: 

c r i t i c a l  pressure,  
@ c r  

. Simplified versions .o.f the  P i r e l l i  

equations f o r  highly an i s t rop ic  tapes were provided fo r  BNL by 

a study performed by the Pnelps Dodge Cable .and Wire Co. (PDC&W) . (8) 



Here 0 and @ a re  given as  
c r  r 

(See Appendix I f o r  a glossary of symbols.) 

Lapped p l a s t i c  cables  usual ly  have poor bending perform- 

ance because @ is usual ly  lower, and @ is usual ly  higher than 
c r  r 

the corresponding values f o r  a typ ica l ,  lapped, paper-oil  cable.  

0 c r  
is low because E and E a r e  lower in  p l a s t i c s  than i n  paper 

1 2 

and p is higher than ' f o r  paper. Also @ is .high i n  p l a s t i c s  be- r 

cause "nu ,  the measure' of the tape anisotropy (E /E ) ,  is  usual ly  1 3  

very low. For paper tapes "n" is  commonly 900-1000 b u t  "n" is  

found t o  be i n  the  range of 100-300 fo r  t y p i c a l  p l a s t i c  d i e l e c t r i c  

tapes.  Experimental values of E E3, n, and p a r e  given i n  
s 

Table I V  fo r  severa l  p l a s t i c s  under evaluat ion a t  BNL. For 

comparison purposes, corresponding values a r e  a l s o  given f o r  a 

178 pm-thick sample of e l ec t r . i ca1  grade k r a f t  paper. 

Although m c r  can be determined by ca lcu la t ion  only, @ r 

may be e i t h e r  calculated o r  measured d i r e c t l y  using a method 

developed by the P i r e l l i  Co. ( 7 )  I n  order t o  quant i fy  the  e f f e c t  

of the var iables  i n  E q .  2 ,  a s e r i e s  of r a d i a l  pressure measurements 



were performed with t h i s  method, on severa l  tapes of i n t e r e s t .  In  . . 

these experiments 2 .2  cm-wide tapes were wound concent r ica l ly  on 

2.54 cm-diameter mandrels under a 500 gm taping tens'ion. The mate- 

r i a l s  t e s t ed  a re  l i s t e d  i n  Table IV. Also tne thickness and ap- 

propr ia te  "nu value fo r  'each mater ia l  i s  given i n  t h i s  tab le .  

Thirty-five layers  of tape were applied t o  the  mandrel. S t e e l  

pull-out strips, 0,476 cm-wide by 2 5  vm-thick were inser ted a t  

f i v e  layer  in te rva l s  during winding. Thus the re  were pull-out 

s t r i p s  underlyi'ng 5,' 10, 15, 20, 25, and 30 layers  of tape. The 

force required t o  j u s t  move the  pull-out s t r i p  was then measured 

on the  Ins t ron  Tensile Testing Machine immediately a f t e r  winding 

(25-10 min.) , I f  the  tape-to-s teel  s t r i p  c o e f f i c i e n t  of f r i c t i o n  

i s  known, r a d i a l  pressures can be d i r e c t l y  ca lcula ted .  ( I n  fu ture  

measurements t h i s  time in te rva l  w i l l  be increased t o  assess  the  

e f f e c t s  of s t r e s s  re laxat ion  on r a d i a l  pressure .) 

Radial pressure a s  a function of r a d i a l  pos i t ion  fo r  

the f i v e  mater ials  a re  shown in Fig. 1. The e f f e c t s  of tape 

anisotropy on r a d i a l  pressure a r e  evident.  Tapes having la rge  

values of "nu show small r a d i a l  pressures and the  curves f o r  k r a f t  

paper and embossed polycarbonate approach the  "plateau" predicted 

by theory. The e f f e c t  of tape thickness, S, ,on r a d i a l  pressure 

i s  a l s o  apparent in  t h i s  f igure ;  the  r a d i a l  pressure f o r  the  two- 



ply polypropylene laminate i s  considerably higher than the value 

found fo r  the same mater ial  in  a three-ply configurat ion.  Final ly ,  

it should be noted t h a t  embossing causes a s i g n i f i c a n t  reduction 

i n  r a d i a l  pressure.  

B.3. Embossinq 

I n  order t o  both evaluate  the  e f f e c t s  of commercial em- 

hoss  i n g  on the e f f e c t i v e  compiessive modulus, E3 J and t o  become 

acquainted w i t h  tne p r a c t i c a l  p'roblems accompanying t h i s  tech- 

nique, severa l  r o l l s  of 100 pm-thick, Makrofol "G" polycarbonate 

f i lm were embossed. Temperature con t ro l  of the  operat ion was' 

found t o  be c r i t i c a l ,  and a r o l l e r  temperature of 1 6 0 ~ ~  was found 

t o  produce optimum r e s u l t s .  Embossing a t  lower temperatures was 

ineffect ive,  and exposure t o  higber temperatures caused shrinkage 

and d i s t o r t i o n  of the  film. A f ine  i r r e g u l a r  embossing pa t t e rn  

with a pa t t e rn  densi ty  o.£ approximately 200 marks per square cm 

was found by Penn a t  NBS t o  reduce E by a f ac to r  of s i x  and t o  re-  
3 

duce p by 5%. Per t inent  mechanical p roper t i e s  of embossed and 
S 

p la in  Makrofol "G" a re  given i n  Table I V .  This treatment would 

probably be a very e f f e c t i v e  means of reducing r a d i a l  pressures  

in  cable systems where p a r t i a l  discharges were not a problem. 



B -4. F r i c t ion  Measurements 

With the very nigh values of r a d i a l  pressure associated ~ 
with p l a s t i c  cables,  it is imperative t o  keep q5 as high as  pos- 

c r  

s i b l e .  A s  shown i n  Eq.. 1, 
'cr 

is inversely proport ional  t o  the 

tape f r i c t i o n  coe f f i c i en t ,  
ps 

. Tape-to-tape f r i c t i o n  coe f f i c i en t s  

of p l a s t i c  fi lms a r e  usually between 0.4 and 0.5. The addi t ion 

of s l i p  addi t ives  t o  the or iented  polypropylene has caused a 

reduction of p from 0.5 t o  0.225 in  polypropylene. No notice- 
s 

able  increase i n  l o s s  tangent a t  4.2 K was found t o  accompany 

addi t ion of the s l i p  addi t ive .  

B.5 .  Very Hiqn Modulus Tapes 

The bending behavior of lapped p l a s t i c  cables fabricated 

with intermediate modulus, mildly or iented,  polypropylene tapes 

appears t o  be s a t i s f a c t o r y  fo r  insu la t ion  thicknesses up t o  1 cm. 

However, Fig. 1 s.hows a dependency of @ on wall  thickness t h a t  r 

may require  tapes of higher moduli f o r  very hign voltage cables 

t h a t  may have insula t ion  thicknesses a s  g rea t  a s  2 cm. 

One means t o  improve bending performance is t o  increase 

the value or' t e n s i l e  modulus, A nigher value of E w i l l  
1 

simultaneously increase @ and decrease @ . Commercially produced 
c r  r 

polyethylene films have t e n s i l e  moduli of approximately only 



2 
l x l 0 l 0  dynes/cm . Recently, however, very highly  o r i en t ed  poly- 

e thylene samples were prepared by P o r t e r  (')' and o t h e r s  t h a t  have 

t e n s i l e  moduli of 7 x 1 0 ~ ~  dynes/cm2. I n  a j o i n t  e f f o r t  wi th  Bat- 

t e l l e  Columbus Laborator ies ,  work was s t a r t e d  t o  develop very high 

4 2 
modulus ( 7 . 0 ~ 1 0  k$/cm ) tapes  by a h y d r o s t a t i c  ex t rus ion  process .  

A t  h igh  degrees of  o r i e n t a t i o n ,  ex t rus ion  provides  b e t t e r  c o n t r o l  

over f i n a l  product  dimensions than does drawing. (lo) I n  the  BCL 

system a molten polymer r e s e r v o i r  feeds a long rec tanqula r  channel  

which precedes t h e  "draw-down" s e c t i o n  of  t h e  d i e ,  The polymer 

is cooled i n  t he  channel  so  a s  t o  be s o l i d  p r i o r .  t o  a r ea  reduct ion.  

(The channel th ickness  i s  1.5 mm and t h e  " draw-down" s e c t i o n  is  

125 pm-thick. This r e s u l t s  i n  an e x t r u s i o n  r a t i o  o r  draw r a t i o  

of 12 : l . )  The s u r f a c e  of t he  channel was a l s o  Teflon coated t o  

reduce f r i c t i o n a l  drag.  Several  t apes  one-inch wide, by 125 pm- 

th ick ,  by s e v e r a l  meters long were s u c c e s s f u l l y .  extruded.  Tens i l e  

4 
t e s t s  revealed t e n s i l e  moduli of approximately 14x10 kg/cm2 and 

3 2 
t e n s i l e  s t r eng ths  of  4 . 6 ~ 1 0  kg/cm . (The BNL goa l  f o r  maximum 

4 2 
value  of t e n s i l e  modulus is  only 7x10 kg/cm .) Tape lengths  a r e  

l imi t ed  a t  t h i s  t ime due t o  inadequate temperature c o n t r o l  i n  t h e  
n 

one-inch long channel. Poor temperature c o n t r o l  permits  t he  l i qu id -  . 
. 

s o l i d  i n t e r f a c e  t o  move downward i n  t h e  channel  dur ing  an ex t rus ion ,  

terminat ing t h e  run. 

An improved die is  now under design.  The d i e  w i l l  have 

a three-inch long channel  wi th  t h ree  independent temperature 



cont ro l  zones along i t s  length.  I t  i s  expected t h a t  the  improved 

version w i l l  provide b e t t e r  temperature con t ro l  and make it pos- 

s i b l e  t o  extrude tapes of s u b s t a n t i a l l y  g rea te r  length.  

C.  Thermal Propert ies  

C .1. Thermal Expans ion 

The amount of thermal cont rac t ion  of the  d i e l e c t r i c  

medium upon cooldown t o  cable operat ing temperature i s  c r i t i c a l .  

The spec i f i ca t ion  of 0.6 t o  1.0% was s e t  t o  ensure thal: Ll~o di-  

e l e c t r i c  would cont rac t  evenly with the  conductor during cooldown. 

Many of the  e a r l i e r  polyethylene and polypropylene tape candidates 

were found t o  f r ac tu re  during d i e l e c t r i c  s t r eng th  t e s t s  a t  operating 

temperature. Measurements of both thermal contraction(11) and t o t a l  

longi tudina l  elongation revealed t h a t  those tapes t h a t  f rac tured  

had values of contract ion t h a t  were approximately equal t o  t h e i r  

t o t a l  elongations a t  4 .2  K '  Tapes possessing t o t a l  elongations 

t h a t  were much l a r g e r  than t h e i r  cont rac t ions  remained i n t a c t .  

See Table V. Fa i lure  usual ly  occurred when the  elongation t o  con- 

t r a c t i o n  r a t i o ,  E/C was l e s s  than 2: 1. Mechanical f r ac tu re  did 

not occur when E/C was >2 : 1. 

Oriented tapes were found t o  withstand thermal contrac- 

t i o n  b e t t e r  than nonoriented versions.  As a  general  r u l e  it was 

found t h a t  the  elongation t o  f r a c t u r e  usual ly  increased as  a  

r e s u l t  of o r i en ta t ion  and the  thermal cont rac t ion  decreased as  a  



laminated b i a x i a l l y  or iented tapes was. found t o  be 0.641, (11) 

and E/C r a t i o s  fo r  this mater ia l  a r e  g rea te r  than 1 2 : l .  See Table 

v *  

C .2 .  Thermal Conductivity 

Both upper and lower l i m i t s  apply t o  thermal conductiv- 

i t y  of the  d i e l e c t r i c  medium of the superconducting cable .  See 

Table I. Calculations made a t  BNL (I2) predic ted  t h a t  a  thermal 

-5 
conductivity <5x10 w/cm-K could.cause l o c a l  heat ing of port ions 

I of the  d i e l e c t r i c  and a  r e s u l t i n g  reduced d i e l e c t r i c  s t rength  of 

-4 
the  helium impregnant. Tne upper l i m i t  of 3x10 w/cm-K was s e t  

I t o  prevent excessive "thermal coupling" between counterflowing 

! . .  

"go" and " re turn"  helium streams. The thermal conduct iv i t ies  of 

seve ra l  p l a s t i c s  under evaluat ion a t  BNL were measured at-BCL 

~ and a r e  shown i n  Table VI* With the  exception of polysulfone, 

most tape candidates meet the  thermal c o n d u c t i v i t . ~  design l i m i t s .  

\ CONCLUSIONS 

Many, severe .  design s p e c i f i c a t  ions apply t o  a  d i e l e c t r i c  tape 

t h a t  is under consideration f o r  .use as  d i e l e c t r i c  on an ac super- 

conducting underground power transmission cable.  Off-the-shelf 

p l a s t i c  tapes t h a t  s a t i s f i e d  mechanical requirements had excessive 

values of l o s s  tangent and d i e l e c t r i c  constant .  On the  other  nand, 



most tapes t h a t  had acceptable d i e l e c t r i c  proper t ies  were found t o  

possess t e n s i l e  moduli and y i e l d  strengths t h a t  were too low a t  

293 K and too high a t  4.2 K. Porous paper-l ike tapes were found 

t o  produce dielec,tr ically-weak cables  probably because of s t r e s s  

enhancement i n  the  helium impregnant. 

Solid,  polyethylene ' o r  polypropylene tapes were found t o  b e s t  

s a t i s f y  d i e l e c t r i c  requirements. The ant ioxidant  was found t o  be 

the major source of d i e l e c t r i c  l o s s  a t  100 Hz  and 4.2 K, and the 

se lec t ion  of the proper type and concentrat ion of ant ioxidant  kept 

~ t an  6 within design l i m i t s .  Acceptable values of y i e l d  s t r eng th  

1 and t e n s i l e  moduli were obtained with severa l  25  pm-thick, b iax ia l ly -  

or iented,  polypropylene fi lms laminated t o  obta in  the  required tape 

thickness.  Bixaxial  o r i en ta t ion  was a l s o  found t o  reduce thermal 

contract ion and increase the 4.2 K e longat ion of the polypropylene 

fi lms. Work has been s t a r t e d  t o  develop a very high modulus, s ing le  

layer  polyethylene tape fo r  use with higher  voltage superconducting 

cables .  
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L i s t  of Symbols 

T Taping Tension kg 

S Thickness of Tape cm 

W Width of Tape cm 

r 

rl 

ro 

r~ 

Q c r  

QP 
F 

'T 

Taping Angle (The Complement of the  Angle Degree 
with the Cable Axis) 

Tcns i l c  M O ~ U ~ U E  Lengthwise along Tape kg,/cm 2 

Tensile Modulus Across the  Tape ( i . e .  a t  kg/cm2 
Right Angle t o  El) 

Compressive ~ b d u l u s  (Normal t o  t h e  Paper) kg/cm2 

Shear Modulus i n  the  Plane of the  Paper kg/cm2 

E1/E3 ' 

S t a t i c  Coeff ic ient  of F r i c t i o n  

Cable Radius a t  which the  Pressure is cm 
Determined 

Outer Radius of Insu la t ion  cm 

Radius of Conductor cm 

Radius of the Tensioned Paper Tape cm 

Upper L i m i t  of Radial S t r e s s  kg/cm2 

Plateau Pressure kg/cm2 

Factor of Safety Less than 1 

Time Constant of P l a s t i c  Flow and Relaxation sec 



Table I 

Spec i f i ca t ions  f o r  D i e l e c t r i c  Tapes f o r  Use i n  ac  
Superconduct inq Cables 

A. D i e l e c t r i c  (6-8 K) 

1. D i e l e c t r i c  Constant- - 2.5 max 

- 5 
2. - Diss ipa t ion  Fac tor  - 2x10 max 

B..  Mechanical (293 K) 

2 
1. Yield S t r eng th  -. 100 kg/cm -min 

3  2  
2 .  Tens i le  S t rength  - 1 . 4 ~ 1 0  kg/cm -min 

3. Tens i le  Modulus, El-3 .5-7 .0x104 kg/cm 
2  

2  2  
4. Compress ive Modulus, 

E3 
- 1 . 0 ~ 1 0  kg/cm -max 

5 . .  F r i c t i o n  Coe f f i c i en t ,  " s - 0.250'max 

C .  Thermal 

1. To ta l  Contract ion (293 t o  4.2 K) 0.6 t o  1.0% 

2. Conductivity (4.2 K) - 5 x 1 0 - ~  t o  3 x 1 0 - ~  ~/crn-K 



'Table I1 -- 
D i e l e c t r i c  and Mechanical P r o p e r t i e s  of Some D i e l e c t r i c  Tapes 

L -- 
Polymer Type Diss .  ~ a c t o r *  Die1 . constant*  Yield S t reng th ,  T e n s i l e  Modulus, T e n s i l e  Modulus, 

(Tan 6 x 1 0 ~ )  kg/cm2 a t  293 K kg/crn2x10-3 a t  kg/ ~ r n ~ x 1 0 - ~  a t  
293 K 4.2 K 

Polyethylene 15  2.3 21.1 0.929 54.5 
low d e n s i t y  
non-or iented 
(100 Pm) 

Polypropylene 
low d e n s i t y  
non-oriented 

I (125 ~-lm) 

Polypropylene 
b i a x i a l l y  
o r i e n t e d  
laminated 
(100 ym) 

I Polysulfone 
(125 pm) 

Polyimide, . 90 
Kapton H 

(100 Pm) 

Polycarbona t e ,  
Makrofol "KG" 
(60 ~ m )  

P o l y e s t e r ,  Mylar 200 
(75 Pm) 

*(4.2 K and 100 Hz) 



Table 111 

Effect of Antioxidant Type and Concentration on Loss 
Tangent of Phillips Marlex Type 6006 Polyethylene 

6 
Tan 6 x 10 at 100 Hz 

None 

- 26 - Iullal None 11 9 3 
0.05% 

- 16 - 11 7 None 4 Ional 
0.01% 

- 9 Me than01 - 2 8 7 
5 Ional 

0.01% 

Cyclohexane - 2 Ional - 0 0 
6 

0.1% 

- 8 8 - 4 2 1 
.7 I ona 1 None 

0.26% 

None 232 - 126 73 5 o 
8 I.onal 

0.5% 

None 2 5 - 17 15 9 
9 DLTDP 

0.05% 

14 - 5 19 2 10 DLTDP None 
0.11% 

DLTDP Me thano 1 8 - 6 2 2 11 
0.11% 

Topanol None 14 - 10 0 0 12 
0.5% 

Topanol Methanol 0 - 0 0 1 13 
0.1% 

Topanol None 9 - 9 5 9 14 
0.1% 



Table IV 

Values of Fac to r s  Af fec t ing  Cable Bending Performance 

Polymer Type T e n s i l e  Modulus, El Compressive Modulus, ~3 n=E1/E3 C o e f f i c i e n t  of 
(kg/ ~ r n ~ x l o - ~ )  ( k g / ~ r n ~ x 1 0 ' ~ )  F r i c t i o n ,  ps** 

Polyethylene,  u n i a x i a l l y  89 1.76 50.4 0.418 
o r i e n t e d ,  laminated 
Valeron (100 pm) 

Polycarbonate ,  non- 
embossed, Makrofol "G" 
(100 ~tm) 

~ o l ~ ~ r o ~ ~ l e n e ,  b i a x i a l l y  
o r i e n t e d ,  2  p ly  laminate  
(66 ~lm) 

Polypropylene,  b i a x i a l l y  
o r i e n t e d ,  3  p l y  laminat'e 
(100 pm) 

Polycarbonate,  embossed, 

I 
Makrofol "GI' 
(178. ~lm) 

K r a f t  paper ,  e l e c t r i c a l  
grade (178 pm) 

* 
A t  1.40 lcg/cn? load.  

* >k Cross machine d i r e c t i o n  t o  c r o s s  machine d i r e c t i o n .  



Table V 

Thermal Contraction and Tensile Elongation of Dielectric Tapes 

Polymer Type Contraction, 293K to 4.2K,% Elongation to Fracture ~lon~ation/Con trac- 
at 4.2K,% tion, % 

Longitudinal Transverse 

Polyethylene low density, 2.74 
non-oriented 

Polyamide, Nylon-11 1.92 1.. 85 3.13 1.61 

Polyethylene, uniaxially 1.70 
oriented, laminated 
Valeron 

Polysulfone 1.16 

Polypropylene, biaxially 0.641 
oriented, 2-ply laminate 

Polycarbonate, Makrofol 0.474 
1 1 ~ ~ "  



Table V I  

Thermal C o n d u c t i v i t i e s .  of D i e l e c t r i c .  ~ a p e s *  

Thermal Conductivity,.  Wattslcm-K . 
Temperature ,OK 6 20 100 300 

Polymer Tape 

Polysulfone 2 . o ~ ~ o - ~  2. 5 x 1 0 - ~  4. 4 x 1 0 - ~  1 1. 1x1~-4 

Polyethylene,  u n i a x i a l l y  6 . 0 x l 0 - ~  7. 1x10-5 
o r i e n t e d ,  laminated Valeron 

Polypropylene,  b i a x i a l l y  7. 8 x l 0 - ~  1. 1x10-4 
o r i e n t e d ,  2-ply laminate ,  
u re thane  binder  

Polycarbonate ,  Makrofol "KG" 9. O X ~ O - ~  1. 2xl0-' 1 . 5 x 1 0 - ~  . 6 .  O X ~ O - ~  

Polypropylene,  b i a x i a l l y  9. 2 x l 0 - ~  1. 3 x 1 0 - ~  
o r i e n t e d ,  2-ply laminate ,  
polyethylene b inder  

- 6 
%easurements made i n  vacuum a t  10 t o r r .  



Fig.  1. R a d i a l  p r e s s u r e  v s  t u r n s  o v e r l y i n g  
I I  r I I  f o r  s e v e r a l  t a p e  cand ida tes .  




