

The Shenandoah Solar Total Energy Project

James A. Leonard, Robert W. Hunke

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DP00789

***When printing a copy of any digitized SAND
Report, you are required to update the
markings to current standards.***

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors or subcontractors.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

NTIS price codes
Printed copy: A02
Microfiche copy: A01

The Shenandoah Solar Total Energy Project

James A. Leonard, Robert W. Hunke
Solar Energy Department 9720
Sandia National Laboratories
Albuquerque, NM 87185

Abstract

The design and construction of the world's first solar total energy plant in the private sector has been completed and checkout is underway. The project, a major element of the Department of Energy's Solar Thermal Program, is the Solar Total Energy Project at Shenandoah, Georgia. During its operational phase, the solar plant will furnish electrical power, process steam, and other thermal energy to a nearby knitwear factory.

The solar system consists of a collector field containing 114 parabolic dish collectors which supply thermal energy at 400° C to drive a 400 kW multi-stage Rankine cycle turbine generator. Some steam is extracted from the turbine and supplied to the knitwear manufacturing processes. The system will be grid-connected, and the Georgia Power Company, through a cooperative agreement with DOE, is a participant in the project.

The report contains: (1) a description of the system and components being installed; (2) a summary of performance testing of the extraction turbine and of four prototype parabolic dish collectors; and (3) a discussion of design considerations and insights which have general applicability to solar thermal system designs.

FOREWORD

The material in this report was presented at the 1981 International Solar Energy Conference, "Solar Rising," and has been published in their proceedings. This publication is intended to widen the distribution to include other interested persons within the solar community; particularly with regard to thermal dish technology and solar total energy (cogeneration) applications.

A comprehensive set of Shenandoah project reports dealing with system performance modeling, summaries of fabrication and construction phase experiences, actual costs, checkout and startup experiences, as-built system descriptions, and operational phase test and evaluation plans will be published and distributed during 1983.

Contents

	<u>Page</u>
System Description	9
Qualification Test Summary	12
System Design Considerations and Insights	13
Summary	14
Acknowledgement	15

Illustrations

Figure 1 - Photo of the Shenandoah Solar Total Energy Project	10
Figure 2 - Block Diagram of the Shenandoah Solar Total Energy Project	11

Tables

Table 1 - STES Energy Output Capacity	9
---------------------------------------	---

System Description

The Solar Total Energy Project at Shenandoah, Georgia, (Figure 1), is a prototype of a cascaded energy system using solar energy. Through system operation, definitive performance, cost, and operational and maintenance data will be obtained and an industrial solar total energy capability evaluated.

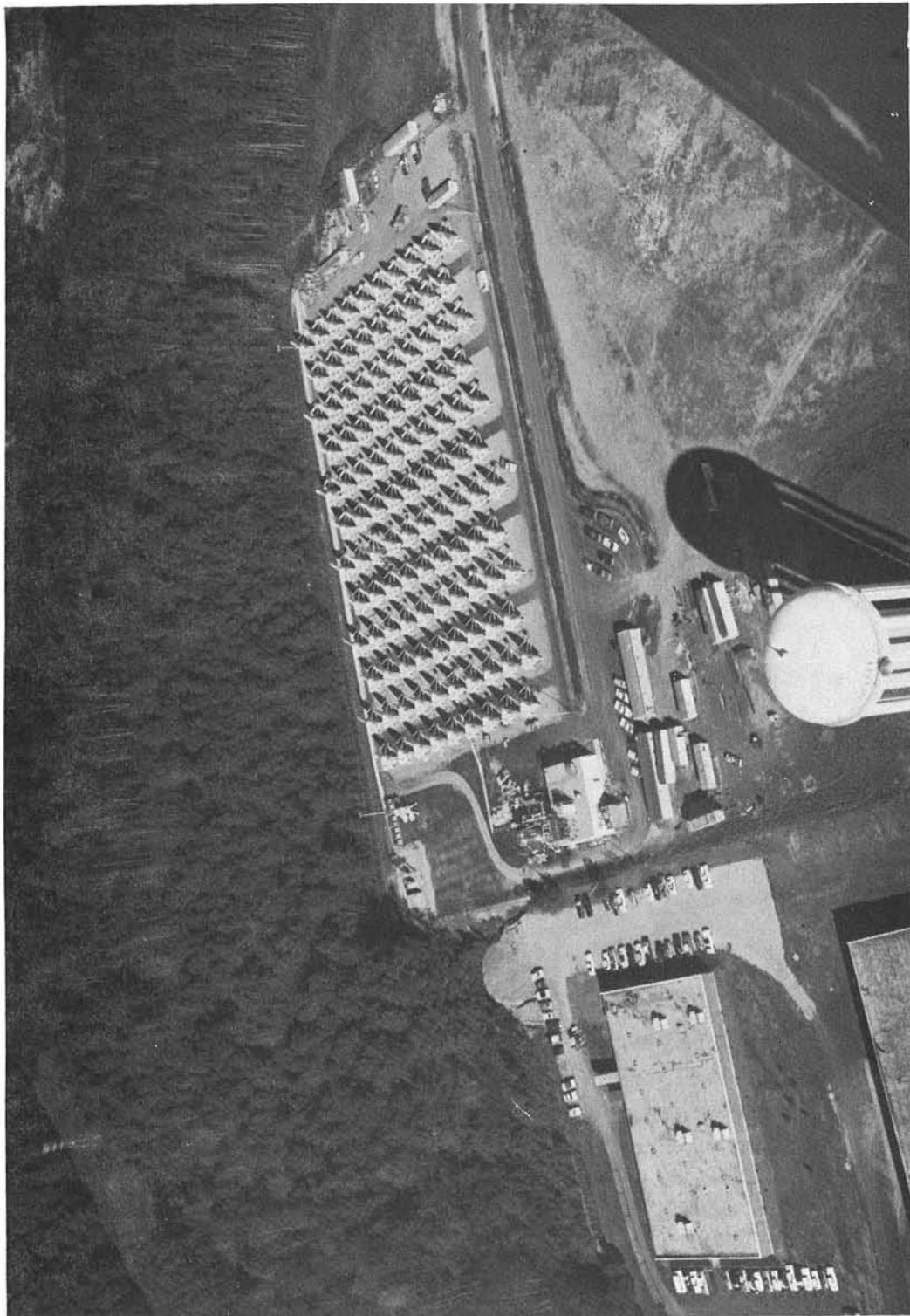
Shenandoah, about 35 miles south of Atlanta, is an industrial-residential planned community. Sun right easements have been obtained on the land bounding the STES site to prevent future shading of the collector field.

The system has the flexibility to operate in either a stand-alone or peak-shaving mode while providing the electrical, steam, and heating and cooling needs of the nearby Bleyle Knitwear Plant.

The STES consists of three major loops: solar collection and storage, power conversion, and thermal utilization, Figure 2.

One hundred and fourteen parabolic dish solar collectors, each seven meters in diameter, connected in parallel branches, form the collector field with a peak energy delivery rate of 2.7 MWT (MMBtu/hr). Energy is either transported to storage or supplied to a steam generator by a high-temperature silicone heat-transfer fluid. The temperature range of the solar collector field is 260°C (500°F) inlet, 400°C (750°F) outlet. To permit operation during transient weather conditions, a thermal storage capacity of 3 MWh (10 MMBtu) has been incorporated in the system. The solar collector is a 7-meter diameter paraboloid with a cavity receiver with 45 cm (18 in.) aperture. Reflected solar energy is focused onto a coil of blackened stainless steel tubing within the receiver. The total field temperature rise of 140°C (250°F) occurs in each receiver.

The power conversion loop employs a high efficiency, high speed (42,500 rpm) 4-stage steam, Rankine-cycle turbine, capable of providing 400 kWe. Process steam for the knitwear plant is extracted at an intermediate turbine stage. In a later phase, thermal energy from the turbine exhaust will be transferred to a thermal utilization loop for cooling of the Bleyle plant. An absorption air conditioner, operating on 110°C (230°F) steam will provide chilled cooling water. The solar plant will be connected to the Georgia Power Company grid so that electrical power production in excess of or less than the Bleyle plant demand can be accommodated for optimum solar economics. As a control system experiment, the plant can also be operated at any set-point output, in a load-following mode, or in a peak-shaving mode. Table 1 lists the energy capabilities of the STES.


TABLE 1

STES Energy Output Capacity

Electrical:	400 kWe
Cooling:	900 kWt (257 tons)
Process Steam:	630 kg/hr (1380 lbs/hr, 114 psia, 347°F)

High-temperature storage is provided in an ASME code carbon steel tank. The tank is 3.0 meters (10 feet) in diameter and 5.5 meters (18 feet) high with a capacity of 42 cubic meters (11,000 gallons). Thermal energy storage is provided in 400°C (750°F) heat transfer fluid in a thermocline mode. Approximately 1 hour equivalent of collector energy output is provided in storage for solar transient conditions. Storage for extended operation is not intended.

Figure 1

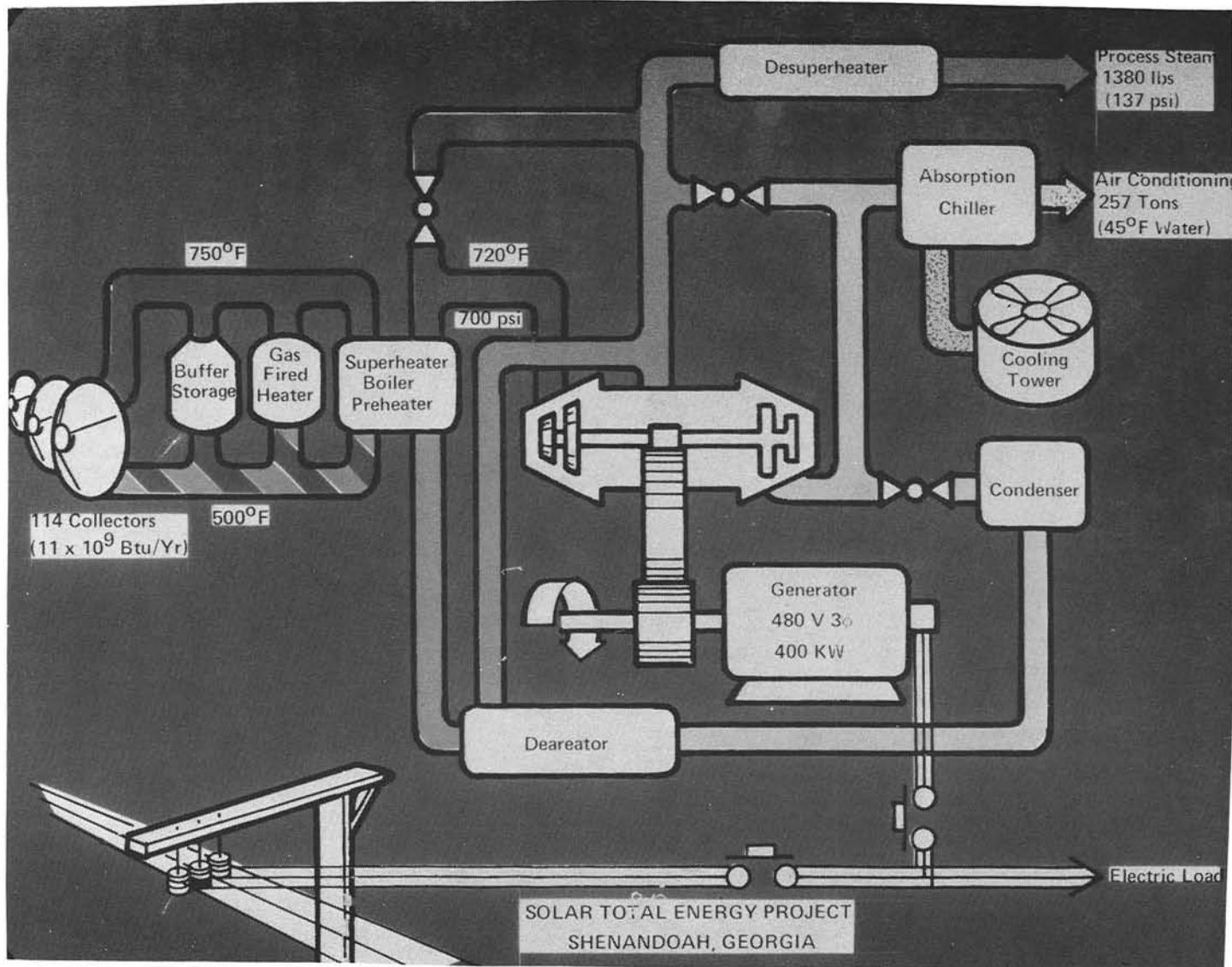


Figure 2

The Control and Instrumentation Subsystem initiates, regulates, and terminates collector tracking, energy storage, power generation, and thermal utilization for heating and cooling of the Bleyle plant. When operating in the peak-shaving mode, the CAIS will monitor and regulate the generation of power to satisfy steam requirements.

The CAIS consists of a central control console, a central minicomputer, and two remote microprocessor control units. The control system has the flexibility to be operated in a manual or automatic mode, and permits the operator to monitor or control the system functions from the control panel. Color graphic cathode ray tubes are employed for data display. Data archiving is performed with magnetic storage tapes and in hard copy form on a computer line printer. The remote microprocessors are programmable from the central minicomputer to allow a high degree of system control and versatility.

Qualification Test Summary

Parabolic Dish Collectors

A prototype collector array, simulating a portion of the STEP, was installed and tested at Sandia National Laboratories in Albuquerque. The facility has four 7-meter diameter collectors and a heat transfer loop. Pumps, valves, tubing/piping, insulation, controls and other components specified for the STEP were included.

The facility provided installation experience, design, and operation data and verification of design. Some of the major results are:

- o Mechanical and structural designs were evaluated, modified, where necessary, and retested in several instances, and the collectors qualified.
- o Receiver aperture plate and optical sensors overheated during normal operation and were redesigned using quartz cloth thermal protection.
- o The original reflector surface (RTV) proved unsatisfactory and a change to FEK 244 was developed and tested.
- o The receiver design was switched from a circuit of two parallel tubes to a single tube design to improve flow characteristics.
- o The heat transfer fluid, Syltherm 800, proved satisfactory at 750°F operating temperature.
- o The hybrid computer and optical tracking system was validated.
- o Stagnation testing, simulating loss of tracking power while in track, was performed and damage assessed.

Peak overall efficiency approached 62 percent for the collector with the FEK 244 reflector. Total aperture area of the collector is 38.5 m^2 (414 ft^2). Weight per aperture area (less concrete counterweight--2650 lbs) is 52 kg/m^2 (10.6 lbs/ft^2).

Turbine/Generator

The turbine/generator was specifically designed and developed for the Shenandoah project by Mechanical Technologies, Inc. of Albany, New York, under contract to Sandia National Laboratories (SNL) after it was determined that commercially available small-size turbine generators could attain thermal to electric efficiencies of only 7 to 11 percent at the system operating condition of 382°C and 4.8 MPa (720°F , 700

psia). The MTI turbine provides thermal to electric efficiencies up to 15 percent. The turbine/generator acceptance testing has been completed. Daily startup and operating tests were run prior to shipment to the site.

System Design Considerations and Insights

Foundations

Initial designs of the foundations for the solar collector specified piers of up to 28 inches diameter with 21 feet embedded length using initially provided soils data.

Tests were performed at the Site to evaluate the soils characteristics by actual test of piers. The governing criteria of failure was .64 cm (.25 inch) deflection at the ground level with 2727 kg (600 lbs) applied horizontal load at (4 feet, 9 inches) above ground and 8182 kg (18,000 lbs) uplift capacity. Test piers were 46 cm (18 inches) in diameter with embedded lengths of 1.83 m (6 feet), 2.74 m (9 feet), and 3.65 m (12 feet). The test data show a 45.7 m (18 inches) diameter pier, adequately reinforced with an embedded depth of (6 feet) is capable of withstanding the load. To account for varying soil conditions for the 20 km² (5 acre) field, and construction factors, the caissons were built to 20 inches diameter and 10 feet embedded length. The design provides a factor of safety of 2 based on test data.

- Foundation tests on Site are highly recommended where large numbers of foundations are required.
- Sufficient engineering effort should be provided to minimize the labor effort by well designed tools and fixtures.

Reflective Structure and Surfaces

As part of the development effort, the reflector materials, selected from a large matrix of candidate materials, were tested in a collector configuration. Materials tested were:

- Aluminum chemically brightened with RTV coating.
- Aluminum chemically brightened with clear anodize.
- Aluminum laminated with FEK 244 aluminized film.

The RTV surface exhibited a strong affinity for dust and cleaning was difficult requiring detergent wash, scrubbing, and a Freon cleaning agent to remove water spots.

The anodized aluminum initially had reflectance values comparable with the RTV coated reflector. The FEK 244 reflector showed a dramatic increase in collector efficiency. This experience showed that:

- Laboratory-size test samples are not necessarily indicative of full-scale performances in an actual environment. Results may be misleading.
- Reflector surface cleaning should be translated from small samples to large areas with care.

Piping System

It is essential and cost-effective to devote more design effort and capital investment to the piping system of a solar thermal plant than has traditionally been

invested in conventional thermal transport piping systems. This is true primarily because of the high value of thermal quality in a solar system. Whereas little penalty is associated with operation of a flame-fired heater at higher temperatures than necessary, a solar collector field's efficiency is reduced as operating temperature is increased. Other facts affecting this philosophy are the diurnal operating condition of solar collector systems and the relatively high value of solar collected energy. The latter point will increasingly influence the designs of conventional systems as well.

The following comments typify the application of such insights and the means by which they have been implemented in the Shenandoah design:

- o Daily thermal cycling and low viscosity oils can cause leaks to appear sooner than in systems with steady-state temperatures.
- o Welding and compression fittings provide much more reliable leak-tight joints than do screwed joints.
- o Leaking joints can cause soaked insulation, greatly increased thermal conductivity, fire hazards, and an unsightly appearance.
- o Penetrations in pipeline insulation for valves, supports, instrumentation, fittings, and maintenance should be minimized to reduce thermal losses.
- o Piping, valves, pumps, and fittings must be of an energy conservative design and must be well insulated.
- o Ease and speed of maintenance access is less important for a solar system than for a "round-the-clock" plant because maintenance can be performed when the sun is not shining.
- o The Shenandoah design has eliminated literally hundreds of insulation valves and other "convenience" fittings in favor of reduced capital cost and thermal losses.
- o The Shenandoah design has incorporated welded rather than flanged fittings at most valves.
- o Low thermal density insulation is cost effective by providing more usable energy off the field.
- o Nesting piping in a common insulation is thermally more efficient than individually insulated pipes.

Summary

A solar total energy system that uses parabolic dish collectors is being constructed that will have the capability to provide various energy forms, electrical and thermal, to a contemporary industrial facility with 25,000 square feet of floor space. Collector tests have demonstrated that existing fabrication techniques could produce an efficient parabolic dish solar collector. Performance measurements on the 7-meter dish have shown that the specified fabrication tolerances and performance of the full-scale unit can be realized in hardware.

Acknowledgement

The information presented is the results of efforts by the U.S. Department of Energy, Georgia Power Company, through Cooperative Agreement with DOE, participates in the project by providing the Site and cost-shared services. General Electric, under DOE contract, provided the collector and initial system design. Sandia National Laboratories provides technical and management support to the DOE.

AAI Corporation
P. O. Box 6787
Baltimore, MD 21204

Acurex Aerotherm (2)
485 Clyde Avenue
Mountain View, CA 94042
Attn: J. Vindum
H. Morse

Advanco Corporation
999 N. Sepulveda Blvd.
Suite 314
El Segundo, CA 90245

Alpha Solarco
1014 Vine Street
Suite 2230
Cincinnati, OH 45202

Anaconda Metal Hose Co.
698 South Main Street
Waterbury, CT 06720
Attn: W. Genshino

Applied Concepts Corp.
2501 S. Larimer County Rd. 21
Berthoud, CO 80513
Attn: Stan Pond

Applied Concepts Corp.
P. O. Box 2760
Reston, VA 22090
Attn: J. S. Hauger

Applied Solar Resources
490 East Pima
Phoenix, AZ 85004
Attn: W. H. Coady

Arizona Public Service Co.
Box 21666 MS 1795
Phoenix, AZ 85036
Attn: B. L. Broussard

Battelle Memorial Institute
Pacific Northwest Laboratory
P. O. Box 999
Richland, WA 99352
Attn: K. Drumheller

Bechtel National, Inc.
P. O. Box 3965
50 Beale Street
San Francisco, CA 94119
Attn: E. Y. Lam

Black & Veatch (2)
P. O. Box 8405
Kansas City, MO 64114
Attn: J. C. Grosskreutz
D. C. Gray

Bloomer-Fiske, Inc.
4000 S. Princeton
Chicago, IL 60609
Attn: C. Cain

Budd Company (The)
Fort Washington, PA 19034
Attn: W. W. Dickhart

Budd Company (The)
Plastic R&D Center
356 Executive Drive
Troy, MI 48084
Attn: J. N. Epel

Burns & Roe, Inc.
800 Kinderkamack Road
Oradell, NJ 07649
Attn: G. Fontana

Burns & Roe (2)
185 Crossways Park Dr.
Woodbury, NY 11797
Attn: R. J. Vondrasket
J. Wysocki

BDM Corporation
1801 Randolph Street
Albuquerque, NM 87106
Attn: T. Reynolds

Carrier Corp.
Energy Systems Div.
Summit Landing
P. O. Box 4895
Syracuse, NY 13221
Attn: R. A. English

Columbia Gas System Service Corp.
1600 Dublin Road
Columbus, OH 43215
Attn: J. Phillip Dechow

Corning Glass Company (2)
Corning, NY 14830
Attn: A. F. Shoemaker
W. Baldwin

Custom Engineering, Inc.
2805 South Tejon Street
Englewood, CO 80110

DSET
Black Canyon Stage
P. O. Box 185
Phoenix, AZ 85029
Attn: G. A. Zerlaut

Desert Research Inst. Energy
Systems Laboratory
1500 Buchanan Blvd.
Boulder City, NV 89005
Attn: J. O. Bradley

Donnelly Mirrors, Inc.
49 West Third Street
Holland, MI 49423
Attn: J. A. Knister

Eaton Corporation
Industrial Drives Operations
Cleveland Division
3249 East 80th Street
Cleveland, OH 44104
Attn: R. Glatt

Electric Power Research
Institute
3412 Hillview Avenue
Palo Alto, CA 94303
Attn: J. E. Bigger

Energetics Corporation
1201 Richardson Dr., Suite 216
Richardson, TX 75080
Attn: Lee Wilson

Energy Technology Engineering Center
P. O. Box 1449
Canoga Park, CA 91304
Attn: J. Roberts

E-Systems, Inc.
Energy Tech. Center
P. O. Box 226118
Dallas, TX 75266
Attn: R. R. Walters

Eurodrive, Inc.
2001 W. Main Street
Troy, OH 45373
Attn: S. D. Warner

Florida Solar Energy Center
300 State Road, Suite 401
Cape Canaveral, FL 32920
Attn: Library

Ford Motor Company
Glass Div., Technical Center
25500 West Outer Drive
Lincoln Park, MI 48246
Attn: V. L. Lindberg

Foster Wheeler Solar Devel. Corp.
12 Peach Tree Hill Road
Livingston, NJ 07039
Attn: Dr. A. C. Gangadharan

General Motors
Harrison Radiator Division
Lockport, NY 14094
Attn: L. Brock

Georgia Power Co. (2)
270 Peachtree
P. O. Box 4545
Atlanta, GA 30302
Attn: J. Roberts
W. Davis

Glitsch, Inc.
P. O. Box 226227
Dallas, TX 75266
Attn: R. W. McClain

Haveg Industries, Inc.
1287 E. Imperial Highway
Santa Fe Springs, CA 90670
Attn: J. Flynt

Highland Plating
1128 N. Highland
Los Angeles, CA 90038
Attn: M. Faeth

Honeywell, Inc.
Energy Resources Center
2600 Ridgeway Parkway
Minneapolis, MN 55413
Attn: J. R. Williams

Insights West
14022 Condessa Drive
Del Mar, CA 92014
Attn: Dr. David W. Kearney

Jacobs Engineering Co.
251 South Lake Avenue
Pasadena, CA 91101
Attn: Meyer Schwartz

Jet Propulsion Laboratory (3)
4800 Oak Grove Drive
Pasadena, CA 91103
Attn: J. Becker
J. Lucas
V. C. Truscello

Lawrence Livermore Laboratory
University of California
P. O. Box 808
Livermore, CA 94500
Attn: W. C. Dickinson

Los Alamos Scientific Lab (3)
Los Alamos, NM 87545
Attn: J. D. Balcomb
D. P. Grimmer
S. Moore

McDonnell-Douglas Astronautics
Company (3)
5301 Bolsa Avenue
Huntington Beach, CA 92647
Attn: J. B. Blackmon
J. Rogan
D. Steinmeyer

Meridian Corporation (2)
5201 Leesburg Pike, Suite 400
Falls Church, VA 22041
Attn: J. White
J. Meglen

Morse Chain
Division of Borg-Warner Corp.
4650 Steele Street
Denver, CO 80211
Attn: G. Fukayama

New Mexico State University
Solar Energy Department
Las Cruces, NM 88001

Omnium G
1815 Orangethorpe Park
Anaheim, CA 92801
Attn: S. P. Lazzara

Owens-Illinois
1020 N. Westwood
Toledo, OH 43614
Attn: Y. K. Pei

Texas Tech University
Dept. of Electrical Engineering
P. O. Box 4709
Lubbock, TX 79409
Attn: J. D. Reichert

U. S. Department of Energy
San Francisco Operations Office
1333 Broadway, Wells Fargo Bldg.
Oakland, CA 94612
Attn: R. W. Hughey

3M-Decorative Products Div.
209-2N 3M Center
St. Paul, MN 55144
Attn: B. Benson

University of New Mexico (2)
Department of Mechanical Eng.
Albuquerque, NM 87113
Attn: M. W. Wilden
W. A. Gross

3M-Product Development
Energy Control Products
207-1W 3M Center
St. Paul, MN 55144
Attn: J. R. Roche

Viking
3467 Ocean View Blvd.
Glendale, CA 91208
Attn: G. Gorandon

Toltec Industries, Inc.
40th and East Main
Clear Lake, IA 50428
Attn: D. Chenault

Winsmith
Div. of UMC Industries, Inc.
Springville, NY 14141
Attn: R. Bhise

U. S. Department of Energy (3)
Albuquerque Operations Office
P. O. Box 5400
Albuquerque, NM 87185
Attn: G. N. Pappas
J. A. Morley
J. Weisiger

Wyle Lab
7800 Governor's Drive West
Huntsville, AL 35807
Attn: R. Losey

U. S. Department of Energy
Division of Energy Storage Systems
Washington, D.C. 20585
Attn: J. Gahimer

U. S. Department of Energy (7)
Division of Solar Thermal Tech.
Washington, D.C. 20585
Attn: G. W. Braun
J. E. Greyerbiehl
B. Hochheiser
C. McFarland
J. E. Rannels
F. Wilkins

PPG Industries, Inc.
One Gateway Center
Pittsburg, PA 15222
Attn: C. R. Frownfelter

Stanford Research Institute
Menlo Park, CA 94025
Attn: A. J. Slemmons

Parsons of California
3437 S. Airport Way
Stockton, CA 95206
Attn: D. R. Biddle

Stearns-Roger
4500 Cherry Creek
Denver, CO 80217
Attn: W. R. Lang

Power Kinetics, Inc.
1223 Peoples Avenue
Troy, NY 12180
Attn: Mark Rice

W. B. Stine
1230 Grace Drive
Pasadena, CA 91105

Schott America
11 East 26th Street
New York, NY 10010
Attn: J. Schrauth

Sun Gas Company
Suite 930, 3 N. Park E
Dallas, TX 75221
Attn: R. I. Benner

Shelltech Associates
809 Tolman Drive
Stanford, CA 94305
Attn: C. R. Steele

Sundstrand Electric Power
4747 Harrison Avenue
Rockford, IL 61101
Attn: A. W. Adam

Solar Energy Information Center
1536 Cole Blvd.
Golden, CO 80401
Attn: R. Ortiz

Sunpower Systems
510 S. 52 Street
Tempe, AZ 85281
Attn: W. Matlock

Solar Energy Research Institute (8)
1617 Cole Blvd.
Golden, CO 80401
Attn: B. L. Butler
G. Gross
B. P. Gupta
J. Thornton

Suntec Systems, Inc.
2101 Wooddale Drive
St. Paul, MN 55110
Attn: Jon H. Davison

Solar Kinetics, Inc.
P. O. Box 47045
Dallas, TX 75247
Attn: G. Hutchison

Swedlow, Inc. (2)
12122 Western Avenue
Garden Grove, CA 92645
Attn: E. Nixon
M. M. Friefeld

Southwest Research Institute
P. O. Box 28510
San Antonio, TX 78284
Attn: D. M. Deffenbaugh

TRW, Inc.
Energy Systems Group of TRW, Inc.
One Space Park, Bldg. R4, Rm 2074
Redondo Beach, CA 90278
Attn: J. M. Cherne

400 R. P. Stromberg
1530 W. E. Caldes
1550 F. W. Neilson
2540 K. L. Gillespie
2541 J. P. Abbin
3161 J. E. Mitchell
3600 R. W. Hunnicutt
Attn: 3640 K. D. Harper
3700 J. C. Strassel
5510 D. B. Hayes
5520 T. B. Lane
5810 R. G. Kepler
5820 R. E. Whan
5830 M. J. Davis
5840 N. Magnani
8214 M. A. Pound
8450 R. C. Wayne
8451 C. F. Melius
8451 W. R. Delameter
8452 A. C. Skinrood
8453 W. G. Wilson
9000 G. A. Fowler
9700 E. Beckner
9720 D. G. Schueler
9721 J. F. Banas
9722 J. V. Otts
9725 R. H. Braasch
9727 J. A. Leonard (35)
3141 J. L. Erickson (5)
3151 W. L. Garner (3)
3154-2 C. H. Dalin (25)
(Unlimited Release
for DOE/TIC)