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ABSTRACT

The calculation of the surface temperature and 
surface heat flux from measured temperature transients 
at one or more interior points of a body is identified 
in the literature as the inverse heat conduction prob­
lem. Heretofore, analytical and computational methods 
of treating this problem have been limited to one­
dimensional nonlinear or two-dimensional linear 
material models. This paper presents, to the authors' 
knowledge, the first inverse solution technique appli­
cable to the two-dimensional nonlinear model with 
temperature-dependent thermophysical properties. This 
technique, representing an extension of the one­
dimensional formulation previously developed by one of 
the authors, utilizes a finite element heat conduction 
model and a generalization of Beck's one-dimensional 
nonlinear estimation procedure. The formulation is 
applied to the cross section of a composite cylinder 
with temperature-dependent material properties. Results 
are presented to demonstrate that the inverse formula­
tion is capable of successfully treating experimental 
data. An important feature of the method is that small 
time steps are permitted while avoiding severe 
oscillations or numerical instabilities due to 
experimental errors in measured data.

NOMENCLATURE

a = Radius of cylindrical rod
[A] = Matrix, as defined in equation (33)
[B] = Matrix, equation (10)
[C] = Heat capacity matrix for assembly of

elements
{d} = Vector, equation (34) 

c = Specific heat 
e = Index of elements 
E = Number of elements in assembly

{?} = Vector for assembly of elements, equation
(ID

{F} = Vector for assembly of elements, equation
(12)

h = Convective heat transfer coefficient
t/1 - Radiative heat transfer coefficient, 

equation (5)
J = Number of time steps in analysis interval;

J - 1 equals number of "future" temperatures

[K] = Thermal conductivity matrix for assembly 
of elements

k = Thermal conductivity
L = Number of interior temperature probes; also, 

number of nodes in surface heat flux 
interpolation

M = Number of nodes in temperature interpola­
tion

N^ = Interpolation function for temperature
Vector of interpolation functions for 
temperature
Unit outward normal to boundary surface
Internal heat generation rate, per unit 
volume

I 
{N}

ii

Q

q
ql

{q}

cq
Aq
r£

{R}

r
Pr1

[S]

T =
TI = 
{T} = 
tP =

TaC = 

=
TW = 

t = 
T0L1 =

Imposed surface heat flux
Value of surface heat flux at node, 
equation (22)
Surface heat flux vector of dimension L, 
equation (22)
Surface heat flux due to convection 
Surface heat flux due to radiation
Interpolation function for surface heat 
flux
Vector of interpolation functions for 
surface heat flux

= Radial coordinate
= Radial coordinate of temperature probe 
location

= Matrix, equation (17)
Temperature
Value of temperature at I1"*1 node 

Temperature vector
Measured temperature at internal point 
(rP'e£)

Temperature at which no convection occurs 
Temperature at which no radiation occurs 
Temperature at wall 
Time
Convergence tolerance for temperature 
vector, equation (19)

T0L2 = Convergence tolerance for surface heat 
flux, equation (35)

w. 
J

Weighting functions, equation (27) 
General spatial coordinates

Greek Symbols
a = Thermal diffusivity 
p = Density
H = General spatial domain 
0

f) = Element domain
= Boundary on which condition (2) is 

prescribed



^ = Boundary on which condition (3) is 
prescribed

= Element external boundary on which condition 
(3) is prescribed

V = Gradient operator 
O = Stefan-Boltzmann constant 
e = Emissivity
6 = Surface heat flux parameter, equation (25)
A = Incremental change in kernel
0 = Angular coordinate

0£ = Angular coordinate of temperature probe
and related surface heat flux node

ip = Sensitivity coefficient, equation (30)
X = Perturbation factor for q^, equation (30)

T = Dimensionless time
1 = Summation symbol

Subscripts
I = Index of nodes
i = Index of time steps in solution, where i is 

a nonnegative integer
j = Index of time steps in analysis interval,

1 £ j £ J
k,Z,m = Index of nodes for temperature probes and 

surface heat flux nodes
(i)At or = lime t = (i)At at which kernel is evaluated 
;(i)At

Superscripts
[ ]^ = Transpose of matrix 

{ } = Row vector

(P),(H) = Iteration number at which kernel is 
evaluated

Other Symbols
[ ] = Matrix 
{ } = Column vector 

|| ||= Euclidean norm 
/ = Integral sign

INTRODUCTION

In heat transfer studies, a class of problems can 
be identified where the surface temperature and surface 
heat flux are determined from the temperature history 
measured at a set of discrete points in the interior 
of the body. Generally, this class is referred to in 
the literature as the inverse problem, in contrast with 
the usual direct formulation where the interior tempera­
ture history is determined from specified initial and 
boundary conditions. Typically, the inverse formula­
tion arises in experimental studies where direct 
measurement of surface conditions is not feasible, 
such as convective heat transfer in rocket nozzles 
or quenching processes for materials. An application 
presented in this paper treats an electrically heated 
composite rod with two-phase flow boundary conditions. 
Temperature transients recorded by thermocouple probes 
in the rod are used to investigate the time-history of 
surface conditions. Because these probes are posi­
tioned in the interior of the rod to avoid disturbing

surface conditions and the flow adjacent to the 
surface, an inverse problem must be solved.

Various methods that have been applied to the 
inverse problem include integral equation solutions, 
series solutions, transform solutions, and function 
minimization techniques. Extensive bibliographies 
that survey these methods are readily available in the 
literature (see, for example, (_1) and (2)); the limited 
number of references mentioned here deal with material­
ly nonlinear or multidimensional inverse formulations. 
Heretofore, analytical and computational methods for 
treating the nonlinear inverse problem of temperature- 
dependent thermophysical properties have been re­
stricted to one-dimensional models. Beck (2,3) has 
developed a nonlinear formulation based on a finite 
difference heat conduction model and nonlinear 
estimation procedures. Muzzy et al. (4) and Bass (5) 
have applied Beck's method, with some modifications, 
to one-dimensional composite models with temperature- 
dependent material properties. Other nonlinear 
formulations include a finite difference technique 
developed by Ott and Hedrick (6) and a transform method 
by Imber (1). Apparently, the only two-dimensional 
inverse formulation appearing in the open literature 
is that of Imber (7., 8). His transform technique is 
applicable to two-dimensional geometries of arbitrary 
shape, but assumes a linear material model with constant 
properties.

This paper presents, to the authors' knowledge, 
the first inverse solution technique applicable to the 
two-dimensional nonlinear model with temperature- 
dependent properties. This technique, representing an 
extension of the one-dimensional formulation previously 
developed by Bass (5), utilizes a finite element heat 
conduction model and a generalization of Beck's one­
dimensional nonlinear estimation procedure. The 
computational technique assumes several thermocouple 
sensors judiciously positioned in the interior of the 
material body. In the formulation, the unknown surface 
heat flux is discretized on the boundary domain of the 
body using a prescribed set of nodal points and suitable 
interpolating functions. Because the temperature 
response at interior locations is delayed and damped 
with respect to changes in surface conditions, these 
nodal point values of surface heat flux are determined 
in a given time step with a procedure that utilizes 
interior temperatures at "future" times. Specifically, 
the nodal values of flux are assumed to be constant or 
to vary piecewise linearly over an analysis interval 
that consists of several time steps in the discretized 
data. The coefficients that describe the nodal values 
are adjusted iteratively to achieve the closest 
agreement in a least squares sense with the input 
"future" temperatures over the analysis interval. The 
discretized approximation of the surface heat flux thus 
determined provides a conventional boundary condition 
for the forward problem in the next time step. The 
inverse solution computed in this way represents a 
"best approximation" in the finite dimensional subspace 
of solutions defined by the surface heat flux inter­
polation. An important feature of the method is that 
small time steps are permitted while avoiding severe 
oscillations or numerical instabilities due to 
experimental errors in measured data.

The formulation is applied to the cross section 
of a composite cylinder with temperature-dependent 
material properties. To evaluate the performance of 
the technique in solving the inverse problem, a 
standard initial-boundary value solution, with a known 
surface heat flux, is used as input for the inverse 
calculation. The computed surface heat flux is 
compared with the (known) imposed heat flux for two 
different thermocouple configurations. Finally, the



technique is applied to experimentally determined 
temperature transients recorded at interior points of 
an electrically heated cylinder used to simulate a 
nuclear fuel rod in reactor loss-of-coolant analyses.

the boundary conditions (2) and (3), the integral 
formulation (7) leads to a set of transient ordinary 
differential equations for the assemblage of finite 
elements:

FINITE ELEMENT FORMULATION OF THE DIRECT PROBLEM

The conduction of heat in the region is governed 
by the quasilinear parabolic equation

[C] + [K] (T) + {F} + {F} = 0 . (8)

The components in equation (8) are defined by:

V • (kVT) + Q = pc (1)

subject to the boundary conditions

T = l" on V1 (2)

and

kVT • + q + + qC = 0 on Y2 • (3)

The heat flow rates per unit area on convection and 
radiation boundaries are written

qC = h(T - TaC) , q* = hV - T^) , (4)

where h^ is defined by

h* = ea(T2 + T^ ) (T + . (5)

In general, k, c, h, and h^ are temperature and spatial­
ly dependent, while Q and q are time and spatially 
dependent.

Let the region fi be partitioned by a system of 
finite elements and let the unknown temperature T be 
approximated throughout the solution domain at any time 
t by

T(x,t) = l N (x) T (t) = {N}T {T} . (6)
1=1

Here the N-j- are the interpolation functions defined 
piecewise element by element and the Tj or {T} are the 
nodal temperatures. The governing equations of the 
discretized system can be derived by minimizing a 
functional or by using Galerkin’s method (9). In the 
Galerkin formulation employed here, the problem is 
recast in a weighted integral form using the interpo­
lating functions Nj- as the weighting functions:

| e {N}[V . (kV({N}T {T})> + Q - pc ({n}T {T})] dft

[C]

[K]

{F}

{F}

l f pc{N} {N)T df2 , (9)
e=l

l 0 k[B] [B]x dfi 
e=l

E
+ l

e=l

| (h + hb {N} {N}T dV

J b

[B] = V{N> (10)

E
- 1 

e=l
f {N} Qdfi + y 1 {N} qdTbe e=l J V2e , (ii)

E
- I

e=l

1 {N} (h^ T^ + h TaC) dV
Jr- e ' 2

(12)

where the summations are taken over the individual 
finite element contributions. These integrals are 
evaluated numerically using Gauss-Legendre quadrature 
in the applications to be'presented later.

The system of nonlinear equations (8) through (12) 
which defines the discretized problem can be solved 
using many different types of integration schemes. The 
implicit one-step Euler backward difference method is 
employed in this analysis. The time derivative of the 
temperature is approximated by

9{T} ~ W(i+l)At ~ {AT}
3t At At * U ;

where {T},... is assumed known at time (i)At. In the 
(ijAt

nonlinear analysis, is calculated using a
computational scheme that iterates on the out-of-balance 
heat flow rate for a given time step. At time (i+l)At, 
the initial approximation of the increment {AT}^^ in 

nodal point temperatures is calculated by

(it [C](l)At + [K](i)At) {AT}(0) =

{N}[kV({N}T {T}) • n + q + h({N}T {T> - TaC)

+ h^({N}T {T} - Tab] dT = 0 . (7)

Only a single finite element is considered in the 
integral (7), as the governing equations of the complete 
system of elements are obtained by assembling the indi­
vidual finite element matrices. The surface integral 
over V2e refers only to those elements with external 
boundaries on which condition (3) is given.

Green's first identity is applied to the first 
volume integral of equation (7) so that the second 
derivatives do not impose unnecessary continuity 
conditions between elements. When use is made of

- [K]

- {?}

(i)At {T}(i)At 

(i+l)At " {f:>(i)At (14)

In each iteration, a new temperature increment is 
computed from

{AT}^P) = {AT}(P-1) + (6T}(P) , (15)

where (6T}^P^ is the (P)*"^ correction to the tempera­
ture increment {AT}. The expression for computing the 
correction {5T}^ is determined by substituting (15)



into (13) and using (8) in the form

[S] (P-1)
(i+1)At

{6T}(P) [K] (P-1)
(i+l)At {T}(P-1) 

(i+1) At

(P-1)
(i+l)At {AT}(P-1)

+ {?}(i+l)At + {f}Sl«)At (16)

where

rsi^-1) =J-fn(p-1) + tkiS (i+l)At At C (i+l)At + [KJ (P-1)
(i+l)At (17)

is evaluated using temperatures

{t}^p = {t} + {at}^p
li;(i+l)At lU(i)At (18)

The iteration continues until convergence is obtained 
according to the criterion

||{6T}(P)|| / ||{T}[P|1)At|| < T0L1 , (19)

where T0L1 represents an adjustable tolerance.
Equations (14) through (19) constitute the full 

Newton iterative solution of the governing system of 
equations (8). To avoid the undesirable computational 
expense of updating and factorizing the effective stiff- 

(P—1)nexx matrix [S]At eac^ iterati°n> the applica­
tions presented in this paper make use of the modified 
Newtcn-Raphson scheme. In this method, a new tangent 
stiffness matrix [S] is computed periodically from
one of the converged solutions at time (n)At, n=0,l,

(P-1)2,... i, and used in place of equation
(16). Because the matrix [S], . is held fixed in a(n) At
given time step, this modified method involves fewer 
stiffness reformations than full Newton iteration. The 
frequency of the stiffness updates can be adjusted 
according to the degree of nonlinearity in the compu­
tational model to avoid an excessive number of 
iterative corrections.

This application of the finite element method to 
the inverse heat conduction problem considers a two- 
dimensional model of the (r,0) cross section of a 
circular cylinder. An isoparametric (10) discretization 
is employed, so that the spatial coordinates are inter­
polated using the same functions Nj as those used for T 
in equation (6). The Nj associated with the 4- to 8- 
noded two-dimensional isoparametric element are 
described in numerous references, including (10) and 
(11), and will not be given here.

FORMULATION OF THE INVERSE PROBLEM

In this study, the two-dimensional problem of a 
cylindrical body subjected to a planar surface heat flux 
q(0,t) is considered as depicted in Figure 1. The 
conditions

T(rP,0£,t) = TP(t) 0<t<t , £ = 1,L (20)

are prescribed at L equally spaced interior points along 
a contour of radius rp near the surface, while the 
surface heat flux function

- k (21)

is unknown. The problem is to determine q(0,t) and 
the temperature distribution T(r,0,t), 0 _< r £ a,
0 0 _< 2ir, on a specified time domain. Although a
circular geometry is assumed here, the basic technique 
described below for treating the inverse problem is 
applicable to other geometric shapes with a multiple 
number of thermocouple sensors judiciously positioned 
near the surface of the body.

In his treatment of the linear inverse problem, 
Imber (7) indicates that a successful extrapolation 
procedure requires the temperature distribution to be 
known, a priori, throughout a closed region within the 
body. For a one-dimensional axisymmetric analysis of 
a cylinder such as that depicted in Figure 1, the 
temperature can be determined in the closed region 
r < rP < a using data from a single thermocouple 
sensor positioned at radius rp. The two-dimensional 
analog achieved by relaxing the condition of axisym- 
metry then presumes a time-history of temperature data 
recorded pointwise on a closed contour of radius rP, 
i.e., a "line-source" of temperature data. Because 
such a volume of measured data would not be available 
in any realistic experimental program, the technique 
described below is based on a limited number of thermo­
couple sensors discretely positioned on a contour near 
the surface of the body. Numerical examples presented 
in the next section illustrate that the accuracy of the 
technique in approximating the flux boundary condition 
is improved as the number of temperature sensors per 
unit arc length on the contour is increased.

0. = 0

Fig. 1 Cross section of heated cylinder

The initial step in the development of the method 
is the discretization of the unknown surface heat flux 
on the boundary domain using a set of nodal values 
q^, £ = 1,L, and suitable interpolating functions 
(to be specified later), as depicted in Figure 1.
Thus, the approximation of the surface heat flux q 
is given by

q(0,t) = l Rp(8) q»(t) = {R} {q}
£=1 ^ 'L= q(9,t) (22)



One surface flux node is designated for each active 
thermocouple sensor and positioned at the minimum 
distance from the sensor node. Numerical tests have 
indicated that this geometric arrangement produces a 
stable, well conditioned system of equations for 
approximating the boundary heat flux function q.

In addition, the nodal values of surface heat flux 
will be temporally discretized such that in a given 
time step At, q(0,t) is represented by

L
q(9,t) = E R„(0) q 

1=1 'L £;(i)At
{R}T {q}

(i)At

(i-l)At < t £ (i)At i >. 1 . (23)

For a given i >. 1, it is assumed that {q}^^ , {q}^7 ,
.... {q)( are known. To determine 'fqj an
analysis interval of J £ 1 time steps is selected, as 
depicted in Figure 2.1 In the next step, {q} is esti­
mated over the analysis interval (i)At < t £ (i+J)At 
using relations that take the trend of q into account. 
For the first time step in the interval,

{q}(i+l)At = {q}(i)At + ({q}(i)At " {q}(i-l)At) (24)

and for the "future" time steps

{q}(i+j)At = {q}(i+j-l)At + 6({q}(i+j-l)At 

" {q}(i+j-2)At) (25)

for 2 j J, where 0 B <. 1 is an adjustable 
parameter.2 Thus, the interpolated boundary conditions 
can be estimated for each time step in the analysis 
interval according to the relation

q(9)(i+j)At = {R}T {q}(i+j)At * <26>

Then the boundary value problem (equations (1) through 
(5)) cast in the discretized finite element formulation 
(equations (8) through (12)) is solved over the analysis

"FUTURE" TEMPERATURES

' (i + 1)At 1 (i + 2)At •T(i +ii * jiat
->T

(i)At (i + DAt (i + 2) At (i + J)At_____ S
ANALYSIS INTERVAL (J > 1)

Fig. 2 Analysis interval for computing surface heat 
flux q

1 For elementary one-dimensional models with 
characteristic dimension a, Beck (2) recommends values 
of J that are appropriate for given values of the 
dimensionless time step At = aAt/a^.

2{q}Q is determined from conditions at the 
initial time.

interval (i)At < t <_ (i+J)At using conditions (24) - 
(26) in the surface integral of equation (11).

The objective of the method is to select
to achieve the closest agreement in a least squares 
sense between the computed and input thermocouple 
temperatures over the analysis interval. This is 
accomplished by minimizing the weighted sum of squares 
function

f ({q}
(i+l)At

)= I
L

wi ^
. 3 1=1

(T - TP£;(i+j)At £; (i+j)At„)

' tT' TP)
(i+j)At (27)

with respect to the L nodal parameters represented by 
the array In equation (27), {T} and {T^}

are the computed and input temperatures at the interior 
thermocouple locations (rP,©^), £ = 1,L. The weighting 
functions defined by wj = j2 were suggested by Muzzy 
et al. (4) in a one-dimensional finite difference 
application of Beck's method.3

The minimization procedure for the function f 
of (27) is based on an iterative technique that is a 
generalization of Beck's one-dimensional formulation. 
For the (H)^ iterative correction {Aq}^) to the 
minimizing nodal parameters ^q^(i+x),'t’ t*ie eqements
of the temperature array {T} (H)' in (27) are(i+j)At
approximated by a truncated Taylor series expansion

t(H)
l;(i+j)At

t(H-1)
^5 (i+j)At

9T

3q

(H—1)
£; (i+i)At
(H)
k;(i+l)At

Aqfe(H)
£ = 1,L

where

A (H) _ (H) (H-l)
Aqfe _ qb;(i+l)At qfe;(i+l)At k = 1,L

(28)

(29)

If the heat conduction model is linear, this expression 
is exact and no iteration is required. The partial 
derivatives in (28), referred to as sensitivity 
coefficients, are approximated numerically according 
to the expression

j.CH-D4,£fe
3T

3q

(H-l)
£; (i+j)At
(H)
fe;(i+1)At

£,fe = 1,L

j = 1,J

•<-; (i+3iflt
Aqfe;(i+l)At

where {q*} is obtained from {q} by perturbing the 
component, i.e., q£ = (1+X)q^ and q* = q^, m ^ fe. A 
value of X = 1 x 10-2 is used in the present study.

In each iterative correction to {q^i+^At’ 
(J)(l+L) conventional solutions of the finite element 
heat conduction model (equations (8) - (12)) are re­
quired to compute the array (30) of sensitivity 
coefficients. With the <p’s thus determined, the

for all j
3Beck's one-dimensional formulation uses w^.



extrenizing condition

3f
3iq}(i+1)At 0 (31)

is used to compute the incremental correction. Wlien 
(28) is substituted into (27) and the differentiation 
(31) is performed, the (H)11*1 correction {Aq}(^) is 
determined from the expression

[A]^ {Aq}(H) = {D}^ 

where the components are given by

A (H-l)Ik l
3=1

w. 
J

L
l

m=l
3a(h-D 3,
ml

(H-l)
mk

d(H-1)
Bl

L
l

k=l
(TPfe;(i+3)At

(32)

(33)

Of,

- X (H-l) .
fe;(i+3)Af’

3*(H-l)
kl (34) Fig. 3 Interpolating functions for surface heat flux

The correction (32) is then used to update the nodal 
/h—narray °1 surface flux according to equation

(29). Generally, the iteration is continued until 
convergence is achieved according to the criterion

IKAq}(H)|| / l|{q}(il1)Atll < T0L2 (35)

for some prescribed tolerance T0L2 > 0.
The discretized approximation of the surface heat

flux

q(e)(i+l)At = {R} {q}(i+l)At (36)

thus determined provides a conventional boundary condi­
tion (for equation (11)) in the next single time step 
At only. The analysis interval is then shifted by one 
time step and the process is repeated.

In the numerical applications of this technique 
in the next section, the surface flux interpolating 
functions (r) have the form

r 2r1r(0-V1
(cos [j--- ^--- j

Rp(0)

0£ - A0 £

otherwise

£ 0£ + A0

(37)

for £ = 1,L. The functions (37) depicted in Figure 3 
have the properties

W ‘
£ = fe 

Z ? k
Z,k = 1,L (38)

R£(0) + R£+1(6) = 1 6l - 6 - ei+l

(rl+i e ri L+l 6l) (39)

It follows from equation (39) that the interpolation 
(22) can represent a uniform surface heat flux.

NUMERICAL APPLICATIONS

The two-dimensional inverse formulation developed 
in the preceding section is applied here to a composite 
rod containing an electric heating element and

thermocouple sensors. This heater rod represents one 
member of a rod array that is designed for test purposes 
to simulate a nuclear fuel bundle. The heater rod 
bundle is positioned in a thermal-hydraulics test loop 
that is used to study hypothetical loss-of-coolant 
accidents in pressurized-water nuclear reactors (12).11

A heater rod cross section and the corresponding 
two-dimensional finite element discretization used in 
the inverse analysis are depicted in Figures 4 and 5.
The rod has a nominal heated length of 366 cm (144 in.) 
and is constructed with a stainless steel outer sheath. 
Attached to the inner surface of this sheath at equal 
intervals are twelve chromel-alumel thermocouple 
assemblies, 0.05 cm (0.02 in.) in diameter. Four addi­
tional sensors are positioned in the center of the rod. 
Only four of the sixteen thermocouples actively record 
data in the cross section of Figure 4, namely the three 
boron nitride (BN)-filled thermocouples attached to the 
outer sheath and one of the center rod thermocouples; 
the junctions of the remaining thermocouples are posi­
tioned in different axial planes of the rod. Boron 
nitride is used as a filler and an insulator between 
the inconel heating element and the thermocouple 
assemblies. In the finite element model of the heater 
rod (Figure 5), each thermocouple at the outer sheath 
is modeled with two quadrilateral elements that are 
assigned the appropriate material properties of BN or 
MgO and the same total cross sectional area as the in 
situ circular sheaths. Those in the center of the rod 
are not used to drive the inverse computation and are 
not included in the finite element discretization.

The thermophysical properties of thermal conduc­
tivity k and specific heat c are temperature dependent 
for each material in the rod. Except for the thermal 
conductivities of MgO and BN, these properties are 
determined for each material as a function of tempera­
ture from an optimum polynomial fit to available data, 
as given in Reference (6). The thermal conductivities 
for the MgO and BN depend on packing density and must 
be determined in situ as part of the rod calibration 
procedure (13) prior to each test.

‘‘This test facility is operated by the Oak Ridge 
National Laboratory (ORNL) Pressurized-Water Reactor 
Blowdown Heat Transfer Separate-Effects Program, which 
is part of the overall light-water reactor safety 
research program of the Nuclear Regulatory Commission.
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The first numerical example5 was selected to eval­
uate the performance of the technique in solving the 
inverse problem for the finite element model of Figure 
5. A standard initial-boundary value solution was 
obtained from the finite element formulation (8) - (12) 
using the prescribed surface heat flux function

1 OJ_1 Of- oq(e,t) = 47.31 + 126.2[sin(i{6 - 2irt})] W/cm ,

0 £ t £ 1.0 (40)
3

a constant heat generation rate Q = 5274 W/cm , a time 
step At = .01 s, and initial center rod temperature
X = 441.2 C. From this direct solution, thecenter ,temperature transients of Figure 6 were calculated

STAINLESS STEEL- BORON NITRIDE

INCONEL

• MgO

Fig. 5 Two-dimensional finite element model of heater 
rod cross section: 126 elements; 288 nodes
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5The inverse calculations presented in this section Fig- 6 Test case: calculated temperatures at thermo- 
were performed using T0L1 = .001, equation (19); 3 = 0.5, couple locations from direct solution
equation (25); T0L2 = 0.05, equation (35).



at the thermocouple locations 1 through 6 of the 
discrete model (Figure 5). With the thermocouple 
transients of Figure 6 serving as input, two different 
inverse analyses were performed in an attempt to repro­
duce the surface flux boundary condition (40). The 
first analysis utilized input data from only three of 
the thermocouples (L = 3), those numbered 1, 3, and 5 
in Figure 5, while the second utilized data from six 
thermocouples (L = 6). The analysis interval consisted 
of only one time step (J = 1). Results from the two 
inverse analyses are compared with the known direct 
solution in Figures 7 and 8 at different times. Through­
out the transient, the inverse analysis using six active 
thermocouples consistently produced a good approximation 
of both the surface flux function (40) and the surface 
temperatures. As illustrated in Figure 7, the solution 
using three active thermocouples was not as successful 
in approximating the surface variables at those times 
when the localized perturbation in the surface flux was 
not "near" an active sensor. This example demonstrates 
that, within practical limits, the prediction of surface 
conditions is improved as the number of thermocouple 
sensors per unit length of contour is increased.

In the second numerical example, the inverse formu­
lation is applied to actual thermocouple transients 
taken from a representative test of ORNL's single-rod 
test apparatus.6 The heater power input to the rod 
during the period of the transient considered here is 
essentially constant at Q = 5300 W/cm-*. Figure 9 
illustrates the time-history of the thermocouple tem­
peratures recorded by the active BN-filled sensors (1,
3, and 5 in Figure 5) and by the one active center 
thermocouple. The acquisition interval for these data

TEMPERATURE

200 - - 350

□ DIRECT

O INVERSE: TP NODES 1, 3, 5 

A INVERSE: TP NODES 1-6
150 -

- 250

100 -

- 150

HEAT FLUX

ANGLE (deg)

Fig. 8 Test case: comparison of direct solution with 
inverse solutions at time 0.8 s
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Fig. 7 Test case: comparison of direct solution with 
inverse solutions at time 0.7 s

6The single-rod test facility (12) at ORNL is used 
primarily to qualify heaters for the large rod bundle 
loop and to obtain blowdown heat transfer results for 
a single rod in an annular geometry.
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is At = 0.01 s. In the same figure, the temperatures 
computed at the BN thermocouple locations in an inverse 
solution (for At = 0.01 s and J = 2) are compared with 
the input data; the error is not discernible on the 
scale of these plots. Because the center thermocouple 
data are not used in the inverse computation, comparison 
of these data with the computed center rod temperatures 
permits an evaluation of the rod finite element model. 
This comparison can be only approximate due to uncer­
tainty in the precise orientation of the center thermo­
couple assembly and to the absence of appropriate 
material modeling of the assembly in the discretization. 
Agreement between the measured and computed values is 
generally good, although a slight divergence appears 
at time t « 5.75 s when gradients and time rates of 
temperature become pronounced in the center of the rod.

Figures 10 - 12 illustrate the computed time- 
history of surface conditions at node qj in Figure 5 for 
a time step At = 0.01 s and three different analysis 
intervals. The results for one time step in the 
analysis interval, J = 1 (Figure 10), indicate that 
the measured data of Figure 6 require the use of 
future temperatures to reduce oscillations in the 
computed values. The solution using two time steps,
J = 2 (Figure 11), removes much of the "noise" from the 
flux time-history without severe rounding of rapid 
changes that begin at time t == 5.5 s. The results for 
J = 3 (Figure 12) lead to additional smoothing of the 
solution and illustrate the tendency to "round off" 
rapid changes as J is increased. For the finite 
element model of Figure 5 and a selected time step 
of At = .01 s, the use of one future temperature 
appears optimal for reducing oscillations. Figure 13 
compares the surface conditions at time t = 5.85 s 
for the above three solutions.
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Fig. 10 Experimental case: inverse solution at 
surface node using one time step in 
analysis interval (J=l)
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surface node q^ using two time steps in 
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Fig. 13 Experimental case: surface conditions at time 
5.85 s

In the experimental apparatus that produced the 
thermocouple transients of Figure 9, the heater rod 
surface is exposed to a transient two-phase flow that 
is primarily parallel to the rod axis. At point (a) in 
Figure 9 (time t = 5.65 s), the entire surface of the 
rod cross section has departed from nucleate boiling; 
at point (b) (time t = 5.80 s), part of the surface 
experiences a "rewet" with an accompanying drop in 
temperature; at (c) (time t = 5.95 s) the entire sur­
face is in transition to film boiling. Contour plots 
in Figure 14 illustrate the change in temperature 
distribution for the cross section of the rod during 
this portion of the transient.

SUMMARY AND CONCLUDING REMARKS

This paper has presented a two-dimensional 
formulation of the inverse heat conduction problem that 
is applicable to composite bodies with temperature- 
dependent thermophysical properties. The formulation 
utilizes a finite element heat conduction model and 
a generalization of Beck's one-dimensional nonlinear 
estimation procedure. Applications of the inverse 
technique to an electrically heated composite rod were 
examined in the study. In the first example, a con­
ventional initial-boundary value solution, with a known 
surface heat flux, was used as input for the inverse 
calculation. The computed surface heat flux was 
compared with the imposed heat flux for two different 
thermocouple configurations. These comparisons indicate 
that, within practical limits, the approximation of 
surface conditions is improved as the number of thermo­
couple sensors per unit length of contour is increased. 
Finally, the technique was applied to experimentally 
determined temperature transients recorded at thermo­
couple sensors in the interior of the rod. The results 
presented here demonstrate that the inverse formulation 
is capable of successfully treating experimental data. 
Consideration of future temperatures in calculating 
surface conditions permits the use of small time steps

TEMPERATURE
(°C)

TIME - 5.65 F

TIME ” 5.80

TIME =■ 5.95

Fig. 14 Experimental case: temperature contours 
(deg C)

(a) time 5.65 s
(b) time 5.80 s
(c) time 5.95 s

while avoiding severe oscillations or numerical 
instabilities due to errors in measured data.
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