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ABSTRACT

The calculation of the surface temperature and
surface heat flux from measured temperature transients
at one or more interior points of a body is identified
in the literature as the inverse heat conduction prob-
lem. Heretofore, analytical and computational methods
of treating this problem have been limited to one-
dimensional nonlinear or two-dimensional linear
material models. This paper presents, to the authors'
knowledge, the first inverse solution technique appli-
cable to the two-dimensional nonlinear model with
temperature-dependent thermophysical properties. This
technique,
dimensional formulation previously developed by one of

representing an extension of the one-

the authors, utilizes a finite element heat conduction
model and a generalization of Beck's one-dimensional
nonlinear estimation procedure. The formulation is
applied to the cross section of a composite cylinder
with temperature-dependent material properties.
are presented to demonstrate that the inverse formula-
tion is capable of successfully treating experimental
data.

time steps are permitted while avoiding severe

An important feature of the method is that small

oscillations or numerical instabilities due to
experimental errors in measured data.

NOMENCLATURE
a = Radius of cylindrical rod
[A] = Matrix, as defined in equation (33)
[B] = Matrix, equation (10)
[C] = Heat capacity matrix for assembly of
elements
{D} = Vector, equation (34)
c = Specific heat
e = Index of elements
E = Number of elements in assembly
{?} = Vector for assembly of elements, equation
(ID
{F} = Vector for assembly of elements, equation
(12)
h = Convective heat transfer coefficient
t/l - Radiative heat transfer coefficient,

equation (5)

J = Number of time steps in analysis interval;
J - 1 equals number of "future" temperatures
[K] = Thermal conductivity matrix for assembly

of elements
k = Thermal conductivity

L = Number of interior temperature probes; also,
number of nodes in surface heat flux

interpolation

Results

{R}

=

TaC

W

TOL1

TOL2

Number of nodes in temperature interpola-
tion

Interpolation function for temperature

Vector of interpolation functions for
temperature

Unit outward normal to boundary surface

Internal heat generation rate, per unit
volume

Imposed surface heat flux

Value of surface heat flux at node,

equation (22)

Surface heat flux vector of dimension L,
equation (22)

Surface heat flux due to convection
Surface heat flux due to radiation

Interpolation function for surface heat
flux

Vector of interpolation functions for
surface heat flux

Radial coordinate

Radial coordinate of temperature probe
location

Matrix, equation (17)
Temperature

Value of temperature at II'l node
Temperature vector

Measured temperature at internal point
(rP'ef)

Temperature at which no convection occurs
Temperature at which no radiation occurs
Temperature at wall

Time

Convergence tolerance for temperature
vector, equation (19)

Convergence tolerance for surface heat
flux, equation (35)

Weighting functions, equation (27)

General spatial coordinates

Greek Symbols

a

p

Thermal diffusivity
Density

General spatial domain
Element domain

Boundary on which condition (2) 1is

prescribed



-~ = Boundary on which condition (3) is

prescribed

= Element external boundary on which condition
(3) is prescribed

V = Gradient operator

O = Stefan-Boltzmann constant

e = Emissivity

6 = Surface heat flux parameter, equation (25)
A = Incremental change in kernel

0 = Angular coordinate
0f£ = Angular coordinate of temperature probe

and related surface heat flux node

m = Sensitivity coefficient, equation (30)
X = Perturbation factor for g”, equation (30)
T = Dimensionless time
] = Summation symbol
Subscripts
I = Index of nodes
i = Index of time steps in solution, where i is

a nonnegative integer

j = Index of time steps in analysis interval,
1£3j£7J
k,Z,m = Index of nodes for temperature probes and

surface heat flux nodes

(i)At or = lime t = (i)At at which kernel is evaluated
; (1)At
Superscripts
] = Transpose of matrix

{ } = Row vector

(P), (H) = Iteration number at which kernel is

evaluated

Other Symbols
= Matrix
{ } = Column vector
[l ] 1= Euclidean norm

/ = Integral sign

INTRODUCTION

In heat transfer studies, a class of problems can
be identified where the surface temperature and surface
heat flux are determined from the temperature history
measured at a set of discrete points in the interior
of the body.
the literature as the inverse problem,

Generally, this class is referred to in

in contrast with
the usual direct formulation where the interior tempera-
ture history is determined from specified initial and
Typically, the inverse formula-
tion arises in experimental studies where direct

boundary conditions.

measurement of surface conditions is not feasible,
such as convective heat transfer in rocket nozzles
or gquenching processes for materials. An application
presented in this paper treats an electrically heated
composite rod with two-phase flow boundary conditions.
Temperature transients recorded by thermocouple probes
in the rod are used to investigate the time-history of
surface conditions. Because these probes are posi-
tioned in the interior of the rod to avoid disturbing

surface conditions and the flow adjacent to the
surface, an inverse problem must be solved.

Various methods that have been applied to the
inverse problem include integral equation solutions,
transform solutions, and function
Extensive bibliographies
that survey these methods are readily available in the
literature (see, for example, (1) and (2)); the limited

series solutions,
minimization techniques.

number of references mentioned here deal with material-
ly nonlinear or multidimensional inverse formulations.
Heretofore, analytical and computational methods for
treating the nonlinear inverse problem of temperature-
dependent thermophysical properties have been re-
Beck (2,3) has

developed a nonlinear formulation based on a finite

stricted to one-dimensional models.

difference heat conduction model and nonlinear
estimation procedures. Muzzy et al. (4) and Bass (5)
have applied Beck's method, with some modifications,
to one-dimensional composite models with temperature-
dependent material properties. Other nonlinear
formulations include a finite difference technique
developed by Ott and Hedrick (6) and a transform method
by Imber (1). Apparently, the only two-dimensional
inverse formulation appearing in the open literature
is that of Imber (7.,8). His transform technique is
applicable to two-dimensional geometries of arbitrary
shape, but assumes a linear material model with constant
properties.

This paper presents,
the first inverse solution technique applicable to the
two-dimensional nonlinear model with temperature-

to the authors' knowledge,

dependent properties. This technique, representing an
extension of the one-dimensional formulation previously
developed by Bass (5), utilizes a finite element heat
conduction model and a generalization of Beck's one-
dimensional nonlinear estimation procedure. The
computational technique assumes several thermocouple
sensors Jjudiciously positioned in the interior of the
material body. In the formulation, the unknown surface
heat flux is discretized on the boundary domain of the
body using a prescribed set of nodal points and suitable
interpolating functions. Because the temperature
response at interior locations is delayed and damped
with respect to changes in surface conditions, these
nodal point values of surface heat flux are determined
in a given time step with a procedure that utilizes
interior temperatures at "future" times. Specifically,
the nodal values of flux are assumed to be constant or
to vary piecewise linearly over an analysis interval
that consists of several time steps in the discretized
data. The coefficients that describe the nodal values
are adjusted iteratively to achieve the closest
agreement in a least squares sense with the input
"future" temperatures over the analysis interval. The
discretized approximation of the surface heat flux thus
determined provides a conventional boundary condition
for the forward problem in the next time step. The
inverse solution computed in this way represents a
"best approximation™ in the finite dimensional subspace
of solutions defined by the surface heat flux inter-
polation. An important feature of the method is that
small time steps are permitted while avoiding severe
oscillations or numerical instabilities due to
experimental errors in measured data.

The formulation is applied to the cross section
of a composite cylinder with temperature-dependent
material properties. To evaluate the performance of
the technique in solving the inverse problem, a
standard initial-boundary value solution, with a known
surface heat flux, 1is used as input for the inverse
The computed surface heat flux is
(known) imposed heat flux for two

Finally, the

calculation.
compared with the
different thermocouple configurations.



technique is applied to experimentally determined
temperature transients recorded at interior points of
an electrically heated cylinder used to simulate a
nuclear fuel rod in reactor loss-of-coolant analyses.
FINITE ELEMENT FORMULATION OF THE DIRECT PROBLEM

The conduction of heat in the region is governed

by the quasilinear parabolic equation

v ¢+ (kVT) + Q = pc (1)

subject to the boundary conditions

T = 1" on V1 (2)

kvT + q + + gC = 0 on Y2 ' (3)

The heat flow rates per unit area on convection and
radiation boundaries are written

gC = h(T - TaC) , g* = I\ - T") , (4)
where h” is defined by
h* = ea(T2 + T ) (T + . (5)

In general, %k, ¢, h, and h” are temperature and spatial-

ly dependent, while Q and g are time and spatially
dependent.

Let the region fi be partitioned by a system of
finite elements and let the unknown temperature T be
approximated throughout the solution domain at any time
t by

T(x,t) = 1 N (x) T (t) = {N}T (T} . (6)

Here the I-j- are the interpolation functions defined
piecewise element by element and the Tj or {T} are the
nodal temperatures. The governing equations of the
discretized system can be derived by minimizing a
functional or by using Galerkin’s method (9). 1In the
Galerkin formulation employed here, the problem is
recast in a weighted integral form using the interpo-
lating functions Nj- as the weighting functions:

I e (N}[V (kV({N}T {T})> + Q - pc ({N}T {T})] dft
{N} [KV({N}T {T}) * n + g + h({N}T {T> - TacC)
+ h” ({N}T {T} - Tal] dT = 0 . (7)

Only a single finite element is considered in the
integral (7), as the governing equations of the complete
system of elements are obtained by assembling the indi-
vidual finite element matrices. The surface integral
over Vze refers only to those elements with external
boundaries on which condition (3) is given.

Green's first identity is applied to the first
volume integral of equation (7) so that the second
derivatives do not impose unnecessary continuity

conditions between elements. When use is made of

the boundary conditions (2) and (3), the integral
formulation (7) leads to a set of transient ordinary
differential equations for the assemblage of finite

elements:

[C] + [K] (T) + {(F} + {F} =0 . (8)

The components in equation (8) are defined by:

—_
-—

[c pc{N} {N)T df2 (9)
e=1
K] 1 0 x[B] [B]lx dfi
e=1
B o (h + hb (N} {(N}T dv
.
e=1 1b
[B] = V{N> (10)
E
gy ] o N} Qdfi + _yi Jy,e (N} @dT (i)
e=1
E 1 (N} (h* T~ + h TaC) dv
{F} -1 (12)
e=1 Jrrze

where the summations are taken over the individual
finite element contributions. These integrals are
evaluated numerically using Gauss-Legendre quadrature
in the applications to be'presented later.

The system of nonlinear equations (8) through (12)
which defines the discretized problem can be solved
using many different types of integration schemes. The
implicit one-step Euler backward difference method is
employed in this analysis. The time derivative of the
temperature is approximated by

9{T} ~ WT (i+l)At ~ (AT}
3t At At + U

where {(T},... is assumed known at time (i)At. In the
(ijAt

nonlinear analysis, is calculated using a

computational scheme that iterates on the out-of-balance
heat flow rate for a given time step. At time (i+1)At,
the initial approximation of the increment {AT}”"~" in

nodal point temperatures is calculated by

(it [Cl(lL)At + [K](1)At) {AT}(0) =

- [K] ()At {T}(i)At
{?} (i+1)Aat " {f:>(i)At (14)
In each iteration, a new temperature increment is

computed from

{AT}"P) = {AT}(P-1) + (6T} (P) I (15)

where (6T}"P" 1is the (P)*"" correction to the tempera-

ture increment {AT}. The expression for computing the

correction {5T}" 1is determined by substituting (15)



into (13) and using (8) in the form

- T} (P P-1 P-1
[S](? 1) {6T} (P) K] L ) {T}(. )
(i+1)At (i+1)At (i+1) At
(E_l) (AT)(P_l)
(i+1)At
+ {?}(i+1)At + {f}Sl«)At (16)
where
rsi~—-1) =J—fn(p-1) + TKI (P-1) 17)
S (i+1l)At At C (i+l)At + [KJ(i+l)At (
is evaluated using temperatures
{r}*p = {7} + {aT}"p
1i; (i+1)At 1U (i)At (18)

The iteration continues until convergence is obtained
according to the criterion

[1{6T}Y(P) Il / [I{T}[PI1)ALt|l < TOL1 / (19)

where TOLl1 represents an adjustable tolerance.
Equations (14) through (19) constitute the full
Newton iterative solution of the governing system of

equations (8). To avoid the undesirable computational

expense of updating and factorizing the effective stiff-

P—1
nexx matrix [ 55] © eac” iterati®n> the applica-
tions presented in this paper make use of the modified
In this method, a new tangent
is computed periodically from

Newtcn—-Raphson scheme.
stiffness matrix [S]

one of the converged solutions at time (n)At, n=0,1,

P-1
2,... i, and used in place of ( ) equation

, , is held fixed in a
(n) At
given time step, this modified method involves fewer

(16) . Because the matrix [S]

stiffness reformations than full Newton iteration. The
frequency of the stiffness updates can be adjusted
according to the degree of nonlinearity in the compu-
tational model to avoid an excessive number of
iterative corrections.

This application of the finite element method to
the inverse heat conduction problem considers a two-
dimensional model of the (r,0) cross section of a
circular cylinder.
is employed, so that the spatial coordinates are inter-
polated using the same functions Nj as those used for T
in equation (6). The Nj associated with the 4- to 8-
noded two-dimensional isoparametric element are
described in numerous references, including (10) and
(11), and will not be given here.

FORMULATION OF THE INVERSE PROBLEM

In this study, the two-dimensional problem of a

cylindrical body subjected to a planar surface heat flux

g(0,t) is considered as depicted in Figure 1. The
conditions
T(rP,0£,t) = TP(t) O<t<t . £ =1,L (20)

are prescribed at L equally spaced interior points along

a contour of radius rp near the surface, while the

surface heat flux function

-k = q(9,t) (21)

An isoparametric (10) discretization

is unknown. The problem is to determine g(0,t) and
the temperature distribution T(r,0,t), 0 < r £ a,
Although a

circular geometry is assumed here, the basic technique

0 0 < 2ir, on a specified time domain.

described below for treating the inverse problem is
applicable to other geometric shapes with a multiple
number of thermocouple sensors judiciously positioned
near the surface of the body.

In his treatment of the linear inverse problem,
Imber (7) indicates that a successful extrapolation
procedure requires the temperature distribution to be
known, a priori, throughout a closed region within the
body. For a one-dimensional axisymmetric analysis of
a cylinder such as that depicted in Figure 1, the
temperature can be determined in the closed region
r < rP < a using data from a single thermocouple
sensor positioned at radius rp. The two-dimensional
analog achieved by relaxing the condition of axisym-
metry then presumes a time-history of temperature data
recorded pointwise on a closed contour of radius rP,
i.e., a "line-source" of temperature data. Because
such a volume of measured data would not be available
in any realistic experimental program, the technique
described below is based on a limited number of thermo-
couple sensors discretely positioned on a contour near
the surface of the body.
in the next section illustrate that the accuracy of the

Numerical examples presented

technique in approximating the flux boundary condition
is improved as the number of temperature sensors per
unit arc length on the contour is increased.

Fig. 1 Cross section of heated cylinder

The initial step in the development of the method
is the discretization of the unknown surface heat flux
on the boundary domain using a set of nodal values
q®, £ = 1,L, and suitable interpolating functions
(to be specified later), as depicted in Figure 1.
Thus, the approximation of the surface heat flux g

is given by

qo,t) = 1

Rp(8) a@»(t) = (R} {q) (22)



One surface flux node is designated for each active
thermocouple sensor and positioned at the minimum
distance from the sensor node. Numerical tests have
indicated that this geometric arrangement produces a
stable, well conditioned system of equations for
approximating the boundary heat flux function qg.

In addition, the nodal values of surface heat flux
will be temporally discretized such that in a given
time step At, qg(0,t) is represented by

L
a(9,t) = E R,(0) g (RIT {q}
1=1 . £; (1)At (i) At
(i-1)Aat < t £ (i)At i> 1 . (23)
For a given 1 > 1, it 1is assumed that {g}~" , {g}l~*7
oo {a) are known. To determine 'fqj an

analysis interval of J £ 1 time steps is selected, as
depicted in Figure 2.1 In the next step, {g} 1is esti-

mated over the analysis interval (i)At < t £ (i+J)At
using relations that take the trend of g into account.
For the first time step in the interval,

{g} (i+1)At = {g} (1)At + ({g}(L)At " {g} (i-1)At) (24)

and for the "future" time steps

{g} (i+3)At = {qg} (i+3j-1)At + 6({g} (i+j-1)At
" {g} (i+j-2)At) (25)
for 2 3j J, where 0 B <. 1 is an adjustable

parameter.?2 Thus, the interpolated boundary conditions

can be estimated for each time step in the analysis
interval according to the relation

g(9) (i+j)At = {R}T {g}(i+3j)At * <26>

Then the boundary value problem (equations (1) through
(5)) cast in the discretized finite element formulation
(equations (8) through (12)) is solved over the analysis

"FUTURE" TEMPERATURES

i+ DAL 1 (i + 2)At T 5iat

—->T

(i)At (i+ DAt (i + 2)At i + DAL

ANALYSIS INTERVAL (J > 1)

Analysis interval for computing surface heat
flux g

lFor elementary one-dimensional models with
characteristic dimension a, Beck (2) recommends values

of J that are appropriate for given values of the
dimensionless time step AT = aAt/a”.

2{g}Q is determined from conditions at the

initial time.

interval (i)At < t < (i+J)At using conditions (24) -
(26) in the surface integral of equation (11).
The objective of the method is to select

to achieve the closest agreement in a least squares
sense between the computed and input thermocouple
temperatures over the analysis interval. This is
accomplished by minimizing the weighted sum of squares

function

L
£ ({q} )= 1 wi *

(T o -nE )
(1+1)At 3 1=1 £; (i+3)At £; (i+73)A¢

T TP) (27)
(i+3)At

with respect to the L nodal parameters represented by
the array In equation (27), (T} and ({T"}

are the computed and input temperatures at the interior
thermocouple locations (rP,®"), £ = 1,L. The weighting

functions defined by wj

Jj2 were suggested by Muzzy

et al. (4) in a one-dimensional finite difference
application of Beck's method.3

The minimization procedure for the function f
of (27) 1is based on an iterative technique that is a
generalization of Beck's one-dimensional formulation.
For the (H) " iterative correction {Ag}”) to the

minimizing nodal parameters ~g” (i+x),'t' t'ie egements

H

of the temperature array {T}('). in (27) are
(i+3)At

approximated by a truncated Taylor series exFansion

(5-1) il
9T . I
T (H) T (H-1) £; (i+i)At H)
17 (i+9)At 5 (it3)at (H) W
qk;(i+l)At
£ = 1,L (28)
where
A (H) (H) (H-1)
Agfe  _ ab; (i+1)At  qfe; (i+1)At k= 1,1 (29)

If the heat conduction model is linear, this expression
is exact and no iteration is required. The partial
derivatives in (28), referred to as sensitivity

coefficients, are approximated numerically according

to the expression

(H-1)
j.CH-D £; (i+J)At £,fe = 1,L
4ife (1) o
39fe; (1+1) At i=19

s (143111t

Agfe; (i+1)At

where {g*} 1is obtained from {g} by perturbing the

component, i.e., qgf = (1+X)g” and g* = g, m "~ fe. A

value of X = 1 x 10-2 is used in the present study.
In each iterative correction to {g~i+"At’

(J) (1+L) conventional solutions of the finite element

heat conduction model (equations (8) - (12)) are re-

quired to compute the array (30) of sensitivity

coefficients. With the @'S thus determined, the

3Beck's one-dimensional formulation uses w".

for all j



extrenizing condition

i 0 (31)
3ig} (i+1)At
is used to compute the incremental correction. Wlien

(28) 1is substituted into (27) and the differentiation
(31) is performed, the (H)Il*l correction {Ag} (") is

determined from the expression

A -~ A H = D -~
L 1 {Ag} (H) { 3 (32)
where the components are given by
(H-1) L 3a(e—D 3, (H-1)
AIk Iow 1 mk G2
3=1 m=1
L
d(H-1) P
Bl I (Tie; (143)at
k=1
(H-1) . 3*(H-1)
- Xfe; (i+3)Af xl (34)

The correction (32) 1is then used to update the nodal
/H—n

array °1 surface flux according to equation

(29) . Generally, the iteration is continued until
convergence is achieved according to the criterion

IKAg}) (H) |l / 1l1{q}(ill)Atll < TOL2 (35)

for some prescribed tolerance TOL2 > 0.
The discretized approximation of the surface heat
flux

g(e) (i+1)Aat = (R} {a} (i+1)At (36)

thus determined provides a conventional boundary condi-
tion (for equation (11)) 1in the next single time step

At only.
time step and the process 1is repeated.

The analysis interval is then shifted by one

In the numerical applications of this technique
in the next section, the surface flux interpolating
functions (R) have the form

r 2rlz (O — X1

(cos [J—— "= 0£ - A0 £ £ 0£ + A0

Rp(0)
otherwise (37)

for £ = 1,L.
have the properties

The functions (37) depicted in Figure 3

£ = fe
7 ! Z,k = 1,1 (38)
Z ? k
RE£(0) + RE+1(6) = 1 61 — 6 — eitl
61
(RL+I E RI i1 ) (39)

It follows from equation (39) that the interpolation
(22) can represent a uniform surface heat flux.

NUMERICAL APPLICATIONS

The two-dimensional inverse formulation developed
in the preceding section is applied here to a composite

rod containing an electric heating element and

0f,

Fig. 3 Interpolating functions for surface heat flux

thermocouple sensors. This heater rod represents one
member of a rod array that 1is designed for test purposes
to simulate a nuclear fuel bundle. The heater rod
bundle is positioned in a thermal-hydraulics test loop
that is used to study hypothetical loss-of-coolant
accidents in pressurized-water nuclear reactors (12).1
A heater rod cross section and the corresponding
two-dimensional finite element discretization used in
the inverse analysis are depicted in Figures 4 and 5.
The rod has a nominal heated length of 366 cm (144 in.)
and is constructed with a stainless steel outer sheath.
Attached to the inner surface of this sheath at equal
intervals are twelve chromel-alumel thermocouple
assemblies, 0.05 cm (0.02 in.) in diameter. Four addi-
tional sensors are positioned in the center of the rod.
Only four of the sixteen thermocouples actively record
data in the cross section of Figure 4, namely the three
boron nitride (BN)-filled thermocouples attached to the
outer sheath and one of the center rod thermocouples;
the junctions of the remaining thermocouples are posi-
tioned in different axial planes of the rod. Boron
nitride is used as a filler and an insulator between
the inconel heating element and the thermocouple
assemblies. In the finite element model of the heater
rod (Figure 5), each thermocouple at the outer sheath
is modeled with two quadrilateral elements that are
assigned the appropriate material properties of BN or
MgO and the same total cross sectional area as the in
Situ circular sheaths.
are not used to drive the inverse computation and are
not included in the finite element discretization.
The thermophysical properties of thermal conduc-
tivity k and specific heat c are temperature dependent
Except for the thermal

Those in the center of the rod

for each material in the rod.
conductivities of MgO and BN, these properties are
determined for each material as a function of tempera-
ture from an optimum polynomial fit to available data,
as given in Reference (6). The thermal conductivities
for the MgO and BN depend on packing density and must
be determined In Situ as part of the rod calibration
procedure (13) prior to each test.

"This test facility is operated by the Oak Ridge
National Laboratory (ORNL) Pressurized-Water Reactor
Blowdown Heat Transfer Separate-Effects Program, which
is part of the overall light-water reactor safety
research program of the Nuclear Regulatory Commission.
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Fig. 4 Electrically heated rod with interior thermo-
couple sensors

(a) cross section
(b) dimensions

The first numerical example) was selected to eval-
uate the performance of the technique in solving the
inverse problem for the finite element model of Figure
5. A standard initial-boundary value solution was
obtained from the finite element formulation (8) - (12)
using the prescribed surface heat flux function

1 J_1 of-
g(e,t) = 47.31+ 126.2[sin(i{6 - 2irt})] =~ W/cmo '
0£ t £ 1.0 (40)
3
a constant heat generation rate Q = 5274 W/cm , a time
step At = .01 s, and initial center rod temperature
X = 441.2 C. From this direct solution, the
center

’
temperature transients of Figure 6 were calculated

5The inverse calculations presented in this section
were performed using TOLl = .001, equation (19); 3 = 0.5,

equation (25); TOL2 = 0.05, egquation (35).
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Fig. 5 Two-dimensional finite element model of heater

rod cross section: 126 elements; 288 nodes
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at the thermocouple locations 1 through 6 of the
discrete model (Figure 5). With the thermocouple
transients of Figure 6 serving as input, two different

inverse analyses were performed in an attempt to repro-

duce the surface flux boundary condition (40). The
first analysis utilized input data from only three of
the thermocouples (L = 3), those numbered 1, 3, and 5
in Figure 5, while the second utilized data from six
thermocouples (L = 6). The analysis interval consisted
of only one time step (J = 1). Results from the two

inverse analyses are compared with the known direct
solution in Figures 7 and 8 at different times. Through-
out the transient, the inverse analysis using six active
thermocouples consistently produced a good approximation
of both the surface flux function (40) and the surface
temperatures. As illustrated in Figure 7, the solution
using three active thermocouples was not as successful
in approximating the surface variables at those times
when the localized perturbation in the surface flux was
not "near" an active sensor. This example demonstrates
that, within practical limits, the prediction of surface
conditions is improved as the number of thermocouple
sensors per unit length of contour is increased.

In the second numerical example, the inverse formu-
lation is applied to actual thermocouple transients
taken from a representative test of ORNL's single-rod
test apparatus.ét The heater power input to the rod

during the period of the transient considered here is
essentially constant at Q = 5300 W/cm-*. Figure 9
illustrates the time-history of the thermocouple tem-
peratures recorded by the active BN-filled sensors (1,
3, and 5 in Figure 5) and by the one active center

thermocouple. The acquisition interval for these data
s TEMPERATURE
200 -
-350
150 - o DIRECT

O INVERSE: TP NODES 1,3,5 -250
A INVERSE: TP NODES 1-6

100 -
- 150
HEAT FLUX
ANGLE (deg)
Fig. 7 Test case: comparison of direct solution with

inverse solutions at time 0.7 s

6The single-rod test facility (12) at ORNL is used
primarily to qualify heaters for the large rod bundle
loop and to obtain blowdown heat transfer results for

a single rod in an annular geometry.
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is At = 0.01 s. In the same figure, the temperatures

computed at the BN thermocouple locations in an inverse

solution (for At = 0.01 s and J = 2) are compared with

the input data; the error is not discernible on the

scale of these plots. Because the center thermocouple

data are not used in the inverse computation, comparison

of these data with the computed center rod temperatures 250 -

permits an evaluation of the rod finite element model.

This comparison can be only approximate due to uncer-

tainty in the precise orientation of the center thermo-

couple assembly and to the absence of appropriate

material modeling of the assembly in the discretization.

Agreement between the measured and computed values is

generally good, although a slight divergence appears

at time t « 5.75 s when gradients and time rates of

temperature become pronounced in the center of the rod. I- 150 -
Figures 10 - 12 illustrate the computed time-

history of surface conditions at node gj in Figure 5 for

a time step At = 0.01 s and three different analysis

intervals. The results for one time step in the

analysis interval, J = 1 (Figure 10), indicate that cc 100 -

the measured data of Figure 6 require the use of

future temperatures to reduce oscillations in the

computed values. The solution using two time steps,

J = 2 (Figure 11), removes much of the "noise" from the

flux time-history without severe rounding of rapid

changes that begin at time t == 5.5 s. The results for

J = 3 (Figure 12) lead to additional smoothing of the

solution and illustrate the tendency to "round off"

rapid changes as J is increased. For the finite

element model of Figure 5 and a selected time step

of At = .01 s, the use of one future temperature

appears optimal for reducing oscillations. Figure 13

compares the surface conditions at time t = 5.85 s

for the above three solutions. Fig. 11
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- 300
200- 200-
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- 200
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Fig. 10 Experimental case: inverse solution at Fig. 12
surface node using one time step in
analysis interval (J=1)
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Fig. 13 Experimental case: surface conditions at time

5.85 s

In the experimental apparatus that produced the
thermocouple transients of Figure 9, the heater rod
surface is exposed to a transient two-phase flow that
is primarily parallel to the rod axis. At point (a) in
Figure 9 (time t = 5.65 s), the entire surface of the
rod cross section has departed from nucleate boiling;
at point (b) (time t = 5.80 s), part of the surface
experiences a "rewet" with an accompanying drop in
temperature; at (c) (time t = 5.95 s) the entire sur-
face is in transition to film boiling. Contour plots
in Figure 14 illustrate the change in temperature
distribution for the cross section of the rod during

this portion of the transient.

SUMMARY AND CONCLUDING REMARKS

This paper has presented a two-dimensional
formulation of the inverse heat conduction problem that
is applicable to composite bodies with temperature-
dependent thermophysical properties.
utilizes a finite element heat conduction model and
a generalization of Beck's one-dimensional nonlinear

The formulation

estimation procedure. Applications of the inverse
technique to an electrically heated composite rod were
examined in the study. In the first example, a con-
ventional initial-boundary value solution, with a known
surface heat flux, was used as input for the inverse
calculation. The computed surface heat flux was
compared with the imposed heat flux for two different
thermocouple configurations. These comparisons indicate
that, within practical limits, the approximation of
surface conditions 1is improved as the number of thermo-
couple sensors per unit length of contour is increased.
Finally, the technique was applied to experimentally
determined temperature transients recorded at thermo-
couple sensors in the interior of the rod. The results
presented here demonstrate that the inverse formulation
is capable of successfully treating experimental data.
Consideration of future temperatures in calculating

surface conditions permits the use of small time steps

TEMPERATURE
(C)

TIME - 565 F

TIME ” 5.80

TIME =1 5.95

Fig. 14 Experimental case:

(deg C)

temperature contours

(a) time 5.65 s
(b) time 5.80 s
(c) time 5.95 s

while avoiding severe oscillations or numerical
instabilities due to errors in measured data.
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