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R. 8.hn 
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Upton, 10.w York 11973 COMF- I 

This p a w  discusses the ISkBlatE project, which 
has the objective of cwstrocting a high-eaergy proton 
colliding beam fac i l i ty  a t  Brookhaven National 
Laboraton. The major tactmica1 features of the inter- 
eectiag skonga acc;ler.~ora vith their projected 
p e r f m e  axe d08crLb.d. Application of o9a+ 1000 
s u p e r c d r t i o g  -s in th.-two t iup  mpreuu ts  the 
salient characterist ic of the m r c h h .  The status of 
the ent i re  project, the technical progress msde so far,  
and d i f f i cu l t i e s  encountered are  reviewed. 

Introduction 

The quesc by rhi  high e m r w  physics c a m a d t y  fa r  
bigger and better 6schines has fo t  nrmy years provided 
the stimulus and support of significant research and de- 
veloprnent in the field of superconductivity. After a 
long march, the effor ts  begin to  pay off with large 
scale applicatioa of supercmdnctiog maltn.rs becoming 
the essetati.1 iagtrdient in the building of nav accel- 
erators. In 1978 the cmuttuction a t  BrooImcrven 
Nation81 Laboratory of a proton-prataa colliding beam 
fac i l i ty  undm the .or ice8 of the U.S. Department of 
%erg, w u  a t ~ i z d . l  mis f w i i i t y ,  - u 
IS-, w i l l  repremat ome of tb sort powerful 
i n s t r r r m t s  mai lable  vorld-vih k the 1980's to crrry 
out prrti.de physics r e # m r h .  Tbh paper attemp- to  
give a -1 review of the taehaical f u t u r r s  of the 
project d the IWW of the mjMT aecelwatol: 
c o a p x t a ~ s .  Tat liar *&I& ths spank& isterest of chi8 
eudieaca, ewphiwia w i l l  be p1oc.d on the discrt.riea of 
supercolultoct- -eta u u e l l  u th. aut3crireed 
cryogeaiu and v.cuum aprtrrr, Furthat iufermatiaa may 
be found Ln m e l i e r  n v i u r a  and plblicatioor.2*3 

From its iuaeptioa, ISABW rry htended to urn 
as  a -jot high energy f a c i l i t y  whish implied rhr fol- 
lowing design c r i t e r i a r  

- O r i g b l l y  ~ r i ~  u 
the eollrllp objectives wen 

increased to  400 + 400 0.0 reflecting the acpactatioas 
of the high-erurlp physics c o r r o i t y  as expressed by the 
1977 Woods Bole -1. Equal to  the top energy in im- 
portance is  ISASUX's b r a d  oparathg r m  c m r i .  
the energies froa injection a t  30 GeV t o  p u k  field a t  
a0 cev. 

i i )  Higb I n t a w t i o n  Rate - keching a hig4 l d a o a i t y  
remains ISA3kUlt's strongpat u s e r ,  in particular oor 
that two other higheraaergy colliding bem experhts 
a t  CB%B and ? X U  are  d r  cozsstltrrcr The l d o r i t y  

in the standard inset t iow a t  top energy. At lower 
energy the lumia~s i ty  decreases with beam height or the 
square root of euerw. M o d i f b t i a U  to the insertion 
l a  ut  should eventually allow 1 u b s i t f . a  of about 
0 2 1 .  mesa lu in0 .1 ty  levels 
can be achieved with 8 A beeam in each ring. In order 
to assure long be- l i f e  time and low radiation 
background operatiou of ISABELLE for collidfnO be= 
axparimeats w i l l  w e  coasting unbuetchad berar. Even so, 
the expected intetaetilm race reacltee about IcO HEm 
rerult ing in a to ta l  particle production ra te  a t  top 

*Work performed under the awpicer, of the O.S. 

e w q ~  on the order of 1 bi l l ion per second a t  u a h  
crossing, clearly a nontrival detectioa problem. 

i i i )  Gxaarhmtal F l d b i l i t p  - In colliding be- 
eacperbeu~ the clear di r t ioct iaa  maehine/experiO.llt 
dinrppurs.  Aa adeqaate number u mll u a appro- 
priate du&p of inrertioru thw beeomem of par.rowt 
iaportmce. P ~ I u u c ~ . ~  coastr8ints n r t r i c t u d  the 
ns lk+  of crosriry points to six. Each b- crossing 
vill uiu place fn tho center of 6O-m mgnet-free 
s t r u g h t  sectioor. 

iv) Suoereonducting -eta - Although a topic of 
considerable debate a t  the incentiaa of ISABXTLE. the 
we of supercooductipg mrgaats hs been acceptedv by 
uav .as the best overall solution for highest-energy 
proton accelerators end storage rings and no further 
justif ication is here required. The  optianm choice 
of peak field i s ,  on the other hand, not so obvwum. 
The relative ease with which GO kc (i.e. the design 
value of the 200 GeV version) w u  nucrkred Pad even 
arceeded4 suggestad that SO kG would be a mq?ocui- 
ble design value for the 400 6 e V  rings. TIcmwe, the 
new ouprcaaduct in~ mt t e ~ h a a l o 8 ~ ~  i s  mrniag OIZC 
to be pore ardoocu tlua had b a a  antioipatad .ad th. 
recent f u l l  d a e  prepsodaction dipole8 perf@ bm- 
law expectation. The magnclt s t a W  a d  the R&D 
effor ts  to,impmpe it w i l l  be d i s c w ~ e d  in mm 
detail .  

Retain* the o p t i a  of'azp.nd- 
~ ) a W Q L g  by add* ayom r w a ,  
either for pratonr or electrons, is oacr of the bi8io 
design c r i t e r i a ,  Premntly uoder cowidera t iw  is the 
possibil i ty of an electron ring of about 12 GeP m.a=gy 
in a separate tunael. The option of adding a 
booa te  to  perrif acceleration d colliding beams 
of h-vy ion8 a t o o w  equal i o t e r u t $  

General Deser i~ t ioa  

The coltfigut.tion of ISABW is essentially a 
huugaa with rmmdad corners. The mechi- consists of 
tYO identical riugs for the rccollolatioa, accelera- 
tion, and storage of protm b c a r .  The tw, rings, 
identified u blue and pl low,  .re in the r a n  hori- 
zontal plasm a l lwing  for intersections a t  s ix  cross- 
k g  points where the cooater-rotating bum collide 
vi th  each otlrer. The mu ring8 are m g a e t i c ~ l l y  ~ p -  
arated to allow o p e r a t h  vith anequal m r g i e r .  
Sin- the r-s are to be f i l l ed  ftrn the 4GS using 
qachroaour, k.n transfer, their  circrrrferraee w u  
chorea u exactly 4-3/4 times the circrafareace of the 
AGS, or 3833.8 m. Almost half of the circmfereace M 
cont~ined in the s i x  imert ioar ,  the rest Fa 
tha regular arcr,. It hu becaw cur toury  to 
distinguish inn.r and outer arcs u well u inner cmd 
outer half insartiom by their  clock position. 

Cmantioacrl Faci l i t ies  

The ISABELLE fac i l i ty  is located in the northorart 
corner of the Braokhwcm s i t e  (Fig. 1).  Tb. complex 
encompasses an area of a p p r o x h t e l y  600 acres of 
which a b u t  om-helf w i l l  be occupied by the main ring 
tutmel, experimental areas, access mads, add ut i l icy  
right-of-ways. Tha tunnel coasiuts of a multiplata 
arch erected on a continuow reinforced coacrees slab; 
its conetruction ia scheduled for completion in 
July 1981. 
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.ad is 3 , 4 r h i @ .  Tb. tunad d i r au i f fu  am eight but 
adeporfe u cb. q- with tba Fie#€ lhil test 
twuml d-a&. tramport of ma$oaM a l m s i d .  
m#glut8 .I@ i88urrur i8 fuili t8S.a by wing 
spscll tril-$dded *.hioles. T b  rfat aepuatioa ia 
the rewlr* . r ra  t* 95.2 a hPa qoutPlopale -ter-eo- 
eaoter. t8UtLld kr -1 is 1.27 n abwm flosr. 

l tm largaet a d  r~.at;tsl H W ~  tbsilw t 
rsIllatp S . H ~  MU-. mir b ~ i l d i r y  ir w e d  ct 
t h e S o * c l ~ ~ f h b t ~ r f d t * I r d t t h * a r n m o f  
a11 msehfp. o p u r C W .  'Lab rtaa+ppr cuataiw a 
50,080 rpcun p.g d .9pbatr th rw 
B U ~ U  kPPPgiol~, i.... mt and 
r f ,  .Dd tM n B i 8  COgSIDl fOl am rneal l ruar .  Pbffiorh 
r-8ti.m of rhr cargrusm bdLdfnt rw+.m ia 
order to koep w i n  af eha haliim colpt.urot 3 a m i d -  
mm. Z b n r  rqtlcpwnt &care8 pe* oluC.nf, 8dditioa 
to the urea8 in the support baildi#Qa .t ctL. 
experimental ~ u ,  mid. the awce.uif rp- for 
electronic rrcb a d  auppurt e p o i p a e  in ck. ring. 
Space for the rP cavities is ptwided &I rprci.1 as- 
clorure strtrctum a t  th. 5 o'cloCL ~Xtmt ,  a d  spree 
for injection a d  extraction equipmat ariats th* 
vicinity of the injention tumela. 

The e w f h m a m i  8- c o r r r i ~  d a W i d e - a l .  bll 
a t  6 o'clock, I.* f w i i b i e 8  at 8 o'ahak rird 10 
o'clock, & a -1-*1e ball a t  2 o'clock. Th8m .ou 
two o m  uur & I t  o*clocir d 4 o'eloak deb 
i a i r ia l ty  dl1 k b u d  umdr riEbaut any d d l d  
s t r c ru ra r .  Colrsfmcti~. of tba WSda AugIe lull, op.n 
area a t  4 o 1 a W ,  amh 811131 W b  h.U ~WS d t 4 r t d 1  
Coznrrrtioarl ~oas t rae t ioa  fm dm p r o j r t  ir sehedaled 
to end by A p d l  1983. Pr-8 SO far  ir impressin md 
no delay8 am e w t e d .  

Fig. 1 ISIMLLE layout. 

Zh. design of e b  -tic fosuuhtg rtruaeut. 
d t J  a aO.PMIII b.tuemi~ apeotuir cotmidrra- 
tion8 a d  eh. &sit. to iaj-t d l  rbon the tnori- 
titm uwrgy. ~ l u  l a t t b  ~oof igssea im~ i s  
abouu ia lit. 2. T h  maasitioa euergy ir 17.6 W ,  
rpffici. lrly belor injretion v i a  29.4 GeV. Tfn cum 
of th. I.chb is aolbiorlty 22.6, both in the 
hosi-1 rad vettical plamo. Eb. colrsribrrtioam to  
the tolv Oror the krmrciaru is 9 (i.e., 4 x 1.51 with 
dr* t*galut 8 ~ 8  pemU* tlm mat. Use ml outer 
-8 am eorucrlaetad utth idmthrl # p m c u l  fonceioa 
-fa. Th rwalt iag a l l  gmdi.at &iff- m 
c w r . c t l  by cp.dtrrpole trir oolilr. l b h  #re c o a t a i ~  
9 drrw s.llucris -la e e l t  v i a  a g / 2  bllb 9 
3U$ Wf1 csoof%p~l~atioa rci d..ignd fo+ 90' bm5atZoa 

dm. .nnl cel l  1- is 99.5 m, the 
effective length of dipoles 4.6 m and of q ~ ~ l e e  
1.6 m. Zlh. m r a m  tdia of curbatare in the arm i a  
381 m d t h  the band- r8dius in the dipoles 267 m. 
'She trno riagl require 732 dipoler a& 348 quadruples. 
B e  hertirrrs magnets, - of w&icb differ in langth 
from the t egu l e  cel l  magnets, are incladd in these 
totals. 

The ilr6ertioas d e t e w  the Ivmiaosity ertd other 
chasactuirtia8 of the b.r a t  Ehe croubag p o k u ,  
the r w e  n a i l a b l ~  ftw gptkap.1 apparsroe, a d  

am tbe l e e a t h  f a  b.r iajeetioolmjectioa. 
The iowrtioas a m  tito. deCi8ip .  f b ~  the ~..ih&mr. of 
the e i m  for ph-ics t.plfirUsW bot at tlw S U  

time the? urrt a -jar intllvanrr aa design and pow- 
formnee of tha r m l a r a t o r  i tself .  The amssiaq 
mgle of Lhe at.ndud insertion i r  f b d  ae 11 .I87 
mad and the total innr t ioer  1-Q is 283 m. Tha 
tM. q.6. be- tBI m*.t..t @?u&b0le8 mailable 
for oxperimmtai. equi- is 60 m, hch half inwp 
t i ow  ewsis t r  of am 80 r loag dr&ft qua*, 
i l t & ? ? U ~ u d  8 lO&tldhllr #t&(lt.lrd wd-h  
doublet in &e Pidale, followad by three h l f  cells,  
r i d l a  to tb. ce l l r  in the t y o l a r  am, a r r rapd  to 
as& rh. c r o u i q  amas dirpenisa *. 'Ph. stas&& 
irusetioo ir &signed to* t&a beta va lou  u thr 
c w ~ i r y  point af 7.5 m m e i c a l l y  and 43 r 
hori.00t8lly. T b  r e r u l t w  fnC.rmtias diamond 
dio*asianr, at tap ene- m-1- twig& aid 26 em 

th, bud am 4 oamlkd a i t n  of 15 x :2 rad.m. 91 ~JASO~ i 1 y of the * d a d  i n s a r  
t ioa i. 2 x 10 see' a t  tap anem de- 
c r r u i r y  aith the aqouo roee of the energy. 

'Ph. bQO 411 sem a8 irrjeetor of 30 h V  profoar 
for  IS&SUE. Zlta b.a *ill be e j e c t d  frcn tlm AGS 
into the exist* V - l b .  Go t b  @ area by n a w  of 

1SABWJ.X rw rrill bra&-off &rough an -!a=-tic 
2 x 10' boading sactian. Wichfir & i s  bead, the be- 
level is l a d  by 1.8 o ud is U1.a directed iuto 
either of the b i tb rad  X aacl Y L i n t ,  aach prorid* 
almost 90" b e d i n t .  TofePhe+ the b/g bed. are 
roughly equivalmtt to half of the G S .  A l l  beam 
transfer argaeta am comentioacrl, with the big brad 
wing combined Eunctioa o r g ~ t s .  Pouer cotlurptfoa i s  
kept to a minimum by l i a i t i ag  the vertical aperture to 
about 3 .s cm. 

The be- fa  injected into the outer u c s  of 
I S I U  utilizing th. free sp.c.r be- magnets as 
ah- aa Fig. 3. The beam approccher the ring hori- 
zoueally, about 2.5 a above the median plum, and is 
brought above the injection orbit by maas of a 
sequence 02 horizontal deflections, provided by tvo 
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Fig. 2. L a t t i c e  and I n s e r t i o n  Magnet Elements. 

3 m long cur ren t  septa  and a 3 m long Lambertson septum. Stacking and Accelerat ion 
A shor t  v e r t i c a l  t r i m  septum and the v e r t i c a l  f a s t  
k icker  br ing the  beam t o  a v e r t i c a l  landing on the F i l l i n g  the ISABELLE r ings  with 8 A proton 
i n j e c t i o n  o r b i t  near the junction of i n s e r t i o n  and cur ren t  w i l l  be performed by s tacking in momentum 
regula r  arc .  The septum magnets w i l l  be pulsed with space, the method which is used a t  che CERN ISR. I n  
millisecond pulse durat ion.  The f a s t  kicker  w i l l  have preparat ion f o r  in jec t ion ,  the peak rf  vol tage in the 
a r i s e  time t o  Full amplitude of 150 nsec to  permit AGS is reduced from 300 kV t o  approximately 65 kV i n  
successive inser t ion  of f i v e  pulse t r a i n s  from the AGS order  to  match the AGS bunch shape to the buckets of 
onto the same o r b i t .  Design of the kicker ,  conceived the ISABELLE stacking r f  system. The e jec ted  ACS 
a s  a s h u t t e r l e s s  device, is most demanding and model i n t e n s i t y  is reduced from the nominal 1013 
work has been s t a r t e d .  protons/pulse to  2.7 x10" t o  optimize phase 

space d e n s i t y  (normalized t ransverse emittance 
A t  peak energy of the  protons, about 40 !fJ is 15 n 1 0 ' ~  rad m and 1.06 eV sec longi tudinal  phase 

s to red  i n  each beam. Serious damage t o  vacuum chamber space per bunch). Eleven of the  12 AGS bunches a r e  
and adjacent  magnets could r e s u l t  i f  con t ro l  was l o s t  in jec ted  synchronously i n t o  waiting matched buckets of 
and the beam h i t s  machine components. Therefore, the t h e  ISABgLLe stacking r f  system. This procedure w i l l  
c a p a b i l i t y  f o r  f a s t  single-turn beam ex t rac t ion  w i l l  be be repeated u n t i l  55 of  57 buckets present on the 
provided. In the so  c a l l e d  44 e j e c t i o n  scheme the in jec t ion  o r b i t  a r e  f i l l e d .  The in jec ted  beam is then 
kicker  magnets a r e  located ia the  f r e e  space a t  46 and accelerated in energy, slowly debunched, and deposited 
the f i r s t  thin-septum magnet u n i t  s t a r t s  dometream of on the s tacking o r b i t .  Nominally 62 s tacking cycles  
44 a s  s h m  i n  Fig. 3. Eject ion is v e r t i c a l  with the requ i r ing  a minimum stacking tima of 10 min a re  
beam passing about 1 m belov the c r o s s ~ g  point.  The s u f f i c i e n t  t o  bui ld up the t o t a l  8 A of s to red  beam. 
t ransverse beam dimensions a r e  b l o ~  up t o  37 cm2 i n  The l a r g e s t  aper tu re  requirements, 67 mm a t  QF, 
a subsequent defocussing quadrupole and the beam is e x i s t  during beam in jec t ion .  One stacking cav i ty  per  
stopped i n  the  beam dump, vhich i n i t i a l l y  is conceived r ing  operat ing a t  4.45 MRz is capable of providing the 
a s  a s i l i c o u e  carbide/sand block, (3+3.5)m x l . l m  x 06m. maxi- voltage o f  12 kV. However, a second wide band 
With a 0.5 microsec r i se t ime  of the e j e c t i o n  kicker  and c a v i t y  with 1.9 kV c a p a b i l i t i e s  w i l l  be provided for  a 
a 0.5 cmn septum thickness ,  a beam l o s s  of l e a s  than 5 x longi tud ina l  feedback system and could a l s o  serve f o r  
1 0 ' ~  is expected. A t  f u l l  beam cur ren t  the  energy suppressed-bucket operation. 
deposited on the f i r s t  septum w i l l  take it very c lose  
t o  the thermal limit. I n  order  t o  a c c e l e r a t e  t h e  beam, it w i l l  be 

a d i a b a t i c a l l y  rebunched by another rf  system opera t ing  
A r e l a t e d  problem is the energy deposited i n  a t  the t h i r d  harmonic, f  235 kHz. The t h i r d  

superconducting magnets by p a r t i c l e s  sca t te red  out of harmonic waa chosen in order  to  provide the option of 
the septum magnets. It has been estimated tha t  bunched beam operat ion and to permit syachronoue beam 
quenching of magnets by sca t te red  p a r t i c l e s  can be t r a n s f e r  from ah optional  s tacking ring. The peak r f  
prevented provided t h a t  septum losses  of about vo l tage  of  36 kV per r ing  v i l l  be provided by 3 
2.5 r loL1 protons a t  400 GeV a r e  not exceeded. I n  ferr i te- loaded c a v i t i e s .  The c a v i t i e s  a r e  driven 
support of the e j e c t i o n  system design, an AGS/ISABELLE by 3 x 165 W tubes operated as  cathode fol lowers .  
t ask  force has been making a study of the rad ia t ion  Acceleration tiw is nominally 8 min. 
threshold f o r  quenching of superconducting magnets .4 

- - -- -. -- --------. ------- - -  - 

FAST KICKER 

I Fig. 3. I n j e c t i o n  and e j e c t i o n  component layout. 



Vacuum Systems 

I n  the  ISABELLE r ings ,  there v i l l  be two completely 
independent vacuunr systemr. One, which operates in 
t h e  lov  10'11 Torr region provides the required 
clean environment f o r  the c i r c u l a t i n g  proton beam. The 
o ther  system maintains an i n s u l a t i n g  vacuum of  b e t t e r  
than 10'6 Torr i n  the  superconducting magnet 
v e s s e l s ,  s ince  a t  t h i s  pressure the heat  convection 
becomes neg l ig ib le .  Both vacuum systems for  a f u l l  c e l l  
of magnets (6dipoles  and 2 qrudrupoles) have k e n  
constructed assembled, and t e s t e d  confirming the design 
assumption. b 

The major dec i s ion  i n  the  design of the UEV beam 
vacuum consis ted i n  opt ing f o r  a varm-bore solut ion.  
Going t h i s  vay made ava i lab le  the infornut ion on proton 
s to rage  r ings  co l lec ted  a t  the  ISB thereby minimizing 
the technica l  d i f f i c u l t i e s  and the required developnent 
work. A t  an e a r l i e r  time, aluminum vacuum tubes vere 
considered but l a t e r  on s t a i n l e s s  s t e e l  tubes vere 
adopted because of t h e i r  lover secondary e lec t ron  
emission. Basical ly ,  the beam vacuum system cons i s t s  of 
a c i r c u l a r  chamber v i t h  inside diameter of 8.8 cm pumped 
a t  5 .5  m i n t e r v a l s  by t i tanium sublimation and ion pumps 
a t  714 s t a t i o n s  per r ing .  This arrangement has 
demonstrated t o  produce a hydrogen pressure of b e t t e r  
than 3 x 10'11 Torr. Such a vacuum has been 
estimated t o  be adequate f o r  operat ion vhen one. 
considers  beam l i f e  t i m e  due t o  nuclear  s c a t t e r i n g  or  
mult iple  Coulomb s c a t t e r i n g ,  beam n e u t r a l i z a t i o n  by 
e l e c t r o n r  from ionized res idua l  gaa molecules, and 
rad ia t ion  background. 

The beam tuber a r e  fabricated from 304 LN s t a i n l e s s  
s t e e l  v i t h  a 1.5 nun v a l l  thickness  and a 1 nun plated 
copper layer .  Appropriate surface t r e a t m n t s  including 
Argon g l w d i j c h a r g e  cleaning and in-si tu  bake out a t  
about 250'C a r e  expected t o  p r a c t i c a l l y  el iminate  the 
pressure bump phenomena ( v i t h  the  ISABELLE geometry 
~ l l o v i n g  deaorption c o e f f i c i e n t s  of 4 ) .  The i n s t a l l e d  
beam tubes a r e  insulated v i t h  20 layers  of  cr inkled 
aluminized Kapton and 16 layers  of HBC2 super inru la t ion  
f i l l i n g  the nominal 1 cm be tmen vacuum tube and cold 
bore. The measured r e s u l t i n g  hea t  load f loving i n t o  the  
4 K magnet cooling system is l e s s  than 2 W per magnet. 

The i n s u l a t i n g  vacuum ir maintained b e l w  the 
10 '~  Torr l i m i t  by turbo malecular pumps, vhich 
should be capable of handling small Ee lea& as long as 
these  a r e  below the detect ion l e v e l  a t  room temperature. 

Additional Helium pumping on cryogenic sur faces ,  to  
which ac t iva ted  charcoal is bonded, v i l l  be provided. 
The vacum vesse l s  r e l y  on a completely velded 
construct ion with no garkets  and flanges a t  
cryogenic temperatures. 

Refr igerat ion System 

The ISABELLE r e f r i g e r a t i o n  system must function 
in a v a r i e t y  of s i t u a t i o n s :  normal operat ion,  
cooldovn, bake out of vacuum chamber, magnet quenching 
e tc .  The systems requirements a r e  s e t  by the normal 
operat ing condit ions v i t h  a l l  mpgnets exci ted t o  
f u l l  f i e l d .  The design operat ing temperature f o r  the  
superconducting magnets is 3.8 K with excursion t o  4 K 
permitted during ramping of magnets. The w e t  cost  
e f f a c t i v e  aystem t o  obtain t h i s  temperature is by 
means of a s ing le  r e f r i g e r a t o r  u t i l i z i n g  forced 
c i r c u l a t i o n  of helium a t  s u p e r c r i t i c a l  pressure. The 
helium leaves the r e f r i g e r a t o r  a t  a pressure of 5 atm 
and a temperature of  2.6 K. The cryogenic 
d i s t r i b u t i o n  system feeds each sextant  a t  its midpoint 
thereby cooling the 45 magnets of one half sextant  i n  
s e r i e s  (Fig. 4 ) .  

The estimated steady-state primary heat  load a t  
4 K is  15.5 kW and the secondary heat load a t  55 K is 
36.8 kW. Contributions to  the primary heat load 
a r e  mode by the superconducting magnets (33%), the 
magnet power leads (21X), the helium d i s t r i b u t i o n  
system (34x1, and r e f r i g e r a t i o n  requirements of 
experimental areas .  The alloved load per dipole  
magnet is 4.6 W of vhich about 2 W is due to the varm 
bore. Measuremants an the Engineering Tes t  Magnet 
have demonstrated t h a t  these design values can be 
achieved a t  an insu la t ing  vacuum belov 10" Torr.  
Xagnets and t r a n s f e r  l i n e r  have heat  sh ie lds  a t  about 
55 K, represent ing the secondary heat  load. No 
ni t rogen is used i n  the r e f r i g e r a t i o n  system. 

The r e f r i g e r a t o r ,  which u t i l i z e s  the Claude 
cycle, is designed f o r  a 23.5 W p r b a r y  and 55 kU 
secondary capaci ty,  i.e., a nominal 25 kW t o t a l .  The 
magnet coolant is c i rcu la ted  i n  an e s s e n t i a l l y  closed 
loop by a 3 kW cent r i fuga l  compressor operat ing a t  
3.5 K. The main r e f r i g e r a t o r  removes heat  from the 
c i r c u l a t i n g  coolant i n  a subcooler heat  exchanger and 
replaces gas diverted f o r  cooling of the power leads. 
The compressors w i l l  be of the oi l - lubricated 
screw type, consuming a t o t a l  of  16 W e l e c t r i c  pover. 
Two s t e p s  of compression a re  required v i t h  20 p a r a l l e l  

L 2 . 6 ~  WwL, "CAW" 

Fig. 4. Cryogenic d i s t r i b u t i o n  system. 



units i n  the first and s i x  in the second stage. An f o r  sextupole, octupole, and decapole, h e r e a s  
order has been placed f o r  the refr igerator / ,  which is quadrupoles v i l l  have trim quadrupole and decapole 
expected to be operat ional  in. September 1983. c o i l s .  Correction of the random e r r o r s  leading to 

closed o r b i t  deviat ions w i l l  be possible  using 
Superconducting Uagnet System separa te ly  exicted dipole  c o i l s  iocated i n  t h e  

quadruooles . 
Magnet Configuration 

. - 

The magnet system w i l l  be superconducting with the 
l a t t i c e  s t r u c t u r e  assuming dipole magnets which a re  i n  
the regular  c e l l s  4.75 m long and operate  a t  50 kG to 
achieve 400 G e V  beam energy. The regular  quadrupoles 
a r e  1.65 m i n  length and w i l l  operate  with a gradient  of 
6.14 kG/cm. There vill be a t o t a l  of 732 d ipo les  (of 
which 12 a r e  spec ia l  magnets In the matching sec t ions)  
and 348 quadrupoles ( including 72 f o r  the i n s e r t i o n s )  i n  
both rings. Mpoles and quadrupoles a r e  connected In 
s e r i e s  and w i l l  operate  a t  a nominal 3.9 kA. Mpoles 
and quadrupoles a r e  s imi la r  in design. The magnetic 
f i e l d  is produced by superconducting braid which to- 
gecher with spacer turns is formed in to  a s ing le  layer  
c o i l  v i t h  an approximate cosine cur ren t  densi ty d i s t r i -  
bution (Fig. 5).  The braid is made up of 97 twisted 
composite wires ,  0.3 mm i n  diameter,  each containing 
about 500 superconducting Nb Ti  filaments of 9 micron 
diameter. The nominal dimensions of the bare braid a r e  
16.3 mm x 0.6 mm resu l t ing  i n  a f i l l i n g  fac tor  of 74%. 
The braid is f i l l e d  with an a l l o y  of Sn-3 w t X  Ag to give 
mechanical r i g i d i t y  and is insu la ted  with a B-stage 
epoxy-impregnated f i b e r  g l a s s  tape 0.05 mm thick. The 
wires i n  the braid have a 0.01 mm th ick  Cu-10 vt% N i  
jacket to decrease eddy cur ren t  e f fec t s .  The shor t  
sample quench current  of the braid is specif ied ae 
4.35 kA a t  55 kG and 4.2 K. 

The c o i l  is shrink-f i t ted i n t o  a cold laninated 
i ron  core. (Fig. 6) The resu l t ing  Interferenee f i t  of 
about 0.1 am a t  h e l i m  temperature provides the 
necessary precompression of the c o i l ,  counteract ing the 
magnetic pressure of about 4000 psi  azimuthally. The 
laminations a r e  contained within an accurately machined 
heavy v a l l  s t a i n l e s s  s t e e l  support tube. End p l a t e s  
welded to the support tube form a closed pressure vessel  
f o r  containment of the helium coolant.  The magnet 
assembly is mounted In a vacuum tank and thermally 
insulated by mult iple  l ayers  of super insu la t ion  v i t h  an 
intermediate  temperature aluminum beat sh ie ld  (Pig. 7). 

The d ipo les  and quadrupoles v i l l . e a c h  have s e t s  o f '  
windings to provide complete control  over tha w r k l n g  
l i n e  and to cor rec t  e r r o r s  In the f i e l d  shape of the 
magnets. Dipoles w i l l  be equipped with u i m  windings 

Xamet Performance 

The decis ion of adopting a 50 kG design f i e l d  was 
a t  the time based on the performance of magnets i n  the 
o r i g i n a l  Hark s e r i e s  (12.1 cn c o i l  1.d. and 4-1/4 
length). The  best performing magnet i n  this s e r i e s ,  
MK-V, exceeded 40 kG on the f i r s t  quench and reached 
50 kG with feu  t ra in ing  quenches.8 The small rmmber 
of t ra in ing  quenches vas considered acceptable a d  t h e  
des i rab le  s a f e t y  margin was expected to came from 
lowering the operat ing temperature under 4 K a d  from 
conductor improvements involving addi t iona l  h a t  
treatments and higher braid compaction. Nagnets 
subsequent to NK-V served i n  the explorat ion of design 
parameters and led to HK-XIV which reached the peak 
f i e l d  of 51.2 kG a f t e r  52 quenches, indeed meeting the 
50 kG design goal. 

Construction of a ful l -aperature , ful l - length 
i n d u s t r i a l  f i r s t  c e l l  (6 d ipo les  + 2 quadrupoles) was 
i n i t i a t e d  in  1978. The r e s u l t s  from these magnets q n  
be summarized a s  follows: 

f )  I n  the average the dlpole  parformance a s  belov 
expectat ions with f i r s t  quenches a t  37 2 1.8 kG, ; 
reaching 42.4 2 2.7 kC a f t e r  t ra ining.  The highest 
f i e l d  of 48.5 kG was measured i n  one magnet a f t e r  
about 100 quenches. The f i r s t  quadrupole performed a s  
expected reaching the design current  a f t e r  few 
quenches and a maximum of 4.5 kA The second quadru- 
pole vas disappoint ing with a maximum cur ren t  of 
3.7 kA. 

i i )  The s t a t i c  overa l l  f i e l d  qua l i ty  over the good 
f i e l d  aperature of 3 an seems to be acceptable v i t h  
dB/B = 3.2 x 10 '~  rms in the dipoles  and dC/G = 
6.6 x 1 0 ' ~  rms in the q u a d r u r l e s  ( t h e  tolerances 
a r e  3.7 x and 8.8 x 10' respect ively) .  
However individual  harmonics, i n  par t i cu la r  t h e  
sextupole component, a r e  above their t o l e r a n ~ e . ~  
More d e f i n i t e  statements m u s t  a v a i t  f u r t h e r  
measutements on l a r g e r  samples including those with 
long co i l s .  Rate dependent e f f e c t s  a r e  s u b s t a n t i a l l y  
above tolerance a d ,  i f  w c o r r e c t a b l e ,  vould requ i re  
increasing the acce le ra t ion  time to about one b u r .  

Fig. 5. Dipole c o i l  cross  section. Fig. 6. Lamination geometry (Dimensions i n  nun). 



i i i )  Some of the dipoles  were unable to absorb their Table I. Uvole Performance. 
OM energy during quanchea r e s u l t i n g  in c o i l  damage. . 
The heat  deposi t ion in the superconductor is u p o l e  B l s t  #Q/40 kG Comments 
convenient ly exuressed by the i n t e n r a l  112 dt: . (kc) (kc) . . . -. 
me1 t ing  of f i l l &  m a t e r i h  and degiadat ion of insu la t ion  
i n  the monofilar turns was obseroed to occur a t  about MK-V 41.1 53.1 0 Cu Smcer  
4 sec.1° If  , iauthal w n c h  propagation is MK-XIV 31.8 . 51.2 10 ~ u ~ i '  spacer 
too slow, than c o i l  damage due to heat ing w i l l  
occur:ll However, c o i l  damage can a l s o  occur as a 
r e s u l t  of i n s u f f i c i e n t  e l e c t r i c a l  insu la t ion  leading t o  
a rc ing  and it was not estabLished with c e r t a i n t y  what 
caused c o i l  damage on these magnets. 

F i r s t  I n d u s t r i a l  Ser ies  

Cu Spacer 
" .  

" 
A second i n d u s t r i a l  dipole  s e r i e s  was executed with 

CuNf ( i n s t e a d  of Cu) spacer turns in order  to acce le ra te  
quench propagation. These magnets were indeed 
se l f -p ro tec t ing ,  but a t  the expense of reduced peak 
f i e l d  performance. A stnnnary of magnet performance is  
given Ln Table I i n  which the f i e l d  a t  the first quench, 
Blst,  the maxFmum f i e l d  reached B-, and 
the number of quenches required to reach 40 kC a r e  
l i s t e d .  For sake of s impl ic i ty ,  no d i s t i n c t i o n  as  to  
operat ing temperature o r  cooling mode was made i n  
quoting B,,. 

Second I n d u s u i a l  S e r i e s  

C u N i  Spacer 

Correct ive measures to improve quench propagation 
by  a d i f f e r e n t  turn sequence (e.g. a s  shown in Fig. 5) 
have been subsequently suggested and a r e  under 
evaluat ion.  Furthermore it is suspected that  fncreasing 
c o i l  precompression w i l l  s i g P i f i c a n t l y  improve quench 
propagation thus reducing its importance aa parameter in 
the c o i l  design. In any case, the use of a c t i v e  quench 
t r i g g e r s  w d d  remove the need f o r  s e l f  protect ion ff 
t h i s  proved to be incompatible with peak f i e l d  
performance. 

RhD Series  

MK-XV 29.3 
XVI 36.9 

Ti-rich SC 
SC wire 
without CuNi  
Cu Spacer 
Cu Spacer, 
Precompression 
SC Spacer 
Cu 6 CuNi 

XVII 31.5 
XVIII 32.4 

XIX 39.aa 
XXI 32.9 

Hagnet R S D  E f f o r t s  

Subs tan t ia l  e f f o r t s  Ma be- mobilized t o  

Spacer 
3 Same as X V I I  

Same a s  XVIII 
develope an &equate lmderstandi<g of the dipole  

aEddy cur ren t  induced quenches not counted. 

Fig. 7. Isometric view of dlpole magnet assembly. 



l i m i t a t i o n s  and to improve the performance of the 
ISABELLE magnets. The inmediate object ives a re  an 
increase of the f i e l d  a t  the f i r s t  quench and of the 
gain per t ra in ing  step. The R6D p r o g r a  involves small 
s c a l e  t e s t s ,  c o i l  simulation experiments, a d  the 
construct ion of ful l -scale  magnets i n  cont inuat ion of 
the Xark se r ies .  A d e t a i l e d  discussion of the program 
is beyond the scope of t h f s  paper, but o m  may say t h a t  
the main avenues of pursui t  lead towards fmprovement of 
the superconducting braid, reduction of mechanical 
dis turbances,  increase of magnet s t a b i l i t y ,  and 
s impl i f i ca t ion  of the o v e r a l l  c o i l  design. 

The shor t  sample c r i t i c a l  cur ren t  of the unfinished 
bra id  as del ivered by fndustry is specif ied in the range 
of 4.9-5.5 kA a t  5 T and 4.2 K (1.e. over 4.5 kA a t  
55 kG taking i n t o  account the f i e l d  enhancement). A t  
Brookhaven the braid undergoes soldering,  heat  treatment 
and r o l l i n g  to dimensions which reduces the quench 
cur ren t  by several  hundred amperes. Procedures a r e  
being developed to assure IQ (55 M, 4.2 K) b c t t e r  
than 4.35 kA. The use of Ti-rich superconductor has 
been t r i e d ,  but degradation during r o l l i n g  h a s  so f a r  
n u l l i f i e d  the gain in  short-sample current  of Individual  
wires. Elimination of the CuNi jacket has resul ted i n  
improved performance but a t  the expense of an enhanced 
ra te  dependence. The parameter governing induced eddy 
cur ren ts  is the in te rs t rand  res i s tance ,  which is now 
measured to be about 5 micro-ohm i.e., an order of 
magnitude lower than i n  magnets of the o r i g i n a l  Mark 
se r ies .  Metal lurgical  s tud ies  i d e n t i f i e d  cracks between 
the superconducting wire aad SLu\g f i l l e r  produced during 
r o l l i n g  a s  con t ro l l ing  the i n t e r s t r a n d  resis tance.  It 
is s p e c d a t e d  t h a t  the low res i s tance  braid could have 
a l s o  magnetic i n s t a b i l i t i e s  i n  add i t ion  to generat ing 
eddy currents .  Heat treatments to develop a high 
res i s tance  braid have been found12 and will b e  
tes ted soon i n  a f u l l  s i z e  magnet. 

Several approaches a r e  being explored to reduce the  
quench inducing mechanical disturbances. Examples are: 

i )  the unboading of the c o i l  from the cen te r  post 
t o  prevent t e n s i l e  s t r e s s  in the c o i l ,  

i i )  app l ica t ion  of p r e s t r e s s  (about 4 kpsi)  by the 
double shrink method using Al bands to reduce 
motion,l3 

i i i )  individual  anchoring of cur ren t  blocks to  avoid 
s t r e s s   accumulation,^^ 

i v )  use of kapton on major s l i p  planes to reduce 
f r i c t i o n a l  heating, 

v) reduce epoxy/superconductor contact  v i a  an 
all-kapton insu la t ion ,  

v i )  improve e l a s t i c  p roper t i es  of tke c o i l  
(modulus, v i s o e l a s t i c i t y )  by curing under pressure and 
mechanical pre-cycling. 

Nethods to increase the mugnet s t a b i l i t y  a r e  being 
studied. Per t inan t  ideas a r e  hel l -  penetrat ing a 
porous c o i l ,  the use of Cu o r  superconducting spacer 
turns,  replacement of b i f i l a i  turns by thick braid 
operat ing a t  half current  densi ty,  e tc .  

S ign i f ican t  improvements i n  the manufacturability 
of the c o i l s  a r e  expected from a c o i l  redesign.15 
Poten t ia l  advaneages are: 

i) an improved quench propagation due to the 
el iminat ion of quadrufi lar  (1.e. superconducting plus 
three spacer) tu rns ,  

t i )  the suppression of so cal led r e s t a r t s  (Fig. 5 
shove 1 reotare) t h ~ o u g h  the uoo of a thick wedge, 

i i i )  and el iminat ion of hand insu la t ion  during c o i l  
winding resu l t ing  i n  c o i l s  vi thout  turn-to-turn shorts .  

A number of magnets in  the second Nark s e r i e s  have 
been b u i l t  and tested (Table I ) .  Great progress has 
been made Fn mderstanding the XSAEELLE magnets. It is 
most encouraging to have again magnets (Fig. 8 )  which 

have exceeded tha mythical 50 kG value and a r e  
comparable to the best examples of the o r i g i n a l  Mark 
s e r i e s .  Notwithstanding the recent success, i t  is 
c l e a r  t h a t  more work remains to be done to s o r t  out  
the r e l a t i v e  importance of quench inducing 
dis turbances versus magnet s t a b i l i t y  and to optimize 
the overa l l  design. To summarize the magnet 
s i t u a t i o n ,  one can s t a t e  that  the o r i g i n a l  40 kG is 
s o l i d l y  in hand and that  the ongoing R6D program 
stands a good chance of producing magnets capable of 
performing a t  the 50 kG design leve l .  
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